Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkTextureCompressor_Blitter_DEFINED
      9 #define SkTextureCompressor_Blitter_DEFINED
     10 
     11 #include "SkTypes.h"
     12 #include "SkBlitter.h"
     13 
     14 namespace SkTextureCompressor {
     15 
     16 // Ostensibly, SkBlitter::BlitRect is supposed to set a rect of pixels to full
     17 // alpha. This becomes problematic when using compressed texture blitters, since
     18 // the rect rarely falls along block boundaries. The proper way to handle this is
     19 // to update the compressed encoding of a block by resetting the proper parameters
     20 // (and even recompressing the block) where a rect falls inbetween block boundaries.
     21 // PEDANTIC_BLIT_RECT attempts to do this by requiring the struct passed to
     22 // SkTCompressedAlphaBlitter to implement an UpdateBlock function call.
     23 //
     24 // However, the way that BlitRect gets used almost exclusively is to bracket inverse
     25 // fills for paths. In other words, the top few rows and bottom few rows of a path
     26 // that's getting inverse filled are called using blitRect. The rest are called using
     27 // the standard blitAntiH. As a result, we can just call  blitAntiH with a faux RLE
     28 // of full alpha values, and then check in our flush() call that we don't run off the
     29 // edge of the buffer. This is why we do not need this flag to be turned on.
     30 //
     31 // NOTE: This code is unfinished, but is inteded as a starting point if an when
     32 // bugs are introduced from the existing code.
     33 #define PEDANTIC_BLIT_RECT 0
     34 
     35 // This class implements a blitter that blits directly into a buffer that will
     36 // be used as an compressed alpha texture. We compute this buffer by
     37 // buffering scan lines and then outputting them all at once. The number of
     38 // scan lines buffered is controlled by kBlockSize
     39 //
     40 // The CompressorType is a struct with a bunch of static methods that provides
     41 // the specialized compression functionality of the blitter. A complete CompressorType
     42 // will implement the following static functions;
     43 //
     44 // struct CompressorType {
     45 //     // The function used to compress an A8 block. The layout of the
     46 //     // block is also expected to be in column-major order.
     47 //     static void CompressA8Vertical(uint8_t* dst, const uint8_t block[]);
     48 //
     49 //     // The function used to compress an A8 block. The layout of the
     50 //     // block is also expected to be in row-major order.
     51 //     static void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes);
     52 //
     53 #if PEDANTIC_BLIT_RECT
     54 //     // The function used to update an already compressed block. This will
     55 //     // most likely be implementation dependent. The mask variable will have
     56 //     // 0xFF in positions where the block should be updated and 0 in positions
     57 //     // where it shouldn't. src contains an uncompressed buffer of pixels.
     58 //     static void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
     59 //                             const uint8_t* mask);
     60 #endif
     61 // };
     62 template<int BlockDim, int EncodedBlockSize, typename CompressorType>
     63 class SkTCompressedAlphaBlitter : public SkBlitter {
     64 public:
     65     SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
     66         // 0x7FFE is one minus the largest positive 16-bit int. We use it for
     67         // debugging to make sure that we're properly setting the nextX distance
     68         // in flushRuns().
     69 #ifdef SK_DEBUG
     70         : fCalledOnceWithNonzeroY(false)
     71         , fBlitMaskCalled(false),
     72 #else
     73         :
     74 #endif
     75         kLongestRun(0x7FFE), kZeroAlpha(0)
     76         , fNextRun(0)
     77         , fWidth(width)
     78         , fHeight(height)
     79         , fBuffer(compressedBuffer)
     80         {
     81             SkASSERT((width % BlockDim) == 0);
     82             SkASSERT((height % BlockDim) == 0);
     83         }
     84 
     85     virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }
     86 
     87     // Blit a horizontal run of one or more pixels.
     88     void blitH(int x, int y, int width) override {
     89         // This function is intended to be called from any standard RGB
     90         // buffer, so we should never encounter it. However, if some code
     91         // path does end up here, then this needs to be investigated.
     92         SkFAIL("Not implemented!");
     93     }
     94 
     95     // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
     96     // zero-terminated run-length encoding of spans of constant alpha values.
