Home | History | Annotate | Download | only in test
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <math.h>
     12 #include <stdio.h>
     13 #include <algorithm>
     14 #include <limits>
     15 #include <queue>
     16 
     17 #include "webrtc/base/arraysize.h"
     18 #include "webrtc/base/scoped_ptr.h"
     19 #include "webrtc/common_audio/include/audio_util.h"
     20 #include "webrtc/common_audio/resampler/include/push_resampler.h"
     21 #include "webrtc/common_audio/resampler/push_sinc_resampler.h"
     22 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     23 #include "webrtc/modules/audio_processing/common.h"
     24 #include "webrtc/modules/audio_processing/include/audio_processing.h"
     25 #include "webrtc/modules/audio_processing/test/protobuf_utils.h"
     26 #include "webrtc/modules/audio_processing/test/test_utils.h"
     27 #include "webrtc/modules/include/module_common_types.h"
     28 #include "webrtc/system_wrappers/include/event_wrapper.h"
     29 #include "webrtc/system_wrappers/include/trace.h"
     30 #include "webrtc/test/testsupport/fileutils.h"
     31 #ifdef WEBRTC_ANDROID_PLATFORM_BUILD
     32 #include "gtest/gtest.h"
     33 #include "external/webrtc/webrtc/modules/audio_processing/test/unittest.pb.h"
     34 #else
     35 #include "testing/gtest/include/gtest/gtest.h"
     36 #include "webrtc/audio_processing/unittest.pb.h"
     37 #endif
     38 
     39 #if !defined(WEBRTC_ANDROID) && !defined(WEBRTC_IOS)
     40 #include "webrtc/modules/audio_processing/beamformer/mock_nonlinear_beamformer.h"
     41 #endif
     42 
     43 namespace webrtc {
     44 namespace {
     45 
     46 // TODO(ekmeyerson): Switch to using StreamConfig and ProcessingConfig where
     47 // applicable.
     48 
     49 // TODO(bjornv): This is not feasible until the functionality has been
     50 // re-implemented; see comment at the bottom of this file. For now, the user has
     51 // to hard code the |write_ref_data| value.
     52 // When false, this will compare the output data with the results stored to
     53 // file. This is the typical case. When the file should be updated, it can
     54 // be set to true with the command-line switch --write_ref_data.
     55 bool write_ref_data = false;
     56 const google::protobuf::int32 kChannels[] = {1, 2};
     57 const int kSampleRates[] = {8000, 16000, 32000, 48000};
     58 
     59 #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
     60 // AECM doesn't support super-wb.
     61 const int kProcessSampleRates[] = {8000, 16000};
     62 #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
     63 const int kProcessSampleRates[] = {8000, 16000, 32000, 48000};
     64 #endif
     65 
     66 enum StreamDirection { kForward = 0, kReverse };
     67 
     68 void ConvertToFloat(const int16_t* int_data, ChannelBuffer<float>* cb) {
     69   ChannelBuffer<int16_t> cb_int(cb->num_frames(),
     70                                 cb->num_channels());
     71   Deinterleave(int_data,
     72                cb->num_frames(),
     73                cb->num_channels(),
     74                cb_int.channels());
     75   for (size_t i = 0; i < cb->num_channels(); ++i) {
     76     S16ToFloat(cb_int.channels()[i],
     77                cb->num_frames(),
     78                cb->channels()[i]);
     79   }
     80 }
     81 
     82 void ConvertToFloat(const AudioFrame& frame, ChannelBuffer<float>* cb) {
     83   ConvertToFloat(frame.data_, cb);
     84 }
     85 
     86 // Number of channels including the keyboard channel.
     87 size_t TotalChannelsFromLayout(AudioProcessing::ChannelLayout layout) {
     88   switch (layout) {
     89     case AudioProcessing::kMono:
     90       return 1;
     91     case AudioProcessing::kMonoAndKeyboard:
     92     case AudioProcessing::kStereo:
     93       return 2;
     94     case AudioProcessing::kStereoAndKeyboard:
     95       return 3;
     96   }
     97   assert(false);
     98   return 0;
     99 }
    100 
    101 int TruncateToMultipleOf10(int value) {
    102   return (value / 10) * 10;
    103 }
    104 
    105 void MixStereoToMono(const float* stereo, float* mono,
    106                      size_t samples_per_channel) {
    107   for (size_t i = 0; i < samples_per_channel; ++i)
    108     mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) / 2;
    109 }
    110 
    111 void MixStereoToMono(const int16_t* stereo, int16_t* mono,
    112                      size_t samples_per_channel) {
    113   for (size_t i = 0; i < samples_per_channel; ++i)
    114     mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) >> 1;
    115 }
    116 
    117 void CopyLeftToRightChannel(int16_t* stereo, size_t samples_per_channel) {
    118   for (size_t i = 0; i < samples_per_channel; i++) {
    119     stereo[i * 2 + 1] = stereo[i * 2];
    120   }
    121 }
    122 
    123 void VerifyChannelsAreEqual(int16_t* stereo, size_t samples_per_channel) {
    124   for (size_t i = 0; i < samples_per_channel; i++) {
    125     EXPECT_EQ(stereo[i * 2 + 1], stereo[i * 2]);
    126   }
    127 }
    128 
    129 void SetFrameTo(AudioFrame* frame, int16_t value) {
    130   for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_;
    131        ++i) {
    132     frame->data_[i] = value;
    133   }
    134 }
    135 
    136 void SetFrameTo(AudioFrame* frame, int16_t left, int16_t right) {
    137   ASSERT_EQ(2u, frame->num_channels_);
    138   for (size_t i = 0; i < frame->samples_per_channel_ * 2; i += 2) {
    139     frame->data_[i] = left;
    140     frame->data_[i + 1] = right;
    141   }
    142 }
    143 
    144 void ScaleFrame(AudioFrame* frame, float scale) {
    145   for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_;
    146        ++i) {
    147     frame->data_[i] = FloatS16ToS16(frame->data_[i] * scale);
    148   }
    149 }
    150 
    151 bool FrameDataAreEqual(const AudioFrame& frame1, const AudioFrame& frame2) {
    152   if (frame1.samples_per_channel_ != frame2.samples_per_channel_) {
    153     return false;
    154   }
    155   if (frame1.num_channels_ != frame2.num_channels_) {
    156     return false;
    157   }
    158   if (memcmp(frame1.data_, frame2.data_,
    159              frame1.samples_per_channel_ * frame1.num_channels_ *
    160                  sizeof(int16_t))) {
    161     return false;
    162   }
    163   return true;
    164 }
    165 
    166 void EnableAllAPComponents(AudioProcessing* ap) {
    167 #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
    168   EXPECT_NOERR(ap->echo_control_mobile()->Enable(true));
    169 
    170   EXPECT_NOERR(ap->gain_control()->set_mode(GainControl::kAdaptiveDigital));
    171   EXPECT_NOERR(ap->gain_control()->Enable(true));
    172 #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
    173   EXPECT_NOERR(ap->echo_cancellation()->enable_drift_compensation(true));
    174   EXPECT_NOERR(ap->echo_cancellation()->enable_metrics(true));
    175   EXPECT_NOERR(ap->echo_cancellation()->enable_delay_logging(true));
    176   EXPECT_NOERR(ap->echo_cancellation()->Enable(true));
    177 
    178   EXPECT_NOERR(ap->gain_control()->set_mode(GainControl::kAdaptiveAnalog));
    179   EXPECT_NOERR(ap->gain_control()->set_analog_level_limits(0, 255));
    180   EXPECT_NOERR(ap->gain_control()->Enable(true));
    181 #endif
    182 
    183   EXPECT_NOERR(ap->high_pass_filter()->Enable(true));
    184   EXPECT_NOERR(ap->level_estimator()->Enable(true));
    185   EXPECT_NOERR(ap->noise_suppression()->Enable(true));
    186 
    187   EXPECT_NOERR(ap->voice_detection()->Enable(true));
    188 }
    189 
    190 // These functions are only used by ApmTest.Process.
    191 template <class T>
    192 T AbsValue(T a) {
    193   return a > 0 ? a: -a;
    194 }
    195 
    196 int16_t MaxAudioFrame(const AudioFrame& frame) {
    197   const size_t length = frame.samples_per_channel_ * frame.num_channels_;
    198   int16_t max_data = AbsValue(frame.data_[0]);
    199   for (size_t i = 1; i < length; i++) {
    200     max_data = std::max(max_data, AbsValue(frame.data_[i]));
    201   }
    202 
    203   return max_data;
    204 }
    205 
    206 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
    207 void TestStats(const AudioProcessing::Statistic& test,
    208                const audioproc::Test::Statistic& reference) {
    209   EXPECT_EQ(reference.instant(), test.instant);
    210   EXPECT_EQ(reference.average(), test.average);
    211   EXPECT_EQ(reference.maximum(), test.maximum);
    212   EXPECT_EQ(reference.minimum(), test.minimum);
    213 }
    214 
    215 void WriteStatsMessage(const AudioProcessing::Statistic& output,
    216                        audioproc::Test::Statistic* msg) {
    217   msg->set_instant(output.instant);
    218   msg->set_average(output.average);
    219   msg->set_maximum(output.maximum);
    220   msg->set_minimum(output.minimum);
    221 }
    222 #endif
    223 
    224 void OpenFileAndWriteMessage(const std::string filename,
    225                              const ::google::protobuf::MessageLite& msg) {
    226 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
    227   FILE* file = fopen(filename.c_str(), "wb");
    228   ASSERT_TRUE(file != NULL);
    229 
    230   int32_t size = msg.ByteSize();
    231   ASSERT_GT(size, 0);
    232   rtc::scoped_ptr<uint8_t[]> array(new uint8_t[size]);
    233   ASSERT_TRUE(msg.SerializeToArray(array.get(), size));
    234 
    235   ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file));
    236   ASSERT_EQ(static_cast<size_t>(size),
    237       fwrite(array.get(), sizeof(array[0]), size, file));
    238   fclose(file);
    239 #else
    240   std::cout << "Warning: Writing new reference is only allowed on Linux!"
    241       << std::endl;
    242 #endif
    243 }
    244 
    245 std::string ResourceFilePath(std::string name, int sample_rate_hz) {
    246   std::ostringstream ss;
    247   // Resource files are all stereo.
    248   ss << name << sample_rate_hz / 1000 << "_stereo";
    249   return test::ResourcePath(ss.str(), "pcm");
    250 }
    251 
    252 // Temporary filenames unique to this process. Used to be able to run these
    253 // tests in parallel as each process needs to be running in isolation they can't
    254 // have competing filenames.
    255 std::map<std::string, std::string> temp_filenames;
    256 
    257 std::string OutputFilePath(std::string name,
    258                            int input_rate,
    259                            int output_rate,
    260                            int reverse_input_rate,
    261                            int reverse_output_rate,
    262                            size_t num_input_channels,
    263                            size_t num_output_channels,
    264                            size_t num_reverse_input_channels,
    265                            size_t num_reverse_output_channels,
    266                            StreamDirection file_direction) {
    267   std::ostringstream ss;
    268   ss << name << "_i" << num_input_channels << "_" << input_rate / 1000 << "_ir"
    269      << num_reverse_input_channels << "_" << reverse_input_rate / 1000 << "_";
    270   if (num_output_channels == 1) {
    271     ss << "mono";
    272   } else if (num_output_channels == 2) {
    273     ss << "stereo";
    274   } else {
    275     assert(false);
    276   }
    277   ss << output_rate / 1000;
    278   if (num_reverse_output_channels == 1) {
    279     ss << "_rmono";
    280   } else if (num_reverse_output_channels == 2) {
    281     ss << "_rstereo";
    282   } else {
    283     assert(false);
    284   }
    285   ss << reverse_output_rate / 1000;
    286   ss << "_d" << file_direction << "_pcm";
    287 
    288   std::string filename = ss.str();
    289   if (temp_filenames[filename].empty())
    290     temp_filenames[filename] = test::TempFilename(test::OutputPath(), filename);
    291   return temp_filenames[filename];
    292 }
    293 
    294 void ClearTempFiles() {
    295   for (auto& kv : temp_filenames)
    296     remove(kv.second.c_str());
    297 }
    298 
    299 void OpenFileAndReadMessage(const std::string filename,
    300                             ::google::protobuf::MessageLite* msg) {
    301   FILE* file = fopen(filename.c_str(), "rb");
    302   ASSERT_TRUE(file != NULL);
    303   ReadMessageFromFile(file, msg);
    304   fclose(file);
    305 }
    306 
    307 // Reads a 10 ms chunk of int16 interleaved audio from the given (assumed
    308 // stereo) file, converts to deinterleaved float (optionally downmixing) and
    309 // returns the result in |cb|. Returns false if the file ended (or on error) and
    310 // true otherwise.
    311 //
    312 // |int_data| and |float_data| are just temporary space that must be
    313 // sufficiently large to hold the 10 ms chunk.
    314 bool ReadChunk(FILE* file, int16_t* int_data, float* float_data,
    315                ChannelBuffer<float>* cb) {
    316   // The files always contain stereo audio.
    317   size_t frame_size = cb->num_frames() * 2;
    318   size_t read_count = fread(int_data, sizeof(int16_t), frame_size, file);
    319   if (read_count != frame_size) {
    320     // Check that the file really ended.
    321     assert(feof(file));
    322     return false;  // This is expected.
    323   }
    324 
    325   S16ToFloat(int_data, frame_size, float_data);
    326   if (cb->num_channels() == 1) {
    327     MixStereoToMono(float_data, cb->channels()[0], cb->num_frames());
    328   } else {
    329     Deinterleave(float_data, cb->num_frames(), 2,
    330                  cb->channels());
    331   }
    332 
    333   return true;
    334 }
    335 
    336 class ApmTest : public ::testing::Test {
    337  protected:
    338   ApmTest();
    339   virtual void SetUp();
    340   virtual void TearDown();
    341 
    342   static void SetUpTestCase() {
    343     Trace::CreateTrace();
    344   }
    345 
    346   static void TearDownTestCase() {
    347     Trace::ReturnTrace();
    348     ClearTempFiles();
    349   }
    350 
    351   // Used to select between int and float interface tests.
    352   enum Format {
    353     kIntFormat,
    354     kFloatFormat
    355   };
    356 
    357   void Init(int sample_rate_hz,
    358             int output_sample_rate_hz,
    359             int reverse_sample_rate_hz,
    360             size_t num_input_channels,
    361             size_t num_output_channels,
    362             size_t num_reverse_channels,
    363             bool open_output_file);
    364   void Init(AudioProcessing* ap);
    365   void EnableAllComponents();
    366   bool ReadFrame(FILE* file, AudioFrame* frame);
    367   bool ReadFrame(FILE* file, AudioFrame* frame, ChannelBuffer<float>* cb);
    368   void ReadFrameWithRewind(FILE* file, AudioFrame* frame);
    369   void ReadFrameWithRewind(FILE* file, AudioFrame* frame,
    370                            ChannelBuffer<float>* cb);
    371   void ProcessWithDefaultStreamParameters(AudioFrame* frame);
    372   void ProcessDelayVerificationTest(int delay_ms, int system_delay_ms,
    373                                     int delay_min, int delay_max);
    374   void TestChangingChannelsInt16Interface(
    375       size_t num_channels,
    376       AudioProcessing::Error expected_return);
    377   void TestChangingForwardChannels(size_t num_in_channels,
    378                                    size_t num_out_channels,
    379                                    AudioProcessing::Error expected_return);
    380   void TestChangingReverseChannels(size_t num_rev_channels,
    381                                    AudioProcessing::Error expected_return);
    382   void RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate);
    383   void RunManualVolumeChangeIsPossibleTest(int sample_rate);
    384   void StreamParametersTest(Format format);
    385   int ProcessStreamChooser(Format format);
    386   int AnalyzeReverseStreamChooser(Format format);
    387   void ProcessDebugDump(const std::string& in_filename,
    388                         const std::string& out_filename,
    389                         Format format);
    390   void VerifyDebugDumpTest(Format format);
    391 
    392   const std::string output_path_;
    393   const std::string ref_path_;
    394   const std::string ref_filename_;
    395   rtc::scoped_ptr<AudioProcessing> apm_;
    396   AudioFrame* frame_;
    397   AudioFrame* revframe_;
    398   rtc::scoped_ptr<ChannelBuffer<float> > float_cb_;
    399   rtc::scoped_ptr<ChannelBuffer<float> > revfloat_cb_;
    400   int output_sample_rate_hz_;
    401   size_t num_output_channels_;
    402   FILE* far_file_;
    403   FILE* near_file_;
    404   FILE* out_file_;
    405 };
    406 
    407 ApmTest::ApmTest()
    408     : output_path_(test::OutputPath()),
    409       ref_path_(test::ProjectRootPath() + "data/audio_processing/"),
    410 #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
    411       ref_filename_(ref_path_ + "output_data_fixed.pb"),
    412 #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
    413 #if defined(WEBRTC_MAC)
    414       // A different file for Mac is needed because on this platform the AEC
    415       // constant |kFixedDelayMs| value is 20 and not 50 as it is on the rest.
