1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 31 #include "ceres/casts.h" 32 #include "ceres/compressed_row_sparse_matrix.h" 33 #include "ceres/internal/scoped_ptr.h" 34 #include "ceres/linear_least_squares_problems.h" 35 #include "ceres/linear_solver.h" 36 #include "ceres/triplet_sparse_matrix.h" 37 #include "ceres/types.h" 38 #include "glog/logging.h" 39 #include "gtest/gtest.h" 40 41 42 namespace ceres { 43 namespace internal { 44 45 class UnsymmetricLinearSolverTest : public ::testing::Test { 46 protected : 47 virtual void SetUp() { 48 scoped_ptr<LinearLeastSquaresProblem> problem( 49 CreateLinearLeastSquaresProblemFromId(0)); 50 51 CHECK_NOTNULL(problem.get()); 52 A_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); 53 b_.reset(problem->b.release()); 54 D_.reset(problem->D.release()); 55 sol_unregularized_.reset(problem->x.release()); 56 sol_regularized_.reset(problem->x_D.release()); 57 } 58 59 void TestSolver(const LinearSolver::Options& options) { 60 61 62 LinearSolver::PerSolveOptions per_solve_options; 63 LinearSolver::Summary unregularized_solve_summary; 64 LinearSolver::Summary regularized_solve_summary; 65 Vector x_unregularized(A_->num_cols()); 66 Vector x_regularized(A_->num_cols()); 67 68 scoped_ptr<SparseMatrix> transformed_A; 69 70 if (options.type == DENSE_QR || 71 options.type == DENSE_NORMAL_CHOLESKY) { 72 transformed_A.reset(new DenseSparseMatrix(*A_)); 73 } else if (options.type == SPARSE_NORMAL_CHOLESKY) { 74 CompressedRowSparseMatrix* crsm = new CompressedRowSparseMatrix(*A_); 75 // Add row/column blocks structure. 76 for (int i = 0; i < A_->num_rows(); ++i) { 77 crsm->mutable_row_blocks()->push_back(1); 78 } 79 80 for (int i = 0; i < A_->num_cols(); ++i) { 81 crsm->mutable_col_blocks()->push_back(1); 82 } 83 transformed_A.reset(crsm); 84 } else { 85 LOG(FATAL) << "Unknown linear solver : " << options.type; 86 } 87 88 // Unregularized 89 scoped_ptr<LinearSolver> solver(LinearSolver::Create(options)); 90 unregularized_solve_summary = 91 solver->Solve(transformed_A.get(), 92 b_.get(), 93 per_solve_options, 94 x_unregularized.data()); 95 96 // Sparsity structure is changing, reset the solver. 97 solver.reset(LinearSolver::Create(options)); 98 // Regularized solution 99 per_solve_options.D = D_.get(); 100 regularized_solve_summary = 101 solver->Solve(transformed_A.get(), 102 b_.get(), 103 per_solve_options, 104 x_regularized.data()); 105 106 EXPECT_EQ(unregularized_solve_summary.termination_type, 107 LINEAR_SOLVER_SUCCESS); 108 109 for (int i = 0; i < A_->num_cols(); ++i) { 110 EXPECT_NEAR(sol_unregularized_[i], x_unregularized[i], 1e-8) 111 << "\nExpected: " 112 << ConstVectorRef(sol_unregularized_.get(), A_->num_cols()).transpose() 113 << "\nActual: " << x_unregularized.transpose(); 114 } 115 116 EXPECT_EQ(regularized_solve_summary.termination_type, 117 LINEAR_SOLVER_SUCCESS); 118 for (int i = 0; i < A_->num_cols(); ++i) { 119 EXPECT_NEAR(sol_regularized_[i], x_regularized[i], 1e-8) 120 << "\nExpected: " 121 << ConstVectorRef(sol_regularized_.get(), A_->num_cols()).transpose() 122 << "\nActual: " << x_regularized.transpose(); 123 } 124 } 125 126 scoped_ptr<TripletSparseMatrix> A_; 127 scoped_array<double> b_; 128 scoped_array<double> D_; 129 scoped_array<double> sol_unregularized_; 130 scoped_array<double> sol_regularized_; 131 }; 132 133 TEST_F(UnsymmetricLinearSolverTest, EigenDenseQR) { 134 LinearSolver::Options options; 135 options.type = DENSE_QR; 136 options.dense_linear_algebra_library_type = EIGEN; 137 TestSolver(options); 138 } 139 140 TEST_F(UnsymmetricLinearSolverTest, EigenDenseNormalCholesky) { 141 LinearSolver::Options