     97     void blitAntiH(int x, int y,
     98                    const SkAlpha antialias[],
     99                    const int16_t runs[]) override {
    100         SkASSERT(0 == x);
    101 
    102         // Make sure that the new row to blit is either the first
    103         // row that we're blitting, or it's exactly the next scan row
    104         // since the last row that we blit. This is to ensure that when
    105         // we go to flush the runs, that they are all the same four
    106         // runs.
    107         if (fNextRun > 0 &&
    108             ((x != fBufferedRuns[fNextRun-1].fX) ||
    109              (y-1 != fBufferedRuns[fNextRun-1].fY))) {
    110             this->flushRuns();
    111         }
    112 
    113         // Align the rows to a block boundary. If we receive rows that
    114         // are not on a block boundary, then fill in the preceding runs
    115         // with zeros. We do this by producing a single RLE that says
    116         // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
    117         const int row = BlockDim * (y / BlockDim);
    118         while ((row + fNextRun) < y) {
    119             fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
    120             fBufferedRuns[fNextRun].fRuns = &kLongestRun;
    121             fBufferedRuns[fNextRun].fX = 0;
    122             fBufferedRuns[fNextRun].fY = row + fNextRun;
    123             ++fNextRun;
    124         }
    125 
    126         // Make sure that our assumptions aren't violated...
    127         SkASSERT(fNextRun == (y % BlockDim));
    128         SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
    129 
    130         // Set the values of the next run
    131         fBufferedRuns[fNextRun].fAlphas = antialias;
    132         fBufferedRuns[fNextRun].fRuns = runs;
    133         fBufferedRuns[fNextRun].fX = x;
    134         fBufferedRuns[fNextRun].fY = y;
    135 
    136         // If we've output a block of scanlines in a row that don't violate our
    137         // assumptions, then it's time to flush them...
    138         if (BlockDim == ++fNextRun) {
    139             this->flushRuns();
    140         }
    141     }
    142 
    143     // Blit a vertical run of pixels with a constant alpha value.
    144     void blitV(int x, int y, int height, SkAlpha alpha) override {
    145         // This function is currently not implemented. It is not explicitly
    146         // required by the contract, but if at some time a code path runs into
    147         // this function (which is entirely possible), it needs to be implemented.
    148         //
    149         // TODO (krajcevski):
    150         // This function will be most easily implemented in one of two ways:
    151         // 1. Buffer each vertical column value and then construct a list
    152         //    of alpha values and output all of the blocks at once. This only
    153         //    requires a write to the compressed buffer
    154         // 2. Replace the indices of each block with the proper indices based
    155         //    on the alpha value. This requires a read and write of the compressed
    156         //    buffer, but much less overhead.
    157         SkFAIL("Not implemented!");
    158     }
    159 
    160     // Blit a solid rectangle one or more pixels wide. It's assumed that blitRect
    161     // is called as a way to bracket blitAntiH where above and below the path the
    162     // called path just needs a solid rectangle to fill in the mask.
    163 #ifdef SK_DEBUG
    164     bool fCalledOnceWithNonzeroY;
    165 #endif
    166     void blitRect(int x, int y, int width, int height) override {
    167 
    168         // Assumptions:
    169         SkASSERT(0 == x);
    170         SkASSERT(width <= fWidth);
    171 
    172         // Make sure that we're only ever bracketing calls to blitAntiH.
    173         SkASSERT((0 == y) || (!fCalledOnceWithNonzeroY && (fCalledOnceWithNonzeroY = true)));
    174 
    175 #if !(PEDANTIC_BLIT_RECT)
    176         for (int i = 0; i < height; ++i) {
    177             const SkAlpha kFullAlpha = 0xFF;
    178             this->blitAntiH(x, y+i, &kFullAlpha, &kLongestRun);
    179         }
    180 #else
    181         const int startBlockX = (x / BlockDim) * BlockDim;
    182         const int startBlockY = (y / BlockDim) * BlockDim;
    183 
    184         const int endBlockX = ((x + width) / BlockDim) * BlockDim;
    185         const int endBlockY = ((y + height) / BlockDim) * BlockDim;
    186 
    187         // If start and end are the same, then we only need to update a single block...
