Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <gtest/gtest.h>
     18 
     19 #include <errno.h>
     20 #include <inttypes.h>
     21 #include <limits.h>
     22 #include <malloc.h>
     23 #include <pthread.h>
     24 #include <signal.h>
     25 #include <stdio.h>
     26 #include <sys/mman.h>
     27 #include <sys/syscall.h>
     28 #include <time.h>
     29 #include <unistd.h>
     30 #include <unwind.h>
     31 
     32 #include <atomic>
     33 #include <vector>
     34 
     35 #include "private/bionic_constants.h"
     36 #include "private/bionic_macros.h"
     37 #include "private/ScopeGuard.h"
     38 #include "BionicDeathTest.h"
     39 #include "ScopedSignalHandler.h"
     40 #include "utils.h"
     41 
     42 TEST(pthread, pthread_key_create) {
     43   pthread_key_t key;
     44   ASSERT_EQ(0, pthread_key_create(&key, NULL));
     45   ASSERT_EQ(0, pthread_key_delete(key));
     46   // Can't delete a key that's already been deleted.
     47   ASSERT_EQ(EINVAL, pthread_key_delete(key));
     48 }
     49 
     50 TEST(pthread, pthread_keys_max) {
     51   // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
     52   ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
     53 }
     54 
     55 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
     56   int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
     57   ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
     58 }
     59 
     60 TEST(pthread, pthread_key_many_distinct) {
     61   // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
     62   // pthread keys, but We should be able to allocate at least this many keys.
     63   int nkeys = PTHREAD_KEYS_MAX / 2;
     64   std::vector<pthread_key_t> keys;
     65 
     66   auto scope_guard = make_scope_guard([&keys]{
     67     for (const auto& key : keys) {
     68       EXPECT_EQ(0, pthread_key_delete(key));
     69     }
     70   });
     71 
     72   for (int i = 0; i < nkeys; ++i) {
     73     pthread_key_t key;
     74     // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
     75     ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
     76     keys.push_back(key);
     77     ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
     78   }
     79 
     80   for (int i = keys.size() - 1; i >= 0; --i) {
     81     ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
     82     pthread_key_t key = keys.back();
     83     keys.pop_back();
     84     ASSERT_EQ(0, pthread_key_delete(key));
     85   }
     86 }
     87 
     88 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
     89   std::vector<pthread_key_t> keys;
     90   int rv = 0;
     91 
     92   // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
     93   // be more than we are allowed to allocate now.
     94   for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
     95     pthread_key_t key;
     96     rv = pthread_key_create(&key, NULL);
     97     if (rv == EAGAIN) {
     98       break;
     99     }
    100     EXPECT_EQ(0, rv);
    101     keys.push_back(key);
    102   }
    103 
    104   // Don't leak keys.
    105   for (const auto& key : keys) {
    106     EXPECT_EQ(0, pthread_key_delete(key));
    107   }
    108   keys.clear();
    109 
    110   // We should have eventually reached the maximum number of keys and received
    111   // EAGAIN.
    112   ASSERT_EQ(EAGAIN, rv);
    113 }
    114 
    115 TEST(pthread, pthread_key_delete) {
    116   void* expected = reinterpret_cast<void*>(1234);
    117   pthread_key_t key;
    118   ASSERT_EQ(0, pthread_key_create(&key, NULL));
    119   ASSERT_EQ(0, pthread_setspecific(key, expected));
    120   ASSERT_EQ(expected, pthread_getspecific(key));
    121   ASSERT_EQ(0, pthread_key_delete(key));
    122   // After deletion, pthread_getspecific returns NULL.
    123   ASSERT_EQ(NULL, pthread_getspecific(key));
    124   // And you can't use pthread_setspecific with the deleted key.
    125   ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
    126 }
    127 
    128 TEST(pthread, pthread_key_fork) {
    129   void* expected = reinterpret_cast<void*>(1234);
    130   pthread_key_t key;
    131   ASSERT_EQ(0, pthread_key_create(&key, NULL));
    132   ASSERT_EQ(0, pthread_setspecific(key, expected));
    133   ASSERT_EQ(expected, pthread_getspecific(key));
    134 
    135   pid_t pid = fork();
    136   ASSERT_NE(-1, pid) << strerror(errno);
    137 
    138   if (pid == 0) {
    139     // The surviving thread inherits all the forking thread's TLS values...
    140     ASSERT_EQ(expected, pthread_getspecific(key));
    141     _exit(99);
    142   }
    143 
    144   AssertChildExited(pid, 99);
    145 
    146   ASSERT_EQ(expected, pthread_getspecific(key));
    147   ASSERT_EQ(0, pthread_key_delete(key));
    148 }
    149 
    150 static void* DirtyKeyFn(void* key) {
    151   return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
    152 }
    153 
    154 TEST(pthread, pthread_key_dirty) {
    155   pthread_key_t key;
    156   ASSERT_EQ(0, pthread_key_create(&key, NULL));
    157 
    158   size_t stack_size = 640 * 1024;
    159   void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    160   ASSERT_NE(MAP_FAILED, stack);
    161   memset(stack, 0xff, stack_size);
    162 
    163   pthread_attr_t attr;
    164   ASSERT_EQ(0, pthread_attr_init(&attr));
    165   ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
    166 
    167   pthread_t t;
    168   ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
    169 
    170   void* result;
    171   ASSERT_EQ(0, pthread_join(t, &result));
    172   ASSERT_EQ(nullptr, result); // Not ~0!
    173 
    174   ASSERT_EQ(0, munmap(stack, stack_size));
    175   ASSERT_EQ(0, pthread_key_delete(key));
    176 }
    177 
    178 TEST(pthread, static_pthread_key_used_before_creation) {
    179 #if defined(__BIONIC__)
    180   // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
    181   // So here tests if the static/global default value 0 can be detected as invalid key.
    182   static pthread_key_t key;
    183   ASSERT_EQ(nullptr, pthread_getspecific(key));
    184   ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
    185   ASSERT_EQ(EINVAL, pthread_key_delete(key));
    186 #else
    187   GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
    188 #endif
    189 }
    190 
    191 static void* IdFn(void* arg) {
    192   return arg;
    193 }
    194 
    195 class SpinFunctionHelper {
    196  public:
    197   SpinFunctionHelper() {
    198     SpinFunctionHelper::spin_flag_ = true;
    199   }
    200   ~SpinFunctionHelper() {
    201     UnSpin();
    202   }
    203   auto GetFunction() -> void* (*)(void*) {
    204     return SpinFunctionHelper::SpinFn;
    205   }
    206 
    207   void UnSpin() {
    208     SpinFunctionHelper::spin_flag_ = false;
    209   }
    210 
    211  private:
    212   static void* SpinFn(void*) {
    213     while (spin_flag_) {}
    214     return NULL;
    215   }
    216   static std::atomic<bool> spin_flag_;
    217 };
    218 
    219 // It doesn't matter if spin_flag_ is used in several tests,
    220 // because it is always set to false after each test. Each thread
    221 // loops on spin_flag_ can find it becomes false at some time.
    222 std::atomic<bool> SpinFunctionHelper::spin_flag_;
    223 
    224 static void* JoinFn(void* arg) {
    225   return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
    226 }
    227 
    228 static void AssertDetached(pthread_t t, bool is_detached) {
    229   pthread_attr_t attr;
    230   ASSERT_EQ(0, pthread_getattr_np(t, &attr));
    231   int detach_state;
    232   ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
    233   pthread_attr_destroy(&attr);
    234   ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
    235 }
    236 
    237 static void MakeDeadThread(pthread_t& t) {
    238   ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
    239   ASSERT_EQ(0, pthread_join(t, NULL));
    240 }
    241 
    242 TEST(pthread, pthread_create) {
    243   void* expected_result = reinterpret_cast<void*>(123);
    244   // Can we create a thread?