    416       ref_filename_(ref_path_ + "output_data_mac.pb"),
    417 #else
    418       ref_filename_(ref_path_ + "output_data_float.pb"),
    419 #endif
    420 #endif
    421       frame_(NULL),
    422       revframe_(NULL),
    423       output_sample_rate_hz_(0),
    424       num_output_channels_(0),
    425       far_file_(NULL),
    426       near_file_(NULL),
    427       out_file_(NULL) {
    428   Config config;
    429   config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
    430   apm_.reset(AudioProcessing::Create(config));
    431 }
    432 
    433 void ApmTest::SetUp() {
    434   ASSERT_TRUE(apm_.get() != NULL);
    435 
    436   frame_ = new AudioFrame();
    437   revframe_ = new AudioFrame();
    438 
    439 #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
    440   Init(16000, 16000, 16000, 2, 2, 2, false);
    441 #else
    442   Init(32000, 32000, 32000, 2, 2, 2, false);
    443 #endif
    444 }
    445 
    446 void ApmTest::TearDown() {
    447   if (frame_) {
    448     delete frame_;
    449   }
    450   frame_ = NULL;
    451 
    452   if (revframe_) {
    453     delete revframe_;
    454   }
    455   revframe_ = NULL;
    456 
    457   if (far_file_) {
    458     ASSERT_EQ(0, fclose(far_file_));
    459   }
    460   far_file_ = NULL;
    461 
    462   if (near_file_) {
    463     ASSERT_EQ(0, fclose(near_file_));
    464   }
    465   near_file_ = NULL;
    466 
    467   if (out_file_) {
    468     ASSERT_EQ(0, fclose(out_file_));
    469   }
    470   out_file_ = NULL;
    471 }
    472 
    473 void ApmTest::Init(AudioProcessing* ap) {
    474   ASSERT_EQ(kNoErr,
    475             ap->Initialize(
    476                 {{{frame_->sample_rate_hz_, frame_->num_channels_},
    477                   {output_sample_rate_hz_, num_output_channels_},
    478                   {revframe_->sample_rate_hz_, revframe_->num_channels_},
    479                   {revframe_->sample_rate_hz_, revframe_->num_channels_}}}));
    480 }
    481 
    482 void ApmTest::Init(int sample_rate_hz,
    483                    int output_sample_rate_hz,
    484                    int reverse_sample_rate_hz,
    485                    size_t num_input_channels,
    486                    size_t num_output_channels,
    487                    size_t num_reverse_channels,
    488                    bool open_output_file) {
    489   SetContainerFormat(sample_rate_hz, num_input_channels, frame_, &float_cb_);
    490   output_sample_rate_hz_ = output_sample_rate_hz;
    491   num_output_channels_ = num_output_channels;
    492 
    493   SetContainerFormat(reverse_sample_rate_hz, num_reverse_channels, revframe_,
    494                      &revfloat_cb_);
    495   Init(apm_.get());
    496 
    497   if (far_file_) {
    498     ASSERT_EQ(0, fclose(far_file_));
    499   }
    500   std::string filename = ResourceFilePath("far", sample_rate_hz);
    501   far_file_ = fopen(filename.c_str(), "rb");
    502   ASSERT_TRUE(far_file_ != NULL) << "Could not open file " <<
    503       filename << "\n";
    504 
    505   if (near_file_) {
    506     ASSERT_EQ(0, fclose(near_file_));
    507   }
    508   filename = ResourceFilePath("near", sample_rate_hz);
    509   near_file_ = fopen(filename.c_str(), "rb");
    510   ASSERT_TRUE(near_file_ != NULL) << "Could not open file " <<
    511         filename << "\n";
    512 
    513   if (open_output_file) {
    514     if (out_file_) {
    515       ASSERT_EQ(0, fclose(out_file_));
    516     }
    517     filename = OutputFilePath(
    518         "out", sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz,
    519         reverse_sample_rate_hz, num_input_channels, num_output_channels,
    520         num_reverse_channels, num_reverse_channels, kForward);
    521     out_file_ = fopen(filename.c_str(), "wb");
    522     ASSERT_TRUE(out_file_ != NULL) << "Could not open file " <<
    523           filename << "\n";
    524   }
    525 }
    526 
    527 void ApmTest::EnableAllComponents() {
    528   EnableAllAPComponents(apm_.get());
    529 }
    530 
    531 bool ApmTest::ReadFrame(FILE* file, AudioFrame* frame,
    532                         ChannelBuffer<float>* cb) {
    533   // The files always contain stereo audio.
    534   size_t frame_size = frame->samples_per_channel_ * 2;
    535   size_t read_count = fread(frame->data_,
    536                             sizeof(int16_t),
    537                             frame_size,
    538                             file);
    539   if (read_count != frame_size) {
    540     // Check that the file really ended.
    541     EXPECT_NE(0, feof(file));
    542     return false;  // This is expected.
    543   }
    544 
    545   if (frame->num_channels_ == 1) {
    546     MixStereoToMono(frame->data_, frame->data_,
    547                     frame->samples_per_channel_);
    548   }
    549 
    550   if (cb) {
    551     ConvertToFloat(*frame, cb);
    552   }
    553   return true;
    554 }
    555 
    556 bool ApmTest::ReadFrame(FILE* file, AudioFrame* frame) {
    557   return ReadFrame(file, frame, NULL);
    558 }
    559 
    560 // If the end of the file has been reached, rewind it and attempt to read the
    561 // frame again.
    562 void ApmTest::ReadFrameWithRewind(FILE* file, AudioFrame* frame,
    563                                   ChannelBuffer<float>* cb) {
    564   if (!ReadFrame(near_file_, frame_, cb)) {
    565     rewind(near_file_);
    566     ASSERT_TRUE(ReadFrame(near_file_, frame_, cb));
    567   }
    568 }
    569 
    570 void ApmTest::ReadFrameWithRewind(FILE* file, AudioFrame* frame) {
    571   ReadFrameWithRewind(file, frame, NULL);
    572 }
    573 
    574 void ApmTest::ProcessWithDefaultStreamParameters(AudioFrame* frame) {
    575   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
    576   apm_->echo_cancellation()->set_stream_drift_samples(0);
    577   EXPECT_EQ(apm_->kNoError,
    578       apm_->gain_control()->set_stream_analog_level(127));
    579   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame));
    580 }
    581 
    582 int ApmTest::ProcessStreamChooser(Format format) {
    583   if (format == kIntFormat) {
    584     return apm_->ProcessStream(frame_);
    585   }
    586   return apm_->ProcessStream(float_cb_->channels(),
    587                              frame_->samples_per_channel_,
    588                              frame_->sample_rate_hz_,
    589                              LayoutFromChannels(frame_->num_channels_),
    590                              output_sample_rate_hz_,
    591                              LayoutFromChannels(num_output_channels_),
    592                              float_cb_->channels());
    593 }
    594 
    595 int ApmTest::AnalyzeReverseStreamChooser(Format format) {
    596   if (format == kIntFormat) {
    597     return apm_->AnalyzeReverseStream(revframe_);
    598   }
    599   return apm_->AnalyzeReverseStream(
    600       revfloat_cb_->channels(),
    601       revframe_->samples_per_channel_,
    602       revframe_->sample_rate_hz_,
    603       LayoutFromChannels(revframe_->num_channels_));
    604 }
    605 
    606 void ApmTest::ProcessDelayVerificationTest(int delay_ms, int system_delay_ms,
    607                                            int delay_min, int delay_max) {
    608   // The |revframe_| and |frame_| should include the proper frame information,
    609   // hence can be used for extracting information.
    610   AudioFrame tmp_frame;
    611   std::queue<AudioFrame*> frame_queue;
    612   bool causal = true;
    613 
    614   tmp_frame.CopyFrom(*revframe_);
    615   SetFrameTo(&tmp_frame, 0);
    616 
    617   EXPECT_EQ(apm_->kNoError, apm_->Initialize());
    618   // Initialize the |frame_queue| with empty frames.
    619   int frame_delay = delay_ms / 10;
    620   while (frame_delay < 0) {
    621     AudioFrame* frame = new AudioFrame();
    622     frame->CopyFrom(tmp_frame);
    623     frame_queue.push(frame);
    624     frame_delay++;
    625     causal = false;
    626   }
    627   while (frame_delay > 0) {
    628     AudioFrame* frame = new AudioFrame();
    629     frame->CopyFrom(tmp_frame);
    630     frame_queue.push(frame);
    631     frame_delay--;
    632   }
    633   // Run for 4.5 seconds, skipping statistics from the first 2.5 seconds.  We
    634   // need enough frames with audio to have reliable estimates, but as few as
    635   // possible to keep processing time down.  4.5 seconds seemed to be a good
    636   // compromise for this recording.
    637   for (int frame_count = 0; frame_count < 450; ++frame_count) {
    638     AudioFrame* frame = new AudioFrame();
    639     frame->CopyFrom(tmp_frame);
    640     // Use the near end recording, since that has more speech in it.
    641     ASSERT_TRUE(ReadFrame(near_file_, frame));
    642     frame_queue.push(frame);
    643     AudioFrame* reverse_frame = frame;
    644     AudioFrame* process_frame = frame_queue.front();
    645     if (!causal) {
    646       reverse_frame = frame_queue.front();
    647       // When we call ProcessStream() the frame is modified, so we can't use the
    648       // pointer directly when things are non-causal. Use an intermediate frame
    649       // and copy the data.
    650       process_frame = &tmp_frame;
    651       process_frame->CopyFrom(*frame);
    652     }
    653     EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(reverse_frame));
    654     EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(system_delay_ms));
    655     EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(process_frame));
    656     frame = frame_queue.front();
    657     frame_queue.pop();
    658     delete frame;
    659 
    660     if (frame_count == 250) {
    661       int median;
    662       int std;
    663       float poor_fraction;
    664       // Discard the first delay metrics to avoid convergence effects.
    665       EXPECT_EQ(apm_->kNoError,
    666                 apm_->echo_cancellation()->GetDelayMetrics(&median, &std,
    667                                                            &poor_fraction));
    668     }
    669   }
    670 
    671   rewind(near_file_);
    672   while (!frame_queue.empty()) {
    673     AudioFrame* frame = frame_queue.front();
    674     frame_queue.pop();
    675     delete frame;
    676   }
    677   // Calculate expected delay estimate and acceptable regions. Further,
    678   // limit them w.r.t. AEC delay estimation support.
    679   const size_t samples_per_ms =
    680       std::min(static_cast<size_t>(16), frame_->samples_per_channel_ / 10);
    681   int expected_median = std::min(std::max(delay_ms - system_delay_ms,
    682                                           delay_min), delay_max);
    683   int expected_median_high = std::min(
    684       std::max(expected_median + static_cast<int>(96 / samples_per_ms),
    685                delay_min),
    686       delay_max);
    687   int expected_median_low = std::min(
    688       std::max(expected_median - static_cast<int>(96 / samples_per_ms),
    689                delay_min),
    690       delay_max);
    691   // Verify delay metrics.
    692   int median;
    693   int std;
    694   float poor_fraction;
    695   EXPECT_EQ(apm_->kNoError,
    696             apm_->echo_cancellation()->GetDelayMetrics(&median, &std,
    697                                                        &poor_fraction));
    698   EXPECT_GE(expected_median_high, median);
    699   EXPECT_LE(expected_median_low, median);
    700 }
    701 
    702 void ApmTest::StreamParametersTest(Format format) {
    703   // No errors when the components are disabled.
    704   EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
    705 
    706   // -- Missing AGC level --
    707   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
    708   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    709             ProcessStreamChooser(format));
    710 
    711   // Resets after successful ProcessStream().
    712   EXPECT_EQ(apm_->kNoError,
    713             apm_->gain_control()->set_stream_analog_level(127));
    714   EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
    715   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    716             ProcessStreamChooser(format));
    717 
    718   // Other stream parameters set correctly.
    719   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
    720   EXPECT_EQ(apm_->kNoError,
    721             apm_->echo_cancellation()->enable_drift_compensation(true));
    722   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
    723   apm_->echo_cancellation()->set_stream_drift_samples(0);
    724   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    725             ProcessStreamChooser(format));
    726   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
    727   EXPECT_EQ(apm_->kNoError,
    728             apm_->echo_cancellation()->enable_drift_compensation(false));
    729 
    730   // -- Missing delay --
    731   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
    732   EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
    733   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    734             ProcessStreamChooser(format));
    735 
    736   // Resets after successful ProcessStream().
    737   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
    738   EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
    739   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    740             ProcessStreamChooser(format));
    741 
    742   // Other stream parameters set correctly.
    743   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
    744   EXPECT_EQ(apm_->kNoError,
    745             apm_->echo_cancellation()->enable_drift_compensation(true));
    746   apm_->echo_cancellation()->set_stream_drift_samples(0);
    747   EXPECT_EQ(apm_->kNoError,
    748             apm_->gain_control()->set_stream_analog_level(127));
    749   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    750             ProcessStreamChooser(format));
    751   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
    752 
    753   // -- Missing drift --
    754   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    755             ProcessStreamChooser(format));
    756 
    757   // Resets after successful ProcessStream().
    758   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
    759   apm_->echo_cancellation()->set_stream_drift_samples(0);
    760   EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
    761   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    762             ProcessStreamChooser(format));
    763 
    764   // Other stream parameters set correctly.
    765   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
    766   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
    767   EXPECT_EQ(apm_->kNoError,
    768             apm_->gain_control()->set_stream_analog_level(127));
    769   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    770             ProcessStreamChooser(format));
    771 
    772   // -- No stream parameters --
    773   EXPECT_EQ(apm_->kNoError,
    774             AnalyzeReverseStreamChooser(format));
    775   EXPECT_EQ(apm_->kStreamParameterNotSetError,
    776             ProcessStreamChooser(format));
    777 
    778   // -- All there --
    779   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
    780   apm_->echo_cancellation()->set_stream_drift_samples(0);
    781   EXPECT_EQ(apm_->kNoError,
    782             apm_->gain_control()->set_stream_analog_level(127));
    783   EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
    784 }
    785 
    786 TEST_F(ApmTest, StreamParametersInt) {
    787   StreamParametersTest(kIntFormat);
    788 }
    789 
    790 TEST_F(ApmTest, StreamParametersFloat) {
    791   StreamParametersTest(kFloatFormat);
    792 }
    793 
    794 TEST_F(ApmTest, DefaultDelayOffsetIsZero) {
    795   EXPECT_EQ(0, apm_->delay_offset_ms());
    796   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(50));
    797   EXPECT_EQ(50, apm_->stream_delay_ms());
    798 }
    799 
    800 TEST_F(ApmTest, DelayOffsetWithLimitsIsSetProperly) {
    801   // High limit of 500 ms.
    802   apm_->set_delay_offset_ms(100);
    803   EXPECT_EQ(100, apm_->delay_offset_ms());
    804   EXPECT_EQ(apm_->kBadStreamParameterWarning, apm_->set_stream_delay_ms(450));
    805   EXPECT_EQ(500, apm_->stream_delay_ms());
    806   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
    807   EXPECT_EQ(200, apm_->stream_delay_ms());
    808 
    809   // Low limit of 0 ms.
