Home | History | Annotate | Download | only in SystemZ
      1 //==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Select instructions
     12 //===----------------------------------------------------------------------===//
     13 
     14 // C's ?: operator for floating-point operands.
     15 def SelectF32  : SelectWrapper<FP32>;
     16 def SelectF64  : SelectWrapper<FP64>;
     17 def SelectF128 : SelectWrapper<FP128>;
     18 
     19 defm CondStoreF32 : CondStores<FP32, nonvolatile_store,
     20                                nonvolatile_load, bdxaddr20only>;
     21 defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
     22                                nonvolatile_load, bdxaddr20only>;
     23 
     24 //===----------------------------------------------------------------------===//
     25 // Move instructions
     26 //===----------------------------------------------------------------------===//
     27 
     28 // Load zero.
     29 let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1 in {
     30   def LZER : InherentRRE<"lzer", 0xB374, FP32,  (fpimm0)>;
     31   def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  (fpimm0)>;
     32   def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
     33 }
     34 
     35 // Moves between two floating-point registers.
     36 let hasSideEffects = 0 in {
     37   def LER : UnaryRR <"le", 0x38,   null_frag, FP32,  FP32>;
     38   def LDR : UnaryRR <"ld", 0x28,   null_frag, FP64,  FP64>;
     39   def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>;
     40 }
     41 
     42 // Moves between two floating-point registers that also set the condition
     43 // codes.
     44 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
     45   defm LTEBR : LoadAndTestRRE<"lteb", 0xB302, FP32>;
     46   defm LTDBR : LoadAndTestRRE<"ltdb", 0xB312, FP64>;
     47   defm LTXBR : LoadAndTestRRE<"ltxb", 0xB342, FP128>;
     48 }
     49 // Note that LTxBRCompare is not available if we have vector support,
     50 // since load-and-test instructions will partially clobber the target
     51 // (vector) register.
     52 let Predicates = [FeatureNoVector] in {
     53   defm : CompareZeroFP<LTEBRCompare, FP32>;
     54   defm : CompareZeroFP<LTDBRCompare, FP64>;
     55   defm : CompareZeroFP<LTXBRCompare, FP128>;
     56 }
     57 
     58 // Use a normal load-and-test for compare against zero in case of
     59 // vector support (via a pseudo to simplify instruction selection).
     60 let Defs = [CC], usesCustomInserter = 1 in {
     61   def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>;
     62   def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>;
     63   def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>;
     64 }
     65 let Predicates = [FeatureVector] in {
     66   defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>;
     67   defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>;
     68   defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>;
     69 }
     70 
     71 // Moves between 64-bit integer and floating-point registers.
     72 def LGDR : UnaryRRE<"lgd", 0xB3CD, bitconvert, GR64, FP64>;
     73 def LDGR : UnaryRRE<"ldg", 0xB3C1, bitconvert, FP64, GR64>;
     74 
     75 // fcopysign with an FP32 result.
     76 let isCodeGenOnly = 1 in {
     77   def CPSDRss : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP32>;
     78   def CPSDRsd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP64>;
     79 }
     80 
     81 // The sign of an FP128 is in the high register.
     82 def : Pat<(fcopysign FP32:$src1, FP128:$src2),
     83           (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
     84 
     85 // fcopysign with an FP64 result.
     86 let isCodeGenOnly = 1 in
     87   def CPSDRds : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP32>;
     88 def CPSDRdd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP64>;
     89 
     90 // The sign of an FP128 is in the high register.
     91 def : Pat<(fcopysign FP64:$src1, FP128:$src2),
     92           (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
     93 
     94 // fcopysign with an FP128 result.  Use "upper" as the high half and leave
     95 // the low half as-is.
     96 class CopySign128<RegisterOperand cls, dag upper>
     97   : Pat<(fcopysign FP128:$src1, cls:$src2),
     98         (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
     99 
    100 def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
    101                                   FP32:$src2)>;
    102 def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
    103                                   FP64:$src2)>;
    104 def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
    105                                   (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
    106 
    107 defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
    108 defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
    109 defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;
    110 
    111 //===----------------------------------------------------------------------===//
    112 // Load instructions
    113 //===----------------------------------------------------------------------===//
    114 
    115 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
    116   defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
    117   defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
    118 
    119   // For z13 we prefer LDE over LE to avoid partial register dependencies.