    245   pthread_t t;
    246   ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
    247   // If we join, do we get the expected value back?
    248   void* result;
    249   ASSERT_EQ(0, pthread_join(t, &result));
    250   ASSERT_EQ(expected_result, result);
    251 }
    252 
    253 TEST(pthread, pthread_create_EAGAIN) {
    254   pthread_attr_t attributes;
    255   ASSERT_EQ(0, pthread_attr_init(&attributes));
    256   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
    257 
    258   pthread_t t;
    259   ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
    260 }
    261 
    262 TEST(pthread, pthread_no_join_after_detach) {
    263   SpinFunctionHelper spinhelper;
    264 
    265   pthread_t t1;
    266   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
    267 
    268   // After a pthread_detach...
    269   ASSERT_EQ(0, pthread_detach(t1));
    270   AssertDetached(t1, true);
    271 
    272   // ...pthread_join should fail.
    273   ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
    274 }
    275 
    276 TEST(pthread, pthread_no_op_detach_after_join) {
    277   SpinFunctionHelper spinhelper;
    278 
    279   pthread_t t1;
    280   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
    281 
    282   // If thread 2 is already waiting to join thread 1...
    283   pthread_t t2;
    284   ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
    285 
    286   sleep(1); // (Give t2 a chance to call pthread_join.)
    287 
    288 #if defined(__BIONIC__)
    289   ASSERT_EQ(EINVAL, pthread_detach(t1));
    290 #else
    291   ASSERT_EQ(0, pthread_detach(t1));
    292 #endif
    293   AssertDetached(t1, false);
    294 
    295   spinhelper.UnSpin();
    296 
    297   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
    298   void* join_result;
    299   ASSERT_EQ(0, pthread_join(t2, &join_result));
    300   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
    301 }
    302 
    303 TEST(pthread, pthread_join_self) {
    304   ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
    305 }
    306 
    307 struct TestBug37410 {
    308   pthread_t main_thread;
    309   pthread_mutex_t mutex;
    310 
    311   static void main() {
    312     TestBug37410 data;
    313     data.main_thread = pthread_self();
    314     ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
    315     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
    316 
    317     pthread_t t;
    318     ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
    319 
    320     // Wait for the thread to be running...
    321     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
    322     ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
    323 
    324     // ...and exit.
    325     pthread_exit(NULL);
    326   }
    327 
    328  private:
    329   static void* thread_fn(void* arg) {
    330     TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
    331 
    332     // Let the main thread know we're running.
    333     pthread_mutex_unlock(&data->mutex);
    334 
    335     // And wait for the main thread to exit.
    336     pthread_join(data->main_thread, NULL);
    337 
    338     return NULL;
    339   }
    340 };
    341 
    342 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
    343 // run this test (which exits normally) in its own process.
    344 
    345 class pthread_DeathTest : public BionicDeathTest {};
    346 
    347 TEST_F(pthread_DeathTest, pthread_bug_37410) {
    348   // http://code.google.com/p/android/issues/detail?id=37410
    349   ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
    350 }
    351 
    352 static void* SignalHandlerFn(void* arg) {
    353   sigset_t wait_set;
    354   sigfillset(&wait_set);
    355   return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
    356 }
    357 
    358 TEST(pthread, pthread_sigmask) {
    359   // Check that SIGUSR1 isn't blocked.
    360   sigset_t original_set;
    361   sigemptyset(&original_set);
    362   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
    363   ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
    364 
    365   // Block SIGUSR1.
    366   sigset_t set;
    367   sigemptyset(&set);
    368   sigaddset(&set, SIGUSR1);
    369   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
    370 
    371   // Check that SIGUSR1 is blocked.
    372   sigset_t final_set;
    373   sigemptyset(&final_set);
    374   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
    375   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
    376   // ...and that sigprocmask agrees with pthread_sigmask.
    377   sigemptyset(&final_set);
    378   ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
    379   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
    380 
    381   // Spawn a thread that calls sigwait and tells us what it received.
    382   pthread_t signal_thread;
    383   int received_signal = -1;
    384   ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
    385 
    386   // Send that thread SIGUSR1.
    387   pthread_kill(signal_thread, SIGUSR1);
    388 
    389   // See what it got.
    390   void* join_result;
    391   ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
    392   ASSERT_EQ(SIGUSR1, received_signal);
    393   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
    394 
    395   // Restore the original signal mask.
    396   ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
    397 }
    398 
    399 TEST(pthread, pthread_setname_np__too_long) {
    400   // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
    401   ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
    402   ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
    403 }
    404 
    405 TEST(pthread, pthread_setname_np__self) {
    406   ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
    407 }
    408 
    409 TEST(pthread, pthread_setname_np__other) {
    410   SpinFunctionHelper spinhelper;
    411 
    412   pthread_t t1;
    413   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
    414   ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
    415   spinhelper.UnSpin();
    416   ASSERT_EQ(0, pthread_join(t1, nullptr));
    417 }
    418 
    419 TEST(pthread, pthread_setname_np__no_such_thread) {
    420   pthread_t dead_thread;
    421   MakeDeadThread(dead_thread);
    422 
    423   // Call pthread_setname_np after thread has already exited.
    424   ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
    425 }
    426 
    427 TEST(pthread, pthread_kill__0) {
    428   // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
    429   ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
    430 }
    431 
    432 TEST(pthread, pthread_kill__invalid_signal) {
    433   ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
    434 }
    435 
    436 static void pthread_kill__in_signal_handler_helper(int signal_number) {
    437   static int count = 0;
    438   ASSERT_EQ(SIGALRM, signal_number);
    439   if (++count == 1) {
    440     // Can we call pthread_kill from a signal handler?
    441     ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
    442   }
    443 }
    444 
    445 TEST(pthread, pthread_kill__in_signal_handler) {
    446   ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
    447   ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
    448 }
    449 
    450 TEST(pthread, pthread_detach__no_such_thread) {
    451   pthread_t dead_thread;
    452   MakeDeadThread(dead_thread);
    453 
    454   ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
    455 }
    456 
    457 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
    458   SpinFunctionHelper spinhelper;
    459 
    460   pthread_t t;
    461   ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
    462 
    463   clockid_t c;
    464   ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
    465   timespec ts;
    466   ASSERT_EQ(0, clock_gettime(c, &ts));
    467   spinhelper.UnSpin();
    468   ASSERT_EQ(0, pthread_join(t, nullptr));
    469 }
    470 
    471 TEST(pthread, pthread_getcpuclockid__no_such_thread) {
    472   pthread_t dead_thread;
    473   MakeDeadThread(dead_thread);
    474 
    475   clockid_t c;
    476   ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
    477 }
    478 
    479 TEST(pthread, pthread_getschedparam__no_such_thread) {
    480   pthread_t dead_thread;
    481   MakeDeadThread(dead_thread);
    482 
    483   int policy;
    484   sched_param param;
    485   ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
    486 }
    487 
    488 TEST(pthread, pthread_setschedparam__no_such_thread) {
    489   pthread_t dead_thread;
    490   MakeDeadThread(dead_thread);
    491 
    492   int policy = 0;
    493   sched_param param;
    494   ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
    495 }
    496 
    497 TEST(pthread, pthread_join__no_such_thread) {
    498   pthread_t dead_thread;
    499   MakeDeadThread(dead_thread);
    500 
    501   ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
    502 }
    503 
    504 TEST(pthread, pthread_kill__no_such_thread) {
    505   pthread_t dead_thread;
    506   MakeDeadThread(dead_thread);
    507 
    508   ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
    509 }
    510 
    511 TEST(pthread, pthread_join__multijoin) {
    512   SpinFunctionHelper spinhelper;
    513 
    514   pthread_t t1;
    515   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
    516 
    517   pthread_t t2;
    518   ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
    519 
    520   sleep(1); // (Give t2 a chance to call pthread_join.)