    188         if (startBlockY == endBlockY && startBlockX == endBlockX) {
    189             uint8_t mask[BlockDim*BlockDim];
    190             memset(mask, 0, sizeof(mask));
    191 
    192             const int xoff = x - startBlockX;
    193             SkASSERT((xoff + width) <= BlockDim);
    194 
    195             const int yoff = y - startBlockY;
    196             SkASSERT((yoff + height) <= BlockDim);
    197 
    198             for (int j = 0; j < height; ++j) {
    199                 memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, width);
    200             }
    201 
    202             uint8_t* dst = this->getBlock(startBlockX, startBlockY);
    203             CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
    204 
    205         // If start and end are the same in the y dimension, then we can freely update an
    206         // entire row of blocks...
    207         } else if (startBlockY == endBlockY) {
    208 
    209             this->updateBlockRow(x, y, width, height, startBlockY, startBlockX, endBlockX);
    210 
    211         // Similarly, if the start and end are in the same column, then we can just update
    212         // an entire column of blocks...
    213         } else if (startBlockX == endBlockX) {
    214 
    215             this->updateBlockCol(x, y, width, height, startBlockX, startBlockY, endBlockY);
    216 
    217         // Otherwise, the rect spans a non-trivial region of blocks, and we have to construct
    218         // a kind of 9-patch to update each of the pieces of the rect. The top and bottom
    219         // rows are updated using updateBlockRow, and the left and right columns are updated
    220         // using updateBlockColumn. Anything in the middle is simply memset to an opaque block
    221         // encoding.
    222         } else {
    223 
    224             const int innerStartBlockX = startBlockX + BlockDim;
    225             const int innerStartBlockY = startBlockY + BlockDim;
    226 
    227             // Blit top row
    228             const int topRowHeight = innerStartBlockY - y;
    229             this->updateBlockRow(x, y, width, topRowHeight, startBlockY,
    230                                  startBlockX, endBlockX);
    231 
    232             // Advance y
    233             y += topRowHeight;
    234             height -= topRowHeight;
    235 
    236             // Blit middle
    237             if (endBlockY > innerStartBlockY) {
    238 
    239                 // Update left row
    240                 this->updateBlockCol(x, y, innerStartBlockX - x, endBlockY, startBlockY,
    241                                      startBlockX, innerStartBlockX);
    242 
    243                 // Update the middle with an opaque encoding...
    244                 uint8_t mask[BlockDim*BlockDim];
    245                 memset(mask, 0xFF, sizeof(mask));
    246 
    247                 uint8_t opaqueEncoding[EncodedBlockSize];
    248                 CompressorType::CompressA8Horizontal(opaqueEncoding, mask, BlockDim);
    249 
    250                 for (int j = innerStartBlockY; j < endBlockY; j += BlockDim) {
    251                     uint8_t* opaqueDst = this->getBlock(innerStartBlockX, j);
    252                     for (int i = innerStartBlockX; i < endBlockX; i += BlockDim) {
    253                         memcpy(opaqueDst, opaqueEncoding, EncodedBlockSize);
    254                         opaqueDst += EncodedBlockSize;
    255                     }
    256                 }
    257 
    258                 // If we need to update the right column, do that too
    259                 if (x + width > endBlockX) {
    260                     this->updateBlockCol(endBlockX, y, x + width - endBlockX, endBlockY,
    261                                          endBlockX, innerStartBlockY, endBlockY);
    262                 }
    263 
    264                 // Advance y
    265                 height = y + height - endBlockY;
    266                 y = endBlockY;
    267             }
    268 
    269             // If we need to update the last row, then do that, too.
    270             if (height > 0) {
    271                 this->updateBlockRow(x, y, width, height, endBlockY,
    272                                      startBlockX, endBlockX);
    273             }
    274         }
    275 #endif
    276     }
    277 
    278     // Blit a rectangle with one alpha-blended column on the left,
    279     // width (zero or more) opaque pixels, and one alpha-blended column
    280     // on the right. The result will always be at least two pixels wide.
    281     void blitAntiRect(int x, int y, int width, int height,
    282                       SkAlpha leftAlpha, SkAlpha rightAlpha) override {
    283         // This function is currently not implemented. It is not explicitly
    284         // required by the contract, but if at some time a code path runs into
    285         // this function (which is entirely possible), it needs to be implemented.
    286         //
    287         // TODO (krajcevski):
    288         // This function will be most easily implemented as follows:
    289         // 1. If width/height are smaller than a block, then update the
    290         //    indices of the affected blocks.
