Home | History | Annotate | Download | only in CodeGen
      1 //==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides an interface for customizing the standard MachineScheduler
     11 // pass. Note that the entire pass may be replaced as follows:
     12 //
     13 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
     14 //   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
     15 //   ...}
     16 //
     17 // The MachineScheduler pass is only responsible for choosing the regions to be
     18 // scheduled. Targets can override the DAG builder and scheduler without
     19 // replacing the pass as follows:
     20 //
     21 // ScheduleDAGInstrs *<Target>PassConfig::
     22 // createMachineScheduler(MachineSchedContext *C) {
     23 //   return new CustomMachineScheduler(C);
     24 // }
     25 //
     26 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
     27 // scheduling while updating the instruction stream, register pressure, and live
     28 // intervals. Most targets don't need to override the DAG builder and list
     29 // schedulier, but subtargets that require custom scheduling heuristics may
     30 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
     31 // selecting the highest priority node from the list:
     32 //
     33 // ScheduleDAGInstrs *<Target>PassConfig::
     34 // createMachineScheduler(MachineSchedContext *C) {
     35 //   return new ScheduleDAGMI(C, CustomStrategy(C));
     36 // }
     37 //
     38 // The DAG builder can also be customized in a sense by adding DAG mutations
     39 // that will run after DAG building and before list scheduling. DAG mutations
     40 // can adjust dependencies based on target-specific knowledge or add weak edges
     41 // to aid heuristics:
     42 //
     43 // ScheduleDAGInstrs *<Target>PassConfig::
     44 // createMachineScheduler(MachineSchedContext *C) {
     45 //   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
     46 //   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
     47 //   return DAG;
     48 // }
     49 //
     50 // A target that supports alternative schedulers can use the
     51 // MachineSchedRegistry to allow command line selection. This can be done by
     52 // implementing the following boilerplate:
     53 //
     54 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
     55 //  return new CustomMachineScheduler(C);
     56 // }
     57 // static MachineSchedRegistry
     58 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
     59 //                     createCustomMachineSched);
     60 //
     61 //
     62 // Finally, subtargets that don't need to implement custom heuristics but would
     63 // like to configure the GenericScheduler's policy for a given scheduler region,
     64 // including scheduling direction and register pressure tracking policy, can do
     65 // this:
     66 //
     67 // void <SubTarget>Subtarget::
     68 // overrideSchedPolicy(MachineSchedPolicy &Policy,
     69 //                     MachineInstr *begin,
     70 //                     MachineInstr *end,
     71 //                     unsigned NumRegionInstrs) const {
     72 //   Policy.<Flag> = true;
     73 // }
     74 //
     75 //===----------------------------------------------------------------------===//
     76 
     77 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
     78 #define LLVM_CODEGEN_MACHINESCHEDULER_H
     79 
     80 #include "llvm/Analysis/AliasAnalysis.h"
     81 #include "llvm/CodeGen/MachinePassRegistry.h"
     82 #include "llvm/CodeGen/RegisterPressure.h"
     83 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     84 #include <memory>
     85 
     86 namespace llvm {
     87 
     88 extern cl::opt<bool> ForceTopDown;
     89 extern cl::opt<bool> ForceBottomUp;
     90 
     91 class LiveIntervals;
     92 class MachineDominatorTree;
     93 class MachineLoopInfo;
     94 class RegisterClassInfo;
     95 class ScheduleDAGInstrs;
     96 class SchedDFSResult;
     97 class ScheduleHazardRecognizer;
     98 
     99 /// MachineSchedContext provides enough context from the MachineScheduler pass
    100 /// for the target to instantiate a scheduler.
    101 struct MachineSchedContext {
    102   MachineFunction *MF;
    103   const MachineLoopInfo *MLI;
    104   const MachineDominatorTree *MDT;
    105   const TargetPassConfig *PassConfig;
    106   AliasAnalysis *AA;
    107   LiveIntervals *LIS;
    108 
    109   RegisterClassInfo *RegClassInfo;
    110 
    111   MachineSchedContext();
    112   virtual ~MachineSchedContext();
    113 };
    114 
    115 /// MachineSchedRegistry provides a selection of available machine instruction
    116 /// schedulers.
