Home | History | Annotate | Download | only in memory
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Scopers help you manage ownership of a pointer, helping you easily manage a
      6 // pointer within a scope, and automatically destroying the pointer at the end
      7 // of a scope.  There are two main classes you will use, which correspond to the
      8 // operators new/delete and new[]/delete[].
      9 //
     10 // Example usage (scoped_ptr<T>):
     11 //   {
     12 //     scoped_ptr<Foo> foo(new Foo("wee"));
     13 //   }  // foo goes out of scope, releasing the pointer with it.
     14 //
     15 //   {
     16 //     scoped_ptr<Foo> foo;          // No pointer managed.
     17 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
     18 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
     19 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
     20 //     foo->Method();                // Foo::Method() called.
     21 //     foo.get()->Method();          // Foo::Method() called.
     22 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
     23 //                                   // manages a pointer.
     24 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
     25 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
     26 //                                   // manages a pointer.
     27 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
     28 //
     29 // Example usage (scoped_ptr<T[]>):
     30 //   {
     31 //     scoped_ptr<Foo[]> foo(new Foo[100]);
     32 //     foo.get()->Method();  // Foo::Method on the 0th element.
     33 //     foo[10].Method();     // Foo::Method on the 10th element.
     34 //   }
     35 //
     36 // These scopers also implement part of the functionality of C++11 unique_ptr
     37 // in that they are "movable but not copyable."  You can use the scopers in
     38 // the parameter and return types of functions to signify ownership transfer
     39 // in to and out of a function.  When calling a function that has a scoper
     40 // as the argument type, it must be called with an rvalue of a scoper, which
     41 // can be created by using std::move(), or the result of another function that
     42 // generates a temporary; passing by copy will NOT work.  Here is an example
     43 // using scoped_ptr:
     44 //
     45 //   void TakesOwnership(scoped_ptr<Foo> arg) {
     46 //     // Do something with arg.
     47 //   }
     48 //   scoped_ptr<Foo> CreateFoo() {
     49 //     // No need for calling std::move() for returning a move-only value, or
     50 //     // when you already have an rvalue as we do here.
     51 //     return scoped_ptr<Foo>(new Foo("new"));
     52 //   }
     53 //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
     54 //     return arg;
     55 //   }
     56 //
     57 //   {
     58 //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
     59 //     TakesOwnership(std::move(ptr));       // ptr no longer owns Foo("yay").
     60 //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
     61 //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
     62 //         PassThru(std::move(ptr2));        // ptr2 is correspondingly nullptr.
     63 //   }
     64 //
     65 // Notice that if you do not call std::move() when returning from PassThru(), or
     66 // when invoking TakesOwnership(), the code will not compile because scopers
     67 // are not copyable; they only implement move semantics which require calling
     68 // the std::move() function to signify a destructive transfer of state.
     69 // CreateFoo() is different though because we are constructing a temporary on
     70 // the return line and thus can avoid needing to call std::move().
     71 //
     72 // The conversion move-constructor properly handles upcast in initialization,
     73 // i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
     74 //
     75 //   scoped_ptr<Foo> foo(new Foo());
     76 //   scoped_ptr<FooParent> parent(std::move(foo));
     77 
     78 #ifndef BASE_MEMORY_SCOPED_PTR_H_
     79 #define BASE_MEMORY_SCOPED_PTR_H_
     80 
     81 // This is an implementation designed to match the anticipated future TR2
     82 // implementation of the scoped_ptr class.
     83 
     84 #include <assert.h>
     85 #include <stddef.h>
     86 #include <stdlib.h>
     87 
     88 #include <iosfwd>
     89 #include <memory>
     90 #include <type_traits>
     91 #include <utility>
     92 
     93 #include "base/compiler_specific.h"
     94 #include "base/macros.h"
     95 #include "base/move.h"
     96 #include "base/template_util.h"
     97 
     98 namespace base {
     99 
    100 namespace subtle {
    101 class RefCountedBase;
    102 class RefCountedThreadSafeBase;
    103 }  // namespace subtle
    104 
    105 // Function object which invokes 'free' on its parameter, which must be
    106 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
    107 //
    108 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
    109 //     static_cast<int*>(malloc(sizeof(int))));
    110 struct FreeDeleter {
    111   inline void operator()(void* ptr) const {
    112     free(ptr);
    113   }
    114 };
    115 
    116 namespace internal {
    117 
    118 template <typename T> struct IsNotRefCounted {
    119   enum {
    120     value = !std::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
    121         !std::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
    122             value
    123   };
    124 };
    125 
    126 // Minimal implementation of the core logic of scoped_ptr, suitable for
    127 // reuse in both scoped_ptr and its specializations.