    120   def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;
    121 
    122   // These instructions are split after register allocation, so we don't
    123   // want a custom inserter.
    124   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    125     def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
    126                      [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
    127   }
    128 }
    129 
    130 //===----------------------------------------------------------------------===//
    131 // Store instructions
    132 //===----------------------------------------------------------------------===//
    133 
    134 let SimpleBDXStore = 1 in {
    135   defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
    136   defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
    137 
    138   // These instructions are split after register allocation, so we don't
    139   // want a custom inserter.
    140   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    141     def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
    142                      [(store FP128:$src, bdxaddr20only128:$dst)]>;
    143   }
    144 }
    145 
    146 //===----------------------------------------------------------------------===//
    147 // Conversion instructions
    148 //===----------------------------------------------------------------------===//
    149 
    150 // Convert floating-point values to narrower representations, rounding
    151 // according to the current mode.  The destination of LEXBR and LDXBR
    152 // is a 128-bit value, but only the first register of the pair is used.
    153 def LEDBR : UnaryRRE<"ledb", 0xB344, fround,    FP32,  FP64>;
    154 def LEXBR : UnaryRRE<"lexb", 0xB346, null_frag, FP128, FP128>;
    155 def LDXBR : UnaryRRE<"ldxb", 0xB345, null_frag, FP128, FP128>;
    156 
    157 def LEDBRA : UnaryRRF4<"ledbra", 0xB344, FP32,  FP64>,
    158              Requires<[FeatureFPExtension]>;
    159 def LEXBRA : UnaryRRF4<"lexbra", 0xB346, FP128, FP128>,
    160              Requires<[FeatureFPExtension]>;
    161 def LDXBRA : UnaryRRF4<"ldxbra", 0xB345, FP128, FP128>,
    162              Requires<[FeatureFPExtension]>;
    163 
    164 def : Pat<(f32 (fround FP128:$src)),
    165           (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hr32)>;
    166 def : Pat<(f64 (fround FP128:$src)),
    167           (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
    168 
    169 // Extend register floating-point values to wider representations.
    170 def LDEBR : UnaryRRE<"ldeb", 0xB304, fextend, FP64,  FP32>;
    171 def LXEBR : UnaryRRE<"lxeb", 0xB306, fextend, FP128, FP32>;
    172 def LXDBR : UnaryRRE<"lxdb", 0xB305, fextend, FP128, FP64>;
    173 
    174 // Extend memory floating-point values to wider representations.
    175 def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64,  4>;
    176 def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128, 4>;
    177 def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128, 8>;
    178 
    179 // Convert a signed integer register value to a floating-point one.
    180 def CEFBR : UnaryRRE<"cefb", 0xB394, sint_to_fp, FP32,  GR32>;
    181 def CDFBR : UnaryRRE<"cdfb", 0xB395, sint_to_fp, FP64,  GR32>;
    182 def CXFBR : UnaryRRE<"cxfb", 0xB396, sint_to_fp, FP128, GR32>;
    183 
    184 def CEGBR : UnaryRRE<"cegb", 0xB3A4, sint_to_fp, FP32,  GR64>;
    185 def CDGBR : UnaryRRE<"cdgb", 0xB3A5, sint_to_fp, FP64,  GR64>;
    186 def CXGBR : UnaryRRE<"cxgb", 0xB3A6, sint_to_fp, FP128, GR64>;
    187 
    188 // Convert am unsigned integer register value to a floating-point one.
    189 let Predicates = [FeatureFPExtension] in {
    190   def CELFBR : UnaryRRF4<"celfbr", 0xB390, FP32,  GR32>;
    191   def CDLFBR : UnaryRRF4<"cdlfbr", 0xB391, FP64,  GR32>;
    192   def CXLFBR : UnaryRRF4<"cxlfbr", 0xB392, FP128, GR32>;
    193 
    194   def CELGBR : UnaryRRF4<"celgbr", 0xB3A0, FP32,  GR64>;
    195   def CDLGBR : UnaryRRF4<"cdlgbr", 0xB3A1, FP64,  GR64>;
    196   def CXLGBR : UnaryRRF4<"cxlgbr", 0xB3A2, FP128, GR64>;
    197 
    198   def : Pat<(f32  (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
    199   def : Pat<(f64  (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
    200   def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
    201 
    202   def : Pat<(f32  (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
    203   def : Pat<(f64  (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
    204   def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
    205 }
    206 
    207 // Convert a floating-point register value to a signed integer value,
    208 // with the second operand (modifier M3) specifying the rounding mode.
