1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include "webrtc/modules/pacing/paced_sender.h" 12 13 #include <map> 14 #include <queue> 15 #include <set> 16 17 #include "webrtc/base/checks.h" 18 #include "webrtc/base/logging.h" 19 #include "webrtc/modules/include/module_common_types.h" 20 #include "webrtc/modules/pacing/bitrate_prober.h" 21 #include "webrtc/system_wrappers/include/clock.h" 22 #include "webrtc/system_wrappers/include/critical_section_wrapper.h" 23 #include "webrtc/system_wrappers/include/field_trial.h" 24 25 namespace { 26 // Time limit in milliseconds between packet bursts. 27 const int64_t kMinPacketLimitMs = 5; 28 29 // Upper cap on process interval, in case process has not been called in a long 30 // time. 31 const int64_t kMaxIntervalTimeMs = 30; 32 33 } // namespace 34 35 // TODO(sprang): Move at least PacketQueue and MediaBudget out to separate 36 // files, so that we can more easily test them. 37 38 namespace webrtc { 39 namespace paced_sender { 40 struct Packet { 41 Packet(RtpPacketSender::Priority priority, 42 uint32_t ssrc, 43 uint16_t seq_number, 44 int64_t capture_time_ms, 45 int64_t enqueue_time_ms, 46 size_t length_in_bytes, 47 bool retransmission, 48 uint64_t enqueue_order) 49 : priority(priority), 50 ssrc(ssrc), 51 sequence_number(seq_number), 52 capture_time_ms(capture_time_ms), 53 enqueue_time_ms(enqueue_time_ms), 54 bytes(length_in_bytes), 55 retransmission(retransmission), 56 enqueue_order(enqueue_order) {} 57 58 RtpPacketSender::Priority priority; 59 uint32_t ssrc; 60 uint16_t sequence_number; 61 int64_t capture_time_ms; 62 int64_t enqueue_time_ms; 63 size_t bytes; 64 bool retransmission; 65 uint64_t enqueue_order; 66 std::list<Packet>::iterator this_it; 67 }; 68 69 // Used by priority queue to sort packets. 70 struct Comparator { 71 bool operator()(const Packet* first, const Packet* second) { 72 // Highest prio = 0. 73 if (first->priority != second->priority) 74 return first->priority > second->priority; 75 76 // Retransmissions go first. 77 if (second->retransmission && !first->retransmission) 78 return true; 79 80 // Older frames have higher prio. 81 if (first->capture_time_ms != second->capture_time_ms) 82 return first->capture_time_ms > second->capture_time_ms; 83 84 return first->enqueue_order > second->enqueue_order; 85 } 86 }; 87 88 // Class encapsulating a priority queue with some extensions. 89 class PacketQueue { 90 public: 91 explicit PacketQueue(Clock* clock) 92 : bytes_(0), 93 clock_(clock), 94 queue_time_sum_(0), 95 time_last_updated_(clock_->TimeInMilliseconds()) {} 96 virtual ~PacketQueue() {} 97 98 void Push(const Packet& packet) { 99 if (!AddToDupeSet(packet)) 100 return; 101 102 UpdateQueueTime(packet.enqueue_time_ms); 103 104 // Store packet in list, use pointers in priority queue for cheaper moves. 105 // Packets have a handle to its own iterator in the list, for easy removal 106 // when popping from queue. 107 packet_list_.push_front(packet); 108 std::list<Packet>::iterator it = packet_list_.begin(); 109 it->this_it = it; // Handle for direct removal from list. 110 prio_queue_.push(&(*it)); // Pointer into list. 111 bytes_ += packet.bytes; 112 } 113 114 const Packet& BeginPop() { 115 const Packet& packet = *prio_queue_.top(); 116 prio_queue_.pop(); 117 return packet; 118 } 119 120 void CancelPop(const Packet& packet) { prio_queue_.push(&(*packet.this_it)); } 121 122 void FinalizePop(const Packet& packet) { 123 RemoveFromDupeSet(packet); 124 bytes_ -= packet.bytes; 125 queue_time_sum_ -= (time_last_updated_ - packet.enqueue_time_ms); 126 packet_list_.erase(packet.this_it); 127 RTC_DCHECK_EQ(packet_list_.size(), prio_queue_.size()); 128 if (packet_list_.empty()) 129 RTC_DCHECK_EQ(0u, queue_time_sum_); 130 } 131 132 bool Empty() const { return prio_queue_.empty(); } 133 