Home | History | Annotate | Download | only in Joints
      1 /*
      2 * Copyright (c) 2007 Erin Catto http://www.box2d.org
      3 *
      4 * This software is provided 'as-is', without any express or implied
      5 * warranty.  In no event will the authors be held liable for any damages
      6 * arising from the use of this software.
      7 * Permission is granted to anyone to use this software for any purpose,
      8 * including commercial applications, and to alter it and redistribute it
      9 * freely, subject to the following restrictions:
     10 * 1. The origin of this software must not be misrepresented; you must not
     11 * claim that you wrote the original software. If you use this software
     12 * in a product, an acknowledgment in the product documentation would be
     13 * appreciated but is not required.
     14 * 2. Altered source versions must be plainly marked as such, and must not be
     15 * misrepresented as being the original software.
     16 * 3. This notice may not be removed or altered from any source distribution.
     17 */
     18 
     19 #include <Box2D/Dynamics/Joints/b2PulleyJoint.h>
     20 #include <Box2D/Dynamics/b2Body.h>
     21 #include <Box2D/Dynamics/b2TimeStep.h>
     22 
     23 // Pulley:
     24 // length1 = norm(p1 - s1)
     25 // length2 = norm(p2 - s2)
     26 // C0 = (length1 + ratio * length2)_initial
     27 // C = C0 - (length1 + ratio * length2)
     28 // u1 = (p1 - s1) / norm(p1 - s1)
     29 // u2 = (p2 - s2) / norm(p2 - s2)
     30 // Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2))
     31 // J = -[u1 cross(r1, u1) ratio * u2  ratio * cross(r2, u2)]
     32 // K = J * invM * JT
     33 //   = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2)
     34 
     35 void b2PulleyJointDef::Initialize(b2Body* bA, b2Body* bB,
     36 				const b2Vec2& groundA, const b2Vec2& groundB,
     37 				const b2Vec2& anchorA, const b2Vec2& anchorB,
     38 				float32 r)
     39 {
     40 	bodyA = bA;
     41 	bodyB = bB;
     42 	groundAnchorA = groundA;
     43 	groundAnchorB = groundB;
     44 	localAnchorA = bodyA->GetLocalPoint(anchorA);
     45 	localAnchorB = bodyB->GetLocalPoint(anchorB);
     46 	b2Vec2 dA = anchorA - groundA;
     47 	lengthA = dA.Length();
     48 	b2Vec2 dB = anchorB - groundB;
     49 	lengthB = dB.Length();
     50 	ratio = r;
     51 	b2Assert(ratio > b2_epsilon);
     52 }
     53 
     54 b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def)
     55 : b2Joint(def)
     56 {
     57 	m_groundAnchorA = def->groundAnchorA;
     58 	m_groundAnchorB = def->groundAnchorB;
     59 	m_localAnchorA = def->localAnchorA;
     60 	m_localAnchorB = def->localAnchorB;
     61 
     62 	m_lengthA = def->lengthA;
     63 	m_lengthB = def->lengthB;
     64 
     65 	b2Assert(def->ratio != 0.0f);
     66 	m_ratio = def->ratio;
     67 
     68 	m_constant = def->lengthA + m_ratio * def->lengthB;
     69 
     70 	m_impulse = 0.0f;
     71 }
     72 
     73 void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data)
     74 {
     75 	m_indexA = m_bodyA->m_islandIndex;
     76 	m_indexB = m_bodyB->m_islandIndex;
     77 	m_localCenterA = m_bodyA->m_sweep.localCenter;
     78 	m_localCenterB = m_bodyB->m_sweep.localCenter;
     79 	m_invMassA = m_bodyA->m_invMass;
     80 	m_invMassB = m_bodyB->m_invMass;
     81 	m_invIA = m_bodyA->m_invI;
     82 	m_invIB = m_bodyB->m_invI;
     83 
     84 	b2Vec2 cA = data.positions[m_indexA].c;
     85 	float32 aA = data.positions[m_indexA].a;
     86 	b2Vec2 vA = data.velocities[m_indexA].v;
     87 	float32 wA = data.velocities[m_indexA].w;
     88 
     89 	b2Vec2 cB = data.positions[m_indexB].c;
     90 	float32 aB = data.positions[m_indexB].a;
     91 	b2Vec2 vB = data.velocities[m_indexB].v;
     92 	float32 wB = data.velocities[m_indexB].w;
     93 
     94 	b2Rot qA(aA), qB(aB);
     95 
     96 	m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
     97 	m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
     98 
     99 	// Get the pulley axes.