    117 class MachineSchedRegistry : public MachinePassRegistryNode {
    118 public:
    119   typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);
    120 
    121   // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
    122   typedef ScheduleDAGCtor FunctionPassCtor;
    123 
    124   static MachinePassRegistry Registry;
    125 
    126   MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
    127     : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
    128     Registry.Add(this);
    129   }
    130   ~MachineSchedRegistry() { Registry.Remove(this); }
    131 
    132   // Accessors.
    133   //
    134   MachineSchedRegistry *getNext() const {
    135     return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
    136   }
    137   static MachineSchedRegistry *getList() {
    138     return (MachineSchedRegistry *)Registry.getList();
    139   }
    140   static void setListener(MachinePassRegistryListener *L) {
    141     Registry.setListener(L);
    142   }
    143 };
    144 
    145 class ScheduleDAGMI;
    146 
    147 /// Define a generic scheduling policy for targets that don't provide their own
    148 /// MachineSchedStrategy. This can be overriden for each scheduling region
    149 /// before building the DAG.
    150 struct MachineSchedPolicy {
    151   // Allow the scheduler to disable register pressure tracking.
    152   bool ShouldTrackPressure;
    153 
    154   // Allow the scheduler to force top-down or bottom-up scheduling. If neither
    155   // is true, the scheduler runs in both directions and converges.
    156   bool OnlyTopDown;
    157   bool OnlyBottomUp;
    158 
    159   // Disable heuristic that tries to fetch nodes from long dependency chains
    160   // first.
    161   bool DisableLatencyHeuristic;
    162 
    163   MachineSchedPolicy(): ShouldTrackPressure(false), OnlyTopDown(false),
    164     OnlyBottomUp(false), DisableLatencyHeuristic(false) {}
    165 };
    166 
    167 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
    168 /// ScheduleDAGMI.
    169 ///
    170 /// Initialization sequence:
    171 ///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
    172 class MachineSchedStrategy {
    173   virtual void anchor();
    174 public:
    175   virtual ~MachineSchedStrategy() {}
    176 
    177   /// Optionally override the per-region scheduling policy.
    178   virtual void initPolicy(MachineBasicBlock::iterator Begin,
    179                           MachineBasicBlock::iterator End,
    180                           unsigned NumRegionInstrs) {}
    181 
    182   virtual void dumpPolicy() {}
    183 
    184   /// Check if pressure tracking is needed before building the DAG and
    185   /// initializing this strategy. Called after initPolicy.
    186   virtual bool shouldTrackPressure() const { return true; }
    187 
    188   /// Initialize the strategy after building the DAG for a new region.
    189   virtual void initialize(ScheduleDAGMI *DAG) = 0;
    190 
    191   /// Notify this strategy that all roots have been released (including those
    192   /// that depend on EntrySU or ExitSU).
    193   virtual void registerRoots() {}
    194 
    195   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
    196   /// schedule the node at the top of the unscheduled region. Otherwise it will
    197   /// be scheduled at the bottom.
    198   virtual SUnit *pickNode(bool &IsTopNode) = 0;
    199 
    200   /// \brief Scheduler callback to notify that a new subtree is scheduled.
    201   virtual void scheduleTree(unsigned SubtreeID) {}
    202 
    203   /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
    204   /// instruction and updated scheduled/remaining flags in the DAG nodes.
    205   virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
    206 
    207   /// When all predecessor dependencies have been resolved, free this node for
    208   /// top-down scheduling.
    209   virtual void releaseTopNode(SUnit *SU) = 0;
    210   /// When all successor dependencies have been resolved, free this node for
    211   /// bottom-up scheduling.
    212   virtual void releaseBottomNode(SUnit *SU) = 0;
    213 };
    214 
    215 /// Mutate the DAG as a postpass after normal DAG building.
    216 class ScheduleDAGMutation {
    217   virtual void anchor();
    218 public:
    219   virtual ~ScheduleDAGMutation() {}
    220 
    221   virtual void apply(ScheduleDAGMI *DAG) = 0;
    222 };
    223 
    224 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
    225 /// schedules machine instructions according to the given MachineSchedStrategy
    226 /// without much extra book-keeping. This is the common functionality between
    227 /// PreRA and PostRA MachineScheduler.
    228 class ScheduleDAGMI : public ScheduleDAGInstrs {
    229 protected:
    230   AliasAnalysis *AA;
    231   LiveIntervals *LIS;
    232   std::unique_ptr<MachineSchedStrategy> SchedImpl;
    233 
    234   /// Topo - A topological ordering for SUnits which permits fast IsReachable
    235   /// and similar queries.