    209 let Defs = [CC] in {
    210   def CFEBR : UnaryRRF<"cfeb", 0xB398, GR32, FP32>;
    211   def CFDBR : UnaryRRF<"cfdb", 0xB399, GR32, FP64>;
    212   def CFXBR : UnaryRRF<"cfxb", 0xB39A, GR32, FP128>;
    213 
    214   def CGEBR : UnaryRRF<"cgeb", 0xB3A8, GR64, FP32>;
    215   def CGDBR : UnaryRRF<"cgdb", 0xB3A9, GR64, FP64>;
    216   def CGXBR : UnaryRRF<"cgxb", 0xB3AA, GR64, FP128>;
    217 }
    218 
    219 // fp_to_sint always rounds towards zero, which is modifier value 5.
    220 def : Pat<(i32 (fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
    221 def : Pat<(i32 (fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
    222 def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
    223 
    224 def : Pat<(i64 (fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
    225 def : Pat<(i64 (fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
    226 def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
    227 
    228 // Convert a floating-point register value to an unsigned integer value.
    229 let Predicates = [FeatureFPExtension] in {
    230   let Defs = [CC] in {
    231     def CLFEBR : UnaryRRF4<"clfebr", 0xB39C, GR32, FP32>;
    232     def CLFDBR : UnaryRRF4<"clfdbr", 0xB39D, GR32, FP64>;
    233     def CLFXBR : UnaryRRF4<"clfxbr", 0xB39E, GR32, FP128>;
    234 
    235     def CLGEBR : UnaryRRF4<"clgebr", 0xB3AC, GR64, FP32>;
    236     def CLGDBR : UnaryRRF4<"clgdbr", 0xB3AD, GR64, FP64>;
    237     def CLGXBR : UnaryRRF4<"clgxbr", 0xB3AE, GR64, FP128>;
    238   }
    239 
    240   def : Pat<(i32 (fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
    241   def : Pat<(i32 (fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
    242   def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
    243 
    244   def : Pat<(i64 (fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
    245   def : Pat<(i64 (fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
    246   def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
    247 }
    248 
    249 
    250 //===----------------------------------------------------------------------===//
    251 // Unary arithmetic
    252 //===----------------------------------------------------------------------===//
    253 
    254 // We prefer generic instructions during isel, because they do not
    255 // clobber CC and therefore give the scheduler more freedom. In cases
    256 // the CC is actually useful, the SystemZElimCompare pass will try to
    257 // convert generic instructions into opcodes that also set CC. Note
    258 // that lcdf / lpdf / lndf only affect the sign bit, and can therefore
    259 // be used with fp32 as well. This could be done for fp128, in which
    260 // case the operands would have to be tied.
    261 
    262 // Negation (Load Complement).
    263 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    264   def LCEBR : UnaryRRE<"lceb", 0xB303, null_frag, FP32,  FP32>;
    265   def LCDBR : UnaryRRE<"lcdb", 0xB313, null_frag, FP64,  FP64>;
    266   def LCXBR : UnaryRRE<"lcxb", 0xB343, fneg, FP128, FP128>;
    267 }
    268 // Generic form, which does not set CC.
    269 def LCDFR : UnaryRRE<"lcdf", 0xB373, fneg, FP64,  FP64>;
    270 let isCodeGenOnly = 1 in
    271   def LCDFR_32 : UnaryRRE<"lcdf", 0xB373, fneg, FP32,  FP32>;
    272 
    273 // Absolute value (Load Positive).
    274 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    275   def LPEBR : UnaryRRE<"lpeb", 0xB300, null_frag, FP32,  FP32>;
    276   def LPDBR : UnaryRRE<"lpdb", 0xB310, null_frag, FP64,  FP64>;
    277   def LPXBR : UnaryRRE<"lpxb", 0xB340, fabs, FP128, FP128>;
    278 }
    279 // Generic form, which does not set CC.