    291         // 2. If width/height are larger than a block, then construct a 9-patch
    292         //    of block encodings that represent the rectangle, and write them
    293         //    to the compressed buffer as necessary. Whether or not the blocks
    294         //    are overwritten by zeros or just their indices are updated is up
    295         //    to debate.
    296         SkFAIL("Not implemented!");
    297     }
    298 
    299     // Blit a pattern of pixels defined by a rectangle-clipped mask; We make an
    300     // assumption here that if this function gets called, then it will replace all
    301     // of the compressed texture blocks that it touches. Hence, two separate calls
    302     // to blitMask that have clips next to one another will cause artifacts. Most
    303     // of the time, however, this function gets called because constructing the mask
    304     // was faster than constructing the RLE for blitAntiH, and this function will
    305     // only be called once.
    306 #ifdef SK_DEBUG
    307     bool fBlitMaskCalled;
    308 #endif
    309     void blitMask(const SkMask& mask, const SkIRect& clip) override {
    310 
    311         // Assumptions:
    312         SkASSERT(!fBlitMaskCalled);
    313         SkDEBUGCODE(fBlitMaskCalled = true);
    314         SkASSERT(SkMask::kA8_Format == mask.fFormat);
    315         SkASSERT(mask.fBounds.contains(clip));
    316 
    317         // Start from largest block boundary less than the clip boundaries.
    318         const int startI = BlockDim * (clip.left() / BlockDim);
    319         const int startJ = BlockDim * (clip.top() / BlockDim);
    320 
    321         for (int j = startJ; j < clip.bottom(); j += BlockDim) {
    322 
    323             // Get the destination for this block row
    324             uint8_t* dst = this->getBlock(startI, j);
    325             for (int i = startI; i < clip.right(); i += BlockDim) {
    326 
    327                 // At this point, the block should intersect the clip.
    328                 SkASSERT(SkIRect::IntersectsNoEmptyCheck(
    329                              SkIRect::MakeXYWH(i, j, BlockDim, BlockDim), clip));
    330 
    331                 // Do we need to pad it?
    332                 if (i < clip.left() || j < clip.top() ||
    333                     i + BlockDim > clip.right() || j + BlockDim > clip.bottom()) {
    334 
    335                     uint8_t block[BlockDim*BlockDim];
    336                     memset(block, 0, sizeof(block));
    337 
    338                     const int startX = SkMax32(i, clip.left());
    339                     const int startY = SkMax32(j, clip.top());
    340 
    341                     const int endX = SkMin32(i + BlockDim, clip.right());
    342                     const int endY = SkMin32(j + BlockDim, clip.bottom());
    343 
    344                     for (int y = startY; y < endY; ++y) {
    345                         const int col = startX - i;
    346                         const int row = y - j;
    347                         const int valsWide = endX - startX;
    348                         SkASSERT(valsWide <= BlockDim);
    349                         SkASSERT(0 <= col && col < BlockDim);
    350                         SkASSERT(0 <= row && row < BlockDim);
    351                         memcpy(block + row*BlockDim + col,
    352                                mask.getAddr8(startX, j + row), valsWide);
    353                     }
    354 
    355                     CompressorType::CompressA8Horizontal(dst, block, BlockDim);
    356                 } else {
    357                     // Otherwise, just compress it.
    358                     uint8_t*const src = mask.getAddr8(i, j);
    359                     const uint32_t rb = mask.fRowBytes;
    360                     CompressorType::CompressA8Horizontal(dst, src, rb);
    361                 }
    362 
    363                 dst += EncodedBlockSize;
    364             }
    365         }
    366     }
    367 
    368     // If the blitter just sets a single value for each pixel, return the
    369     // bitmap it draws into, and assign value. If not, return nullptr and ignore
    370     // the value parameter.
    371     const SkPixmap* justAnOpaqueColor(uint32_t* value) override {
    372         return nullptr;
    373     }
    374 
    375     /**
    376      * Compressed texture blitters only really work correctly if they get
    377      * BlockDim rows at a time. That being said, this blitter tries it's best
    378      * to preserve semantics if blitAntiH doesn't get called in too many
    379      * weird ways...
    380      */
    381     int requestRowsPreserved() const override { return BlockDim; }
    382 
    383 private:
    384     static const int kPixelsPerBlock = BlockDim * BlockDim;
    385 
    386     // The longest possible run of pixels that this blitter will receive.