    810   apm_->set_delay_offset_ms(-50);
    811   EXPECT_EQ(-50, apm_->delay_offset_ms());
    812   EXPECT_EQ(apm_->kBadStreamParameterWarning, apm_->set_stream_delay_ms(20));
    813   EXPECT_EQ(0, apm_->stream_delay_ms());
    814   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
    815   EXPECT_EQ(50, apm_->stream_delay_ms());
    816 }
    817 
    818 void ApmTest::TestChangingChannelsInt16Interface(
    819     size_t num_channels,
    820     AudioProcessing::Error expected_return) {
    821   frame_->num_channels_ = num_channels;
    822   EXPECT_EQ(expected_return, apm_->ProcessStream(frame_));
    823   EXPECT_EQ(expected_return, apm_->AnalyzeReverseStream(frame_));
    824 }
    825 
    826 void ApmTest::TestChangingForwardChannels(
    827     size_t num_in_channels,
    828     size_t num_out_channels,
    829     AudioProcessing::Error expected_return) {
    830   const StreamConfig input_stream = {frame_->sample_rate_hz_, num_in_channels};
    831   const StreamConfig output_stream = {output_sample_rate_hz_, num_out_channels};
    832 
    833   EXPECT_EQ(expected_return,
    834             apm_->ProcessStream(float_cb_->channels(), input_stream,
    835                                 output_stream, float_cb_->channels()));
    836 }
    837 
    838 void ApmTest::TestChangingReverseChannels(
    839     size_t num_rev_channels,
    840     AudioProcessing::Error expected_return) {
    841   const ProcessingConfig processing_config = {
    842       {{frame_->sample_rate_hz_, apm_->num_input_channels()},
    843        {output_sample_rate_hz_, apm_->num_output_channels()},
    844        {frame_->sample_rate_hz_, num_rev_channels},
    845        {frame_->sample_rate_hz_, num_rev_channels}}};
    846 
    847   EXPECT_EQ(
    848       expected_return,
    849       apm_->ProcessReverseStream(
    850           float_cb_->channels(), processing_config.reverse_input_stream(),
    851           processing_config.reverse_output_stream(), float_cb_->channels()));
    852 }
    853 
    854 TEST_F(ApmTest, ChannelsInt16Interface) {
    855   // Testing number of invalid and valid channels.
    856   Init(16000, 16000, 16000, 4, 4, 4, false);
    857 
    858   TestChangingChannelsInt16Interface(0, apm_->kBadNumberChannelsError);
    859 
    860   for (size_t i = 1; i < 4; i++) {
    861     TestChangingChannelsInt16Interface(i, kNoErr);
    862     EXPECT_EQ(i, apm_->num_input_channels());
    863     // We always force the number of reverse channels used for processing to 1.
    864     EXPECT_EQ(1u, apm_->num_reverse_channels());
    865   }
    866 }
    867 
    868 TEST_F(ApmTest, Channels) {
    869   // Testing number of invalid and valid channels.
    870   Init(16000, 16000, 16000, 4, 4, 4, false);
    871 
    872   TestChangingForwardChannels(0, 1, apm_->kBadNumberChannelsError);
    873   TestChangingReverseChannels(0, apm_->kBadNumberChannelsError);
    874 
    875   for (size_t i = 1; i < 4; ++i) {
    876     for (size_t j = 0; j < 1; ++j) {
    877       // Output channels much be one or match input channels.
    878       if (j == 1 || i == j) {
    879         TestChangingForwardChannels(i, j, kNoErr);
    880         TestChangingReverseChannels(i, kNoErr);
    881 
    882         EXPECT_EQ(i, apm_->num_input_channels());
    883         EXPECT_EQ(j, apm_->num_output_channels());
    884         // The number of reverse channels used for processing to is always 1.
    885         EXPECT_EQ(1u, apm_->num_reverse_channels());
    886       } else {
    887         TestChangingForwardChannels(i, j,
    888                                     AudioProcessing::kBadNumberChannelsError);
    889       }
    890     }
    891   }
    892 }
    893 
    894 TEST_F(ApmTest, SampleRatesInt) {
    895   // Testing invalid sample rates
    896   SetContainerFormat(10000, 2, frame_, &float_cb_);
    897   EXPECT_EQ(apm_->kBadSampleRateError, ProcessStreamChooser(kIntFormat));
    898   // Testing valid sample rates
    899   int fs[] = {8000, 16000, 32000, 48000};
    900   for (size_t i = 0; i < arraysize(fs); i++) {
    901     SetContainerFormat(fs[i], 2, frame_, &float_cb_);
    902     EXPECT_NOERR(ProcessStreamChooser(kIntFormat));
    903   }
    904 }
    905 
    906 TEST_F(ApmTest, EchoCancellation) {
    907   EXPECT_EQ(apm_->kNoError,
    908             apm_->echo_cancellation()->enable_drift_compensation(true));
    909   EXPECT_TRUE(apm_->echo_cancellation()->is_drift_compensation_enabled());
    910   EXPECT_EQ(apm_->kNoError,
    911             apm_->echo_cancellation()->enable_drift_compensation(false));
    912   EXPECT_FALSE(apm_->echo_cancellation()->is_drift_compensation_enabled());
    913 
    914   EchoCancellation::SuppressionLevel level[] = {
    915     EchoCancellation::kLowSuppression,
    916     EchoCancellation::kModerateSuppression,
    917     EchoCancellation::kHighSuppression,
    918   };
    919   for (size_t i = 0; i < arraysize(level); i++) {
    920     EXPECT_EQ(apm_->kNoError,
    921         apm_->echo_cancellation()->set_suppression_level(level[i]));
    922     EXPECT_EQ(level[i],
    923         apm_->echo_cancellation()->suppression_level());
    924   }
    925 
    926   EchoCancellation::Metrics metrics;
    927   EXPECT_EQ(apm_->kNotEnabledError,
    928             apm_->echo_cancellation()->GetMetrics(&metrics));
    929 
    930   EXPECT_EQ(apm_->kNoError,
    931             apm_->echo_cancellation()->enable_metrics(true));
    932   EXPECT_TRUE(apm_->echo_cancellation()->are_metrics_enabled());
    933   EXPECT_EQ(apm_->kNoError,
    934             apm_->echo_cancellation()->enable_metrics(false));
    935   EXPECT_FALSE(apm_->echo_cancellation()->are_metrics_enabled());
    936 
    937   int median = 0;
    938   int std = 0;
    939   float poor_fraction = 0;
    940   EXPECT_EQ(apm_->kNotEnabledError,
    941             apm_->echo_cancellation()->GetDelayMetrics(&median, &std,
    942                                                        &poor_fraction));
    943 
    944   EXPECT_EQ(apm_->kNoError,
    945             apm_->echo_cancellation()->enable_delay_logging(true));
    946   EXPECT_TRUE(apm_->echo_cancellation()->is_delay_logging_enabled());
    947   EXPECT_EQ(apm_->kNoError,
    948             apm_->echo_cancellation()->enable_delay_logging(false));
    949   EXPECT_FALSE(apm_->echo_cancellation()->is_delay_logging_enabled());
    950 
    951   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
    952   EXPECT_TRUE(apm_->echo_cancellation()->is_enabled());
    953   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false));
    954   EXPECT_FALSE(apm_->echo_cancellation()->is_enabled());
    955 
    956   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
    957   EXPECT_TRUE(apm_->echo_cancellation()->is_enabled());
    958   EXPECT_TRUE(apm_->echo_cancellation()->aec_core() != NULL);
    959   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false));
    960   EXPECT_FALSE(apm_->echo_cancellation()->is_enabled());
    961   EXPECT_FALSE(apm_->echo_cancellation()->aec_core() != NULL);
    962 }
    963 
    964 TEST_F(ApmTest, DISABLED_EchoCancellationReportsCorrectDelays) {
    965   // TODO(bjornv): Fix this test to work with DA-AEC.
    966   // Enable AEC only.
    967   EXPECT_EQ(apm_->kNoError,
    968             apm_->echo_cancellation()->enable_drift_compensation(false));
    969   EXPECT_EQ(apm_->kNoError,
    970             apm_->echo_cancellation()->enable_metrics(false));
    971   EXPECT_EQ(apm_->kNoError,
    972             apm_->echo_cancellation()->enable_delay_logging(true));
    973   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
    974   Config config;
    975   config.Set<DelayAgnostic>(new DelayAgnostic(false));
    976   apm_->SetExtraOptions(config);
    977 
    978   // Internally in the AEC the amount of lookahead the delay estimation can
    979   // handle is 15 blocks and the maximum delay is set to 60 blocks.
    980   const int kLookaheadBlocks = 15;
    981   const int kMaxDelayBlocks = 60;
    982   // The AEC has a startup time before it actually starts to process. This
    983   // procedure can flush the internal far-end buffer, which of course affects
    984   // the delay estimation. Therefore, we set a system_delay high enough to
    985   // avoid that. The smallest system_delay you can report without flushing the
    986   // buffer is 66 ms in 8 kHz.
    987   //
    988   // It is known that for 16 kHz (and 32 kHz) sampling frequency there is an
    989   // additional stuffing of 8 ms on the fly, but it seems to have no impact on
    990   // delay estimation. This should be noted though. In case of test failure,
    991   // this could be the cause.
    992   const int kSystemDelayMs = 66;
    993   // Test a couple of corner cases and verify that the estimated delay is
    994   // within a valid region (set to +-1.5 blocks). Note that these cases are
    995   // sampling frequency dependent.
    996   for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) {
    997     Init(kProcessSampleRates[i],
    998          kProcessSampleRates[i],
    999          kProcessSampleRates[i],
   1000          2,
   1001          2,
   1002          2,
   1003          false);
   1004     // Sampling frequency dependent variables.
   1005     const int num_ms_per_block =
   1006         std::max(4, static_cast<int>(640 / frame_->samples_per_channel_));
   1007     const int delay_min_ms = -kLookaheadBlocks * num_ms_per_block;
   1008     const int delay_max_ms = (kMaxDelayBlocks - 1) * num_ms_per_block;
   1009 
   1010     // 1) Verify correct delay estimate at lookahead boundary.
   1011     int delay_ms = TruncateToMultipleOf10(kSystemDelayMs + delay_min_ms);
   1012     ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
   1013                                  delay_max_ms);
   1014     // 2) A delay less than maximum lookahead should give an delay estimate at
   1015     //    the boundary (= -kLookaheadBlocks * num_ms_per_block).
   1016     delay_ms -= 20;
   1017     ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
   1018                                  delay_max_ms);
   1019     // 3) Three values around zero delay. Note that we need to compensate for
   1020     //    the fake system_delay.
   1021     delay_ms = TruncateToMultipleOf10(kSystemDelayMs - 10);
   1022     ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
   1023                                  delay_max_ms);
   1024     delay_ms = TruncateToMultipleOf10(kSystemDelayMs);
   1025     ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
   1026                                  delay_max_ms);
   1027     delay_ms = TruncateToMultipleOf10(kSystemDelayMs + 10);
   1028     ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
   1029                                  delay_max_ms);
   1030     // 4) Verify correct delay estimate at maximum delay boundary.
   1031     delay_ms = TruncateToMultipleOf10(kSystemDelayMs + delay_max_ms);
   1032     ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
   1033                                  delay_max_ms);
   1034     // 5) A delay above the maximum delay should give an estimate at the
   1035     //    boundary (= (kMaxDelayBlocks - 1) * num_ms_per_block).
   1036     delay_ms += 20;
   1037     ProcessDelayVerificationTest(delay_ms, kSystemDelayMs, delay_min_ms,
   1038                                  delay_max_ms);
   1039   }
   1040 }
   1041 
   1042 TEST_F(ApmTest, EchoControlMobile) {
   1043   // AECM won't use super-wideband.
   1044   SetFrameSampleRate(frame_, 32000);
   1045   EXPECT_NOERR(apm_->ProcessStream(frame_));
   1046   EXPECT_EQ(apm_->kBadSampleRateError,
   1047             apm_->echo_control_mobile()->Enable(true));
   1048   SetFrameSampleRate(frame_, 16000);
   1049   EXPECT_NOERR(apm_->ProcessStream(frame_));
   1050   EXPECT_EQ(apm_->kNoError,
   1051             apm_->echo_control_mobile()->Enable(true));
   1052   SetFrameSampleRate(frame_, 32000);
   1053   EXPECT_EQ(apm_->kUnsupportedComponentError, apm_->ProcessStream(frame_));
   1054 
   1055   // Turn AECM on (and AEC off)
   1056   Init(16000, 16000, 16000, 2, 2, 2, false);
   1057   EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(true));
   1058   EXPECT_TRUE(apm_->echo_control_mobile()->is_enabled());
   1059 
   1060   // Toggle routing modes
   1061   EchoControlMobile::RoutingMode mode[] = {
   1062       EchoControlMobile::kQuietEarpieceOrHeadset,
   1063       EchoControlMobile::kEarpiece,
   1064       EchoControlMobile::kLoudEarpiece,
   1065       EchoControlMobile::kSpeakerphone,
   1066       EchoControlMobile::kLoudSpeakerphone,
   1067   };
   1068   for (size_t i = 0; i < arraysize(mode); i++) {
   1069     EXPECT_EQ(apm_->kNoError,
   1070         apm_->echo_control_mobile()->set_routing_mode(mode[i]));
   1071     EXPECT_EQ(mode[i],
   1072         apm_->echo_control_mobile()->routing_mode());
   1073   }
   1074   // Turn comfort noise off/on
   1075   EXPECT_EQ(apm_->kNoError,
   1076       apm_->echo_control_mobile()->enable_comfort_noise(false));
   1077   EXPECT_FALSE(apm_->echo_control_mobile()->is_comfort_noise_enabled());
   1078   EXPECT_EQ(apm_->kNoError,
   1079       apm_->echo_control_mobile()->enable_comfort_noise(true));
   1080   EXPECT_TRUE(apm_->echo_control_mobile()->is_comfort_noise_enabled());
   1081   // Set and get echo path
   1082   const size_t echo_path_size =
   1083       apm_->echo_control_mobile()->echo_path_size_bytes();
   1084   rtc::scoped_ptr<char[]> echo_path_in(new char[echo_path_size]);
   1085   rtc::scoped_ptr<char[]> echo_path_out(new char[echo_path_size]);
   1086   EXPECT_EQ(apm_->kNullPointerError,
   1087             apm_->echo_control_mobile()->SetEchoPath(NULL, echo_path_size));
   1088   EXPECT_EQ(apm_->kNullPointerError,
   1089             apm_->echo_control_mobile()->GetEchoPath(NULL, echo_path_size));
   1090   EXPECT_EQ(apm_->kBadParameterError,
   1091             apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(), 1));
   1092   EXPECT_EQ(apm_->kNoError,
   1093             apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(),
   1094                                                      echo_path_size));
   1095   for (size_t i = 0; i < echo_path_size; i++) {
   1096     echo_path_in[i] = echo_path_out[i] + 1;
   1097   }
   1098   EXPECT_EQ(apm_->kBadParameterError,
   1099             apm_->echo_control_mobile()->SetEchoPath(echo_path_in.get(), 1));
   1100   EXPECT_EQ(apm_->kNoError,
   1101             apm_->echo_control_mobile()->SetEchoPath(echo_path_in.get(),
   1102                                                      echo_path_size));
   1103   EXPECT_EQ(apm_->kNoError,
   1104             apm_->echo_control_mobile()->GetEchoPath(echo_path_out.get(),
   1105                                                      echo_path_size));
   1106   for (size_t i = 0; i < echo_path_size; i++) {
   1107     EXPECT_EQ(echo_path_in[i], echo_path_out[i]);
   1108   }
   1109 
   1110   // Process a few frames with NS in the default disabled state. This exercises
   1111   // a different codepath than with it enabled.