    236   ScheduleDAGTopologicalSort Topo;
    237 
    238   /// Ordered list of DAG postprocessing steps.
    239   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
    240 
    241   /// The top of the unscheduled zone.
    242   MachineBasicBlock::iterator CurrentTop;
    243 
    244   /// The bottom of the unscheduled zone.
    245   MachineBasicBlock::iterator CurrentBottom;
    246 
    247   /// Record the next node in a scheduled cluster.
    248   const SUnit *NextClusterPred;
    249   const SUnit *NextClusterSucc;
    250 
    251 #ifndef NDEBUG
    252   /// The number of instructions scheduled so far. Used to cut off the
    253   /// scheduler at the point determined by misched-cutoff.
    254   unsigned NumInstrsScheduled;
    255 #endif
    256 public:
    257   ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
    258                 bool RemoveKillFlags)
    259       : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
    260         LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU),
    261         CurrentTop(), CurrentBottom(), NextClusterPred(nullptr),
    262         NextClusterSucc(nullptr) {
    263 #ifndef NDEBUG
    264     NumInstrsScheduled = 0;
    265 #endif
    266   }
    267 
    268   // Provide a vtable anchor
    269   ~ScheduleDAGMI() override;
    270 
    271   // Returns LiveIntervals instance for use in DAG mutators and such.
    272   LiveIntervals *getLIS() const { return LIS; }
    273 
    274   /// Return true if this DAG supports VReg liveness and RegPressure.
    275   virtual bool hasVRegLiveness() const { return false; }
    276 
    277   /// Add a postprocessing step to the DAG builder.
    278   /// Mutations are applied in the order that they are added after normal DAG
    279   /// building and before MachineSchedStrategy initialization.
    280   ///
    281   /// ScheduleDAGMI takes ownership of the Mutation object.
    282   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
    283     Mutations.push_back(std::move(Mutation));
    284   }
    285 
    286   /// \brief True if an edge can be added from PredSU to SuccSU without creating
    287   /// a cycle.
    288   bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
    289 
    290   /// \brief Add a DAG edge to the given SU with the given predecessor
    291   /// dependence data.
    292   ///
    293   /// \returns true if the edge may be added without creating a cycle OR if an
    294   /// equivalent edge already existed (false indicates failure).
    295   bool addEdge(SUnit *SuccSU, const SDep &PredDep);
    296 
    297   MachineBasicBlock::iterator top() const { return CurrentTop; }
    298   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
    299 
    300   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
    301   /// region. This covers all instructions in a block, while schedule() may only
    302   /// cover a subset.
    303   void enterRegion(MachineBasicBlock *bb,
    304                    MachineBasicBlock::iterator begin,
    305                    MachineBasicBlock::iterator end,
    306                    unsigned regioninstrs) override;
    307 
    308   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
    309   /// reorderable instructions.
    310   void schedule() override;
    311 
    312   /// Change the position of an instruction within the basic block and update
    313   /// live ranges and region boundary iterators.
    314   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
    315 
    316   const SUnit *getNextClusterPred() const { return NextClusterPred; }
    317 
    318   const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
    319 
    320   void viewGraph(const Twine &Name, const Twine &Title) override;
    321   void viewGraph() override;
    322 
    323 protected:
    324   // Top-Level entry points for the schedule() driver...
    325 
    326   /// Apply each ScheduleDAGMutation step in order. This allows different
    327   /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
    328   void postprocessDAG();
    329 
    330   /// Release ExitSU predecessors and setup scheduler queues.
    331   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
    332 
    333   /// Update scheduler DAG and queues after scheduling an instruction.
    334   void updateQueues(SUnit *SU, bool IsTopNode);
    335 
    336   /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
    337   void placeDebugValues();
    338 
    339   /// \brief dump the scheduled Sequence.
    340   void dumpSchedule() const;
    341 
    342   // Lesser helpers...
    343   bool checkSchedLimit();
    344 
    345   void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    346                              SmallVectorImpl<SUnit*> &BotRoots);
    347 
    348   void releaseSucc(SUnit *SU, SDep *SuccEdge);
    349   void releaseSuccessors(SUnit *SU);
    350   void releasePred(SUnit *SU, SDep *PredEdge);
    351   void releasePredecessors(SUnit *SU);
    352 };
    353 
    354 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
    355 /// machine instructions while updating LiveIntervals and tracking regpressure.