    521 
    522   // Multiple joins to the same thread should fail.
    523   ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
    524 
    525   spinhelper.UnSpin();
    526 
    527   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
    528   void* join_result;
    529   ASSERT_EQ(0, pthread_join(t2, &join_result));
    530   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
    531 }
    532 
    533 TEST(pthread, pthread_join__race) {
    534   // http://b/11693195 --- pthread_join could return before the thread had actually exited.
    535   // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
    536   for (size_t i = 0; i < 1024; ++i) {
    537     size_t stack_size = 640*1024;
    538     void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
    539 
    540     pthread_attr_t a;
    541     pthread_attr_init(&a);
    542     pthread_attr_setstack(&a, stack, stack_size);
    543 
    544     pthread_t t;
    545     ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
    546     ASSERT_EQ(0, pthread_join(t, NULL));
    547     ASSERT_EQ(0, munmap(stack, stack_size));
    548   }
    549 }
    550 
    551 static void* GetActualGuardSizeFn(void* arg) {
    552   pthread_attr_t attributes;
    553   pthread_getattr_np(pthread_self(), &attributes);
    554   pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
    555   return NULL;
    556 }
    557 
    558 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
    559   size_t result;
    560   pthread_t t;
    561   pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
    562   pthread_join(t, NULL);
    563   return result;
    564 }
    565 
    566 static void* GetActualStackSizeFn(void* arg) {
    567   pthread_attr_t attributes;
    568   pthread_getattr_np(pthread_self(), &attributes);
    569   pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
    570   return NULL;
    571 }
    572 
    573 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
    574   size_t result;
    575   pthread_t t;
    576   pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
    577   pthread_join(t, NULL);
    578   return result;
    579 }
    580 
    581 TEST(pthread, pthread_attr_setguardsize) {
    582   pthread_attr_t attributes;
    583   ASSERT_EQ(0, pthread_attr_init(&attributes));
    584 
    585   // Get the default guard size.
    586   size_t default_guard_size;
    587   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
    588 
    589   // No such thing as too small: will be rounded up to one page by pthread_create.
    590   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
    591   size_t guard_size;
    592   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
    593   ASSERT_EQ(128U, guard_size);
    594   ASSERT_EQ(4096U, GetActualGuardSize(attributes));
    595 
    596   // Large enough and a multiple of the page size.
    597   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
    598   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
    599   ASSERT_EQ(32*1024U, guard_size);
    600 
    601   // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
    602   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
    603   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
    604   ASSERT_EQ(32*1024U + 1, guard_size);
    605 }
    606 
    607 TEST(pthread, pthread_attr_setstacksize) {
    608   pthread_attr_t attributes;
    609   ASSERT_EQ(0, pthread_attr_init(&attributes));
    610 
    611   // Get the default stack size.
    612   size_t default_stack_size;
    613   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
    614 
    615   // Too small.
    616   ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
    617   size_t stack_size;
    618   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
    619   ASSERT_EQ(default_stack_size, stack_size);
    620   ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
    621 
    622   // Large enough and a multiple of the page size; may be rounded up by pthread_create.
    623   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
    624   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
    625   ASSERT_EQ(32*1024U, stack_size);
    626   ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
    627 
    628   // Large enough but not aligned; will be rounded up by pthread_create.
    629   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
    630   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
    631   ASSERT_EQ(32*1024U + 1, stack_size);
    632 #if defined(__BIONIC__)
    633   ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
    634 #else // __BIONIC__
    635   // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
    636   ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
    637 #endif // __BIONIC__
    638 }
    639 
    640 TEST(pthread, pthread_rwlockattr_smoke) {
    641   pthread_rwlockattr_t attr;
    642   ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
    643 
    644   int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
    645   for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
    646     ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
    647     int pshared;
    648     ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
    649     ASSERT_EQ(pshared_value_array[i], pshared);
    650   }
    651 
    652   int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
    653                       PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
    654   for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
    655     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
    656     int kind;
    657     ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
    658     ASSERT_EQ(kind_array[i], kind);
    659   }
    660 
    661   ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
    662 }
    663 
    664 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
    665   pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
    666   pthread_rwlock_t lock2;
    667   ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
    668   ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
    669 }
    670 
    671 TEST(pthread, pthread_rwlock_smoke) {
    672   pthread_rwlock_t l;
    673   ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
    674 
    675   // Single read lock
    676   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
    677   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    678 
    679   // Multiple read lock
    680   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
    681   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
    682   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    683   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    684 
    685   // Write lock
    686   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
    687   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    688 
    689   // Try writer lock
    690   ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
    691   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
    692   ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
    693   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    694 
    695   // Try reader lock
    696   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
    697   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
    698   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
    699   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    700   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    701 
    702   // Try writer lock after unlock
    703   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
    704   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    705 
    706   // EDEADLK in "read after write"
    707   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
    708   ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
    709   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    710 
    711   // EDEADLK in "write after write"
    712   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
    713   ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
    714   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
    715 
    716   ASSERT_EQ(0, pthread_rwlock_destroy(&l));
    717 }
    718 
    719 struct RwlockWakeupHelperArg {
    720   pthread_rwlock_t lock;
    721   enum Progress {
    722     LOCK_INITIALIZED,
    723     LOCK_WAITING,
    724     LOCK_RELEASED,
    725     LOCK_ACCESSED,
    726     LOCK_TIMEDOUT,
    727   };
    728   std::atomic<Progress> progress;
    729   std::atomic<pid_t> tid;
    730   std::function<int (pthread_rwlock_t*)> trylock_function;
    731   std::function<int (pthread_rwlock_t*)> lock_function;
    732   std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
    733 };
    734 
    735 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
    736   arg->tid = gettid();
    737   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
    738   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
    739 
    740   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
    741   ASSERT_EQ(0, arg->lock_function(&arg->lock));
    742   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
    743   ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
    744 
    745   arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
    746 }
    747 
    748 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
    749   RwlockWakeupHelperArg wakeup_arg;
    750   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
    751   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
    752   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
    753   wakeup_arg.tid = 0;
    754   wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
    755   wakeup_arg.lock_function = lock_function;
    756 
    757   pthread_t thread;
    758   ASSERT_EQ(0, pthread_create(&thread, NULL,
    759     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
    760   WaitUntilThreadSleep(wakeup_arg.tid);
    761   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
    762 
    763   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
    764   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
    765 
    766   ASSERT_EQ(0, pthread_join(thread, NULL));
    767   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
    768   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
    769 }
    770 
    771 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
    772   test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
    773 }
    774 
    775 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
    776   timespec ts;
    777   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
    778   ts.tv_sec += 1;
    779   test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