   1112   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
   1113   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1114   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
   1115   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1116 
   1117   // Turn AECM off
   1118   EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(false));
   1119   EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled());
   1120 }
   1121 
   1122 TEST_F(ApmTest, GainControl) {
   1123   // Testing gain modes
   1124   EXPECT_EQ(apm_->kNoError,
   1125       apm_->gain_control()->set_mode(
   1126       apm_->gain_control()->mode()));
   1127 
   1128   GainControl::Mode mode[] = {
   1129     GainControl::kAdaptiveAnalog,
   1130     GainControl::kAdaptiveDigital,
   1131     GainControl::kFixedDigital
   1132   };
   1133   for (size_t i = 0; i < arraysize(mode); i++) {
   1134     EXPECT_EQ(apm_->kNoError,
   1135         apm_->gain_control()->set_mode(mode[i]));
   1136     EXPECT_EQ(mode[i], apm_->gain_control()->mode());
   1137   }
   1138   // Testing invalid target levels
   1139   EXPECT_EQ(apm_->kBadParameterError,
   1140       apm_->gain_control()->set_target_level_dbfs(-3));
   1141   EXPECT_EQ(apm_->kBadParameterError,
   1142       apm_->gain_control()->set_target_level_dbfs(-40));
   1143   // Testing valid target levels
   1144   EXPECT_EQ(apm_->kNoError,
   1145       apm_->gain_control()->set_target_level_dbfs(
   1146       apm_->gain_control()->target_level_dbfs()));
   1147 
   1148   int level_dbfs[] = {0, 6, 31};
   1149   for (size_t i = 0; i < arraysize(level_dbfs); i++) {
   1150     EXPECT_EQ(apm_->kNoError,
   1151         apm_->gain_control()->set_target_level_dbfs(level_dbfs[i]));
   1152     EXPECT_EQ(level_dbfs[i], apm_->gain_control()->target_level_dbfs());
   1153   }
   1154 
   1155   // Testing invalid compression gains
   1156   EXPECT_EQ(apm_->kBadParameterError,
   1157       apm_->gain_control()->set_compression_gain_db(-1));
   1158   EXPECT_EQ(apm_->kBadParameterError,
   1159       apm_->gain_control()->set_compression_gain_db(100));
   1160 
   1161   // Testing valid compression gains
   1162   EXPECT_EQ(apm_->kNoError,
   1163       apm_->gain_control()->set_compression_gain_db(
   1164       apm_->gain_control()->compression_gain_db()));
   1165 
   1166   int gain_db[] = {0, 10, 90};
   1167   for (size_t i = 0; i < arraysize(gain_db); i++) {
   1168     EXPECT_EQ(apm_->kNoError,
   1169         apm_->gain_control()->set_compression_gain_db(gain_db[i]));
   1170     EXPECT_EQ(gain_db[i], apm_->gain_control()->compression_gain_db());
   1171   }
   1172 
   1173   // Testing limiter off/on
   1174   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(false));
   1175   EXPECT_FALSE(apm_->gain_control()->is_limiter_enabled());
   1176   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(true));
   1177   EXPECT_TRUE(apm_->gain_control()->is_limiter_enabled());
   1178 
   1179   // Testing invalid level limits
   1180   EXPECT_EQ(apm_->kBadParameterError,
   1181       apm_->gain_control()->set_analog_level_limits(-1, 512));
   1182   EXPECT_EQ(apm_->kBadParameterError,
   1183       apm_->gain_control()->set_analog_level_limits(100000, 512));
   1184   EXPECT_EQ(apm_->kBadParameterError,
   1185       apm_->gain_control()->set_analog_level_limits(512, -1));
   1186   EXPECT_EQ(apm_->kBadParameterError,
   1187       apm_->gain_control()->set_analog_level_limits(512, 100000));
   1188   EXPECT_EQ(apm_->kBadParameterError,
   1189       apm_->gain_control()->set_analog_level_limits(512, 255));
   1190 
   1191   // Testing valid level limits
   1192   EXPECT_EQ(apm_->kNoError,
   1193       apm_->gain_control()->set_analog_level_limits(
   1194       apm_->gain_control()->analog_level_minimum(),
   1195       apm_->gain_control()->analog_level_maximum()));
   1196 
   1197   int min_level[] = {0, 255, 1024};
   1198   for (size_t i = 0; i < arraysize(min_level); i++) {
   1199     EXPECT_EQ(apm_->kNoError,
   1200         apm_->gain_control()->set_analog_level_limits(min_level[i], 1024));
   1201     EXPECT_EQ(min_level[i], apm_->gain_control()->analog_level_minimum());
   1202   }
   1203 
   1204   int max_level[] = {0, 1024, 65535};
   1205   for (size_t i = 0; i < arraysize(min_level); i++) {
   1206     EXPECT_EQ(apm_->kNoError,
   1207         apm_->gain_control()->set_analog_level_limits(0, max_level[i]));
   1208     EXPECT_EQ(max_level[i], apm_->gain_control()->analog_level_maximum());
   1209   }
   1210 
   1211   // TODO(ajm): stream_is_saturated() and stream_analog_level()
   1212 
   1213   // Turn AGC off
   1214   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
   1215   EXPECT_FALSE(apm_->gain_control()->is_enabled());
   1216 }
   1217 
   1218 void ApmTest::RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate) {
   1219   Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
   1220   EXPECT_EQ(apm_->kNoError,
   1221             apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog));
   1222   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
   1223 
   1224   int out_analog_level = 0;
   1225   for (int i = 0; i < 2000; ++i) {
   1226     ReadFrameWithRewind(near_file_, frame_);
   1227     // Ensure the audio is at a low level, so the AGC will try to increase it.
   1228     ScaleFrame(frame_, 0.25);
   1229 
   1230     // Always pass in the same volume.
   1231     EXPECT_EQ(apm_->kNoError,
   1232         apm_->gain_control()->set_stream_analog_level(100));
   1233     EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1234     out_analog_level = apm_->gain_control()->stream_analog_level();
   1235   }
   1236 
   1237   // Ensure the AGC is still able to reach the maximum.
   1238   EXPECT_EQ(255, out_analog_level);
   1239 }
   1240 
   1241 // Verifies that despite volume slider quantization, the AGC can continue to
   1242 // increase its volume.
   1243 TEST_F(ApmTest, QuantizedVolumeDoesNotGetStuck) {
   1244   for (size_t i = 0; i < arraysize(kSampleRates); ++i) {
   1245     RunQuantizedVolumeDoesNotGetStuckTest(kSampleRates[i]);
   1246   }
   1247 }
   1248 
   1249 void ApmTest::RunManualVolumeChangeIsPossibleTest(int sample_rate) {
   1250   Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
   1251   EXPECT_EQ(apm_->kNoError,
   1252             apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog));
   1253   EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
   1254 
   1255   int out_analog_level = 100;
   1256   for (int i = 0; i < 1000; ++i) {
   1257     ReadFrameWithRewind(near_file_, frame_);
   1258     // Ensure the audio is at a low level, so the AGC will try to increase it.
   1259     ScaleFrame(frame_, 0.25);
   1260 
   1261     EXPECT_EQ(apm_->kNoError,
   1262         apm_->gain_control()->set_stream_analog_level(out_analog_level));
   1263     EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1264     out_analog_level = apm_->gain_control()->stream_analog_level();
   1265   }
   1266 
   1267   // Ensure the volume was raised.
   1268   EXPECT_GT(out_analog_level, 100);
   1269   int highest_level_reached = out_analog_level;
   1270   // Simulate a user manual volume change.
   1271   out_analog_level = 100;
   1272 
   1273   for (int i = 0; i < 300; ++i) {
   1274     ReadFrameWithRewind(near_file_, frame_);
   1275     ScaleFrame(frame_, 0.25);
   1276 
   1277     EXPECT_EQ(apm_->kNoError,
   1278         apm_->gain_control()->set_stream_analog_level(out_analog_level));
   1279     EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1280     out_analog_level = apm_->gain_control()->stream_analog_level();
   1281     // Check that AGC respected the manually adjusted volume.
   1282     EXPECT_LT(out_analog_level, highest_level_reached);
   1283   }
   1284   // Check that the volume was still raised.
   1285   EXPECT_GT(out_analog_level, 100);
   1286 }
   1287 
   1288 TEST_F(ApmTest, ManualVolumeChangeIsPossible) {
   1289   for (size_t i = 0; i < arraysize(kSampleRates); ++i) {
   1290     RunManualVolumeChangeIsPossibleTest(kSampleRates[i]);
   1291   }
   1292 }
   1293 
   1294 #if !defined(WEBRTC_ANDROID) && !defined(WEBRTC_IOS)
   1295 TEST_F(ApmTest, AgcOnlyAdaptsWhenTargetSignalIsPresent) {
   1296   const int kSampleRateHz = 16000;
   1297   const size_t kSamplesPerChannel =
   1298       static_cast<size_t>(AudioProcessing::kChunkSizeMs * kSampleRateHz / 1000);
   1299   const size_t kNumInputChannels = 2;
   1300   const size_t kNumOutputChannels = 1;
   1301   const size_t kNumChunks = 700;
   1302   const float kScaleFactor = 0.25f;
   1303   Config config;
   1304   std::vector<webrtc::Point> geometry;
   1305   geometry.push_back(webrtc::Point(0.f, 0.f, 0.f));
   1306   geometry.push_back(webrtc::Point(0.05f, 0.f, 0.f));
   1307   config.Set<Beamforming>(new Beamforming(true, geometry));
   1308   testing::NiceMock<MockNonlinearBeamformer>* beamformer =
   1309       new testing::NiceMock<MockNonlinearBeamformer>(geometry);
   1310   rtc::scoped_ptr<AudioProcessing> apm(
   1311       AudioProcessing::Create(config, beamformer));
   1312   EXPECT_EQ(kNoErr, apm->gain_control()->Enable(true));
   1313   ChannelBuffer<float> src_buf(kSamplesPerChannel, kNumInputChannels);
   1314   ChannelBuffer<float> dest_buf(kSamplesPerChannel, kNumOutputChannels);
   1315   const size_t max_length = kSamplesPerChannel * std::max(kNumInputChannels,
   1316                                                           kNumOutputChannels);
   1317   rtc::scoped_ptr<int16_t[]> int_data(new int16_t[max_length]);
   1318   rtc::scoped_ptr<float[]> float_data(new float[max_length]);
   1319   std::string filename = ResourceFilePath("far", kSampleRateHz);
   1320   FILE* far_file = fopen(filename.c_str(), "rb");
   1321   ASSERT_TRUE(far_file != NULL) << "Could not open file " << filename << "\n";
   1322   const int kDefaultVolume = apm->gain_control()->stream_analog_level();
   1323   const int kDefaultCompressionGain =
   1324       apm->gain_control()->compression_gain_db();
   1325   bool is_target = false;
   1326   EXPECT_CALL(*beamformer, is_target_present())
   1327       .WillRepeatedly(testing::ReturnPointee(&is_target));
   1328   for (size_t i = 0; i < kNumChunks; ++i) {
   1329     ASSERT_TRUE(ReadChunk(far_file,
   1330                           int_data.get(),
   1331                           float_data.get(),
   1332                           &src_buf));
   1333     for (size_t j = 0; j < kNumInputChannels; ++j) {
   1334       for (size_t k = 0; k < kSamplesPerChannel; ++k) {
   1335         src_buf.channels()[j][k] *= kScaleFactor;
   1336       }
   1337     }
   1338     EXPECT_EQ(kNoErr,
   1339               apm->ProcessStream(src_buf.channels(),
   1340                                  src_buf.num_frames(),
   1341                                  kSampleRateHz,
   1342                                  LayoutFromChannels(src_buf.num_channels()),
   1343                                  kSampleRateHz,
   1344                                  LayoutFromChannels(dest_buf.num_channels()),
   1345                                  dest_buf.channels()));
   1346   }
   1347   EXPECT_EQ(kDefaultVolume,
   1348             apm->gain_control()->stream_analog_level());
   1349   EXPECT_EQ(kDefaultCompressionGain,
   1350             apm->gain_control()->compression_gain_db());
   1351   rewind(far_file);
   1352   is_target = true;
   1353   for (size_t i = 0; i < kNumChunks; ++i) {
   1354     ASSERT_TRUE(ReadChunk(far_file,
   1355                           int_data.get(),
   1356                           float_data.get(),
   1357                           &src_buf));
   1358     for (size_t j = 0; j < kNumInputChannels; ++j) {
   1359       for (size_t k = 0; k < kSamplesPerChannel; ++k) {
   1360         src_buf.channels()[j][k] *= kScaleFactor;
   1361       }
   1362     }
   1363     EXPECT_EQ(kNoErr,
   1364               apm->ProcessStream(src_buf.channels(),
   1365                                  src_buf.num_frames(),
   1366                                  kSampleRateHz,
   1367                                  LayoutFromChannels(src_buf.num_channels()),
   1368                                  kSampleRateHz,
   1369                                  LayoutFromChannels(dest_buf.num_channels()),
   1370                                  dest_buf.channels()));
   1371   }
   1372   EXPECT_LT(kDefaultVolume,
   1373             apm->gain_control()->stream_analog_level());
   1374   EXPECT_LT(kDefaultCompressionGain,
   1375             apm->gain_control()->compression_gain_db());
   1376   ASSERT_EQ(0, fclose(far_file));
   1377 }
   1378 #endif
   1379 
   1380 TEST_F(ApmTest, NoiseSuppression) {
   1381   // Test valid suppression levels.
   1382   NoiseSuppression::Level level[] = {
   1383     NoiseSuppression::kLow,
   1384     NoiseSuppression::kModerate,
   1385     NoiseSuppression::kHigh,
   1386     NoiseSuppression::kVeryHigh
   1387   };
   1388   for (size_t i = 0; i < arraysize(level); i++) {
   1389     EXPECT_EQ(apm_->kNoError,
   1390         apm_->noise_suppression()->set_level(level[i]));
   1391     EXPECT_EQ(level[i], apm_->noise_suppression()->level());
   1392   }
   1393 
   1394   // Turn NS on/off
   1395   EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(true));
   1396   EXPECT_TRUE(apm_->noise_suppression()->is_enabled());
   1397   EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(false));
   1398   EXPECT_FALSE(apm_->noise_suppression()->is_enabled());
   1399 }
   1400 
   1401 TEST_F(ApmTest, HighPassFilter) {
   1402   // Turn HP filter on/off
   1403   EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(true));
   1404   EXPECT_TRUE(apm_->high_pass_filter()->is_enabled());
   1405   EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(false));
   1406   EXPECT_FALSE(apm_->high_pass_filter()->is_enabled());
   1407 }
   1408 
   1409 TEST_F(ApmTest, LevelEstimator) {
   1410   // Turn level estimator on/off
   1411   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
   1412   EXPECT_FALSE(apm_->level_estimator()->is_enabled());
   1413 
   1414   EXPECT_EQ(apm_->kNotEnabledError, apm_->level_estimator()->RMS());
   1415 
   1416   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
   1417   EXPECT_TRUE(apm_->level_estimator()->is_enabled());
   1418 
   1419   // Run this test in wideband; in super-wb, the splitting filter distorts the
   1420   // audio enough to cause deviation from the expectation for small values.
   1421   frame_->samples_per_channel_ = 160;
   1422   frame_->num_channels_ = 2;
   1423   frame_->sample_rate_hz_ = 16000;
   1424 
   1425   // Min value if no frames have been processed.
   1426   EXPECT_EQ(127, apm_->level_estimator()->RMS());
   1427 
   1428   // Min value on zero frames.
   1429   SetFrameTo(frame_, 0);
   1430   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1431   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1432   EXPECT_EQ(127, apm_->level_estimator()->RMS());
   1433 
   1434   // Try a few RMS values.
   1435   // (These also test that the value resets after retrieving it.)
   1436   SetFrameTo(frame_, 32767);
   1437   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1438   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1439   EXPECT_EQ(0, apm_->level_estimator()->RMS());
   1440 
   1441   SetFrameTo(frame_, 30000);
   1442   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1443   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1444   EXPECT_EQ(1, apm_->level_estimator()->RMS());
   1445 
   1446   SetFrameTo(frame_, 10000);
   1447   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1448   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1449   EXPECT_EQ(10, apm_->level_estimator()->RMS());
   1450 
   1451   SetFrameTo(frame_, 10);
   1452   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1453   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1454   EXPECT_EQ(70, apm_->level_estimator()->RMS());
   1455 
   1456   // Verify reset after enable/disable.