134 size_t SizeInPackets() const { return prio_queue_.size(); } 135 136 uint64_t SizeInBytes() const { return bytes_; } 137 138 int64_t OldestEnqueueTimeMs() const { 139 auto it = packet_list_.rbegin(); 140 if (it == packet_list_.rend()) 141 return 0; 142 return it->enqueue_time_ms; 143 } 144 145 void UpdateQueueTime(int64_t timestamp_ms) { 146 RTC_DCHECK_GE(timestamp_ms, time_last_updated_); 147 int64_t delta = timestamp_ms - time_last_updated_; 148 // Use packet packet_list_.size() not prio_queue_.size() here, as there 149 // might be an outstanding element popped from prio_queue_ currently in the 150 // SendPacket() call, while packet_list_ will always be correct. 151 queue_time_sum_ += delta * packet_list_.size(); 152 time_last_updated_ = timestamp_ms; 153 } 154 155 int64_t AverageQueueTimeMs() const { 156 if (prio_queue_.empty()) 157 return 0; 158 return queue_time_sum_ / packet_list_.size(); 159 } 160 161 private: 162 // Try to add a packet to the set of ssrc/seqno identifiers currently in the 163 // queue. Return true if inserted, false if this is a duplicate. 164 bool AddToDupeSet(const Packet& packet) { 165 SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); 166 if (it == dupe_map_.end()) { 167 // First for this ssrc, just insert. 168 dupe_map_[packet.ssrc].insert(packet.sequence_number); 169 return true; 170 } 171 172 // Insert returns a pair, where second is a bool set to true if new element. 173 return it->second.insert(packet.sequence_number).second; 174 } 175 176 void RemoveFromDupeSet(const Packet& packet) { 177 SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); 178 RTC_DCHECK(it != dupe_map_.end()); 179 it->second.erase(packet.sequence_number); 180 if (it->second.empty()) { 181 dupe_map_.erase(it); 182 } 183 } 184 185 // List of packets, in the order the were enqueued. Since dequeueing may 186 // occur out of order, use list instead of vector. 187 std::list<Packet> packet_list_; 188 // Priority queue of the packets, sorted according to Comparator. 189 // Use pointers into list, to avoid moving whole struct within heap. 190 std::priority_queue<Packet*, std::vector<Packet*>, Comparator> prio_queue_; 191 // Total number of bytes in the queue. 192 uint64_t bytes_; 193 // Map<ssrc, set<seq_no> >, for checking duplicates. 194 typedef std::map<uint32_t, std::set<uint16_t> > SsrcSeqNoMap; 195 SsrcSeqNoMap dupe_map_; 196 Clock* const clock_; 197 int64_t queue_time_sum_; 198 int64_t time_last_updated_; 199 }; 200 201 class IntervalBudget { 202 public: 203 explicit IntervalBudget(int initial_target_rate_kbps) 204 : target_rate_kbps_(initial_target_rate_kbps), 205 bytes_remaining_(0) {} 206 207 void set_target_rate_kbps(int target_rate_kbps) { 208 target_rate_kbps_ = target_rate_kbps; 209 bytes_remaining_ = 210 std::max(-kWindowMs * target_rate_kbps_ / 8, bytes_remaining_); 211 } 212 213 void IncreaseBudget(int64_t delta_time_ms) { 214 int64_t bytes = target_rate_kbps_ * delta_time_ms / 8; 215 if (bytes_remaining_ < 0) { 216 // We overused last interval, compensate this interval. 217 bytes_remaining_ = bytes_remaining_ + bytes; 218 } else { 219 // If we underused last interval we can't use it this interval. 220 bytes_remaining_ = bytes; 221 } 222 } 223 224 void UseBudget(size_t bytes) { 225 bytes_remaining_ = std::max(bytes_remaining_ - static_cast<int>(bytes), 226 -kWindowMs * target_rate_kbps_ / 8); 227 } 228 229 size_t bytes_remaining() const { 230 return static_cast<size_t>(std::max(0, bytes_remaining_)); 231 } 232 233 int target_rate_kbps() const { return target_rate_kbps_; } 234 235 private: 236 static const int kWindowMs = 500; 237 238 int target_rate_kbps_; 239 int bytes_remaining_; 240 }; 241 } // namespace paced_sender 242 243 const int64_t PacedSender::kMaxQueueLengthMs = 2000; 244 const float