    100 	m_uA = cA + m_rA - m_groundAnchorA;
    101 	m_uB = cB + m_rB - m_groundAnchorB;
    102 
    103 	float32 lengthA = m_uA.Length();
    104 	float32 lengthB = m_uB.Length();
    105 
    106 	if (lengthA > 10.0f * b2_linearSlop)
    107 	{
    108 		m_uA *= 1.0f / lengthA;
    109 	}
    110 	else
    111 	{
    112 		m_uA.SetZero();
    113 	}
    114 
    115 	if (lengthB > 10.0f * b2_linearSlop)
    116 	{
    117 		m_uB *= 1.0f / lengthB;
    118 	}
    119 	else
    120 	{
    121 		m_uB.SetZero();
    122 	}
    123 
    124 	// Compute effective mass.
    125 	float32 ruA = b2Cross(m_rA, m_uA);
    126 	float32 ruB = b2Cross(m_rB, m_uB);
    127 
    128 	float32 mA = m_invMassA + m_invIA * ruA * ruA;
    129 	float32 mB = m_invMassB + m_invIB * ruB * ruB;
    130 
    131 	m_mass = mA + m_ratio * m_ratio * mB;
    132 
    133 	if (m_mass > 0.0f)
    134 	{
    135 		m_mass = 1.0f / m_mass;
    136 	}
    137 
    138 	if (data.step.warmStarting)
    139 	{
    140 		// Scale impulses to support variable time steps.
    141 		m_impulse *= data.step.dtRatio;
    142 
    143 		// Warm starting.
    144 		b2Vec2 PA = -(m_impulse) * m_uA;
    145 		b2Vec2 PB = (-m_ratio * m_impulse) * m_uB;
    146 
    147 		vA += m_invMassA * PA;
    148 		wA += m_invIA * b2Cross(m_rA, PA);
    149 		vB += m_invMassB * PB;
    150 		wB += m_invIB * b2Cross(m_rB, PB);
    151 	}
    152 	else
    153 	{
    154 		m_impulse = 0.0f;
    155 	}
    156 
    157 	data.velocities[m_indexA].v = vA;
    158 	data.velocities[m_indexA].w = wA;
    159 	data.velocities[m_indexB].v = vB;
    160 	data.velocities[m_indexB].w = wB;
    161 }
    162 
    163 void b2PulleyJoint::SolveVelocityConstraints(const b2SolverData& data)
    164 {
    165 	b2Vec2 vA = data.velocities[m_indexA].v;
    166 	float32 wA = data.velocities[m_indexA].w;
    167 	b2Vec2 vB = data.velocities[m_indexB].v;
    168 	float32 wB = data.velocities[m_indexB].w;
    169 
    170 	b2Vec2 vpA = vA + b2Cross(wA, m_rA);
    171 	b2Vec2 vpB = vB + b2Cross(wB, m_rB);
    172 
    173 	float32 Cdot = -b2Dot(m_uA, vpA) - m_ratio * b2Dot(m_uB, vpB);
    174 	float32 impulse = -m_mass * Cdot;
    175 	m_impulse += impulse;
    176 
    177 	b2Vec2 PA = -impulse * m_uA;
    178 	b2Vec2 PB = -m_ratio * impulse * m_uB;
    179 	vA += m_invMassA * PA;
    180 	wA += m_invIA * b2Cross(m_rA, PA);
    181 	vB += m_invMassB * PB;
    182 	wB += m_invIB * b2Cross(m_rB, PB);
    183 
    184 	data.velocities[m_indexA].v = vA;
    185 	data.velocities[m_indexA].w = wA;
    186 	data.velocities[m_indexB].v = vB;
    187 	data.velocities[m_indexB].w = wB;
    188 }
    189 
    190 bool b2PulleyJoint::SolvePositionConstraints(const b2SolverData& data)
    191 {
    192 	b2Vec2 cA = data.positions[m_indexA].c;
    193 	float32 aA = data.positions[m_indexA].a;
    194 	b2Vec2 cB = data.positions[m_indexB].c;
    195 	float32 aB = data.positions[m_indexB].a;
    196 
    197 	b2Rot qA(aA), qB(aB);
    198 
    199 	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
    200 	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
    201 
    202 	// Get the pulley axes.
    203 	b2Vec2 uA = cA + rA - m_groundAnchorA;
    204 	b2Vec2 uB = cB + rB - m_groundAnchorB;
    205 
    206 	float32 lengthA = uA.Length();
    207 	float32 lengthB = uB.Length();
    208 
    209 	if (lengthA > 10.0f * b2_linearSlop)
    210 	{
    211 		uA *= 1.0f / lengthA;
    212 	}
    213 	else
    214 	{
    215 		uA.SetZero();
    216 	}
    217 
    218 	if (lengthB > 10.0f * b2_linearSlop)
    219 	{
    220 		uB *= 1.0f / lengthB;
    221 	}
    222 	else
    223 	{
    224 		uB.SetZero();
    225 	}
    226 
    227 	// Compute effective mass.