   1457   SetFrameTo(frame_, 32767);
   1458   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1459   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
   1460   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
   1461   SetFrameTo(frame_, 1);
   1462   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1463   EXPECT_EQ(90, apm_->level_estimator()->RMS());
   1464 
   1465   // Verify reset after initialize.
   1466   SetFrameTo(frame_, 32767);
   1467   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1468   EXPECT_EQ(apm_->kNoError, apm_->Initialize());
   1469   SetFrameTo(frame_, 1);
   1470   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1471   EXPECT_EQ(90, apm_->level_estimator()->RMS());
   1472 }
   1473 
   1474 TEST_F(ApmTest, VoiceDetection) {
   1475   // Test external VAD
   1476   EXPECT_EQ(apm_->kNoError,
   1477             apm_->voice_detection()->set_stream_has_voice(true));
   1478   EXPECT_TRUE(apm_->voice_detection()->stream_has_voice());
   1479   EXPECT_EQ(apm_->kNoError,
   1480             apm_->voice_detection()->set_stream_has_voice(false));
   1481   EXPECT_FALSE(apm_->voice_detection()->stream_has_voice());
   1482 
   1483   // Test valid likelihoods
   1484   VoiceDetection::Likelihood likelihood[] = {
   1485       VoiceDetection::kVeryLowLikelihood,
   1486       VoiceDetection::kLowLikelihood,
   1487       VoiceDetection::kModerateLikelihood,
   1488       VoiceDetection::kHighLikelihood
   1489   };
   1490   for (size_t i = 0; i < arraysize(likelihood); i++) {
   1491     EXPECT_EQ(apm_->kNoError,
   1492               apm_->voice_detection()->set_likelihood(likelihood[i]));
   1493     EXPECT_EQ(likelihood[i], apm_->voice_detection()->likelihood());
   1494   }
   1495 
   1496   /* TODO(bjornv): Enable once VAD supports other frame lengths than 10 ms
   1497   // Test invalid frame sizes
   1498   EXPECT_EQ(apm_->kBadParameterError,
   1499       apm_->voice_detection()->set_frame_size_ms(12));
   1500 
   1501   // Test valid frame sizes
   1502   for (int i = 10; i <= 30; i += 10) {
   1503     EXPECT_EQ(apm_->kNoError,
   1504         apm_->voice_detection()->set_frame_size_ms(i));
   1505     EXPECT_EQ(i, apm_->voice_detection()->frame_size_ms());
   1506   }
   1507   */
   1508 
   1509   // Turn VAD on/off
   1510   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
   1511   EXPECT_TRUE(apm_->voice_detection()->is_enabled());
   1512   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
   1513   EXPECT_FALSE(apm_->voice_detection()->is_enabled());
   1514 
   1515   // Test that AudioFrame activity is maintained when VAD is disabled.
   1516   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
   1517   AudioFrame::VADActivity activity[] = {
   1518       AudioFrame::kVadActive,
   1519       AudioFrame::kVadPassive,
   1520       AudioFrame::kVadUnknown
   1521   };
   1522   for (size_t i = 0; i < arraysize(activity); i++) {
   1523     frame_->vad_activity_ = activity[i];
   1524     EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1525     EXPECT_EQ(activity[i], frame_->vad_activity_);
   1526   }
   1527 
   1528   // Test that AudioFrame activity is set when VAD is enabled.
   1529   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
   1530   frame_->vad_activity_ = AudioFrame::kVadUnknown;
   1531   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1532   EXPECT_NE(AudioFrame::kVadUnknown, frame_->vad_activity_);
   1533 
   1534   // TODO(bjornv): Add tests for streamed voice; stream_has_voice()
   1535 }
   1536 
   1537 TEST_F(ApmTest, AllProcessingDisabledByDefault) {
   1538   EXPECT_FALSE(apm_->echo_cancellation()->is_enabled());
   1539   EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled());
   1540   EXPECT_FALSE(apm_->gain_control()->is_enabled());
   1541   EXPECT_FALSE(apm_->high_pass_filter()->is_enabled());
   1542   EXPECT_FALSE(apm_->level_estimator()->is_enabled());
   1543   EXPECT_FALSE(apm_->noise_suppression()->is_enabled());
   1544   EXPECT_FALSE(apm_->voice_detection()->is_enabled());
   1545 }
   1546 
   1547 TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabled) {
   1548   for (size_t i = 0; i < arraysize(kSampleRates); i++) {
   1549     Init(kSampleRates[i], kSampleRates[i], kSampleRates[i], 2, 2, 2, false);
   1550     SetFrameTo(frame_, 1000, 2000);
   1551     AudioFrame frame_copy;
   1552     frame_copy.CopyFrom(*frame_);
   1553     for (int j = 0; j < 1000; j++) {
   1554       EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1555       EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
   1556       EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(frame_));
   1557       EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
   1558     }
   1559   }
   1560 }
   1561 
   1562 TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledFloat) {
   1563   // Test that ProcessStream copies input to output even with no processing.
   1564   const size_t kSamples = 80;
   1565   const int sample_rate = 8000;
   1566   const float src[kSamples] = {
   1567     -1.0f, 0.0f, 1.0f
   1568   };
   1569   float dest[kSamples] = {};
   1570 
   1571   auto src_channels = &src[0];
   1572   auto dest_channels = &dest[0];
   1573 
   1574   apm_.reset(AudioProcessing::Create());
   1575   EXPECT_NOERR(apm_->ProcessStream(
   1576       &src_channels, kSamples, sample_rate, LayoutFromChannels(1),
   1577       sample_rate, LayoutFromChannels(1), &dest_channels));
   1578 
   1579   for (size_t i = 0; i < kSamples; ++i) {
   1580     EXPECT_EQ(src[i], dest[i]);
   1581   }
   1582 
   1583   // Same for ProcessReverseStream.
   1584   float rev_dest[kSamples] = {};
   1585   auto rev_dest_channels = &rev_dest[0];
   1586 
   1587   StreamConfig input_stream = {sample_rate, 1};
   1588   StreamConfig output_stream = {sample_rate, 1};
   1589   EXPECT_NOERR(apm_->ProcessReverseStream(&src_channels, input_stream,
   1590                                           output_stream, &rev_dest_channels));
   1591 
   1592   for (size_t i = 0; i < kSamples; ++i) {
   1593     EXPECT_EQ(src[i], rev_dest[i]);
   1594   }
   1595 }
   1596 
   1597 TEST_F(ApmTest, IdenticalInputChannelsResultInIdenticalOutputChannels) {
   1598   EnableAllComponents();
   1599 
   1600   for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) {
   1601     Init(kProcessSampleRates[i],
   1602          kProcessSampleRates[i],
   1603          kProcessSampleRates[i],
   1604          2,
   1605          2,
   1606          2,
   1607          false);
   1608     int analog_level = 127;
   1609     ASSERT_EQ(0, feof(far_file_));
   1610     ASSERT_EQ(0, feof(near_file_));
   1611     while (ReadFrame(far_file_, revframe_) && ReadFrame(near_file_, frame_)) {
   1612       CopyLeftToRightChannel(revframe_->data_, revframe_->samples_per_channel_);
   1613 
   1614       ASSERT_EQ(kNoErr, apm_->AnalyzeReverseStream(revframe_));
   1615 
   1616       CopyLeftToRightChannel(frame_->data_, frame_->samples_per_channel_);
   1617       frame_->vad_activity_ = AudioFrame::kVadUnknown;
   1618 
   1619       ASSERT_EQ(kNoErr, apm_->set_stream_delay_ms(0));
   1620       apm_->echo_cancellation()->set_stream_drift_samples(0);
   1621       ASSERT_EQ(kNoErr,
   1622           apm_->gain_control()->set_stream_analog_level(analog_level));
   1623       ASSERT_EQ(kNoErr, apm_->ProcessStream(frame_));
   1624       analog_level = apm_->gain_control()->stream_analog_level();
   1625 
   1626       VerifyChannelsAreEqual(frame_->data_, frame_->samples_per_channel_);
   1627     }
   1628     rewind(far_file_);
   1629     rewind(near_file_);
   1630   }
   1631 }
   1632 
   1633 TEST_F(ApmTest, SplittingFilter) {
   1634   // Verify the filter is not active through undistorted audio when:
   1635   // 1. No components are enabled...
   1636   SetFrameTo(frame_, 1000);
   1637   AudioFrame frame_copy;
   1638   frame_copy.CopyFrom(*frame_);
   1639   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1640   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1641   EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
   1642 
   1643   // 2. Only the level estimator is enabled...
   1644   SetFrameTo(frame_, 1000);
   1645   frame_copy.CopyFrom(*frame_);
   1646   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
   1647   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1648   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1649   EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
   1650   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
   1651 
   1652   // 3. Only VAD is enabled...
   1653   SetFrameTo(frame_, 1000);
   1654   frame_copy.CopyFrom(*frame_);
   1655   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
   1656   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1657   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1658   EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
   1659   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
   1660 
   1661   // 4. Both VAD and the level estimator are enabled...
   1662   SetFrameTo(frame_, 1000);
   1663   frame_copy.CopyFrom(*frame_);
   1664   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(true));
   1665   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
   1666   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1667   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1668   EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
   1669   EXPECT_EQ(apm_->kNoError, apm_->level_estimator()->Enable(false));
   1670   EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
   1671 
   1672   // TODO(aluebs): Figure out exactly why the AEC affects the audio on Android.
   1673   /*// 5. Not using super-wb.
   1674   frame_->samples_per_channel_ = 160;
   1675   frame_->num_channels_ = 2;
   1676   frame_->sample_rate_hz_ = 16000;
   1677   // Enable AEC, which would require the filter in super-wb. We rely on the
   1678   // first few frames of data being unaffected by the AEC.
   1679   // TODO(andrew): This test, and the one below, rely rather tenuously on the
   1680   // behavior of the AEC. Think of something more robust.
   1681   EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
   1682   // Make sure we have extended filter enabled. This makes sure nothing is
   1683   // touched until we have a farend frame.
   1684   Config config;
   1685   config.Set<ExtendedFilter>(new ExtendedFilter(true));
   1686   apm_->SetExtraOptions(config);
   1687   SetFrameTo(frame_, 1000);
   1688   frame_copy.CopyFrom(*frame_);
   1689   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
   1690   apm_->echo_cancellation()->set_stream_drift_samples(0);
   1691   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1692   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
   1693   apm_->echo_cancellation()->set_stream_drift_samples(0);
   1694   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1695   EXPECT_TRUE(FrameDataAreEqual(*frame_, frame_copy));
   1696 
   1697   // Check the test is valid. We should have distortion from the filter
   1698   // when AEC is enabled (which won't affect the audio).
   1699   frame_->samples_per_channel_ = 320;
   1700   frame_->num_channels_ = 2;
   1701   frame_->sample_rate_hz_ = 32000;
   1702   SetFrameTo(frame_, 1000);
   1703   frame_copy.CopyFrom(*frame_);
   1704   EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
   1705   apm_->echo_cancellation()->set_stream_drift_samples(0);
   1706   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1707   EXPECT_FALSE(FrameDataAreEqual(*frame_, frame_copy));*/
   1708 }
   1709 
   1710 #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
   1711 void ApmTest::ProcessDebugDump(const std::string& in_filename,
   1712                                const std::string& out_filename,
   1713                                Format format) {
   1714   FILE* in_file = fopen(in_filename.c_str(), "rb");
   1715   ASSERT_TRUE(in_file != NULL);
   1716   audioproc::Event event_msg;
   1717   bool first_init = true;
   1718 
   1719   while (ReadMessageFromFile(in_file, &event_msg)) {
   1720     if (event_msg.type() == audioproc::Event::INIT) {
   1721       const audioproc::Init msg = event_msg.init();
   1722       int reverse_sample_rate = msg.sample_rate();
   1723       if (msg.has_reverse_sample_rate()) {
   1724         reverse_sample_rate = msg.reverse_sample_rate();
   1725       }
   1726       int output_sample_rate = msg.sample_rate();
   1727       if (msg.has_output_sample_rate()) {
   1728         output_sample_rate = msg.output_sample_rate();
   1729       }
   1730 
   1731       Init(msg.sample_rate(),
   1732            output_sample_rate,
   1733            reverse_sample_rate,
   1734            msg.num_input_channels(),
   1735            msg.num_output_channels(),
   1736            msg.num_reverse_channels(),
   1737            false);
   1738       if (first_init) {
   1739         // StartDebugRecording() writes an additional init message. Don't start
   1740         // recording until after the first init to avoid the extra message.
   1741         EXPECT_NOERR(apm_->StartDebugRecording(out_filename.c_str()));
   1742         first_init = false;
   1743       }
   1744 
   1745     } else if (event_msg.type() == audioproc::Event::REVERSE_STREAM) {
   1746       const audioproc::ReverseStream msg = event_msg.reverse_stream();
   1747 
   1748       if (msg.channel_size() > 0) {
   1749         ASSERT_EQ(revframe_->num_channels_,
   1750                   static_cast<size_t>(msg.channel_size()));
   1751         for (int i = 0; i < msg.channel_size(); ++i) {
   1752            memcpy(revfloat_cb_->channels()[i],
   1753                   msg.channel(i).data(),
   1754                   msg.channel(i).size());
   1755         }
   1756       } else {
   1757         memcpy(revframe_->data_, msg.data().data(), msg.data().size());
   1758         if (format == kFloatFormat) {
   1759           // We're using an int16 input file; convert to float.
   1760           ConvertToFloat(*revframe_, revfloat_cb_.get());
   1761         }
   1762       }
   1763       AnalyzeReverseStreamChooser(format);
   1764 
   1765     } else if (event_msg.type() == audioproc::Event::STREAM) {
   1766       const audioproc::Stream msg = event_msg.stream();
   1767       // ProcessStream could have changed this for the output frame.
   1768       frame_->num_channels_ = apm_->num_input_channels();
   1769 
   1770       EXPECT_NOERR(apm_->gain_control()->set_stream_analog_level(msg.level()));
   1771       EXPECT_NOERR(apm_->set_stream_delay_ms(msg.delay()));
   1772       apm_->echo_cancellation()->set_stream_drift_samples(msg.drift());
   1773       if (msg.has_keypress()) {
   1774         apm_->set_stream_key_pressed(msg.keypress());
   1775       } else {
   1776         apm_->set_stream_key_pressed(true);
   1777       }
   1778 
   1779       if (msg.input_channel_size() > 0) {
   1780         ASSERT_EQ(frame_->num_channels_,
   1781                   static_cast<size_t>(msg.input_channel_size()));
   1782         for (int i = 0; i < msg.input_channel_size(); ++i) {
   1783            memcpy(float_cb_->channels()[i],
   1784                   msg.input_channel(i).data(),
   1785                   msg.input_channel(i).size());
   1786         }
   1787       } else {
   1788         memcpy(frame_->data_, msg.input_data().data(), msg.input_data().size());
   1789         if (format == kFloatFormat) {
   1790           // We're using an int16 input file; convert to float.