    128 template <class T, class D>
    129 class scoped_ptr_impl {
    130  public:
    131   explicit scoped_ptr_impl(T* p) : data_(p) {}
    132 
    133   // Initializer for deleters that have data parameters.
    134   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
    135 
    136   // Templated constructor that destructively takes the value from another
    137   // scoped_ptr_impl.
    138   template <typename U, typename V>
    139   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
    140       : data_(other->release(), other->get_deleter()) {
    141     // We do not support move-only deleters.  We could modify our move
    142     // emulation to have base::subtle::move() and base::subtle::forward()
    143     // functions that are imperfect emulations of their C++11 equivalents,
    144     // but until there's a requirement, just assume deleters are copyable.
    145   }
    146 
    147   template <typename U, typename V>
    148   void TakeState(scoped_ptr_impl<U, V>* other) {
    149     // See comment in templated constructor above regarding lack of support
    150     // for move-only deleters.
    151     reset(other->release());
    152     get_deleter() = other->get_deleter();
    153   }
    154 
    155   ~scoped_ptr_impl() {
    156     // Match libc++, which calls reset() in its destructor.
    157     // Use nullptr as the new value for three reasons:
    158     // 1. libc++ does it.
    159     // 2. Avoids infinitely recursing into destructors if two classes are owned
    160     //    in a reference cycle (see ScopedPtrTest.ReferenceCycle).
    161     // 3. If |this| is accessed in the future, in a use-after-free bug, attempts
    162     //    to dereference |this|'s pointer should cause either a failure or a
    163     //    segfault closer to the problem. If |this| wasn't reset to nullptr,
    164     //    the access would cause the deleted memory to be read or written
    165     //    leading to other more subtle issues.
    166     reset(nullptr);
    167   }
    168 
    169   void reset(T* p) {
    170     // Match C++11's definition of unique_ptr::reset(), which requires changing
    171     // the pointer before invoking the deleter on the old pointer. This prevents
    172     // |this| from being accessed after the deleter is run, which may destroy
    173     // |this|.
    174     T* old = data_.ptr;
    175     data_.ptr = p;
    176     if (old != nullptr)
    177       static_cast<D&>(data_)(old);
    178   }
    179 
    180   T* get() const { return data_.ptr; }
    181 
    182   D& get_deleter() { return data_; }
    183   const D& get_deleter() const { return data_; }
    184 
    185   void swap(scoped_ptr_impl& p2) {
    186     // Standard swap idiom: 'using std::swap' ensures that std::swap is
    187     // present in the overload set, but we call swap unqualified so that
    188     // any more-specific overloads can be used, if available.
    189     using std::swap;
    190     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
    191     swap(data_.ptr, p2.data_.ptr);
    192   }
    193 
    194   T* release() {
    195     T* old_ptr = data_.ptr;
    196     data_.ptr = nullptr;
    197     return old_ptr;
    198   }
    199 
    200  private:
    201   // Needed to allow type-converting constructor.
    202   template <typename U, typename V> friend class scoped_ptr_impl;
    203 
    204   // Use the empty base class optimization to allow us to have a D
    205   // member, while avoiding any space overhead for it when D is an
    206   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
    207   // discussion of this technique.
    208   struct Data : public D {
    209     explicit Data(T* ptr_in) : ptr(ptr_in) {}
    210     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
    211     T* ptr;
    212   };
    213 
    214   Data data_;
    215 
    216   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
    217 };
    218 
    219 }  // namespace internal
    220 
    221 }  // namespace base
    222 
    223 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
    224 // automatically deletes the pointer it holds (if any).
    225 // That is, scoped_ptr<T> owns the T object that it points to.
    226 // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
    227 // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
    228 // dereference it, you get the thread safety guarantees of T.
    229 //
    230 // The size of scoped_ptr is small. On most compilers, when using the
    231 // std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
    232 // will increase the size proportional to whatever state they need to have. See
    233 // comments inside scoped_ptr_impl<> for details.