    780     return pthread_rwlock_timedwrlock(lock, &ts);
    781   });
    782 }
    783 
    784 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
    785   RwlockWakeupHelperArg wakeup_arg;
    786   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
    787   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
    788   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
    789   wakeup_arg.tid = 0;
    790   wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
    791   wakeup_arg.lock_function = lock_function;
    792 
    793   pthread_t thread;
    794   ASSERT_EQ(0, pthread_create(&thread, NULL,
    795     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
    796   WaitUntilThreadSleep(wakeup_arg.tid);
    797   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
    798 
    799   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
    800   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
    801 
    802   ASSERT_EQ(0, pthread_join(thread, NULL));
    803   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
    804   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
    805 }
    806 
    807 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
    808   test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
    809 }
    810 
    811 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
    812   timespec ts;
    813   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
    814   ts.tv_sec += 1;
    815   test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
    816     return pthread_rwlock_timedrdlock(lock, &ts);
    817   });
    818 }
    819 
    820 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
    821   arg->tid = gettid();
    822   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
    823   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
    824 
    825   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
    826 
    827   timespec ts;
    828   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
    829   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
    830   ts.tv_nsec = -1;
    831   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
    832   ts.tv_nsec = NS_PER_S;
    833   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
    834   ts.tv_nsec = NS_PER_S - 1;
    835   ts.tv_sec = -1;
    836   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
    837   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
    838   ts.tv_sec += 1;
    839   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
    840   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
    841   arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
    842 }
    843 
    844 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
    845   RwlockWakeupHelperArg wakeup_arg;
    846   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
    847   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
    848   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
    849   wakeup_arg.tid = 0;
    850   wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
    851   wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
    852 
    853   pthread_t thread;
    854   ASSERT_EQ(0, pthread_create(&thread, nullptr,
    855       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
    856   WaitUntilThreadSleep(wakeup_arg.tid);
    857   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
    858 
    859   ASSERT_EQ(0, pthread_join(thread, nullptr));
    860   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
    861   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
    862   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
    863 }
    864 
    865 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
    866   RwlockWakeupHelperArg wakeup_arg;
    867   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
    868   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
    869   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
    870   wakeup_arg.tid = 0;
    871   wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
    872   wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
    873 
    874   pthread_t thread;
    875   ASSERT_EQ(0, pthread_create(&thread, nullptr,
    876       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
    877   WaitUntilThreadSleep(wakeup_arg.tid);
    878   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
    879 
    880   ASSERT_EQ(0, pthread_join(thread, nullptr));
    881   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
    882   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
    883   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
    884 }
    885 
    886 class RwlockKindTestHelper {
    887  private:
    888   struct ThreadArg {
    889     RwlockKindTestHelper* helper;
    890     std::atomic<pid_t>& tid;
    891 
    892     ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
    893       : helper(helper), tid(tid) { }
    894   };
    895 
    896  public:
    897   pthread_rwlock_t lock;
    898 
    899  public:
    900   RwlockKindTestHelper(int kind_type) {
    901     InitRwlock(kind_type);
    902   }
    903 
    904   ~RwlockKindTestHelper() {
    905     DestroyRwlock();
    906   }
    907 
    908   void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
    909     tid = 0;
    910     ThreadArg* arg = new ThreadArg(this, tid);
    911     ASSERT_EQ(0, pthread_create(&thread, NULL,
    912                                 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
    913   }
    914 
    915   void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
    916     tid = 0;
    917     ThreadArg* arg = new ThreadArg(this, tid);
    918     ASSERT_EQ(0, pthread_create(&thread, NULL,
    919                                 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
    920   }
    921 
    922  private:
    923   void InitRwlock(int kind_type) {
    924     pthread_rwlockattr_t attr;
    925     ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
    926     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
    927     ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
    928     ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
    929   }
    930 
    931   void DestroyRwlock() {
    932     ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
    933   }
    934 
    935   static void WriterThreadFn(ThreadArg* arg) {
    936     arg->tid = gettid();
    937 
    938     RwlockKindTestHelper* helper = arg->helper;
    939     ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
    940     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
    941     delete arg;
    942   }
    943 
    944   static void ReaderThreadFn(ThreadArg* arg) {
    945     arg->tid = gettid();
    946 
    947     RwlockKindTestHelper* helper = arg->helper;
    948     ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
    949     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
    950     delete arg;
    951   }
    952 };
    953 
    954 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
    955   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
    956   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
    957 
    958   pthread_t writer_thread;
    959   std::atomic<pid_t> writer_tid;
    960   helper.CreateWriterThread(writer_thread, writer_tid);
    961   WaitUntilThreadSleep(writer_tid);
    962 
    963   pthread_t reader_thread;
    964   std::atomic<pid_t> reader_tid;
    965   helper.CreateReaderThread(reader_thread, reader_tid);
    966   ASSERT_EQ(0, pthread_join(reader_thread, NULL));
    967 
    968   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
    969   ASSERT_EQ(0, pthread_join(writer_thread, NULL));
    970 }
    971 
    972 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
    973   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
    974   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
    975 
    976   pthread_t writer_thread;
    977   std::atomic<pid_t> writer_tid;
    978   helper.CreateWriterThread(writer_thread, writer_tid);
    979   WaitUntilThreadSleep(writer_tid);
    980 
    981   pthread_t reader_thread;
    982   std::atomic<pid_t> reader_tid;
    983   helper.CreateReaderThread(reader_thread, reader_tid);
    984   WaitUntilThreadSleep(reader_tid);
    985 
    986   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
    987   ASSERT_EQ(0, pthread_join(writer_thread, NULL));
    988   ASSERT_EQ(0, pthread_join(reader_thread, NULL));
    989 }
    990 
    991 static int g_once_fn_call_count = 0;
    992 static void OnceFn() {
    993   ++g_once_fn_call_count;
    994 }
    995 
    996 TEST(pthread, pthread_once_smoke) {
    997   pthread_once_t once_control = PTHREAD_ONCE_INIT;
    998   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
    999   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
   1000   ASSERT_EQ(1, g_once_fn_call_count);
   1001 }
   1002 
   1003 static std::string pthread_once_1934122_result = "";
   1004 
   1005 static void Routine2() {
   1006   pthread_once_1934122_result += "2";
   1007 }
   1008 
   1009 static void Routine1() {
   1010   pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
   1011   pthread_once_1934122_result += "1";
   1012   pthread_once(&once_control_2, &Routine2);
   1013 }
   1014 
   1015 TEST(pthread, pthread_once_1934122) {
   1016   // Very old versions of Android couldn't call pthread_once from a
   1017   // pthread_once init routine. http://b/1934122.
   1018   pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
   1019   ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
   1020   ASSERT_EQ("12", pthread_once_1934122_result);
   1021 }
   1022 
   1023 static int g_atfork_prepare_calls = 0;
   1024 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
   1025 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
   1026 static int g_atfork_parent_calls = 0;
   1027 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
   1028 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
   1029 static int g_atfork_child_calls = 0;
   1030 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
   1031 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
   1032 
   1033 TEST(pthread, pthread_atfork_smoke) {
   1034   ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
   1035   ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
   1036 
   1037   pid_t pid = fork();
   1038   ASSERT_NE(-1, pid) << strerror(errno);
   1039 
   1040   // Child and parent calls are made in the order they were registered.
   1041   if (pid == 0) {
   1042     ASSERT_EQ(12, g_atfork_child_calls);
   1043     _exit(0);
   1044   }
   1045   ASSERT_EQ(12, g_atfork_parent_calls);
   1046 
   1047   // Prepare calls are made in the reverse order.