   1791           ConvertToFloat(*frame_, float_cb_.get());
   1792         }
   1793       }
   1794       ProcessStreamChooser(format);
   1795     }
   1796   }
   1797   EXPECT_NOERR(apm_->StopDebugRecording());
   1798   fclose(in_file);
   1799 }
   1800 
   1801 void ApmTest::VerifyDebugDumpTest(Format format) {
   1802   const std::string in_filename = test::ResourcePath("ref03", "aecdump");
   1803   std::string format_string;
   1804   switch (format) {
   1805     case kIntFormat:
   1806       format_string = "_int";
   1807       break;
   1808     case kFloatFormat:
   1809       format_string = "_float";
   1810       break;
   1811   }
   1812   const std::string ref_filename = test::TempFilename(
   1813       test::OutputPath(), std::string("ref") + format_string + "_aecdump");
   1814   const std::string out_filename = test::TempFilename(
   1815       test::OutputPath(), std::string("out") + format_string + "_aecdump");
   1816   EnableAllComponents();
   1817   ProcessDebugDump(in_filename, ref_filename, format);
   1818   ProcessDebugDump(ref_filename, out_filename, format);
   1819 
   1820   FILE* ref_file = fopen(ref_filename.c_str(), "rb");
   1821   FILE* out_file = fopen(out_filename.c_str(), "rb");
   1822   ASSERT_TRUE(ref_file != NULL);
   1823   ASSERT_TRUE(out_file != NULL);
   1824   rtc::scoped_ptr<uint8_t[]> ref_bytes;
   1825   rtc::scoped_ptr<uint8_t[]> out_bytes;
   1826 
   1827   size_t ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
   1828   size_t out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
   1829   size_t bytes_read = 0;
   1830   while (ref_size > 0 && out_size > 0) {
   1831     bytes_read += ref_size;
   1832     EXPECT_EQ(ref_size, out_size);
   1833     EXPECT_EQ(0, memcmp(ref_bytes.get(), out_bytes.get(), ref_size));
   1834     ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
   1835     out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
   1836   }
   1837   EXPECT_GT(bytes_read, 0u);
   1838   EXPECT_NE(0, feof(ref_file));
   1839   EXPECT_NE(0, feof(out_file));
   1840   ASSERT_EQ(0, fclose(ref_file));
   1841   ASSERT_EQ(0, fclose(out_file));
   1842   remove(ref_filename.c_str());
   1843   remove(out_filename.c_str());
   1844 }
   1845 
   1846 TEST_F(ApmTest, VerifyDebugDumpInt) {
   1847   VerifyDebugDumpTest(kIntFormat);
   1848 }
   1849 
   1850 TEST_F(ApmTest, VerifyDebugDumpFloat) {
   1851   VerifyDebugDumpTest(kFloatFormat);
   1852 }
   1853 #endif
   1854 
   1855 // TODO(andrew): expand test to verify output.
   1856 TEST_F(ApmTest, DebugDump) {
   1857   const std::string filename =
   1858       test::TempFilename(test::OutputPath(), "debug_aec");
   1859   EXPECT_EQ(apm_->kNullPointerError,
   1860             apm_->StartDebugRecording(static_cast<const char*>(NULL)));
   1861 
   1862 #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
   1863   // Stopping without having started should be OK.
   1864   EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
   1865 
   1866   EXPECT_EQ(apm_->kNoError, apm_->StartDebugRecording(filename.c_str()));
   1867   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1868   EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_));
   1869   EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
   1870 
   1871   // Verify the file has been written.
   1872   FILE* fid = fopen(filename.c_str(), "r");
   1873   ASSERT_TRUE(fid != NULL);
   1874 
   1875   // Clean it up.
   1876   ASSERT_EQ(0, fclose(fid));
   1877   ASSERT_EQ(0, remove(filename.c_str()));
   1878 #else
   1879   EXPECT_EQ(apm_->kUnsupportedFunctionError,
   1880             apm_->StartDebugRecording(filename.c_str()));
   1881   EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StopDebugRecording());
   1882 
   1883   // Verify the file has NOT been written.
   1884   ASSERT_TRUE(fopen(filename.c_str(), "r") == NULL);
   1885 #endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP
   1886 }
   1887 
   1888 // TODO(andrew): expand test to verify output.
   1889 TEST_F(ApmTest, DebugDumpFromFileHandle) {
   1890   FILE* fid = NULL;
   1891   EXPECT_EQ(apm_->kNullPointerError, apm_->StartDebugRecording(fid));
   1892   const std::string filename =
   1893       test::TempFilename(test::OutputPath(), "debug_aec");
   1894   fid = fopen(filename.c_str(), "w");
   1895   ASSERT_TRUE(fid);
   1896 
   1897 #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
   1898   // Stopping without having started should be OK.
   1899   EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
   1900 
   1901   EXPECT_EQ(apm_->kNoError, apm_->StartDebugRecording(fid));
   1902   EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_));
   1903   EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   1904   EXPECT_EQ(apm_->kNoError, apm_->StopDebugRecording());
   1905 
   1906   // Verify the file has been written.
   1907   fid = fopen(filename.c_str(), "r");
   1908   ASSERT_TRUE(fid != NULL);
   1909 
   1910   // Clean it up.
   1911   ASSERT_EQ(0, fclose(fid));
   1912   ASSERT_EQ(0, remove(filename.c_str()));
   1913 #else
   1914   EXPECT_EQ(apm_->kUnsupportedFunctionError,
   1915             apm_->StartDebugRecording(fid));
   1916   EXPECT_EQ(apm_->kUnsupportedFunctionError, apm_->StopDebugRecording());
   1917 
   1918   ASSERT_EQ(0, fclose(fid));
   1919 #endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP
   1920 }
   1921 
   1922 TEST_F(ApmTest, FloatAndIntInterfacesGiveSimilarResults) {
   1923   audioproc::OutputData ref_data;
   1924   OpenFileAndReadMessage(ref_filename_, &ref_data);
   1925 
   1926   Config config;
   1927   config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
   1928   rtc::scoped_ptr<AudioProcessing> fapm(AudioProcessing::Create(config));
   1929   EnableAllComponents();
   1930   EnableAllAPComponents(fapm.get());
   1931   for (int i = 0; i < ref_data.test_size(); i++) {
   1932     printf("Running test %d of %d...\n", i + 1, ref_data.test_size());
   1933 
   1934     audioproc::Test* test = ref_data.mutable_test(i);
   1935     // TODO(ajm): Restore downmixing test cases.
   1936     if (test->num_input_channels() != test->num_output_channels())
   1937       continue;
   1938 
   1939     const size_t num_render_channels =
   1940         static_cast<size_t>(test->num_reverse_channels());
   1941     const size_t num_input_channels =
   1942         static_cast<size_t>(test->num_input_channels());
   1943     const size_t num_output_channels =
   1944         static_cast<size_t>(test->num_output_channels());
   1945     const size_t samples_per_channel = static_cast<size_t>(
   1946         test->sample_rate() * AudioProcessing::kChunkSizeMs / 1000);
   1947 
   1948     Init(test->sample_rate(), test->sample_rate(), test->sample_rate(),
   1949          num_input_channels, num_output_channels, num_render_channels, true);
   1950     Init(fapm.get());
   1951 
   1952     ChannelBuffer<int16_t> output_cb(samples_per_channel, num_input_channels);
   1953     ChannelBuffer<int16_t> output_int16(samples_per_channel,
   1954                                         num_input_channels);
   1955 
   1956     int analog_level = 127;
   1957     while (ReadFrame(far_file_, revframe_, revfloat_cb_.get()) &&
   1958            ReadFrame(near_file_, frame_, float_cb_.get())) {
   1959       frame_->vad_activity_ = AudioFrame::kVadUnknown;
   1960 
   1961       EXPECT_NOERR(apm_->AnalyzeReverseStream(revframe_));
   1962       EXPECT_NOERR(fapm->AnalyzeReverseStream(
   1963           revfloat_cb_->channels(),
   1964           samples_per_channel,
   1965           test->sample_rate(),
   1966           LayoutFromChannels(num_render_channels)));
   1967 
   1968       EXPECT_NOERR(apm_->set_stream_delay_ms(0));
   1969       EXPECT_NOERR(fapm->set_stream_delay_ms(0));
   1970       apm_->echo_cancellation()->set_stream_drift_samples(0);
   1971       fapm->echo_cancellation()->set_stream_drift_samples(0);
   1972       EXPECT_NOERR(apm_->gain_control()->set_stream_analog_level(analog_level));
   1973       EXPECT_NOERR(fapm->gain_control()->set_stream_analog_level(analog_level));
   1974 
   1975       EXPECT_NOERR(apm_->ProcessStream(frame_));
   1976       Deinterleave(frame_->data_, samples_per_channel, num_output_channels,
   1977                    output_int16.channels());
   1978 
   1979       EXPECT_NOERR(fapm->ProcessStream(
   1980           float_cb_->channels(),
   1981           samples_per_channel,
   1982           test->sample_rate(),
   1983           LayoutFromChannels(num_input_channels),
   1984           test->sample_rate(),
   1985           LayoutFromChannels(num_output_channels),
   1986           float_cb_->channels()));
   1987       for (size_t j = 0; j < num_output_channels; ++j) {
   1988         FloatToS16(float_cb_->channels()[j],
   1989                    samples_per_channel,
   1990                    output_cb.channels()[j]);
   1991         float variance = 0;
   1992         float snr = ComputeSNR(output_int16.channels()[j],
   1993                                output_cb.channels()[j],
   1994                                samples_per_channel, &variance);
   1995   #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
   1996         // There are a few chunks in the fixed-point profile that give low SNR.
   1997         // Listening confirmed the difference is acceptable.
   1998         const float kVarianceThreshold = 150;
   1999         const float kSNRThreshold = 10;
   2000   #else
   2001         const float kVarianceThreshold = 20;
   2002         const float kSNRThreshold = 20;
   2003   #endif
   2004         // Skip frames with low energy.
   2005         if (sqrt(variance) > kVarianceThreshold) {
   2006           EXPECT_LT(kSNRThreshold, snr);
   2007         }
   2008       }
   2009 
   2010       analog_level = fapm->gain_control()->stream_analog_level();
   2011       EXPECT_EQ(apm_->gain_control()->stream_analog_level(),
   2012                 fapm->gain_control()->stream_analog_level());
   2013       EXPECT_EQ(apm_->echo_cancellation()->stream_has_echo(),
   2014                 fapm->echo_cancellation()->stream_has_echo());
   2015       EXPECT_NEAR(apm_->noise_suppression()->speech_probability(),
   2016                   fapm->noise_suppression()->speech_probability(),
   2017                   0.01);
   2018 
   2019       // Reset in case of downmixing.
   2020       frame_->num_channels_ = static_cast<size_t>(test->num_input_channels());
   2021     }
   2022     rewind(far_file_);
   2023     rewind(near_file_);
   2024   }
   2025 }
   2026 
   2027 // TODO(andrew): Add a test to process a few frames with different combinations
   2028 // of enabled components.
   2029 
   2030 TEST_F(ApmTest, Process) {
   2031   GOOGLE_PROTOBUF_VERIFY_VERSION;
   2032   audioproc::OutputData ref_data;
   2033 
   2034   if (!write_ref_data) {
   2035     OpenFileAndReadMessage(ref_filename_, &ref_data);
   2036   } else {
   2037     // Write the desired tests to the protobuf reference file.
   2038     for (size_t i = 0; i < arraysize(kChannels); i++) {
   2039       for (size_t j = 0; j < arraysize(kChannels); j++) {
   2040         for (size_t l = 0; l < arraysize(kProcessSampleRates); l++) {
   2041           audioproc::Test* test = ref_data.add_test();
   2042           test->set_num_reverse_channels(kChannels[i]);
   2043           test->set_num_input_channels(kChannels[j]);
   2044           test->set_num_output_channels(kChannels[j]);
   2045           test->set_sample_rate(kProcessSampleRates[l]);
   2046           test->set_use_aec_extended_filter(false);
   2047         }
   2048       }
   2049     }
   2050 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
   2051     // To test the extended filter mode.
   2052     audioproc::Test* test = ref_data.add_test();
   2053     test->set_num_reverse_channels(2);
   2054     test->set_num_input_channels(2);
   2055     test->set_num_output_channels(2);
   2056     test->set_sample_rate(AudioProcessing::kSampleRate32kHz);
   2057     test->set_use_aec_extended_filter(true);
   2058 #endif
   2059   }
   2060 
   2061   for (int i = 0; i < ref_data.test_size(); i++) {
   2062     printf("Running test %d of %d...\n", i + 1, ref_data.test_size());
   2063 
   2064     audioproc::Test* test = ref_data.mutable_test(i);
   2065     // TODO(ajm): We no longer allow different input and output channels. Skip
   2066     // these tests for now, but they should be removed from the set.
   2067     if (test->num_input_channels() != test->num_output_channels())
   2068       continue;
   2069 
   2070     Config config;
   2071     config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
   2072     config.Set<ExtendedFilter>(
   2073         new ExtendedFilter(test->use_aec_extended_filter()));
   2074     apm_.reset(AudioProcessing::Create(config));
   2075 
   2076     EnableAllComponents();
   2077 
   2078     Init(test->sample_rate(),
   2079          test->sample_rate(),
   2080          test->sample_rate(),
   2081          static_cast<size_t>(test->num_input_channels()),
   2082          static_cast<size_t>(test->num_output_channels()),
   2083          static_cast<size_t>(test->num_reverse_channels()),
   2084          true);
   2085 
   2086     int frame_count = 0;
   2087     int has_echo_count = 0;
   2088     int has_voice_count = 0;
   2089     int is_saturated_count = 0;
   2090     int analog_level = 127;
   2091     int analog_level_average = 0;
   2092     int max_output_average = 0;
   2093     float ns_speech_prob_average = 0.0f;
   2094 
   2095     while (ReadFrame(far_file_, revframe_) && ReadFrame(near_file_, frame_)) {
   2096       EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_));
   2097 
   2098       frame_->vad_activity_ = AudioFrame::kVadUnknown;
   2099 
   2100       EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
   2101       apm_->echo_cancellation()->set_stream_drift_samples(0);
   2102       EXPECT_EQ(apm_->kNoError,
   2103           apm_->gain_control()->set_stream_analog_level(analog_level));
   2104 
   2105       EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
   2106 
   2107       // Ensure the frame was downmixed properly.
   2108       EXPECT_EQ(static_cast<size_t>(test->num_output_channels()),
   2109                 frame_->num_channels_);
   2110 
   2111       max_output_average += MaxAudioFrame(*frame_);
   2112 
   2113       if (apm_->echo_cancellation()->stream_has_echo()) {
   2114         has_echo_count++;
   2115       }
   2116 
   2117       analog_level = apm_->gain_control()->stream_analog_level();
   2118       analog_level_average += analog_level;
   2119       if (apm_->gain_control()->stream_is_saturated()) {
   2120         is_saturated_count++;
   2121       }
   2122       if (apm_->voice_detection()->stream_has_voice()) {
   2123         has_voice_count++;
   2124         EXPECT_EQ(AudioFrame::kVadActive, frame_->vad_activity_);
   2125       } else {
   2126         EXPECT_EQ(AudioFrame::kVadPassive, frame_->vad_activity_);
   2127       }
   2128 
   2129       ns_speech_prob_average += apm_->noise_suppression()->speech_probability();
   2130 
   2131       size_t frame_size = frame_->samples_per_channel_ * frame_->num_channels_;
   2132       size_t write_count = fwrite(frame_->data_,
   2133                                   sizeof(int16_t),
   2134                                   frame_size,
   2135                                   out_file_);
   2136       ASSERT_EQ(frame_size, write_count);
   2137 
   2138       // Reset in case of downmixing.
   2139       frame_->num_channels_ = static_cast<size_t>(test->num_input_channels());
   2140       frame_count++;
   2141     }
   2142     max_output_average /= frame_count;
   2143     analog_level_average /= frame_count;
   2144     ns_speech_prob_average /= frame_count;
   2145 
   2146 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
   2147     EchoCancellation::Metrics echo_metrics;
   2148     EXPECT_EQ(apm_->kNoError,
   2149               apm_->echo_cancellation()->GetMetrics(&echo_metrics));
   2150     int median = 0;
   2151     int std = 0;
   2152     float fraction_poor_delays = 0;
   2153     EXPECT_EQ(apm_->kNoError,
   2154               apm_->echo_cancellation()->GetDelayMetrics(
   2155                   &median, &std, &fraction_poor_delays));
   2156 
   2157     int rms_level = apm_->level_estimator()->RMS();
   2158     EXPECT_LE(0, rms_level);
   2159     EXPECT_GE(127, rms_level);
   2160 #endif
   2161 
   2162     if (!write_ref_data) {
   2163       const int kIntNear = 1;
   2164       // When running the test on a N7 we get a {2, 6} difference of
   2165       // |has_voice_count| and |max_output_average| is up to 18 higher.