    234 //
    235 // Current implementation targets having a strict subset of  C++11's
    236 // unique_ptr<> features. Known deficiencies include not supporting move-only
    237 // deleteres, function pointers as deleters, and deleters with reference
    238 // types.
    239 template <class T, class D = std::default_delete<T>>
    240 class scoped_ptr {
    241   DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
    242 
    243   static_assert(!std::is_array<T>::value,
    244                 "scoped_ptr doesn't support array with size");
    245   static_assert(base::internal::IsNotRefCounted<T>::value,
    246                 "T is a refcounted type and needs a scoped_refptr");
    247 
    248  public:
    249   // The element and deleter types.
    250   using element_type = T;
    251   using deleter_type = D;
    252 
    253   // Constructor.  Defaults to initializing with nullptr.
    254   scoped_ptr() : impl_(nullptr) {}
    255 
    256   // Constructor.  Takes ownership of p.
    257   explicit scoped_ptr(element_type* p) : impl_(p) {}
    258 
    259   // Constructor.  Allows initialization of a stateful deleter.
    260   scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
    261 
    262   // Constructor.  Allows construction from a nullptr.
    263   scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
    264 
    265   // Move constructor.
    266   //
    267   // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
    268   // not just the conversion constructor) in order to warn on pessimizing moves.
    269   // The requirements for the move constructor are specified in C++11
    270   // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
    271   // we don't support reference (or move-only) deleters, the post conditions are
    272   // trivially true: we always copy construct the deleter from other's deleter.
    273   scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
    274 
    275   // Conversion constructor.  Allows construction from a scoped_ptr rvalue for a
    276   // convertible type and deleter.
    277   //
    278   // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
    279   // participate in overload resolution if all the following are true:
    280   // - U is implicitly convertible to T: this is important for 2 reasons:
    281   //     1. So type traits don't incorrectly return true, e.g.
    282   //          std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
    283   //        should be false.
    284   //     2. To make sure code like this compiles:
    285   //        void F(scoped_ptr<int>);
    286   //        void F(scoped_ptr<Base>);
    287   //        // Ambiguous since both conversion constructors match.
    288   //        F(scoped_ptr<Derived>());
    289   // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
    290   //   scoped_ptr<T>.
    291   // - D is a reference type and E is the same type, or D is not a reference
    292   //   type and E is implicitly convertible to D: again, we don't support
    293   //   reference deleters, so we only worry about the latter requirement.
    294   template <typename U,
    295             typename E,
    296             typename std::enable_if<!std::is_array<U>::value &&
    297                                     std::is_convertible<U*, T*>::value &&
    298                                     std::is_convertible<E, D>::value>::type* =
    299                 nullptr>
    300   scoped_ptr(scoped_ptr<U, E>&& other)
    301       : impl_(&other.impl_) {}
    302 
    303   // operator=.
    304   //
    305   // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
    306   // require a move assignment operator to trigger the pessimizing move warning:
    307   // in this case, the warning triggers when moving a temporary. For consistency
    308   // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
    309   // defines several requirements around this: like the move constructor, the
    310   // requirements are simplified by the fact that we don't support move-only or
    311   // reference deleters.
    312   scoped_ptr& operator=(scoped_ptr&& rhs) {
    313     impl_.TakeState(&rhs.impl_);
    314     return *this;
    315   }
    316 
    317   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
    318   // type and deleter.
    319   //
    320   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
    321   // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
    322   // requirement for this operator, but like the conversion constructor, the
    323   // requirements are greatly simplified by not supporting move-only or
    324   // reference deleters.
    325   template <typename U,
    326             typename E,
    327             typename std::enable_if<!std::is_array<U>::value &&
    328                                     std::is_convertible<U*, T*>::value &&
    329                                     // Note that this really should be
    330                                     // std::is_assignable, but <type_traits>
    331                                     // appears to be missing this on some
    332                                     // platforms. This is close enough (though
    333                                     // it's not the same).
    334                                     std::is_convertible<D, E>::value>::type* =
    335                 nullptr>
    336   scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
    337     impl_.TakeState(&rhs.impl_);
    338     return *this;
    339   }
    340 
    341   // operator=.  Allows assignment from a nullptr. Deletes the currently owned
    342   // object, if any.