    356 class ScheduleDAGMILive : public ScheduleDAGMI {
    357 protected:
    358   RegisterClassInfo *RegClassInfo;
    359 
    360   /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
    361   /// will be empty.
    362   SchedDFSResult *DFSResult;
    363   BitVector ScheduledTrees;
    364 
    365   MachineBasicBlock::iterator LiveRegionEnd;
    366 
    367   // Map each SU to its summary of pressure changes. This array is updated for
    368   // liveness during bottom-up scheduling. Top-down scheduling may proceed but
    369   // has no affect on the pressure diffs.
    370   PressureDiffs SUPressureDiffs;
    371 
    372   /// Register pressure in this region computed by initRegPressure.
    373   bool ShouldTrackPressure;
    374   IntervalPressure RegPressure;
    375   RegPressureTracker RPTracker;
    376 
    377   /// List of pressure sets that exceed the target's pressure limit before
    378   /// scheduling, listed in increasing set ID order. Each pressure set is paired
    379   /// with its max pressure in the currently scheduled regions.
    380   std::vector<PressureChange> RegionCriticalPSets;
    381 
    382   /// The top of the unscheduled zone.
    383   IntervalPressure TopPressure;
    384   RegPressureTracker TopRPTracker;
    385 
    386   /// The bottom of the unscheduled zone.
    387   IntervalPressure BotPressure;
    388   RegPressureTracker BotRPTracker;
    389 
    390 public:
    391   ScheduleDAGMILive(MachineSchedContext *C,
    392                     std::unique_ptr<MachineSchedStrategy> S)
    393       : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
    394         RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
    395         ShouldTrackPressure(false), RPTracker(RegPressure),
    396         TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
    397 
    398   ~ScheduleDAGMILive() override;
    399 
    400   /// Return true if this DAG supports VReg liveness and RegPressure.
    401   bool hasVRegLiveness() const override { return true; }
    402 
    403   /// \brief Return true if register pressure tracking is enabled.
    404   bool isTrackingPressure() const { return ShouldTrackPressure; }
    405 
    406   /// Get current register pressure for the top scheduled instructions.
    407   const IntervalPressure &getTopPressure() const { return TopPressure; }
    408   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
    409 
    410   /// Get current register pressure for the bottom scheduled instructions.
    411   const IntervalPressure &getBotPressure() const { return BotPressure; }
    412   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
    413 
    414   /// Get register pressure for the entire scheduling region before scheduling.
    415   const IntervalPressure &getRegPressure() const { return RegPressure; }
    416 
    417   const std::vector<PressureChange> &getRegionCriticalPSets() const {
    418     return RegionCriticalPSets;
    419   }
    420 
    421   PressureDiff &getPressureDiff(const SUnit *SU) {
    422     return SUPressureDiffs[SU->NodeNum];
    423   }
    424 
    425   /// Compute a DFSResult after DAG building is complete, and before any
    426   /// queue comparisons.
    427   void computeDFSResult();
    428 
    429   /// Return a non-null DFS result if the scheduling strategy initialized it.
    430   const SchedDFSResult *getDFSResult() const { return DFSResult; }
    431 
    432   BitVector &getScheduledTrees() { return ScheduledTrees; }
    433 
    434   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
    435   /// region. This covers all instructions in a block, while schedule() may only
    436   /// cover a subset.
    437   void enterRegion(MachineBasicBlock *bb,
    438                    MachineBasicBlock::iterator begin,
    439                    MachineBasicBlock::iterator end,
    440                    unsigned regioninstrs) override;
    441 
    442   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
    443   /// reorderable instructions.
    444   void schedule() override;
    445 
    446   /// Compute the cyclic critical path through the DAG.
    447   unsigned computeCyclicCriticalPath();
    448 
    449 protected:
    450   // Top-Level entry points for the schedule() driver...
    451 
    452   /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
    453   /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
    454   /// region, TopTracker and BottomTracker will be initialized to the top and
    455   /// bottom of the DAG region without covereing any unscheduled instruction.
    456   void buildDAGWithRegPressure();
    457 
    458   /// Move an instruction and update register pressure.
    459   void scheduleMI(SUnit *SU, bool IsTopNode);
    460 
    461   // Lesser helpers...