   1048   ASSERT_EQ(21, g_atfork_prepare_calls);
   1049   AssertChildExited(pid, 0);
   1050 }
   1051 
   1052 TEST(pthread, pthread_attr_getscope) {
   1053   pthread_attr_t attr;
   1054   ASSERT_EQ(0, pthread_attr_init(&attr));
   1055 
   1056   int scope;
   1057   ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
   1058   ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
   1059 }
   1060 
   1061 TEST(pthread, pthread_condattr_init) {
   1062   pthread_condattr_t attr;
   1063   pthread_condattr_init(&attr);
   1064 
   1065   clockid_t clock;
   1066   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
   1067   ASSERT_EQ(CLOCK_REALTIME, clock);
   1068 
   1069   int pshared;
   1070   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
   1071   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
   1072 }
   1073 
   1074 TEST(pthread, pthread_condattr_setclock) {
   1075   pthread_condattr_t attr;
   1076   pthread_condattr_init(&attr);
   1077 
   1078   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
   1079   clockid_t clock;
   1080   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
   1081   ASSERT_EQ(CLOCK_REALTIME, clock);
   1082 
   1083   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
   1084   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
   1085   ASSERT_EQ(CLOCK_MONOTONIC, clock);
   1086 
   1087   ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
   1088 }
   1089 
   1090 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
   1091 #if defined(__BIONIC__)
   1092   pthread_condattr_t attr;
   1093   pthread_condattr_init(&attr);
   1094 
   1095   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
   1096   ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
   1097 
   1098   pthread_cond_t cond_var;
   1099   ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
   1100 
   1101   ASSERT_EQ(0, pthread_cond_signal(&cond_var));
   1102   ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
   1103 
   1104   attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
   1105   clockid_t clock;
   1106   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
   1107   ASSERT_EQ(CLOCK_MONOTONIC, clock);
   1108   int pshared;
   1109   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
   1110   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
   1111 #else  // !defined(__BIONIC__)
   1112   GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
   1113 #endif  // !defined(__BIONIC__)
   1114 }
   1115 
   1116 class pthread_CondWakeupTest : public ::testing::Test {
   1117  protected:
   1118   pthread_mutex_t mutex;
   1119   pthread_cond_t cond;
   1120 
   1121   enum Progress {
   1122     INITIALIZED,
   1123     WAITING,
   1124     SIGNALED,
   1125     FINISHED,
   1126   };
   1127   std::atomic<Progress> progress;
   1128   pthread_t thread;
   1129   std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
   1130 
   1131  protected:
   1132   void SetUp() override {
   1133     ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
   1134   }
   1135 
   1136   void InitCond(clockid_t clock=CLOCK_REALTIME) {
   1137     pthread_condattr_t attr;
   1138     ASSERT_EQ(0, pthread_condattr_init(&attr));
   1139     ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
   1140     ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
   1141     ASSERT_EQ(0, pthread_condattr_destroy(&attr));
   1142   }
   1143 
   1144   void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
   1145     progress = INITIALIZED;
   1146     this->wait_function = wait_function;
   1147     ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
   1148     while (progress != WAITING) {
   1149       usleep(5000);
   1150     }
   1151     usleep(5000);
   1152   }
   1153 
   1154   void TearDown() override {
   1155     ASSERT_EQ(0, pthread_join(thread, nullptr));
   1156     ASSERT_EQ(FINISHED, progress);
   1157     ASSERT_EQ(0, pthread_cond_destroy(&cond));
   1158     ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
   1159   }
   1160 
   1161  private:
   1162   static void WaitThreadFn(pthread_CondWakeupTest* test) {
   1163     ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
   1164     test->progress = WAITING;
   1165     while (test->progress == WAITING) {
   1166       ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
   1167     }
   1168     ASSERT_EQ(SIGNALED, test->progress);
   1169     test->progress = FINISHED;
   1170     ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
   1171   }
   1172 };
   1173 
   1174 TEST_F(pthread_CondWakeupTest, signal_wait) {
   1175   InitCond();
   1176   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
   1177     return pthread_cond_wait(cond, mutex);
   1178   });
   1179   progress = SIGNALED;
   1180   ASSERT_EQ(0, pthread_cond_signal(&cond));
   1181 }
   1182 
   1183 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
   1184   InitCond();
   1185   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
   1186     return pthread_cond_wait(cond, mutex);
   1187   });
   1188   progress = SIGNALED;
   1189   ASSERT_EQ(0, pthread_cond_broadcast(&cond));
   1190 }
   1191 
   1192 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
   1193   InitCond(CLOCK_REALTIME);
   1194   timespec ts;
   1195   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
   1196   ts.tv_sec += 1;
   1197   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
   1198     return pthread_cond_timedwait(cond, mutex, &ts);
   1199   });
   1200   progress = SIGNALED;
   1201   ASSERT_EQ(0, pthread_cond_signal(&cond));
   1202 }
   1203 
   1204 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
   1205   InitCond(CLOCK_MONOTONIC);
   1206   timespec ts;
   1207   ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
   1208   ts.tv_sec += 1;
   1209   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
   1210     return pthread_cond_timedwait(cond, mutex, &ts);
   1211   });
   1212   progress = SIGNALED;
   1213   ASSERT_EQ(0, pthread_cond_signal(&cond));
   1214 }
   1215 
   1216 TEST(pthread, pthread_cond_timedwait_timeout) {
   1217   pthread_mutex_t mutex;
   1218   ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
   1219   pthread_cond_t cond;
   1220   ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
   1221   ASSERT_EQ(0, pthread_mutex_lock(&mutex));
   1222   timespec ts;
   1223   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
   1224   ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
   1225   ts.tv_nsec = -1;
   1226   ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
   1227   ts.tv_nsec = NS_PER_S;
   1228   ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
   1229   ts.tv_nsec = NS_PER_S - 1;
   1230   ts.tv_sec = -1;
   1231   ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
   1232   ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
   1233 }
   1234 
   1235 TEST(pthread, pthread_attr_getstack__main_thread) {
   1236   // This test is only meaningful for the main thread, so make sure we're running on it!
   1237   ASSERT_EQ(getpid(), syscall(__NR_gettid));
   1238 
   1239   // Get the main thread's attributes.
   1240   pthread_attr_t attributes;
   1241   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
   1242 
   1243   // Check that we correctly report that the main thread has no guard page.
   1244   size_t guard_size;
   1245   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
   1246   ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
   1247 
   1248   // Get the stack base and the stack size (both ways).
   1249   void* stack_base;
   1250   size_t stack_size;
   1251   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
   1252   size_t stack_size2;
   1253   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
   1254 
   1255   // The two methods of asking for the stack size should agree.
   1256   EXPECT_EQ(stack_size, stack_size2);
   1257 
   1258 #if defined(__BIONIC__)
   1259   // What does /proc/self/maps' [stack] line say?
   1260   void* maps_stack_hi = NULL;
   1261   std::vector<map_record> maps;
   1262   ASSERT_TRUE(Maps::parse_maps(&maps));
   1263   for (const auto& map : maps) {
   1264     if (map.pathname == "[stack]") {
   1265       maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
   1266       break;
   1267     }
   1268   }
   1269 
   1270   // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
   1271   // Remember that the stack grows down (and is mapped in on demand), so the low address of the
   1272   // region isn't very interesting.
   1273   EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
   1274 
   1275   // The stack size should correspond to RLIMIT_STACK.
   1276   rlimit rl;
   1277   ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
   1278   uint64_t original_rlim_cur = rl.rlim_cur;
   1279   if (rl.rlim_cur == RLIM_INFINITY) {
   1280     rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
   1281   }
   1282   EXPECT_EQ(rl.rlim_cur, stack_size);
   1283 
   1284   auto guard = make_scope_guard([&rl, original_rlim_cur]() {
   1285     rl.rlim_cur = original_rlim_cur;
   1286     ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
   1287   });
   1288 
   1289   //
   1290   // What if RLIMIT_STACK is smaller than the stack's current extent?