    343   scoped_ptr& operator=(std::nullptr_t) {
    344     reset();
    345     return *this;
    346   }
    347 
    348   // Reset.  Deletes the currently owned object, if any.
    349   // Then takes ownership of a new object, if given.
    350   void reset(element_type* p = nullptr) { impl_.reset(p); }
    351 
    352   // Accessors to get the owned object.
    353   // operator* and operator-> will assert() if there is no current object.
    354   element_type& operator*() const {
    355     assert(impl_.get() != nullptr);
    356     return *impl_.get();
    357   }
    358   element_type* operator->() const  {
    359     assert(impl_.get() != nullptr);
    360     return impl_.get();
    361   }
    362   element_type* get() const { return impl_.get(); }
    363 
    364   // Access to the deleter.
    365   deleter_type& get_deleter() { return impl_.get_deleter(); }
    366   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    367 
    368   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    369   // implicitly convertible to a real bool (which is dangerous).
    370   //
    371   // Note that this trick is only safe when the == and != operators
    372   // are declared explicitly, as otherwise "scoped_ptr1 ==
    373   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
    374   // to Testable and then do the comparison).
    375  private:
    376   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
    377       scoped_ptr::*Testable;
    378 
    379  public:
    380   operator Testable() const {
    381     return impl_.get() ? &scoped_ptr::impl_ : nullptr;
    382   }
    383 
    384   // Swap two scoped pointers.
    385   void swap(scoped_ptr& p2) {
    386     impl_.swap(p2.impl_);
    387   }
    388 
    389   // Release a pointer.
    390   // The return value is the current pointer held by this object. If this object
    391   // holds a nullptr, the return value is nullptr. After this operation, this
    392   // object will hold a nullptr, and will not own the object any more.
    393   element_type* release() WARN_UNUSED_RESULT {
    394     return impl_.release();
    395   }
    396 
    397  private:
    398   // Needed to reach into |impl_| in the constructor.
    399   template <typename U, typename V> friend class scoped_ptr;
    400   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    401 
    402   // Forbidden for API compatibility with std::unique_ptr.
    403   explicit scoped_ptr(int disallow_construction_from_null);
    404 };
    405 
    406 template <class T, class D>
    407 class scoped_ptr<T[], D> {
    408   DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
    409 
    410  public:
    411   // The element and deleter types.
    412   using element_type = T;
    413   using deleter_type = D;
    414 
    415   // Constructor.  Defaults to initializing with nullptr.
    416   scoped_ptr() : impl_(nullptr) {}
    417 
    418   // Constructor. Stores the given array. Note that the argument's type
    419   // must exactly match T*. In particular:
    420   // - it cannot be a pointer to a type derived from T, because it is
    421   //   inherently unsafe in the general case to access an array through a
    422   //   pointer whose dynamic type does not match its static type (eg., if
    423   //   T and the derived types had different sizes access would be
    424   //   incorrectly calculated). Deletion is also always undefined
    425   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
    426   // - it cannot be const-qualified differently from T per unique_ptr spec
    427   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
    428   //   to work around this may use const_cast<const T*>().
    429   explicit scoped_ptr(element_type* array) : impl_(array) {}
    430 
    431   // Constructor.  Allows construction from a nullptr.
    432   scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
    433 
    434   // Constructor.  Allows construction from a scoped_ptr rvalue.
    435   scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
    436 
    437   // operator=.  Allows assignment from a scoped_ptr rvalue.
    438   scoped_ptr& operator=(scoped_ptr&& rhs) {
    439     impl_.TakeState(&rhs.impl_);
    440     return *this;
    441   }
    442 
    443   // operator=.  Allows assignment from a nullptr. Deletes the currently owned
    444   // array, if any.
    445   scoped_ptr& operator=(std::nullptr_t) {
    446     reset();
    447     return *this;
    448   }
    449 
    450   // Reset.  Deletes the currently owned array, if any.
    451   // Then takes ownership of a new object, if given.
    452   void reset(element_type* array = nullptr) { impl_.reset(array); }
    453 
    454   // Accessors to get the owned array.
    455   element_type& operator[](size_t i) const {
    456     assert(impl_.get() != nullptr);
    457     return impl_.get()[i];
    458   }
    459   element_type* get() const { return impl_.get(); }
    460 
    461   // Access to the deleter.