    228 	float32 ruA = b2Cross(rA, uA);
    229 	float32 ruB = b2Cross(rB, uB);
    230 
    231 	float32 mA = m_invMassA + m_invIA * ruA * ruA;
    232 	float32 mB = m_invMassB + m_invIB * ruB * ruB;
    233 
    234 	float32 mass = mA + m_ratio * m_ratio * mB;
    235 
    236 	if (mass > 0.0f)
    237 	{
    238 		mass = 1.0f / mass;
    239 	}
    240 
    241 	float32 C = m_constant - lengthA - m_ratio * lengthB;
    242 	float32 linearError = b2Abs(C);
    243 
    244 	float32 impulse = -mass * C;
    245 
    246 	b2Vec2 PA = -impulse * uA;
    247 	b2Vec2 PB = -m_ratio * impulse * uB;
    248 
    249 	cA += m_invMassA * PA;
    250 	aA += m_invIA * b2Cross(rA, PA);
    251 	cB += m_invMassB * PB;
    252 	aB += m_invIB * b2Cross(rB, PB);
    253 
    254 	data.positions[m_indexA].c = cA;
    255 	data.positions[m_indexA].a = aA;
    256 	data.positions[m_indexB].c = cB;
    257 	data.positions[m_indexB].a = aB;
    258 
    259 	return linearError < b2_linearSlop;
    260 }
    261 
    262 b2Vec2 b2PulleyJoint::GetAnchorA() const
    263 {
    264 	return m_bodyA->GetWorldPoint(m_localAnchorA);
    265 }
    266 
    267 b2Vec2 b2PulleyJoint::GetAnchorB() const
    268 {
    269 	return m_bodyB->GetWorldPoint(m_localAnchorB);
    270 }
    271 
    272 b2Vec2 b2PulleyJoint::GetReactionForce(float32 inv_dt) const
    273 {
    274 	b2Vec2 P = m_impulse * m_uB;
    275 	return inv_dt * P;
    276 }
    277 
    278 float32 b2PulleyJoint::GetReactionTorque(float32 inv_dt) const
    279 {
    280 	B2_NOT_USED(inv_dt);
    281 	return 0.0f;
    282 }
    283 
    284 b2Vec2 b2PulleyJoint::GetGroundAnchorA() const
    285 {
    286 	return m_groundAnchorA;
    287 }
    288 
    289 b2Vec2 b2PulleyJoint::GetGroundAnchorB() const
    290 {
    291 	return m_groundAnchorB;
    292 }
    293 
    294 float32 b2PulleyJoint::GetLengthA() const
    295 {
    296 	return m_lengthA;
    297 }
    298 
    299 float32 b2PulleyJoint::GetLengthB() const
    300 {
    301 	return m_lengthB;
    302 }
    303 
    304 float32 b2PulleyJoint::GetRatio() const
    305 {
    306 	return m_ratio;
    307 }
    308 
    309 float32 b2PulleyJoint::GetCurrentLengthA() const
    310 {
    311 	b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchorA);
    312 	b2Vec2 s = m_groundAnchorA;
    313 	b2Vec2 d = p - s;
    314 	return d.Length();
    315 }
    316 
    317 float32 b2PulleyJoint::GetCurrentLengthB() const
    318 {
    319 	b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchorB);
    320 	b2Vec2 s = m_groundAnchorB;
    321 	b2Vec2 d = p - s;
    322 	return d.Length();
    323 }
    324 
    325 void b2PulleyJoint::Dump()
    326 {
    327 	int32 indexA = m_bodyA->m_islandIndex;
    328 	int32 indexB = m_bodyB->m_islandIndex;
    329 
    330 	b2Log("  b2PulleyJointDef jd;\n");
    331 	b2Log("  jd.bodyA = bodies[%d];\n", indexA);
    332 	b2Log("  jd.bodyB = bodies[%d];\n", indexB);
    333 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
    334 	b2Log("  jd.groundAnchorA.Set(%.15lef, %.15lef);\n", m_groundAnchorA.x, m_groundAnchorA.y);
    335 	b2Log("  jd.groundAnchorB.Set(%.15lef, %.15lef);\n", m_groundAnchorB.x, m_groundAnchorB.y);
    336 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
    337 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
    338 	b2Log("  jd.lengthA = %.15lef;\n", m_lengthA);
    339 	b2Log("  jd.lengthB = %.15lef;\n", m_lengthB);
    340 	b2Log("  jd.ratio = %.15lef;\n", m_ratio);
    341 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
    342 }
    343 
    344 void b2PulleyJoint::ShiftOrigin(const b2Vec2& newOrigin)
    345 {
    346 	m_groundAnchorA -= newOrigin;
    347 	m_groundAnchorB -= newOrigin;
    348 }
    349