   1291   //
   1292   rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
   1293   rl.rlim_max = RLIM_INFINITY;
   1294   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
   1295 
   1296   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
   1297   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
   1298   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
   1299 
   1300   EXPECT_EQ(stack_size, stack_size2);
   1301   ASSERT_EQ(1024U, stack_size);
   1302 
   1303   //
   1304   // What if RLIMIT_STACK isn't a whole number of pages?
   1305   //
   1306   rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
   1307   rl.rlim_max = RLIM_INFINITY;
   1308   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
   1309 
   1310   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
   1311   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
   1312   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
   1313 
   1314   EXPECT_EQ(stack_size, stack_size2);
   1315   ASSERT_EQ(6666U, stack_size);
   1316 #endif
   1317 }
   1318 
   1319 struct GetStackSignalHandlerArg {
   1320   volatile bool done;
   1321   void* signal_handler_sp;
   1322   void* main_stack_base;
   1323   size_t main_stack_size;
   1324 };
   1325 
   1326 static GetStackSignalHandlerArg getstack_signal_handler_arg;
   1327 
   1328 static void getstack_signal_handler(int sig) {
   1329   ASSERT_EQ(SIGUSR1, sig);
   1330   // Use sleep() to make current thread be switched out by the kernel to provoke the error.
   1331   sleep(1);
   1332   pthread_attr_t attr;
   1333   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
   1334   void* stack_base;
   1335   size_t stack_size;
   1336   ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
   1337   getstack_signal_handler_arg.signal_handler_sp = &attr;
   1338   getstack_signal_handler_arg.main_stack_base = stack_base;
   1339   getstack_signal_handler_arg.main_stack_size = stack_size;
   1340   getstack_signal_handler_arg.done = true;
   1341 }
   1342 
   1343 // The previous code obtained the main thread's stack by reading the entry in
   1344 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
   1345 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
   1346 // switches a process while the main thread is in an alternate stack, then the kernel will label
   1347 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
   1348 // thread's stack is found correctly.
   1349 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
   1350   // This test is only meaningful for the main thread, so make sure we're running on it!
   1351   ASSERT_EQ(getpid(), syscall(__NR_gettid));
   1352 
   1353   const size_t sig_stack_size = 16 * 1024;
   1354   void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
   1355                          -1, 0);
   1356   ASSERT_NE(MAP_FAILED, sig_stack);
   1357   stack_t ss;
   1358   ss.ss_sp = sig_stack;
   1359   ss.ss_size = sig_stack_size;
   1360   ss.ss_flags = 0;
   1361   stack_t oss;
   1362   ASSERT_EQ(0, sigaltstack(&ss, &oss));
   1363 
   1364   pthread_attr_t attr;
   1365   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
   1366   void* main_stack_base;
   1367   size_t main_stack_size;
   1368   ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
   1369 
   1370   ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
   1371   getstack_signal_handler_arg.done = false;
   1372   kill(getpid(), SIGUSR1);
   1373   ASSERT_EQ(true, getstack_signal_handler_arg.done);
   1374 
   1375   // Verify if the stack used by the signal handler is the alternate stack just registered.
   1376   ASSERT_LE(sig_stack, getstack_signal_handler_arg.signal_handler_sp);
   1377   ASSERT_GE(reinterpret_cast<char*>(sig_stack) + sig_stack_size,
   1378             getstack_signal_handler_arg.signal_handler_sp);
   1379 
   1380   // Verify if the main thread's stack got in the signal handler is correct.
   1381   ASSERT_EQ(main_stack_base, getstack_signal_handler_arg.main_stack_base);
   1382   ASSERT_LE(main_stack_size, getstack_signal_handler_arg.main_stack_size);
   1383 
   1384   ASSERT_EQ(0, sigaltstack(&oss, nullptr));
   1385   ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
   1386 }
   1387 
   1388 static void pthread_attr_getstack_18908062_helper(void*) {
   1389   char local_variable;
   1390   pthread_attr_t attributes;
   1391   pthread_getattr_np(pthread_self(), &attributes);
   1392   void* stack_base;
   1393   size_t stack_size;
   1394   pthread_attr_getstack(&attributes, &stack_base, &stack_size);
   1395 
   1396   // Test whether &local_variable is in [stack_base, stack_base + stack_size).
   1397   ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
   1398   ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
   1399 }
   1400 
   1401 // Check whether something on stack is in the range of
   1402 // [stack_base, stack_base + stack_size). see b/18908062.
   1403 TEST(pthread, pthread_attr_getstack_18908062) {
   1404   pthread_t t;
   1405   ASSERT_EQ(0, pthread_create(&t, NULL,
   1406             reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
   1407             NULL));
   1408   pthread_join(t, NULL);
   1409 }
   1410 
   1411 #if defined(__BIONIC__)
   1412 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
   1413 
   1414 static void* pthread_gettid_np_helper(void* arg) {
   1415   *reinterpret_cast<pid_t*>(arg) = gettid();
   1416 
   1417   // Wait for our parent to call pthread_gettid_np on us before exiting.
   1418   pthread_mutex_lock(&pthread_gettid_np_mutex);
   1419   pthread_mutex_unlock(&pthread_gettid_np_mutex);
   1420   return NULL;
   1421 }
   1422 #endif
   1423 
   1424 TEST(pthread, pthread_gettid_np) {
   1425 #if defined(__BIONIC__)
   1426   ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
   1427 
   1428   // Ensure the other thread doesn't exit until after we've called
   1429   // pthread_gettid_np on it.
   1430   pthread_mutex_lock(&pthread_gettid_np_mutex);
   1431 
   1432   pid_t t_gettid_result;
   1433   pthread_t t;
   1434   pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
   1435 
   1436   pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
   1437 
   1438   // Release the other thread and wait for it to exit.
   1439   pthread_mutex_unlock(&pthread_gettid_np_mutex);
   1440   pthread_join(t, NULL);
   1441 
   1442   ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
   1443 #else
   1444   GTEST_LOG_(INFO) << "This test does nothing.\n";
   1445 #endif
   1446 }
   1447 
   1448 static size_t cleanup_counter = 0;
   1449 
   1450 static void AbortCleanupRoutine(void*) {
   1451   abort();
   1452 }
   1453 
   1454 static void CountCleanupRoutine(void*) {
   1455   ++cleanup_counter;
   1456 }
   1457 
   1458 static void PthreadCleanupTester() {
   1459   pthread_cleanup_push(CountCleanupRoutine, NULL);
   1460   pthread_cleanup_push(CountCleanupRoutine, NULL);
   1461   pthread_cleanup_push(AbortCleanupRoutine, NULL);
   1462 
   1463   pthread_cleanup_pop(0); // Pop the abort without executing it.
   1464   pthread_cleanup_pop(1); // Pop one count while executing it.
   1465   ASSERT_EQ(1U, cleanup_counter);
   1466   // Exit while the other count is still on the cleanup stack.