    462 
    463   void initRegPressure();
    464 
    465   void updatePressureDiffs(ArrayRef<unsigned> LiveUses);
    466 
    467   void updateScheduledPressure(const SUnit *SU,
    468                                const std::vector<unsigned> &NewMaxPressure);
    469 };
    470 
    471 //===----------------------------------------------------------------------===//
    472 ///
    473 /// Helpers for implementing custom MachineSchedStrategy classes. These take
    474 /// care of the book-keeping associated with list scheduling heuristics.
    475 ///
    476 //===----------------------------------------------------------------------===//
    477 
    478 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
    479 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
    480 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
    481 ///
    482 /// This is a convenience class that may be used by implementations of
    483 /// MachineSchedStrategy.
    484 class ReadyQueue {
    485   unsigned ID;
    486   std::string Name;
    487   std::vector<SUnit*> Queue;
    488 
    489 public:
    490   ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
    491 
    492   unsigned getID() const { return ID; }
    493 
    494   StringRef getName() const { return Name; }
    495 
    496   // SU is in this queue if it's NodeQueueID is a superset of this ID.
    497   bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
    498 
    499   bool empty() const { return Queue.empty(); }
    500 
    501   void clear() { Queue.clear(); }
    502 
    503   unsigned size() const { return Queue.size(); }
    504 
    505   typedef std::vector<SUnit*>::iterator iterator;
    506 
    507   iterator begin() { return Queue.begin(); }
    508 
    509   iterator end() { return Queue.end(); }
    510 
    511   ArrayRef<SUnit*> elements() { return Queue; }
    512 
    513   iterator find(SUnit *SU) {
    514     return std::find(Queue.begin(), Queue.end(), SU);
    515   }
    516 
    517   void push(SUnit *SU) {
    518     Queue.push_back(SU);
    519     SU->NodeQueueId |= ID;
    520   }
    521 
    522   iterator remove(iterator I) {
    523     (*I)->NodeQueueId &= ~ID;
    524     *I = Queue.back();
    525     unsigned idx = I - Queue.begin();
    526     Queue.pop_back();
    527     return Queue.begin() + idx;
    528   }
    529 
    530   void dump();
    531 };
    532 
    533 /// Summarize the unscheduled region.
    534 struct SchedRemainder {
    535   // Critical path through the DAG in expected latency.
    536   unsigned CriticalPath;
    537   unsigned CyclicCritPath;
    538 
    539   // Scaled count of micro-ops left to schedule.
    540   unsigned RemIssueCount;
    541 
    542   bool IsAcyclicLatencyLimited;
    543 
    544   // Unscheduled resources
    545   SmallVector<unsigned, 16> RemainingCounts;
    546 
    547   void reset() {
    548     CriticalPath = 0;
    549     CyclicCritPath = 0;
    550     RemIssueCount = 0;
    551     IsAcyclicLatencyLimited = false;
    552     RemainingCounts.clear();
    553   }
    554 
    555   SchedRemainder() { reset(); }
    556 
    557   void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
    558 };
    559 
    560 /// Each Scheduling boundary is associated with ready queues. It tracks the
    561 /// current cycle in the direction of movement, and maintains the state
    562 /// of "hazards" and other interlocks at the current cycle.
    563 class SchedBoundary {
    564 public:
    565   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
    566   enum {
    567     TopQID = 1,
    568     BotQID = 2,
    569     LogMaxQID = 2
    570   };
    571 
    572   ScheduleDAGMI *DAG;
    573   const TargetSchedModel *SchedModel;
    574   SchedRemainder *Rem;
    575 
    576   ReadyQueue Available;
    577   ReadyQueue Pending;
    578 
    579   ScheduleHazardRecognizer *HazardRec;
    580 
    581 private:
    582   /// True if the pending Q should be checked/updated before scheduling another
    583   /// instruction.
    584   bool CheckPending;
    585 
    586   // For heuristics, keep a list of the nodes that immediately depend on the
    587   // most recently scheduled node.
    588   SmallPtrSet<const SUnit*, 8> NextSUs;
    589 
    590   /// Number of cycles it takes to issue the instructions scheduled in this
    591   /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
    592   /// See getStalls().