    387     // This is initialized in the constructor to 0x7FFE, which is one less
    388     // than the largest positive 16-bit integer. We make sure that it's one
    389     // less for debugging purposes. We also don't make this variable static
    390     // in order to make sure that we can construct a valid pointer to it.
    391     const int16_t kLongestRun;
    392 
    393     // Usually used in conjunction with kLongestRun. This is initialized to
    394     // zero.
    395     const SkAlpha kZeroAlpha;
    396 
    397     // This is the information that we buffer whenever we're asked to blit
    398     // a row with this blitter.
    399     struct BufferedRun {
    400         const SkAlpha* fAlphas;
    401         const int16_t* fRuns;
    402         int fX, fY;
    403     } fBufferedRuns[BlockDim];
    404 
    405     // The next row [0, BlockDim) that we need to blit.
    406     int fNextRun;
    407 
    408     // The width and height of the image that we're blitting
    409     const int fWidth;
    410     const int fHeight;
    411 
    412     // The compressed buffer that we're blitting into. It is assumed that the buffer
    413     // is large enough to store a compressed image of size fWidth*fHeight.
    414     void* const fBuffer;
    415 
    416     // Various utility functions
    417     int blocksWide() const { return fWidth / BlockDim; }
    418     int blocksTall() const { return fHeight / BlockDim; }
    419     int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
    420 
    421     // Returns the block index for the block containing pixel (x, y). Block
    422     // indices start at zero and proceed in raster order.
    423     int getBlockOffset(int x, int y) const {
    424         SkASSERT(x < fWidth);
    425         SkASSERT(y < fHeight);
    426         const int blockCol = x / BlockDim;
    427         const int blockRow = y / BlockDim;
    428         return blockRow * this->blocksWide() + blockCol;
    429     }
    430 
    431     // Returns a pointer to the block containing pixel (x, y)
    432     uint8_t *getBlock(int x, int y) const {
    433         uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
    434         return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
    435     }
    436 
    437     // Updates the block whose columns are stored in block. curAlphai is expected
    438     // to store the alpha values that will be placed within each of the columns in
    439     // the range [col, col+colsLeft).
    440     typedef uint32_t Column[BlockDim/4];
    441     typedef uint32_t Block[BlockDim][BlockDim/4];
    442     inline void updateBlockColumns(Block block, const int col,
    443                                    const int colsLeft, const Column curAlphai) {
    444         SkASSERT(block);
    445         SkASSERT(col + colsLeft <= BlockDim);
    446 
    447         for (int i = col; i < (col + colsLeft); ++i) {
    448             memcpy(block[i], curAlphai, sizeof(Column));
    449         }
    450     }
    451 
    452     // The following function writes the buffered runs to compressed blocks.
    453     // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
    454     // the constant zero buffer.
    455     void flushRuns() {
    456         // If we don't have any runs, then just return.
    457         if (0 == fNextRun) {
    458             return;
    459         }
    460 
    461 #ifndef NDEBUG
    462         // Make sure that if we have any runs, they all match
    463         for (int i = 1; i < fNextRun; ++i) {
    464             SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
    465             SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
    466         }
    467 #endif
    468 
    469         // If we don't have as many runs as we have rows, fill in the remaining
    470         // runs with constant zeros.
    471         for (int i = fNextRun; i < BlockDim; ++i) {
    472             fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
    473             fBufferedRuns[i].fX = fBufferedRuns[0].fX;
    474             fBufferedRuns[i].fAlphas = &kZeroAlpha;
    475             fBufferedRuns[i].fRuns = &kLongestRun;
    476         }
    477 
    478         // Make sure that our assumptions aren't violated.
    479         SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
    480         SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);
    481 
    482         // The following logic walks BlockDim rows at a time and outputs compressed
    483         // blocks to the buffer passed into the constructor.
    484         // We do the following:
    485         //
    486         //      c1 c2 c3 c4
    487         // -----------------------------------------------------------------------
    488         // ... |  |  |  |  |  ----> fBufferedRuns[0]
    489         // -----------------------------------------------------------------------
    490         // ... |  |  |  |  |  ----> fBufferedRuns[1]
    491         // -----------------------------------------------------------------------
    492         // ... |  |  |  |  |  ----> fBufferedRuns[2]
    493         // -----------------------------------------------------------------------
    494         // ... |  |  |  |  |  ----> fBufferedRuns[3]
    495         // -----------------------------------------------------------------------
    496         //
    497         // curX -- the macro X value that we've gotten to.