    280 def LPDFR : UnaryRRE<"lpdf", 0xB370, fabs, FP64,  FP64>;
    281 let isCodeGenOnly = 1 in
    282   def LPDFR_32 : UnaryRRE<"lpdf", 0xB370, fabs, FP32,  FP32>;
    283 
    284 // Negative absolute value (Load Negative).
    285 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    286   def LNEBR : UnaryRRE<"lneb", 0xB301, null_frag, FP32,  FP32>;
    287   def LNDBR : UnaryRRE<"lndb", 0xB311, null_frag, FP64,  FP64>;
    288   def LNXBR : UnaryRRE<"lnxb", 0xB341, fnabs, FP128, FP128>;
    289 }
    290 // Generic form, which does not set CC.
    291 def LNDFR : UnaryRRE<"lndf", 0xB371, fnabs, FP64,  FP64>;
    292 let isCodeGenOnly = 1 in
    293   def LNDFR_32 : UnaryRRE<"lndf", 0xB371, fnabs, FP32,  FP32>;
    294 
    295 // Square root.
    296 def SQEBR : UnaryRRE<"sqeb", 0xB314, fsqrt, FP32,  FP32>;
    297 def SQDBR : UnaryRRE<"sqdb", 0xB315, fsqrt, FP64,  FP64>;
    298 def SQXBR : UnaryRRE<"sqxb", 0xB316, fsqrt, FP128, FP128>;
    299 
    300 def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>;
    301 def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>;
    302 
    303 // Round to an integer, with the second operand (modifier M3) specifying
    304 // the rounding mode.  These forms always check for inexact conditions.
    305 def FIEBR : UnaryRRF<"fieb", 0xB357, FP32,  FP32>;
    306 def FIDBR : UnaryRRF<"fidb", 0xB35F, FP64,  FP64>;
    307 def FIXBR : UnaryRRF<"fixb", 0xB347, FP128, FP128>;
    308 
    309 // frint rounds according to the current mode (modifier 0) and detects
    310 // inexact conditions.
    311 def : Pat<(frint FP32:$src),  (FIEBR 0, FP32:$src)>;
    312 def : Pat<(frint FP64:$src),  (FIDBR 0, FP64:$src)>;
    313 def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
    314 
    315 let Predicates = [FeatureFPExtension] in {
    316   // Extended forms of the FIxBR instructions.  M4 can be set to 4
    317   // to suppress detection of inexact conditions.
    318   def FIEBRA : UnaryRRF4<"fiebra", 0xB357, FP32,  FP32>;
    319   def FIDBRA : UnaryRRF4<"fidbra", 0xB35F, FP64,  FP64>;
    320   def FIXBRA : UnaryRRF4<"fixbra", 0xB347, FP128, FP128>;
    321 
    322   // fnearbyint is like frint but does not detect inexact conditions.
    323   def : Pat<(fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
    324   def : Pat<(fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
    325   def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
    326 
    327   // floor is no longer allowed to raise an inexact condition,
    328   // so restrict it to the cases where the condition can be suppressed.
    329   // Mode 7 is round towards -inf.
    330   def : Pat<(ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
    331   def : Pat<(ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
    332   def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
    333 
    334   // Same idea for ceil, where mode 6 is round towards +inf.
    335   def : Pat<(fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
    336   def : Pat<(fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
    337   def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
    338 
    339   // Same idea for trunc, where mode 5 is round towards zero.
    340   def : Pat<(ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
    341   def : Pat<(ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
    342   def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
    343 
    344   // Same idea for round, where mode 1 is round towards nearest with
    345   // ties away from zero.
    346   def : Pat<(frnd FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
    347   def : Pat<(frnd FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
    348   def : Pat<(frnd FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
    349 }
    350 
    351 //===----------------------------------------------------------------------===//
    352 // Binary arithmetic
    353 //===----------------------------------------------------------------------===//
    354 
    355 // Addition.
    356 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    357   let isCommutable = 1 in {
    358     def AEBR : BinaryRRE<"aeb", 0xB30A, fadd, FP32,  FP32>;
    359     def ADBR : BinaryRRE<"adb", 0xB31A, fadd, FP64,  FP64>;
    360     def AXBR : BinaryRRE<"axb", 0xB34A, fadd, FP128, FP128>;
    361   }
    362   def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>;
    363   def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>;
    364 }
    365 
    366 // Subtraction.