    593   unsigned CurrCycle;
    594 
    595   /// Micro-ops issued in the current cycle
    596   unsigned CurrMOps;
    597 
    598   /// MinReadyCycle - Cycle of the soonest available instruction.
    599   unsigned MinReadyCycle;
    600 
    601   // The expected latency of the critical path in this scheduled zone.
    602   unsigned ExpectedLatency;
    603 
    604   // The latency of dependence chains leading into this zone.
    605   // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
    606   // For each cycle scheduled: DLat -= 1.
    607   unsigned DependentLatency;
    608 
    609   /// Count the scheduled (issued) micro-ops that can be retired by
    610   /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
    611   unsigned RetiredMOps;
    612 
    613   // Count scheduled resources that have been executed. Resources are
    614   // considered executed if they become ready in the time that it takes to
    615   // saturate any resource including the one in question. Counts are scaled
    616   // for direct comparison with other resources. Counts can be compared with
    617   // MOps * getMicroOpFactor and Latency * getLatencyFactor.
    618   SmallVector<unsigned, 16> ExecutedResCounts;
    619 
    620   /// Cache the max count for a single resource.
    621   unsigned MaxExecutedResCount;
    622 
    623   // Cache the critical resources ID in this scheduled zone.
    624   unsigned ZoneCritResIdx;
    625 
    626   // Is the scheduled region resource limited vs. latency limited.
    627   bool IsResourceLimited;
    628 
    629   // Record the highest cycle at which each resource has been reserved by a
    630   // scheduled instruction.
    631   SmallVector<unsigned, 16> ReservedCycles;
    632 
    633 #ifndef NDEBUG
    634   // Remember the greatest possible stall as an upper bound on the number of
    635   // times we should retry the pending queue because of a hazard.
    636   unsigned MaxObservedStall;
    637 #endif
    638 
    639 public:
    640   /// Pending queues extend the ready queues with the same ID and the
    641   /// PendingFlag set.
    642   SchedBoundary(unsigned ID, const Twine &Name):
    643     DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
    644     Pending(ID << LogMaxQID, Name+".P"),
    645     HazardRec(nullptr) {
    646     reset();
    647   }
    648 
    649   ~SchedBoundary();
    650 
    651   void reset();
    652 
    653   void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
    654             SchedRemainder *rem);
    655 
    656   bool isTop() const {
    657     return Available.getID() == TopQID;
    658   }
    659 
    660   /// Number of cycles to issue the instructions scheduled in this zone.
    661   unsigned getCurrCycle() const { return CurrCycle; }
    662 
    663   /// Micro-ops issued in the current cycle
    664   unsigned getCurrMOps() const { return CurrMOps; }
    665 
    666   /// Return true if the given SU is used by the most recently scheduled
    667   /// instruction.
    668   bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }
    669 
    670   // The latency of dependence chains leading into this zone.
    671   unsigned getDependentLatency() const { return DependentLatency; }
    672 
    673   /// Get the number of latency cycles "covered" by the scheduled
    674   /// instructions. This is the larger of the critical path within the zone
    675   /// and the number of cycles required to issue the instructions.
    676   unsigned getScheduledLatency() const {
    677     return std::max(ExpectedLatency, CurrCycle);
    678   }
    679 
    680   unsigned getUnscheduledLatency(SUnit *SU) const {
    681     return isTop() ? SU->getHeight() : SU->getDepth();
    682   }
    683 
    684   unsigned getResourceCount(unsigned ResIdx) const {
    685     return ExecutedResCounts[ResIdx];
    686   }
    687 
    688   /// Get the scaled count of scheduled micro-ops and resources, including
    689   /// executed resources.
    690   unsigned getCriticalCount() const {
    691     if (!ZoneCritResIdx)
    692       return RetiredMOps * SchedModel->getMicroOpFactor();
    693     return getResourceCount(ZoneCritResIdx);
    694   }
    695 
    696   /// Get a scaled count for the minimum execution time of the scheduled
    697   /// micro-ops that are ready to execute by getExecutedCount. Notice the
    698   /// feedback loop.
    699   unsigned getExecutedCount() const {
    700     return std::max(CurrCycle * SchedModel->getLatencyFactor(),
    701                     MaxExecutedResCount);
    702   }
    703 
    704   unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
    705 
    706   // Is the scheduled region resource limited vs. latency limited.
    707   bool isResourceLimited() const { return IsResourceLimited; }
    708 
    709   /// Get the difference between the given SUnit's ready time and the current
    710   /// cycle.