    498         // c[BlockDim] -- the buffers that represent the columns of the current block
    499         //                  that we're operating on
    500         // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
    501         // nextX -- for each run, the next point at which we need to update curAlphaColumn
    502         //          after the value of curX.
    503         // finalX -- the minimum of all the nextX values.
    504         //
    505         // curX advances to finalX outputting any blocks that it passes along
    506         // the way. Since finalX will not change when we reach the end of a
    507         // run, the termination criteria will be whenever curX == finalX at the
    508         // end of a loop.
    509 
    510         // Setup:
    511         Block block;
    512         sk_bzero(block, sizeof(block));
    513 
    514         Column curAlphaColumn;
    515         sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));
    516 
    517         SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
    518 
    519         int nextX[BlockDim];
    520         for (int i = 0; i < BlockDim; ++i) {
    521             nextX[i] = 0x7FFFFF;
    522         }
    523 
    524         uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
    525 
    526         // Populate the first set of runs and figure out how far we need to
    527         // advance on the first step
    528         int curX = 0;
    529         int finalX = 0xFFFFF;
    530         for (int i = 0; i < BlockDim; ++i) {
    531             nextX[i] = *(fBufferedRuns[i].fRuns);
    532             curAlpha[i] = *(fBufferedRuns[i].fAlphas);
    533 
    534             finalX = SkMin32(nextX[i], finalX);
    535         }
    536 
    537         // Make sure that we have a valid right-bound X value
    538         SkASSERT(finalX < 0xFFFFF);
    539 
    540         // If the finalX is the longest run, then just blit until we have
    541         // width...
    542         if (kLongestRun == finalX) {
    543             finalX = fWidth;
    544         }
    545 
    546         // Run the blitter...
    547         while (curX != finalX) {
    548             SkASSERT(finalX >= curX);
    549 
    550             // Do we need to populate the rest of the block?
    551             if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
    552                 const int col = curX % BlockDim;
    553                 const int colsLeft = BlockDim - col;
    554                 SkASSERT(curX + colsLeft <= finalX);
    555 
    556                 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
    557 
    558                 // Write this block
    559                 CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
    560                 outPtr += EncodedBlockSize;
    561                 curX += colsLeft;
    562             }
    563 
    564             // If we can advance even further, then just keep memsetting the block
    565             if ((finalX - curX) >= BlockDim) {
    566                 SkASSERT((curX % BlockDim) == 0);
    567 
    568                 const int col = 0;
    569                 const int colsLeft = BlockDim;
    570 
    571                 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
    572 
    573                 // While we can keep advancing, just keep writing the block.
    574                 uint8_t lastBlock[EncodedBlockSize];
    575                 CompressorType::CompressA8Vertical(lastBlock, reinterpret_cast<uint8_t*>(block));
    576                 while((finalX - curX) >= BlockDim) {
    577                     memcpy(outPtr, lastBlock, EncodedBlockSize);
    578                     outPtr += EncodedBlockSize;
    579                     curX += BlockDim;
    580                 }
    581             }
    582 
    583             // If we haven't advanced within the block then do so.
    584             if (curX < finalX) {
    585                 const int col = curX % BlockDim;
    586                 const int colsLeft = finalX - curX;
    587 
    588                 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
    589                 curX += colsLeft;
    590             }
    591 
    592             SkASSERT(curX == finalX);
    593 
    594             // Figure out what the next advancement is...
    595             if (finalX < fWidth) {
    596                 for (int i = 0; i < BlockDim; ++i) {
    597                     if (nextX[i] == finalX) {
    598                         const int16_t run = *(fBufferedRuns[i].fRuns);
    599                         fBufferedRuns[i].fRuns += run;
    600                         fBufferedRuns[i].fAlphas += run;
    601                         curAlpha[i] = *(fBufferedRuns[i].fAlphas);
    602                         nextX[i] += *(fBufferedRuns[i].fRuns);
    603                     }
    604                 }
    605 
    606                 finalX = 0xFFFFF;
    607                 for (int i = 0; i < BlockDim; ++i) {
    608                     finalX = SkMin32(nextX[i], finalX);
    609                 }
    610             } else {
    611                 curX = finalX;
    612             }
    613         }
    614 
    615         // If we didn't land on a block boundary, output the block...