   2166       // All numbers being consistently higher on N7 compare to ref_data.
   2167       // TODO(bjornv): If we start getting more of these offsets on Android we
   2168       // should consider a different approach. Either using one slack for all,
   2169       // or generate a separate android reference.
   2170 #if defined(WEBRTC_ANDROID)
   2171       const int kHasVoiceCountOffset = 3;
   2172       const int kHasVoiceCountNear = 3;
   2173       const int kMaxOutputAverageOffset = 9;
   2174       const int kMaxOutputAverageNear = 9;
   2175 #else
   2176       const int kHasVoiceCountOffset = 0;
   2177       const int kHasVoiceCountNear = kIntNear;
   2178       const int kMaxOutputAverageOffset = 0;
   2179       const int kMaxOutputAverageNear = kIntNear;
   2180 #endif
   2181       EXPECT_NEAR(test->has_echo_count(), has_echo_count, kIntNear);
   2182       EXPECT_NEAR(test->has_voice_count(),
   2183                   has_voice_count - kHasVoiceCountOffset,
   2184                   kHasVoiceCountNear);
   2185       EXPECT_NEAR(test->is_saturated_count(), is_saturated_count, kIntNear);
   2186 
   2187       EXPECT_NEAR(test->analog_level_average(), analog_level_average, kIntNear);
   2188       EXPECT_NEAR(test->max_output_average(),
   2189                   max_output_average - kMaxOutputAverageOffset,
   2190                   kMaxOutputAverageNear);
   2191 
   2192 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
   2193       audioproc::Test::EchoMetrics reference = test->echo_metrics();
   2194       TestStats(echo_metrics.residual_echo_return_loss,
   2195                 reference.residual_echo_return_loss());
   2196       TestStats(echo_metrics.echo_return_loss,
   2197                 reference.echo_return_loss());
   2198       TestStats(echo_metrics.echo_return_loss_enhancement,
   2199                 reference.echo_return_loss_enhancement());
   2200       TestStats(echo_metrics.a_nlp,
   2201                 reference.a_nlp());
   2202 
   2203       const double kFloatNear = 0.0005;
   2204       audioproc::Test::DelayMetrics reference_delay = test->delay_metrics();
   2205       EXPECT_NEAR(reference_delay.median(), median, kIntNear);
   2206       EXPECT_NEAR(reference_delay.std(), std, kIntNear);
   2207       EXPECT_NEAR(reference_delay.fraction_poor_delays(), fraction_poor_delays,
   2208                   kFloatNear);
   2209 
   2210       EXPECT_NEAR(test->rms_level(), rms_level, kIntNear);
   2211 
   2212       EXPECT_NEAR(test->ns_speech_probability_average(),
   2213                   ns_speech_prob_average,
   2214                   kFloatNear);
   2215 #endif
   2216     } else {
   2217       test->set_has_echo_count(has_echo_count);
   2218       test->set_has_voice_count(has_voice_count);
   2219       test->set_is_saturated_count(is_saturated_count);
   2220 
   2221       test->set_analog_level_average(analog_level_average);
   2222       test->set_max_output_average(max_output_average);
   2223 
   2224 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
   2225       audioproc::Test::EchoMetrics* message = test->mutable_echo_metrics();
   2226       WriteStatsMessage(echo_metrics.residual_echo_return_loss,
   2227                         message->mutable_residual_echo_return_loss());
   2228       WriteStatsMessage(echo_metrics.echo_return_loss,
   2229                         message->mutable_echo_return_loss());
   2230       WriteStatsMessage(echo_metrics.echo_return_loss_enhancement,
   2231                         message->mutable_echo_return_loss_enhancement());
   2232       WriteStatsMessage(echo_metrics.a_nlp,
   2233                         message->mutable_a_nlp());
   2234 
   2235       audioproc::Test::DelayMetrics* message_delay =
   2236           test->mutable_delay_metrics();
   2237       message_delay->set_median(median);
   2238       message_delay->set_std(std);
   2239       message_delay->set_fraction_poor_delays(fraction_poor_delays);
   2240 
   2241       test->set_rms_level(rms_level);
   2242 
   2243       EXPECT_LE(0.0f, ns_speech_prob_average);
   2244       EXPECT_GE(1.0f, ns_speech_prob_average);
   2245       test->set_ns_speech_probability_average(ns_speech_prob_average);
   2246 #endif
   2247     }
   2248 
   2249     rewind(far_file_);
   2250     rewind(near_file_);
   2251   }
   2252 
   2253   if (write_ref_data) {
   2254     OpenFileAndWriteMessage(ref_filename_, ref_data);
   2255   }
   2256 }
   2257 
   2258 TEST_F(ApmTest, NoErrorsWithKeyboardChannel) {
   2259   struct ChannelFormat {
   2260     AudioProcessing::ChannelLayout in_layout;
   2261     AudioProcessing::ChannelLayout out_layout;
   2262   };
   2263   ChannelFormat cf[] = {
   2264     {AudioProcessing::kMonoAndKeyboard, AudioProcessing::kMono},
   2265     {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kMono},
   2266     {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kStereo},
   2267   };
   2268 
   2269   rtc::scoped_ptr<AudioProcessing> ap(AudioProcessing::Create());
   2270   // Enable one component just to ensure some processing takes place.
   2271   ap->noise_suppression()->Enable(true);
   2272   for (size_t i = 0; i < arraysize(cf); ++i) {
   2273     const int in_rate = 44100;
   2274     const int out_rate = 48000;
   2275     ChannelBuffer<float> in_cb(SamplesFromRate(in_rate),
   2276                                TotalChannelsFromLayout(cf[i].in_layout));
   2277     ChannelBuffer<float> out_cb(SamplesFromRate(out_rate),
   2278                                 ChannelsFromLayout(cf[i].out_layout));
   2279 
   2280     // Run over a few chunks.
   2281     for (int j = 0; j < 10; ++j) {
   2282       EXPECT_NOERR(ap->ProcessStream(
   2283           in_cb.channels(),
   2284           in_cb.num_frames(),
   2285           in_rate,
   2286           cf[i].in_layout,
   2287           out_rate,
   2288           cf[i].out_layout,
   2289           out_cb.channels()));
   2290     }
   2291   }
   2292 }
   2293 
   2294 // Compares the reference and test arrays over a region around the expected
   2295 // delay. Finds the highest SNR in that region and adds the variance and squared
   2296 // error results to the supplied accumulators.
   2297 void UpdateBestSNR(const float* ref,
   2298                    const float* test,
   2299                    size_t length,
   2300                    int expected_delay,
   2301                    double* variance_acc,
   2302                    double* sq_error_acc) {
   2303   double best_snr = std::numeric_limits<double>::min();
   2304   double best_variance = 0;
   2305   double best_sq_error = 0;
   2306   // Search over a region of eight samples around the expected delay.
   2307   for (int delay = std::max(expected_delay - 4, 0); delay <= expected_delay + 4;
   2308        ++delay) {
   2309     double sq_error = 0;
   2310     double variance = 0;
   2311     for (size_t i = 0; i < length - delay; ++i) {
   2312       double error = test[i + delay] - ref[i];
   2313       sq_error += error * error;
   2314       variance += ref[i] * ref[i];
   2315     }
   2316 
   2317     if (sq_error == 0) {
   2318       *variance_acc += variance;
   2319       return;
   2320     }
   2321     double snr = variance / sq_error;
   2322     if (snr > best_snr) {
   2323       best_snr = snr;
   2324       best_variance = variance;
   2325       best_sq_error = sq_error;
   2326     }
   2327   }
   2328 
   2329   *variance_acc += best_variance;
   2330   *sq_error_acc += best_sq_error;
   2331 }
   2332 
   2333 // Used to test a multitude of sample rate and channel combinations. It works
   2334 // by first producing a set of reference files (in SetUpTestCase) that are
   2335 // assumed to be correct, as the used parameters are verified by other tests
   2336 // in this collection. Primarily the reference files are all produced at
   2337 // "native" rates which do not involve any resampling.
   2338 
   2339 // Each test pass produces an output file with a particular format. The output
   2340 // is matched against the reference file closest to its internal processing
   2341 // format. If necessary the output is resampled back to its process format.
   2342 // Due to the resampling distortion, we don't expect identical results, but
   2343 // enforce SNR thresholds which vary depending on the format. 0 is a special
   2344 // case SNR which corresponds to inf, or zero error.
   2345 typedef std::tr1::tuple<int, int, int, int, double, double>
   2346     AudioProcessingTestData;
   2347 class AudioProcessingTest
   2348     : public testing::TestWithParam<AudioProcessingTestData> {
   2349  public:
   2350   AudioProcessingTest()
   2351       : input_rate_(std::tr1::get<0>(GetParam())),
   2352         output_rate_(std::tr1::get<1>(GetParam())),
   2353         reverse_input_rate_(std::tr1::get<2>(GetParam())),
   2354         reverse_output_rate_(std::tr1::get<3>(GetParam())),
   2355         expected_snr_(std::tr1::get<4>(GetParam())),
   2356         expected_reverse_snr_(std::tr1::get<5>(GetParam())) {}
   2357 
   2358   virtual ~AudioProcessingTest() {}
   2359 
   2360   static void SetUpTestCase() {
   2361     // Create all needed output reference files.
   2362     const int kNativeRates[] = {8000, 16000, 32000, 48000};
   2363     const size_t kNumChannels[] = {1, 2};
   2364     for (size_t i = 0; i < arraysize(kNativeRates); ++i) {
   2365       for (size_t j = 0; j < arraysize(kNumChannels); ++j) {
   2366         for (size_t k = 0; k < arraysize(kNumChannels); ++k) {
   2367           // The reference files always have matching input and output channels.
   2368           ProcessFormat(kNativeRates[i], kNativeRates[i], kNativeRates[i],
   2369                         kNativeRates[i], kNumChannels[j], kNumChannels[j],
   2370                         kNumChannels[k], kNumChannels[k], "ref");
   2371         }
   2372       }
   2373     }
   2374   }
   2375 
   2376   static void TearDownTestCase() {
   2377     ClearTempFiles();
   2378   }
   2379 
   2380   // Runs a process pass on files with the given parameters and dumps the output
   2381   // to a file specified with |output_file_prefix|. Both forward and reverse
   2382   // output streams are dumped.
   2383   static void ProcessFormat(int input_rate,
   2384                             int output_rate,
   2385                             int reverse_input_rate,
   2386                             int reverse_output_rate,
   2387                             size_t num_input_channels,
   2388                             size_t num_output_channels,
   2389                             size_t num_reverse_input_channels,
   2390                             size_t num_reverse_output_channels,
   2391                             std::string output_file_prefix) {
   2392     Config config;
   2393     config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
   2394     rtc::scoped_ptr<AudioProcessing> ap(AudioProcessing::Create(config));
   2395     EnableAllAPComponents(ap.get());
   2396 
   2397     ProcessingConfig processing_config = {
   2398         {{input_rate, num_input_channels},
   2399          {output_rate, num_output_channels},
   2400          {reverse_input_rate, num_reverse_input_channels},
   2401          {reverse_output_rate, num_reverse_output_channels}}};
   2402     ap->Initialize(processing_config);
   2403 
   2404     FILE* far_file =
   2405         fopen(ResourceFilePath("far", reverse_input_rate).c_str(), "rb");
   2406     FILE* near_file = fopen(ResourceFilePath("near", input_rate).c_str(), "rb");
   2407     FILE* out_file =
   2408         fopen(OutputFilePath(output_file_prefix, input_rate, output_rate,
   2409                              reverse_input_rate, reverse_output_rate,
   2410                              num_input_channels, num_output_channels,
   2411                              num_reverse_input_channels,
   2412                              num_reverse_output_channels, kForward).c_str(),
   2413               "wb");
   2414     FILE* rev_out_file =
   2415         fopen(OutputFilePath(output_file_prefix, input_rate, output_rate,
   2416                              reverse_input_rate, reverse_output_rate,
   2417                              num_input_channels, num_output_channels,
   2418                              num_reverse_input_channels,
   2419                              num_reverse_output_channels, kReverse).c_str(),
   2420               "wb");
   2421     ASSERT_TRUE(far_file != NULL);
   2422     ASSERT_TRUE(near_file != NULL);
   2423     ASSERT_TRUE(out_file != NULL);
   2424     ASSERT_TRUE(rev_out_file != NULL);
   2425 
   2426     ChannelBuffer<float> fwd_cb(SamplesFromRate(input_rate),
   2427                                 num_input_channels);
   2428     ChannelBuffer<float> rev_cb(SamplesFromRate(reverse_input_rate),
   2429                                 num_reverse_input_channels);
   2430     ChannelBuffer<float> out_cb(SamplesFromRate(output_rate),
   2431                                 num_output_channels);
   2432     ChannelBuffer<float> rev_out_cb(SamplesFromRate(reverse_output_rate),
   2433                                     num_reverse_output_channels);
   2434 
   2435     // Temporary buffers.
   2436     const int max_length =
   2437         2 * std::max(std::max(out_cb.num_frames(), rev_out_cb.num_frames()),
   2438                      std::max(fwd_cb.num_frames(), rev_cb.num_frames()));
   2439     rtc::scoped_ptr<float[]> float_data(new float[max_length]);
   2440     rtc::scoped_ptr<int16_t[]> int_data(new int16_t[max_length]);
   2441 
   2442     int analog_level = 127;
   2443     while (ReadChunk(far_file, int_data.get(), float_data.get(), &rev_cb) &&
   2444            ReadChunk(near_file, int_data.get(), float_data.get(), &fwd_cb)) {
   2445       EXPECT_NOERR(ap->ProcessReverseStream(
   2446           rev_cb.channels(), processing_config.reverse_input_stream(),
   2447           processing_config.reverse_output_stream(), rev_out_cb.channels()));
   2448 
   2449       EXPECT_NOERR(ap->set_stream_delay_ms(0));
   2450       ap->echo_cancellation()->set_stream_drift_samples(0);
   2451       EXPECT_NOERR(ap->gain_control()->set_stream_analog_level(analog_level));
   2452 
   2453       EXPECT_NOERR(ap->ProcessStream(
   2454           fwd_cb.channels(),
   2455           fwd_cb.num_frames(),
   2456           input_rate,
   2457           LayoutFromChannels(num_input_channels),
   2458           output_rate,
   2459           LayoutFromChannels(num_output_channels),
   2460           out_cb.channels()));
   2461 
   2462       // Dump forward output to file.
   2463       Interleave(out_cb.channels(), out_cb.num_frames(), out_cb.num_channels(),
   2464                  float_data.get());
   2465       size_t out_length = out_cb.num_channels() * out_cb.num_frames();
   2466 
   2467       ASSERT_EQ(out_length,
   2468                 fwrite(float_data.get(), sizeof(float_data[0]),
   2469                        out_length, out_file));
   2470 
   2471       // Dump reverse output to file.
   2472       Interleave(rev_out_cb.channels(), rev_out_cb.num_frames(),
   2473                  rev_out_cb.num_channels(), float_data.get());
   2474       size_t rev_out_length =
   2475           rev_out_cb.num_channels() * rev_out_cb.num_frames();
   2476 
   2477       ASSERT_EQ(rev_out_length,
   2478                 fwrite(float_data.get(), sizeof(float_data[0]), rev_out_length,
   2479                        rev_out_file));
   2480 
   2481       analog_level = ap->gain_control()->stream_analog_level();
   2482     }
   2483     fclose(far_file);
   2484     fclose(near_file);
   2485     fclose(out_file);
   2486     fclose(rev_out_file);
   2487   }
   2488 
   2489  protected:
   2490   int input_rate_;
   2491   int output_rate_;
   2492   int reverse_input_rate_;
   2493   int reverse_output_rate_;
   2494   double expected_snr_;
   2495   double expected_reverse_snr_;
   2496 };
   2497 
   2498 TEST_P(AudioProcessingTest, Formats) {
   2499   struct ChannelFormat {
   2500     int num_input;
   2501     int num_output;
   2502     int num_reverse_input;
   2503     int num_reverse_output;
   2504   };
   2505   ChannelFormat cf[] = {
   2506       {1, 1, 1, 1},
   2507       {1, 1, 2, 1},
   2508       {2, 1, 1, 1},
   2509       {2, 1, 2, 1},
   2510       {2, 2, 1, 1},
   2511       {2, 2, 2, 2},
   2512   };
   2513 
   2514   for (size_t i = 0; i < arraysize(cf); ++i) {
   2515     ProcessFormat(input_rate_, output_rate_, reverse_input_rate_,
   2516                   reverse_output_rate_, cf[i].num_input, cf[i].num_output,
   2517                   cf[i].num_reverse_input, cf[i].num_reverse_output, "out");
   2518 
   2519     // Verify output for both directions.