    367 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    368   def SEBR : BinaryRRE<"seb", 0xB30B, fsub, FP32,  FP32>;
    369   def SDBR : BinaryRRE<"sdb", 0xB31B, fsub, FP64,  FP64>;
    370   def SXBR : BinaryRRE<"sxb", 0xB34B, fsub, FP128, FP128>;
    371 
    372   def SEB : BinaryRXE<"seb",  0xED0B, fsub, FP32, load, 4>;
    373   def SDB : BinaryRXE<"sdb",  0xED1B, fsub, FP64, load, 8>;
    374 }
    375 
    376 // Multiplication.
    377 let isCommutable = 1 in {
    378   def MEEBR : BinaryRRE<"meeb", 0xB317, fmul, FP32,  FP32>;
    379   def MDBR  : BinaryRRE<"mdb",  0xB31C, fmul, FP64,  FP64>;
    380   def MXBR  : BinaryRRE<"mxb",  0xB34C, fmul, FP128, FP128>;
    381 }
    382 def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>;
    383 def MDB  : BinaryRXE<"mdb",  0xED1C, fmul, FP64, load, 8>;
    384 
    385 // f64 multiplication of two FP32 registers.
    386 def MDEBR : BinaryRRE<"mdeb", 0xB30C, null_frag, FP64, FP32>;
    387 def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
    388           (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
    389                                 FP32:$src1, subreg_r32), FP32:$src2)>;
    390 
    391 // f64 multiplication of an FP32 register and an f32 memory.
    392 def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
    393 def : Pat<(fmul (f64 (fextend FP32:$src1)),
    394                 (f64 (extloadf32 bdxaddr12only:$addr))),
    395           (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_r32),
    396                 bdxaddr12only:$addr)>;
    397 
    398 // f128 multiplication of two FP64 registers.
    399 def MXDBR : BinaryRRE<"mxdb", 0xB307, null_frag, FP128, FP64>;
    400 def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
    401           (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
    402                                 FP64:$src1, subreg_h64), FP64:$src2)>;
    403 
    404 // f128 multiplication of an FP64 register and an f64 memory.
    405 def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
    406 def : Pat<(fmul (f128 (fextend FP64:$src1)),
    407                 (f128 (extloadf64 bdxaddr12only:$addr))),
    408           (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
    409                 bdxaddr12only:$addr)>;
    410 
    411 // Fused multiply-add.
    412 def MAEBR : TernaryRRD<"maeb", 0xB30E, z_fma, FP32>;
    413 def MADBR : TernaryRRD<"madb", 0xB31E, z_fma, FP64>;
    414 
    415 def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load, 4>;
    416 def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load, 8>;
    417 
    418 // Fused multiply-subtract.
    419 def MSEBR : TernaryRRD<"mseb", 0xB30F, z_fms, FP32>;
    420 def MSDBR : TernaryRRD<"msdb", 0xB31F, z_fms, FP64>;
    421 
    422 def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load, 4>;
    423 def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load, 8>;
    424 
    425 // Division.
    426 def DEBR : BinaryRRE<"deb", 0xB30D, fdiv, FP32,  FP32>;
    427 def DDBR : BinaryRRE<"ddb", 0xB31D, fdiv, FP64,  FP64>;
    428 def DXBR : BinaryRRE<"dxb", 0xB34D, fdiv, FP128, FP128>;
    429 
    430 def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>;
    431 def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>;
    432 
    433 //===----------------------------------------------------------------------===//
    434 // Comparisons
    435 //===----------------------------------------------------------------------===//
    436 
    437 let Defs = [CC], CCValues = 0xF in {
    438   def CEBR : CompareRRE<"ceb", 0xB309, z_fcmp, FP32,  FP32>;
    439   def CDBR : CompareRRE<"cdb", 0xB319, z_fcmp, FP64,  FP64>;
    440   def CXBR : CompareRRE<"cxb", 0xB349, z_fcmp, FP128, FP128>;
    441 
    442   def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
    443   def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;
    444 }
    445 
    446 //===----------------------------------------------------------------------===//
    447 // Peepholes
    448 //===----------------------------------------------------------------------===//
    449 
    450 def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
    451 def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
    452 def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
    453