    616         if ((curX % BlockDim) > 0) {
    617 #ifdef SK_DEBUG
    618             for (int i = 0; i < BlockDim; ++i) {
    619                 SkASSERT(nextX[i] == kLongestRun || nextX[i] == curX);
    620             }
    621 #endif
    622             const int col = curX % BlockDim;
    623             const int colsLeft = BlockDim - col;
    624 
    625             memset(curAlphaColumn, 0, sizeof(curAlphaColumn));
    626             this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
    627 
    628             CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
    629         }
    630 
    631         fNextRun = 0;
    632     }
    633 
    634 #if PEDANTIC_BLIT_RECT
    635     void updateBlockRow(int x, int y, int width, int height,
    636                         int blockRow, int startBlockX, int endBlockX) {
    637         if (0 == width || 0 == height || startBlockX == endBlockX) {
    638             return;
    639         }
    640 
    641         uint8_t* dst = this->getBlock(startBlockX, BlockDim * (y / BlockDim));
    642 
    643         // One horizontal strip to update
    644         uint8_t mask[BlockDim*BlockDim];
    645         memset(mask, 0, sizeof(mask));
    646 
    647         // Update the left cap
    648         int blockX = startBlockX;
    649         const int yoff = y - blockRow;
    650         for (int j = 0; j < height; ++j) {
    651             const int xoff = x - blockX;
    652             memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, BlockDim - xoff);
    653         }
    654         CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
    655         dst += EncodedBlockSize;
    656         blockX += BlockDim;
    657 
    658         // Update the middle
    659         if (blockX < endBlockX) {
    660             for (int j = 0; j < height; ++j) {
    661                 memset(mask + (j + yoff)*BlockDim, 0xFF, BlockDim);
    662             }
    663             while (blockX < endBlockX) {
    664                 CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
    665                 dst += EncodedBlockSize;
    666                 blockX += BlockDim;
    667             }
    668         }
    669 
    670         SkASSERT(endBlockX == blockX);
    671 
    672         // Update the right cap (if we need to)
    673         if (x + width > endBlockX) {
    674             memset(mask, 0, sizeof(mask));
    675             for (int j = 0; j < height; ++j) {
    676                 const int xoff = (x+width-blockX);
    677                 memset(mask + (j+yoff)*BlockDim, 0xFF, xoff);
    678             }
    679             CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
    680         }
    681     }
    682 
    683     void updateBlockCol(int x, int y, int width, int height,
    684                         int blockCol, int startBlockY, int endBlockY) {
    685         if (0 == width || 0 == height || startBlockY == endBlockY) {
    686             return;
    687         }
    688 
    689         // One vertical strip to update
    690         uint8_t mask[BlockDim*BlockDim];
    691         memset(mask, 0, sizeof(mask));
    692         const int maskX0 = x - blockCol;
    693         const int maskWidth = maskX0 + width;
    694         SkASSERT(maskWidth <= BlockDim);
    695 
    696         // Update the top cap
    697         int blockY = startBlockY;
    698         for (int j = (y - blockY); j < BlockDim; ++j) {
    699             memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
    700         }
    701         CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), mask, BlockDim, mask);
    702         blockY += BlockDim;
    703 
    704         // Update middle
    705         if (blockY < endBlockY) {
    706             for (int j = 0; j < BlockDim; ++j) {
    707                 memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
    708             }
    709             while (blockY < endBlockY) {
    710                 CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
    711                                             mask, BlockDim, mask);
    712                 blockY += BlockDim;
    713             }
    714         }
    715 
    716         SkASSERT(endBlockY == blockY);
    717 
    718         // Update bottom
    719         if (y + height > endBlockY) {
    720             for (int j = y+height; j < endBlockY + BlockDim; ++j) {
    721                 memset(mask + (j-endBlockY)*BlockDim, 0, BlockDim);
    722             }
    723             CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
    724                                         mask, BlockDim, mask);
    725         }
    726     }
    727 #endif  // PEDANTIC_BLIT_RECT
    728 
    729 };
    730 
    731 }  // namespace SkTextureCompressor
    732 
    733 #endif  // SkTextureCompressor_Blitter_DEFINED
    734