    711   unsigned getLatencyStallCycles(SUnit *SU);
    712 
    713   unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
    714 
    715   bool checkHazard(SUnit *SU);
    716 
    717   unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
    718 
    719   unsigned getOtherResourceCount(unsigned &OtherCritIdx);
    720 
    721   void releaseNode(SUnit *SU, unsigned ReadyCycle);
    722 
    723   void releaseTopNode(SUnit *SU);
    724 
    725   void releaseBottomNode(SUnit *SU);
    726 
    727   void bumpCycle(unsigned NextCycle);
    728 
    729   void incExecutedResources(unsigned PIdx, unsigned Count);
    730 
    731   unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
    732 
    733   void bumpNode(SUnit *SU);
    734 
    735   void releasePending();
    736 
    737   void removeReady(SUnit *SU);
    738 
    739   /// Call this before applying any other heuristics to the Available queue.
    740   /// Updates the Available/Pending Q's if necessary and returns the single
    741   /// available instruction, or NULL if there are multiple candidates.
    742   SUnit *pickOnlyChoice();
    743 
    744 #ifndef NDEBUG
    745   void dumpScheduledState();
    746 #endif
    747 };
    748 
    749 /// Base class for GenericScheduler. This class maintains information about
    750 /// scheduling candidates based on TargetSchedModel making it easy to implement
    751 /// heuristics for either preRA or postRA scheduling.
    752 class GenericSchedulerBase : public MachineSchedStrategy {
    753 public:
    754   /// Represent the type of SchedCandidate found within a single queue.
    755   /// pickNodeBidirectional depends on these listed by decreasing priority.
    756   enum CandReason {
    757     NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax,
    758     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
    759     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
    760 
    761 #ifndef NDEBUG
    762   static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
    763 #endif
    764 
    765   /// Policy for scheduling the next instruction in the candidate's zone.
    766   struct CandPolicy {
    767     bool ReduceLatency;
    768     unsigned ReduceResIdx;
    769     unsigned DemandResIdx;
    770 
    771     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
    772   };
    773 
    774   /// Status of an instruction's critical resource consumption.
    775   struct SchedResourceDelta {
    776     // Count critical resources in the scheduled region required by SU.
    777     unsigned CritResources;
    778 
    779     // Count critical resources from another region consumed by SU.
    780     unsigned DemandedResources;
    781 
    782     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
    783 
    784     bool operator==(const SchedResourceDelta &RHS) const {
    785       return CritResources == RHS.CritResources
    786         && DemandedResources == RHS.DemandedResources;
    787     }
    788     bool operator!=(const SchedResourceDelta &RHS) const {
    789       return !operator==(RHS);
    790     }
    791   };
    792 
    793   /// Store the state used by GenericScheduler heuristics, required for the
    794   /// lifetime of one invocation of pickNode().
    795   struct SchedCandidate {
    796     CandPolicy Policy;
    797 
    798     // The best SUnit candidate.
    799     SUnit *SU;
    800 
    801     // The reason for this candidate.
    802     CandReason Reason;
    803 
    804     // Set of reasons that apply to multiple candidates.
    805     uint32_t RepeatReasonSet;
    806 
    807     // Register pressure values for the best candidate.
    808     RegPressureDelta RPDelta;
    809 
    810     // Critical resource consumption of the best candidate.
    811     SchedResourceDelta ResDelta;
    812 
    813     SchedCandidate(const CandPolicy &policy)
    814       : Policy(policy), SU(nullptr), Reason(NoCand), RepeatReasonSet(0) {}
    815 
    816     bool isValid() const { return SU; }
    817 
    818     // Copy the status of another candidate without changing policy.
    819     void setBest(SchedCandidate &Best) {
    820       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
    821       SU = Best.SU;
    822       Reason = Best.Reason;
    823       RPDelta = Best.RPDelta;
    824       ResDelta = Best.ResDelta;
    825     }
    826 
    827     bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
    828     void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
    829 
    830     void initResourceDelta(const ScheduleDAGMI *DAG,
    831                            const TargetSchedModel *SchedModel);
    832   };
    833 
    834 protected:
    835   const MachineSchedContext *Context;
    836   const TargetSchedModel *SchedModel;
    837   const TargetRegisterInfo *TRI;
    838 
    839   SchedRemainder Rem;
    840 protected:
    841   GenericSchedulerBase(const MachineSchedContext *C):
    842     Context(C), SchedModel(nullptr), TRI(nullptr) {}
    843 
    844   void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
    845                  SchedBoundary *OtherZone);
    846 
    847 #ifndef NDEBUG
    848   void traceCandidate(const SchedCandidate &Cand);
    849 #endif
    850 };
    851 
    852 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
    853 /// the schedule.