PacedSender::kDefaultPaceMultiplier = 2.5f; 245 246 PacedSender::PacedSender(Clock* clock, 247 Callback* callback, 248 int bitrate_kbps, 249 int max_bitrate_kbps, 250 int min_bitrate_kbps) 251 : clock_(clock), 252 callback_(callback), 253 critsect_(CriticalSectionWrapper::CreateCriticalSection()), 254 paused_(false), 255 probing_enabled_(true), 256 media_budget_(new paced_sender::IntervalBudget(max_bitrate_kbps)), 257 padding_budget_(new paced_sender::IntervalBudget(min_bitrate_kbps)), 258 prober_(new BitrateProber()), 259 bitrate_bps_(1000 * bitrate_kbps), 260 max_bitrate_kbps_(max_bitrate_kbps), 261 time_last_update_us_(clock->TimeInMicroseconds()), 262 packets_(new paced_sender::PacketQueue(clock)), 263 packet_counter_(0) { 264 UpdateBytesPerInterval(kMinPacketLimitMs); 265 } 266 267 PacedSender::~PacedSender() {} 268 269 void PacedSender::Pause() { 270 CriticalSectionScoped cs(critsect_.get()); 271 paused_ = true; 272 } 273 274 void PacedSender::Resume() { 275 CriticalSectionScoped cs(critsect_.get()); 276 paused_ = false; 277 } 278 279 void PacedSender::SetProbingEnabled(bool enabled) { 280 RTC_CHECK_EQ(0u, packet_counter_); 281 probing_enabled_ = enabled; 282 } 283 284 void PacedSender::UpdateBitrate(int bitrate_kbps, 285 int max_bitrate_kbps, 286 int min_bitrate_kbps) { 287 CriticalSectionScoped cs(critsect_.get()); 288 // Don't set media bitrate here as it may be boosted in order to meet max 289 // queue time constraint. Just update max_bitrate_kbps_ and let media_budget_ 290 // be updated in Process(). 291 padding_budget_->set_target_rate_kbps(min_bitrate_kbps); 292 bitrate_bps_ = 1000 * bitrate_kbps; 293 max_bitrate_kbps_ = max_bitrate_kbps; 294 } 295 296 void PacedSender::InsertPacket(RtpPacketSender::Priority priority, 297 uint32_t ssrc, 298 uint16_t sequence_number, 299 int64_t capture_time_ms, 300 size_t bytes, 301 bool retransmission) { 302 CriticalSectionScoped cs(critsect_.get()); 303 304 if (probing_enabled_ && !prober_->IsProbing()) 305 prober_->SetEnabled(true); 306 prober_->MaybeInitializeProbe(bitrate_bps_); 307 308 int64_t now_ms = clock_->TimeInMilliseconds(); 309 if (capture_time_ms < 0) 310 capture_time_ms = now_ms; 311 312 packets_->Push(paced_sender::Packet(priority, ssrc, sequence_number, 313 capture_time_ms, now_ms, bytes, 314 retransmission, packet_counter_++)); 315 } 316 317 int64_t PacedSender::ExpectedQueueTimeMs() const { 318 CriticalSectionScoped cs(critsect_.get()); 319 RTC_DCHECK_GT(max_bitrate_kbps_, 0); 320 return static_cast<int64_t>(packets_->SizeInBytes() * 8 / max_bitrate_kbps_); 321 } 322 323 size_t PacedSender::QueueSizePackets() const { 324 CriticalSectionScoped cs(critsect_.get()); 325 return packets_->SizeInPackets(); 326 } 327 328 int64_t PacedSender::QueueInMs() const { 329 CriticalSectionScoped cs(critsect_.get()); 330 331 int64_t oldest_packet = packets_->OldestEnqueueTimeMs(); 332 if (oldest_packet == 0) 333 return 0; 334 335 return clock_->TimeInMilliseconds() - oldest_packet; 336 } 337 338 int64_t PacedSender::AverageQueueTimeMs() { 339 CriticalSectionScoped cs(critsect_.get()); 340 packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); 341 return packets_->AverageQueueTimeMs(); 342 } 343 344 int64_t PacedSender::TimeUntilNextProcess() { 345 CriticalSectionScoped cs(critsect_.get()); 346 if (prober_->IsProbing()) { 347 int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds()); 348 if (ret >= 0) 349 return ret; 350 } 351 int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_; 352 int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; 353 return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0); 354 } 355 356 int32_t PacedSender::Process() { 357 int64_t now_us = clock_->TimeInMicroseconds(); 358 CriticalSectionScoped cs(critsect_.get()); 359 int64_t elapsed_time_ms = (now_us - time_last_update_us_ + 500) / 1000; 360 time_last_update_us_ = now_us; 361 int target_bitrate_kbps = max_bitrate_kbps_; 362 // TODO(holmer): Remove the !paused_ check when issue 5307 has been fixed. 