    462   deleter_type& get_deleter() { return impl_.get_deleter(); }
    463   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    464 
    465   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    466   // implicitly convertible to a real bool (which is dangerous).
    467  private:
    468   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
    469       scoped_ptr::*Testable;
    470 
    471  public:
    472   operator Testable() const {
    473     return impl_.get() ? &scoped_ptr::impl_ : nullptr;
    474   }
    475 
    476   // Swap two scoped pointers.
    477   void swap(scoped_ptr& p2) {
    478     impl_.swap(p2.impl_);
    479   }
    480 
    481   // Release a pointer.
    482   // The return value is the current pointer held by this object. If this object
    483   // holds a nullptr, the return value is nullptr. After this operation, this
    484   // object will hold a nullptr, and will not own the object any more.
    485   element_type* release() WARN_UNUSED_RESULT {
    486     return impl_.release();
    487   }
    488 
    489  private:
    490   // Force element_type to be a complete type.
    491   enum { type_must_be_complete = sizeof(element_type) };
    492 
    493   // Actually hold the data.
    494   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    495 
    496   // Disable initialization from any type other than element_type*, by
    497   // providing a constructor that matches such an initialization, but is
    498   // private and has no definition. This is disabled because it is not safe to
    499   // call delete[] on an array whose static type does not match its dynamic
    500   // type.
    501   template <typename U> explicit scoped_ptr(U* array);
    502   explicit scoped_ptr(int disallow_construction_from_null);
    503 
    504   // Disable reset() from any type other than element_type*, for the same
    505   // reasons as the constructor above.
    506   template <typename U> void reset(U* array);
    507   void reset(int disallow_reset_from_null);
    508 };
    509 
    510 // Free functions
    511 template <class T, class D>
    512 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
    513   p1.swap(p2);
    514 }
    515 
    516 template <class T1, class D1, class T2, class D2>
    517 bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
    518   return p1.get() == p2.get();
    519 }
    520 template <class T, class D>
    521 bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
    522   return p.get() == nullptr;
    523 }
    524 template <class T, class D>
    525 bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
    526   return p.get() == nullptr;
    527 }
    528 
    529 template <class T1, class D1, class T2, class D2>
    530 bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
    531   return !(p1 == p2);
    532 }
    533 template <class T, class D>
    534 bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
    535   return !(p == nullptr);
    536 }
    537 template <class T, class D>
    538 bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
    539   return !(p == nullptr);
    540 }
    541 
    542 template <class T1, class D1, class T2, class D2>
    543 bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
    544   return p1.get() < p2.get();
    545 }
    546 template <class T, class D>
    547 bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
    548   auto* ptr = p.get();
    549   return ptr < static_cast<decltype(ptr)>(nullptr);
    550 }
    551 template <class T, class D>
    552 bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
    553   auto* ptr = p.get();
    554   return static_cast<decltype(ptr)>(nullptr) < ptr;
    555 }
    556 
    557 template <class T1, class D1, class T2, class D2>
    558 bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
    559   return p2 < p1;
    560 }
    561 template <class T, class D>
    562 bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
    563   return nullptr < p;
    564 }
    565 template <class T, class D>
    566 bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
    567   return p < nullptr;
    568 }
    569 
    570 template <class T1, class D1, class T2, class D2>
    571 bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
    572   return !(p1 > p2);
    573 }
    574 template <class T, class D>
    575 bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
    576   return !(p > nullptr);
    577 }
    578 template <class T, class D>
    579 bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
    580   return !(nullptr > p);
    581 }
    582 
    583 template <class T1, class D1, class T2, class D2>
    584 bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
    585   return !(p1 < p2);
    586 }
    587 template <class T, class D>
    588 bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
    589   return !(p < nullptr);
    590 }
    591 template <class T, class D>
    592 bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
    593   return !(nullptr < p);
    594 }
    595 
    596 // A function to convert T* into scoped_ptr<T>
    597 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
    598 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
    599 template <typename T>
    600 scoped_ptr<T> make_scoped_ptr(T* ptr) {
    601   return scoped_ptr<T>(ptr);
    602 }
    603 
    604 template <typename T>
    605 std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
    606   return out << p.get();
    607 }
    608 
    609 #endif  // BASE_MEMORY_SCOPED_PTR_H_
    610