    854 class GenericScheduler : public GenericSchedulerBase {
    855   ScheduleDAGMILive *DAG;
    856 
    857   // State of the top and bottom scheduled instruction boundaries.
    858   SchedBoundary Top;
    859   SchedBoundary Bot;
    860 
    861   MachineSchedPolicy RegionPolicy;
    862 public:
    863   GenericScheduler(const MachineSchedContext *C):
    864     GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
    865     Bot(SchedBoundary::BotQID, "BotQ") {}
    866 
    867   void initPolicy(MachineBasicBlock::iterator Begin,
    868                   MachineBasicBlock::iterator End,
    869                   unsigned NumRegionInstrs) override;
    870 
    871   void dumpPolicy() override;
    872 
    873   bool shouldTrackPressure() const override {
    874     return RegionPolicy.ShouldTrackPressure;
    875   }
    876 
    877   void initialize(ScheduleDAGMI *dag) override;
    878 
    879   SUnit *pickNode(bool &IsTopNode) override;
    880 
    881   void schedNode(SUnit *SU, bool IsTopNode) override;
    882 
    883   void releaseTopNode(SUnit *SU) override {
    884     Top.releaseTopNode(SU);
    885   }
    886 
    887   void releaseBottomNode(SUnit *SU) override {
    888     Bot.releaseBottomNode(SU);
    889   }
    890 
    891   void registerRoots() override;
    892 
    893 protected:
    894   void checkAcyclicLatency();
    895 
    896   void tryCandidate(SchedCandidate &Cand,
    897                     SchedCandidate &TryCand,
    898                     SchedBoundary &Zone,
    899                     const RegPressureTracker &RPTracker,
    900                     RegPressureTracker &TempTracker);
    901 
    902   SUnit *pickNodeBidirectional(bool &IsTopNode);
    903 
    904   void pickNodeFromQueue(SchedBoundary &Zone,
    905                          const RegPressureTracker &RPTracker,
    906                          SchedCandidate &Candidate);
    907 
    908   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
    909 };
    910 
    911 /// PostGenericScheduler - Interface to the scheduling algorithm used by
    912 /// ScheduleDAGMI.
    913 ///
    914 /// Callbacks from ScheduleDAGMI:
    915 ///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
    916 class PostGenericScheduler : public GenericSchedulerBase {
    917   ScheduleDAGMI *DAG;
    918   SchedBoundary Top;
    919   SmallVector<SUnit*, 8> BotRoots;
    920 public:
    921   PostGenericScheduler(const MachineSchedContext *C):
    922     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
    923 
    924   ~PostGenericScheduler() override {}
    925 
    926   void initPolicy(MachineBasicBlock::iterator Begin,
    927                   MachineBasicBlock::iterator End,
    928                   unsigned NumRegionInstrs) override {
    929     /* no configurable policy */
    930   }
    931 
    932   /// PostRA scheduling does not track pressure.
    933   bool shouldTrackPressure() const override { return false; }
    934 
    935   void initialize(ScheduleDAGMI *Dag) override;
    936 
    937   void registerRoots() override;
    938 
    939   SUnit *pickNode(bool &IsTopNode) override;
    940 
    941   void scheduleTree(unsigned SubtreeID) override {
    942     llvm_unreachable("PostRA scheduler does not support subtree analysis.");
    943   }
    944 
    945   void schedNode(SUnit *SU, bool IsTopNode) override;
    946 
    947   void releaseTopNode(SUnit *SU) override {
    948     Top.releaseTopNode(SU);
    949   }
    950 
    951   // Only called for roots.
    952   void releaseBottomNode(SUnit *SU) override {
    953     BotRoots.push_back(SU);
    954   }
    955 
    956 protected:
    957   void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
    958 
    959   void pickNodeFromQueue(SchedCandidate &Cand);
    960 };
    961 
    962 } // namespace llvm
    963 
    964 #endif
    965