   1467   pthread_exit(NULL);
   1468 
   1469   // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
   1470   pthread_cleanup_pop(0);
   1471 }
   1472 
   1473 static void* PthreadCleanupStartRoutine(void*) {
   1474   PthreadCleanupTester();
   1475   return NULL;
   1476 }
   1477 
   1478 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
   1479   pthread_t t;
   1480   ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
   1481   pthread_join(t, NULL);
   1482   ASSERT_EQ(2U, cleanup_counter);
   1483 }
   1484 
   1485 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
   1486   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
   1487 }
   1488 
   1489 TEST(pthread, pthread_mutexattr_gettype) {
   1490   pthread_mutexattr_t attr;
   1491   ASSERT_EQ(0, pthread_mutexattr_init(&attr));
   1492 
   1493   int attr_type;
   1494 
   1495   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
   1496   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
   1497   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
   1498 
   1499   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
   1500   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
   1501   ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
   1502 
   1503   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
   1504   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
   1505   ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
   1506 
   1507   ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
   1508 }
   1509 
   1510 struct PthreadMutex {
   1511   pthread_mutex_t lock;
   1512 
   1513   PthreadMutex(int mutex_type) {
   1514     init(mutex_type);
   1515   }
   1516 
   1517   ~PthreadMutex() {
   1518     destroy();
   1519   }
   1520 
   1521  private:
   1522   void init(int mutex_type) {
   1523     pthread_mutexattr_t attr;
   1524     ASSERT_EQ(0, pthread_mutexattr_init(&attr));
   1525     ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
   1526     ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
   1527     ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
   1528   }
   1529 
   1530   void destroy() {
   1531     ASSERT_EQ(0, pthread_mutex_destroy(&lock));
   1532   }
   1533 
   1534   DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
   1535 };
   1536 
   1537 TEST(pthread, pthread_mutex_lock_NORMAL) {
   1538   PthreadMutex m(PTHREAD_MUTEX_NORMAL);
   1539 
   1540   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
   1541   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1542   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
   1543   ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
   1544   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1545 }
   1546 
   1547 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
   1548   PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
   1549 
   1550   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
   1551   ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
   1552   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1553   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
   1554   ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
   1555   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1556   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
   1557 }
   1558 
   1559 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
   1560   PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
   1561 
   1562   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
   1563   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
   1564   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1565   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1566   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
   1567   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
   1568   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1569   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1570   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
   1571 }
   1572 
   1573 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
   1574   pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
   1575   PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
   1576   ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
   1577   pthread_mutex_destroy(&lock_normal);
   1578 
   1579   pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
   1580   PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
   1581   ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
   1582   pthread_mutex_destroy(&lock_errorcheck);
   1583 
   1584   pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
   1585   PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
   1586   ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
   1587   ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
   1588 }
   1589 class MutexWakeupHelper {
   1590  private:
   1591   PthreadMutex m;
   1592   enum Progress {
   1593     LOCK_INITIALIZED,
   1594     LOCK_WAITING,
   1595     LOCK_RELEASED,
   1596     LOCK_ACCESSED
   1597   };
   1598   std::atomic<Progress> progress;
   1599   std::atomic<pid_t> tid;
   1600 
   1601   static void thread_fn(MutexWakeupHelper* helper) {
   1602     helper->tid = gettid();
   1603     ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
   1604     helper->progress = LOCK_WAITING;
   1605 
   1606     ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
   1607     ASSERT_EQ(LOCK_RELEASED, helper->progress);
   1608     ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
   1609 
   1610     helper->progress = LOCK_ACCESSED;
   1611   }
   1612 
   1613  public:
   1614   MutexWakeupHelper(int mutex_type) : m(mutex_type) {
   1615   }
   1616 
   1617   void test() {
   1618     ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
   1619     progress = LOCK_INITIALIZED;
   1620     tid = 0;
   1621 
   1622     pthread_t thread;
   1623     ASSERT_EQ(0, pthread_create(&thread, NULL,
   1624       reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
   1625 
   1626     WaitUntilThreadSleep(tid);
   1627     ASSERT_EQ(LOCK_WAITING, progress);
   1628 
   1629     progress = LOCK_RELEASED;
   1630     ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
   1631 
   1632     ASSERT_EQ(0, pthread_join(thread, NULL));
   1633     ASSERT_EQ(LOCK_ACCESSED, progress);
   1634   }
   1635 };
   1636 
   1637 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
   1638   MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
   1639   helper.test();
   1640 }
   1641 
   1642 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
   1643   MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
   1644   helper.test();
   1645 }
   1646 
   1647 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
   1648   MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
   1649   helper.test();
   1650 }
   1651 
   1652 TEST(pthread, pthread_mutex_owner_tid_limit) {
   1653 #if defined(__BIONIC__) && !defined(__LP64__)
   1654   FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
   1655   ASSERT_TRUE(fp != NULL);
   1656   long pid_max;
   1657   ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
   1658   fclose(fp);
   1659   // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
   1660   ASSERT_LE(pid_max, 65536);
   1661 #else
   1662   GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
   1663 #endif
   1664 }
   1665 
   1666 TEST(pthread, pthread_mutex_timedlock) {
   1667   pthread_mutex_t m;
   1668   ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
   1669 
   1670   // If the mutex is already locked, pthread_mutex_timedlock should time out.
   1671   ASSERT_EQ(0, pthread_mutex_lock(&m));
   1672 
   1673   timespec ts;
   1674   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
   1675   ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
   1676   ts.tv_nsec = -1;
   1677   ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
   1678   ts.tv_nsec = NS_PER_S;
   1679   ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
   1680   ts.tv_nsec = NS_PER_S - 1;
   1681   ts.tv_sec = -1;
   1682   ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
   1683 
   1684   // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
   1685   ASSERT_EQ(0, pthread_mutex_unlock(&m));
   1686 
   1687   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
   1688   ts.tv_sec += 1;
   1689   ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
   1690 
   1691   ASSERT_EQ(0, pthread_mutex_unlock(&m));
   1692   ASSERT_EQ(0, pthread_mutex_destroy(&m));
   1693 }
   1694 
   1695 class StrictAlignmentAllocator {
   1696  public:
   1697   void* allocate(size_t size, size_t alignment) {
   1698     char* p = new char[size + alignment * 2];
   1699     allocated_array.push_back(p);
   1700     while (!is_strict_aligned(p, alignment)) {
   1701       ++p;
   1702     }
   1703     return p;
   1704   }
   1705 
   1706   ~StrictAlignmentAllocator() {
   1707     for (const auto& p : allocated_array) {
   1708       delete[] p;
   1709     }
   1710   }
   1711 
   1712  private:
   1713   bool is_strict_aligned(char* p, size_t alignment) {
   1714     return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
   1715   }
   1716 
   1717   std::vector<char*> allocated_array;
   1718 };
   1719 
   1720 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
   1721 #if defined(__BIONIC__)
   1722   // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
   1723   StrictAlignmentAllocator allocator;
   1724   pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
   1725                              allocator.allocate(sizeof(pthread_mutex_t), 4));
   1726   ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
   1727   ASSERT_EQ(0, pthread_mutex_lock(mutex));
   1728   ASSERT_EQ(0, pthread_mutex_unlock(mutex));
   1729   ASSERT_EQ(0, pthread_mutex_destroy(mutex));
   1730 
   1731   pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
   1732                            allocator.allocate(sizeof(pthread_cond_t), 4));
   1733   ASSERT_EQ(0, pthread_cond_init(cond, NULL));
   1734   ASSERT_EQ(0, pthread_cond_signal(cond));
   1735   ASSERT_EQ(0, pthread_cond_broadcast(cond));
   1736   ASSERT_EQ(0, pthread_cond_destroy(cond));
   1737 
   1738   pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
   1739                                allocator.allocate(sizeof(pthread_rwlock_t), 4));
   1740   ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
   1741   ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
   1742   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
   1743   ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
   1744   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
   1745   ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
   1746 
   1747 #else
   1748   GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
   1749 #endif
   1750 }
   1751 
   1752 TEST(pthread, pthread_mutex_lock_null_32) {
   1753 #if defined(__BIONIC__) && !defined(__LP64__)
   1754   ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
   1755 #else
   1756   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
   1757 #endif
   1758 }
   1759 
   1760 TEST(pthread, pthread_mutex_unlock_null_32) {
   1761 #if defined(__BIONIC__) && !defined(__LP64__)
   1762   ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
   1763 #else
   1764   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
   1765 #endif
   1766 }
   1767 
   1768 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
   1769 #if defined(__BIONIC__) && defined(__LP64__)
   1770   pthread_mutex_t* null_value = nullptr;
   1771   ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
   1772 #else
   1773   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
   1774 #endif
   1775 }
   1776 
   1777 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
   1778 #if defined(__BIONIC__) && defined(__LP64__)
   1779   pthread_mutex_t* null_value = nullptr;
   1780   ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
   1781 #else
   1782   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
   1783 #endif
   1784 }
   1785 
   1786 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
   1787 
   1788 static volatile bool signal_handler_on_altstack_done;
   1789 
   1790 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
   1791   ASSERT_EQ(SIGUSR1, signo);
   1792   // Check if we have enough stack space for unwinding.