   2520     std::vector<StreamDirection> stream_directions;
   2521     stream_directions.push_back(kForward);
   2522     stream_directions.push_back(kReverse);
   2523     for (StreamDirection file_direction : stream_directions) {
   2524       const int in_rate = file_direction ? reverse_input_rate_ : input_rate_;
   2525       const int out_rate = file_direction ? reverse_output_rate_ : output_rate_;
   2526       const int out_num =
   2527           file_direction ? cf[i].num_reverse_output : cf[i].num_output;
   2528       const double expected_snr =
   2529           file_direction ? expected_reverse_snr_ : expected_snr_;
   2530 
   2531       const int min_ref_rate = std::min(in_rate, out_rate);
   2532       int ref_rate;
   2533 
   2534       if (min_ref_rate > 32000) {
   2535         ref_rate = 48000;
   2536       } else if (min_ref_rate > 16000) {
   2537         ref_rate = 32000;
   2538       } else if (min_ref_rate > 8000) {
   2539         ref_rate = 16000;
   2540       } else {
   2541         ref_rate = 8000;
   2542       }
   2543 #ifdef WEBRTC_AUDIOPROC_FIXED_PROFILE
   2544       if (file_direction == kForward) {
   2545         ref_rate = std::min(ref_rate, 16000);
   2546       }
   2547 #endif
   2548       FILE* out_file = fopen(
   2549           OutputFilePath("out", input_rate_, output_rate_, reverse_input_rate_,
   2550                          reverse_output_rate_, cf[i].num_input,
   2551                          cf[i].num_output, cf[i].num_reverse_input,
   2552                          cf[i].num_reverse_output, file_direction).c_str(),
   2553           "rb");
   2554       // The reference files always have matching input and output channels.
   2555       FILE* ref_file = fopen(
   2556           OutputFilePath("ref", ref_rate, ref_rate, ref_rate, ref_rate,
   2557                          cf[i].num_output, cf[i].num_output,
   2558                          cf[i].num_reverse_output, cf[i].num_reverse_output,
   2559                          file_direction).c_str(),
   2560           "rb");
   2561       ASSERT_TRUE(out_file != NULL);
   2562       ASSERT_TRUE(ref_file != NULL);
   2563 
   2564       const size_t ref_length = SamplesFromRate(ref_rate) * out_num;
   2565       const size_t out_length = SamplesFromRate(out_rate) * out_num;
   2566       // Data from the reference file.
   2567       rtc::scoped_ptr<float[]> ref_data(new float[ref_length]);
   2568       // Data from the output file.
   2569       rtc::scoped_ptr<float[]> out_data(new float[out_length]);
   2570       // Data from the resampled output, in case the reference and output rates
   2571       // don't match.
   2572       rtc::scoped_ptr<float[]> cmp_data(new float[ref_length]);
   2573 
   2574       PushResampler<float> resampler;
   2575       resampler.InitializeIfNeeded(out_rate, ref_rate, out_num);
   2576 
   2577       // Compute the resampling delay of the output relative to the reference,
   2578       // to find the region over which we should search for the best SNR.
   2579       float expected_delay_sec = 0;
   2580       if (in_rate != ref_rate) {
   2581         // Input resampling delay.
   2582         expected_delay_sec +=
   2583             PushSincResampler::AlgorithmicDelaySeconds(in_rate);
   2584       }
   2585       if (out_rate != ref_rate) {
   2586         // Output resampling delay.
   2587         expected_delay_sec +=
   2588             PushSincResampler::AlgorithmicDelaySeconds(ref_rate);
   2589         // Delay of converting the output back to its processing rate for
   2590         // testing.
   2591         expected_delay_sec +=
   2592             PushSincResampler::AlgorithmicDelaySeconds(out_rate);
   2593       }
   2594       int expected_delay =
   2595           floor(expected_delay_sec * ref_rate + 0.5f) * out_num;
   2596 
   2597       double variance = 0;
   2598       double sq_error = 0;
   2599       while (fread(out_data.get(), sizeof(out_data[0]), out_length, out_file) &&
   2600              fread(ref_data.get(), sizeof(ref_data[0]), ref_length, ref_file)) {
   2601         float* out_ptr = out_data.get();
   2602         if (out_rate != ref_rate) {
   2603           // Resample the output back to its internal processing rate if
   2604           // necssary.
   2605           ASSERT_EQ(ref_length,
   2606                     static_cast<size_t>(resampler.Resample(
   2607                         out_ptr, out_length, cmp_data.get(), ref_length)));
   2608           out_ptr = cmp_data.get();
   2609         }
   2610 
   2611         // Update the |sq_error| and |variance| accumulators with the highest
   2612         // SNR of reference vs output.
   2613         UpdateBestSNR(ref_data.get(), out_ptr, ref_length, expected_delay,
   2614                       &variance, &sq_error);
   2615       }
   2616 
   2617       std::cout << "(" << input_rate_ << ", " << output_rate_ << ", "
   2618                 << reverse_input_rate_ << ", " << reverse_output_rate_ << ", "
   2619                 << cf[i].num_input << ", " << cf[i].num_output << ", "
   2620                 << cf[i].num_reverse_input << ", " << cf[i].num_reverse_output
   2621                 << ", " << file_direction << "): ";
   2622       if (sq_error > 0) {
   2623         double snr = 10 * log10(variance / sq_error);
   2624         EXPECT_GE(snr, expected_snr);
   2625         EXPECT_NE(0, expected_snr);
   2626         std::cout << "SNR=" << snr << " dB" << std::endl;
   2627       } else {
   2628         EXPECT_EQ(expected_snr, 0);
   2629         std::cout << "SNR="
   2630                   << "inf dB" << std::endl;
   2631       }
   2632 
   2633       fclose(out_file);
   2634       fclose(ref_file);
   2635     }
   2636   }
   2637 }
   2638 
   2639 #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
   2640 INSTANTIATE_TEST_CASE_P(
   2641     CommonFormats,
   2642     AudioProcessingTest,
   2643     testing::Values(std::tr1::make_tuple(48000, 48000, 48000, 48000, 0, 0),
   2644                     std::tr1::make_tuple(48000, 48000, 32000, 48000, 40, 30),
   2645                     std::tr1::make_tuple(48000, 48000, 16000, 48000, 40, 20),
   2646                     std::tr1::make_tuple(48000, 44100, 48000, 44100, 20, 20),
   2647                     std::tr1::make_tuple(48000, 44100, 32000, 44100, 20, 15),
   2648                     std::tr1::make_tuple(48000, 44100, 16000, 44100, 20, 15),
   2649                     std::tr1::make_tuple(48000, 32000, 48000, 32000, 30, 35),
   2650                     std::tr1::make_tuple(48000, 32000, 32000, 32000, 30, 0),
   2651                     std::tr1::make_tuple(48000, 32000, 16000, 32000, 30, 20),
   2652                     std::tr1::make_tuple(48000, 16000, 48000, 16000, 25, 20),
   2653                     std::tr1::make_tuple(48000, 16000, 32000, 16000, 25, 20),
   2654                     std::tr1::make_tuple(48000, 16000, 16000, 16000, 25, 0),
   2655 
   2656                     std::tr1::make_tuple(44100, 48000, 48000, 48000, 30, 0),
   2657                     std::tr1::make_tuple(44100, 48000, 32000, 48000, 30, 30),
   2658                     std::tr1::make_tuple(44100, 48000, 16000, 48000, 30, 20),
   2659                     std::tr1::make_tuple(44100, 44100, 48000, 44100, 20, 20),
   2660                     std::tr1::make_tuple(44100, 44100, 32000, 44100, 20, 15),
   2661                     std::tr1::make_tuple(44100, 44100, 16000, 44100, 20, 15),
   2662                     std::tr1::make_tuple(44100, 32000, 48000, 32000, 30, 35),
   2663                     std::tr1::make_tuple(44100, 32000, 32000, 32000, 30, 0),
   2664                     std::tr1::make_tuple(44100, 32000, 16000, 32000, 30, 20),
   2665                     std::tr1::make_tuple(44100, 16000, 48000, 16000, 25, 20),
   2666                     std::tr1::make_tuple(44100, 16000, 32000, 16000, 25, 20),
   2667                     std::tr1::make_tuple(44100, 16000, 16000, 16000, 25, 0),
   2668 
   2669                     std::tr1::make_tuple(32000, 48000, 48000, 48000, 30, 0),
   2670                     std::tr1::make_tuple(32000, 48000, 32000, 48000, 35, 30),
   2671                     std::tr1::make_tuple(32000, 48000, 16000, 48000, 30, 20),
   2672                     std::tr1::make_tuple(32000, 44100, 48000, 44100, 20, 20),
   2673                     std::tr1::make_tuple(32000, 44100, 32000, 44100, 20, 15),
   2674                     std::tr1::make_tuple(32000, 44100, 16000, 44100, 20, 15),
   2675                     std::tr1::make_tuple(32000, 32000, 48000, 32000, 40, 35),
   2676                     std::tr1::make_tuple(32000, 32000, 32000, 32000, 0, 0),
   2677                     std::tr1::make_tuple(32000, 32000, 16000, 32000, 40, 20),
   2678                     std::tr1::make_tuple(32000, 16000, 48000, 16000, 25, 20),
   2679                     std::tr1::make_tuple(32000, 16000, 32000, 16000, 25, 20),
   2680                     std::tr1::make_tuple(32000, 16000, 16000, 16000, 25, 0),
   2681 
   2682                     std::tr1::make_tuple(16000, 48000, 48000, 48000, 25, 0),
   2683                     std::tr1::make_tuple(16000, 48000, 32000, 48000, 25, 30),
   2684                     std::tr1::make_tuple(16000, 48000, 16000, 48000, 25, 20),
   2685                     std::tr1::make_tuple(16000, 44100, 48000, 44100, 15, 20),
   2686                     std::tr1::make_tuple(16000, 44100, 32000, 44100, 15, 15),
   2687                     std::tr1::make_tuple(16000, 44100, 16000, 44100, 15, 15),
   2688                     std::tr1::make_tuple(16000, 32000, 48000, 32000, 25, 35),
   2689                     std::tr1::make_tuple(16000, 32000, 32000, 32000, 25, 0),
   2690                     std::tr1::make_tuple(16000, 32000, 16000, 32000, 25, 20),
   2691                     std::tr1::make_tuple(16000, 16000, 48000, 16000, 40, 20),
   2692                     std::tr1::make_tuple(16000, 16000, 32000, 16000, 50, 20),
   2693                     std::tr1::make_tuple(16000, 16000, 16000, 16000, 0, 0)));
   2694 
   2695 #elif defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
   2696 INSTANTIATE_TEST_CASE_P(
   2697     CommonFormats,
   2698     AudioProcessingTest,
   2699     testing::Values(std::tr1::make_tuple(48000, 48000, 48000, 48000, 20, 0),
   2700                     std::tr1::make_tuple(48000, 48000, 32000, 48000, 20, 30),
   2701                     std::tr1::make_tuple(48000, 48000, 16000, 48000, 20, 20),
   2702                     std::tr1::make_tuple(48000, 44100, 48000, 44100, 15, 20),
   2703                     std::tr1::make_tuple(48000, 44100, 32000, 44100, 15, 15),
   2704                     std::tr1::make_tuple(48000, 44100, 16000, 44100, 15, 15),
   2705                     std::tr1::make_tuple(48000, 32000, 48000, 32000, 20, 35),
   2706                     std::tr1::make_tuple(48000, 32000, 32000, 32000, 20, 0),
   2707                     std::tr1::make_tuple(48000, 32000, 16000, 32000, 20, 20),
   2708                     std::tr1::make_tuple(48000, 16000, 48000, 16000, 20, 20),
   2709                     std::tr1::make_tuple(48000, 16000, 32000, 16000, 20, 20),
   2710                     std::tr1::make_tuple(48000, 16000, 16000, 16000, 20, 0),
   2711 
   2712                     std::tr1::make_tuple(44100, 48000, 48000, 48000, 20, 0),
   2713                     std::tr1::make_tuple(44100, 48000, 32000, 48000, 20, 30),
   2714                     std::tr1::make_tuple(44100, 48000, 16000, 48000, 20, 20),
   2715                     std::tr1::make_tuple(44100, 44100, 48000, 44100, 15, 20),
   2716                     std::tr1::make_tuple(44100, 44100, 32000, 44100, 15, 15),
   2717                     std::tr1::make_tuple(44100, 44100, 16000, 44100, 15, 15),
   2718                     std::tr1::make_tuple(44100, 32000, 48000, 32000, 20, 35),
   2719                     std::tr1::make_tuple(44100, 32000, 32000, 32000, 20, 0),
   2720                     std::tr1::make_tuple(44100, 32000, 16000, 32000, 20, 20),
   2721                     std::tr1::make_tuple(44100, 16000, 48000, 16000, 20, 20),
   2722                     std::tr1::make_tuple(44100, 16000, 32000, 16000, 20, 20),
   2723                     std::tr1::make_tuple(44100, 16000, 16000, 16000, 20, 0),
   2724 
   2725                     std::tr1::make_tuple(32000, 48000, 48000, 48000, 20, 0),
   2726                     std::tr1::make_tuple(32000, 48000, 32000, 48000, 20, 30),
   2727                     std::tr1::make_tuple(32000, 48000, 16000, 48000, 20, 20),
   2728                     std::tr1::make_tuple(32000, 44100, 48000, 44100, 15, 20),
   2729                     std::tr1::make_tuple(32000, 44100, 32000, 44100, 15, 15),
   2730                     std::tr1::make_tuple(32000, 44100, 16000, 44100, 15, 15),
   2731                     std::tr1::make_tuple(32000, 32000, 48000, 32000, 20, 35),
   2732                     std::tr1::make_tuple(32000, 32000, 32000, 32000, 20, 0),
   2733                     std::tr1::make_tuple(32000, 32000, 16000, 32000, 20, 20),
   2734                     std::tr1::make_tuple(32000, 16000, 48000, 16000, 20, 20),
   2735                     std::tr1::make_tuple(32000, 16000, 32000, 16000, 20, 20),
   2736                     std::tr1::make_tuple(32000, 16000, 16000, 16000, 20, 0),
   2737 
   2738                     std::tr1::make_tuple(16000, 48000, 48000, 48000, 25, 0),
   2739                     std::tr1::make_tuple(16000, 48000, 32000, 48000, 25, 30),
   2740                     std::tr1::make_tuple(16000, 48000, 16000, 48000, 25, 20),
   2741                     std::tr1::make_tuple(16000, 44100, 48000, 44100, 15, 20),
   2742                     std::tr1::make_tuple(16000, 44100, 32000, 44100, 15, 15),
   2743                     std::tr1::make_tuple(16000, 44100, 16000, 44100, 15, 15),
   2744                     std::tr1::make_tuple(16000, 32000, 48000, 32000, 25, 35),
   2745                     std::tr1::make_tuple(16000, 32000, 32000, 32000, 25, 0),
   2746                     std::tr1::make_tuple(16000, 32000, 16000, 32000, 25, 20),
   2747                     std::tr1::make_tuple(16000, 16000, 48000, 16000, 35, 20),
   2748                     std::tr1::make_tuple(16000, 16000, 32000, 16000, 40, 20),
   2749                     std::tr1::make_tuple(16000, 16000, 16000, 16000, 0, 0)));
   2750 #endif
   2751 
   2752 }  // namespace
   2753 }  // namespace webrtc
   2754