363 if (!paused_ && elapsed_time_ms > 0) { 364 size_t queue_size_bytes = packets_->SizeInBytes(); 365 if (queue_size_bytes > 0) { 366 // Assuming equal size packets and input/output rate, the average packet 367 // has avg_time_left_ms left to get queue_size_bytes out of the queue, if 368 // time constraint shall be met. Determine bitrate needed for that. 369 packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); 370 int64_t avg_time_left_ms = std::max<int64_t>( 371 1, kMaxQueueLengthMs - packets_->AverageQueueTimeMs()); 372 int min_bitrate_needed_kbps = 373 static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms); 374 if (min_bitrate_needed_kbps > target_bitrate_kbps) 375 target_bitrate_kbps = min_bitrate_needed_kbps; 376 } 377 378 media_budget_->set_target_rate_kbps(target_bitrate_kbps); 379 380 int64_t delta_time_ms = std::min(kMaxIntervalTimeMs, elapsed_time_ms); 381 UpdateBytesPerInterval(delta_time_ms); 382 } 383 while (!packets_->Empty()) { 384 if (media_budget_->bytes_remaining() == 0 && !prober_->IsProbing()) 385 return 0; 386 387 // Since we need to release the lock in order to send, we first pop the 388 // element from the priority queue but keep it in storage, so that we can 389 // reinsert it if send fails. 390 const paced_sender::Packet& packet = packets_->BeginPop(); 391 392 if (SendPacket(packet)) { 393 // Send succeeded, remove it from the queue. 394 packets_->FinalizePop(packet); 395 if (prober_->IsProbing()) 396 return 0; 397 } else { 398 // Send failed, put it back into the queue. 399 packets_->CancelPop(packet); 400 return 0; 401 } 402 } 403 404 // TODO(holmer): Remove the paused_ check when issue 5307 has been fixed. 405 if (paused_ || !packets_->Empty()) 406 return 0; 407 408 size_t padding_needed; 409 if (prober_->IsProbing()) { 410 padding_needed = prober_->RecommendedPacketSize(); 411 } else { 412 padding_needed = padding_budget_->bytes_remaining(); 413 } 414 415 if (padding_needed > 0) 416 SendPadding(static_cast<size_t>(padding_needed)); 417 return 0; 418 } 419 420 bool PacedSender::SendPacket(const paced_sender::Packet& packet) { 421 // TODO(holmer): Because of this bug issue 5307 we have to send audio 422 // packets even when the pacer is paused. Here we assume audio packets are 423 // always high priority and that they are the only high priority packets. 424 if (paused_ && packet.priority != kHighPriority) 425 return false; 426 critsect_->Leave(); 427 const bool success = callback_->TimeToSendPacket(packet.ssrc, 428 packet.sequence_number, 429 packet.capture_time_ms, 430 packet.retransmission); 431 critsect_->Enter(); 432 433 // TODO(holmer): High priority packets should only be accounted for if we are 434 // allocating bandwidth for audio. 435 if (success && packet.priority != kHighPriority) { 436 // Update media bytes sent. 437 prober_->PacketSent(clock_->TimeInMilliseconds(), packet.bytes); 438 media_budget_->UseBudget(packet.bytes); 439 padding_budget_->UseBudget(packet.bytes); 440 } 441 442 return success; 443 } 444 445 void PacedSender::SendPadding(size_t padding_needed) { 446 critsect_->Leave(); 447 size_t bytes_sent = callback_->TimeToSendPadding(padding_needed); 448 critsect_->Enter(); 449 450 if (bytes_sent > 0) { 451 prober_->PacketSent(clock_->TimeInMilliseconds(), bytes_sent); 452 media_budget_->UseBudget(bytes_sent); 453 padding_budget_->UseBudget(bytes_sent); 454 } 455 } 456 457 void PacedSender::UpdateBytesPerInterval(int64_t delta_time_ms) { 458 media_budget_->IncreaseBudget(delta_time_ms); 459 padding_budget_->IncreaseBudget(delta_time_ms); 460 } 461 } // namespace webrtc 462