   1793   int count = 0;
   1794   _Unwind_Backtrace(FrameCounter, &count);
   1795   ASSERT_GT(count, 0);
   1796   // Check if we have enough stack space for logging.
   1797   std::string s(2048, '*');
   1798   GTEST_LOG_(INFO) << s;
   1799   signal_handler_on_altstack_done = true;
   1800 }
   1801 
   1802 TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
   1803   signal_handler_on_altstack_done = false;
   1804   ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
   1805   kill(getpid(), SIGUSR1);
   1806   ASSERT_TRUE(signal_handler_on_altstack_done);
   1807 }
   1808 
   1809 TEST(pthread, pthread_barrierattr_smoke) {
   1810   pthread_barrierattr_t attr;
   1811   ASSERT_EQ(0, pthread_barrierattr_init(&attr));
   1812   int pshared;
   1813   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
   1814   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
   1815   ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
   1816   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
   1817   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
   1818   ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
   1819 }
   1820 
   1821 struct BarrierTestHelperData {
   1822   size_t thread_count;
   1823   pthread_barrier_t barrier;
   1824   std::atomic<int> finished_mask;
   1825   std::atomic<int> serial_thread_count;
   1826   size_t iteration_count;
   1827   std::atomic<size_t> finished_iteration_count;
   1828 
   1829   BarrierTestHelperData(size_t thread_count, size_t iteration_count)
   1830       : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
   1831         iteration_count(iteration_count), finished_iteration_count(0) {
   1832   }
   1833 };
   1834 
   1835 struct BarrierTestHelperArg {
   1836   int id;
   1837   BarrierTestHelperData* data;
   1838 };
   1839 
   1840 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
   1841   for (size_t i = 0; i < arg->data->iteration_count; ++i) {
   1842     int result = pthread_barrier_wait(&arg->data->barrier);
   1843     if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
   1844       arg->data->serial_thread_count++;
   1845     } else {
   1846       ASSERT_EQ(0, result);
   1847     }
   1848     arg->data->finished_mask |= (1 << arg->id);
   1849     if (arg->data->finished_mask == ((1 << arg->data->thread_count) - 1)) {
   1850       ASSERT_EQ(1, arg->data->serial_thread_count);
   1851       arg->data->finished_iteration_count++;
   1852       arg->data->finished_mask = 0;
   1853       arg->data->serial_thread_count = 0;
   1854     }
   1855   }
   1856 }
   1857 
   1858 TEST(pthread, pthread_barrier_smoke) {
   1859   const size_t BARRIER_ITERATION_COUNT = 10;
   1860   const size_t BARRIER_THREAD_COUNT = 10;
   1861   BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
   1862   ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
   1863   std::vector<pthread_t> threads(data.thread_count);
   1864   std::vector<BarrierTestHelperArg> args(threads.size());
   1865   for (size_t i = 0; i < threads.size(); ++i) {
   1866     args[i].id = i;
   1867     args[i].data = &data;
   1868     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
   1869                                 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
   1870   }
   1871   for (size_t i = 0; i < threads.size(); ++i) {
   1872     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
   1873   }
   1874   ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
   1875   ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
   1876 }
   1877 
   1878 struct BarrierDestroyTestArg {
   1879   std::atomic<int> tid;
   1880   pthread_barrier_t* barrier;
   1881 };
   1882 
   1883 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
   1884   arg->tid = gettid();
   1885   ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
   1886 }
   1887 
   1888 TEST(pthread, pthread_barrier_destroy) {
   1889   pthread_barrier_t barrier;
   1890   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
   1891   pthread_t thread;
   1892   BarrierDestroyTestArg arg;
   1893   arg.tid = 0;
   1894   arg.barrier = &barrier;
   1895   ASSERT_EQ(0, pthread_create(&thread, nullptr,
   1896                               reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
   1897   WaitUntilThreadSleep(arg.tid);
   1898   ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
   1899   ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
   1900   // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
   1901   ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
   1902   ASSERT_EQ(0, pthread_join(thread, nullptr));
   1903 #if defined(__BIONIC__)
   1904   ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
   1905 #endif
   1906 }
   1907 
   1908 struct BarrierOrderingTestHelperArg {
   1909   pthread_barrier_t* barrier;
   1910   size_t* array;
   1911   size_t array_length;
   1912   size_t id;
   1913 };
   1914 
   1915 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
   1916   const size_t ITERATION_COUNT = 10000;
   1917   for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
   1918     arg->array[arg->id] = i;
   1919     int result = pthread_barrier_wait(arg->barrier);
   1920     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
   1921     for (size_t j = 0; j < arg->array_length; ++j) {
   1922       ASSERT_EQ(i, arg->array[j]);
   1923     }
   1924     result = pthread_barrier_wait(arg->barrier);
   1925     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
   1926   }
   1927 }
   1928 
   1929 TEST(pthread, pthread_barrier_check_ordering) {
   1930   const size_t THREAD_COUNT = 4;
   1931   pthread_barrier_t barrier;
   1932   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
   1933   size_t array[THREAD_COUNT];
   1934   std::vector<pthread_t> threads(THREAD_COUNT);
   1935   std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
   1936   for (size_t i = 0; i < THREAD_COUNT; ++i) {
   1937     args[i].barrier = &barrier;
   1938     args[i].array = array;
   1939     args[i].array_length = THREAD_COUNT;
   1940     args[i].id = i;
   1941     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
   1942                                 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
   1943                                 &args[i]));
   1944   }
   1945   for (size_t i = 0; i < THREAD_COUNT; ++i) {
   1946     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
   1947   }
   1948 }
   1949 
   1950 TEST(pthread, pthread_spinlock_smoke) {
   1951   pthread_spinlock_t lock;
   1952   ASSERT_EQ(0, pthread_spin_init(&lock, 0));
   1953   ASSERT_EQ(0, pthread_spin_trylock(&lock));
   1954   ASSERT_EQ(0, pthread_spin_unlock(&lock));
   1955   ASSERT_EQ(0, pthread_spin_lock(&lock));
   1956   ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
   1957   ASSERT_EQ(0, pthread_spin_unlock(&lock));
   1958   ASSERT_EQ(0, pthread_spin_destroy(&lock));
   1959 }
   1960