options; 142 options.dense_linear_algebra_library_type = EIGEN; 143 options.type = DENSE_NORMAL_CHOLESKY; 144 TestSolver(options); 145 } 146 147 #ifndef CERES_NO_LAPACK 148 TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseQR) { 149 LinearSolver::Options options; 150 options.type = DENSE_QR; 151 options.dense_linear_algebra_library_type = LAPACK; 152 TestSolver(options); 153 } 154 155 TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseNormalCholesky) { 156 LinearSolver::Options options; 157 options.dense_linear_algebra_library_type = LAPACK; 158 options.type = DENSE_NORMAL_CHOLESKY; 159 TestSolver(options); 160 } 161 #endif 162 163 #ifndef CERES_NO_SUITESPARSE 164 TEST_F(UnsymmetricLinearSolverTest, 165 SparseNormalCholeskyUsingSuiteSparsePreOrdering) { 166 LinearSolver::Options options; 167 options.sparse_linear_algebra_library_type = SUITE_SPARSE; 168 options.type = SPARSE_NORMAL_CHOLESKY; 169 options.use_postordering = false; 170 TestSolver(options); 171 } 172 173 TEST_F(UnsymmetricLinearSolverTest, 174 SparseNormalCholeskyUsingSuiteSparsePostOrdering) { 175 LinearSolver::Options options; 176 options.sparse_linear_algebra_library_type = SUITE_SPARSE; 177 options.type = SPARSE_NORMAL_CHOLESKY; 178 options.use_postordering = true; 179 TestSolver(options); 180 } 181 182 TEST_F(UnsymmetricLinearSolverTest, 183 SparseNormalCholeskyUsingSuiteSparseDynamicSparsity) { 184 LinearSolver::Options options; 185 options.sparse_linear_algebra_library_type = SUITE_SPARSE; 186 options.type = SPARSE_NORMAL_CHOLESKY; 187 options.dynamic_sparsity = true; 188 TestSolver(options); 189 } 190 #endif 191 192 #ifndef CERES_NO_CXSPARSE 193 TEST_F(UnsymmetricLinearSolverTest, 194 SparseNormalCholeskyUsingCXSparsePreOrdering) { 195 LinearSolver::Options options; 196 options.sparse_linear_algebra_library_type = CX_SPARSE; 197 options.type = SPARSE_NORMAL_CHOLESKY; 198 options.use_postordering = false; 199 TestSolver(options); 200 } 201 202 TEST_F(UnsymmetricLinearSolverTest, 203 SparseNormalCholeskyUsingCXSparsePostOrdering) { 204 LinearSolver::Options options; 205 options.sparse_linear_algebra_library_type = CX_SPARSE; 206 options.type = SPARSE_NORMAL_CHOLESKY; 207 options.use_postordering = true; 208 TestSolver(options); 209 } 210 211 TEST_F(UnsymmetricLinearSolverTest, 212 SparseNormalCholeskyUsingCXSparseDynamicSparsity) { 213 LinearSolver::Options options; 214 options.sparse_linear_algebra_library_type = CX_SPARSE; 215 options.type = SPARSE_NORMAL_CHOLESKY; 216 options.dynamic_sparsity = true; 217 TestSolver(options); 218 } 219 #endif 220 221 #ifdef CERES_USE_EIGEN_SPARSE 222 TEST_F(UnsymmetricLinearSolverTest, 223 SparseNormalCholeskyUsingEigenPreOrdering) { 224 LinearSolver::Options options; 225 options.sparse_linear_algebra_library_type = EIGEN_SPARSE; 226 options.type = SPARSE_NORMAL_CHOLESKY; 227 options.use_postordering = false; 228 TestSolver(options); 229 } 230 231 TEST_F(UnsymmetricLinearSolverTest, 232 SparseNormalCholeskyUsingEigenPostOrdering) { 233 LinearSolver::Options options; 234 options.sparse_linear_algebra_library_type = EIGEN_SPARSE; 235 options.type = SPARSE_NORMAL_CHOLESKY; 236 options.use_postordering = true; 237 TestSolver(options); 238 } 239 240 TEST_F(UnsymmetricLinearSolverTest, 241 SparseNormalCholeskyUsingEigenDynamicSparsity) { 242 LinearSolver::Options options; 243 options.sparse_linear_algebra_library_type = EIGEN_SPARSE; 244 options.type = SPARSE_NORMAL_CHOLESKY; 245 options.dynamic_sparsity = true; 246 TestSolver(options); 247 } 248 249 #endif // CERES_USE_EIGEN_SPARSE 250 251 } // namespace internal 252 } // namespace ceres 253