Home | History | Annotate | Download | only in Scalar
      1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass identifies expensive constants to hoist and coalesces them to
     11 // better prepare it for SelectionDAG-based code generation. This works around
     12 // the limitations of the basic-block-at-a-time approach.
     13 //
     14 // First it scans all instructions for integer constants and calculates its
     15 // cost. If the constant can be folded into the instruction (the cost is
     16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
     17 // consider it expensive and leave it alone. This is the default behavior and
     18 // the default implementation of getIntImmCost will always return TCC_Free.
     19 //
     20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
     21 // into the instruction and it might be beneficial to hoist the constant.
     22 // Similar constants are coalesced to reduce register pressure and
     23 // materialization code.
     24 //
     25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
     26 // be live-out of the basic block. Otherwise the constant would be just
     27 // duplicated and each basic block would have its own copy in the SelectionDAG.
     28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
     29 // certain transformations on them, which would create a new expensive constant.
     30 //
     31 // This optimization is only applied to integer constants in instructions and
     32 // simple (this means not nested) constant cast expressions. For example:
     33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "llvm/Transforms/Scalar.h"
     37 #include "llvm/ADT/SmallSet.h"
     38 #include "llvm/ADT/SmallVector.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/Analysis/TargetTransformInfo.h"
     41 #include "llvm/IR/Constants.h"
     42 #include "llvm/IR/Dominators.h"
     43 #include "llvm/IR/IntrinsicInst.h"
     44 #include "llvm/Pass.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include <tuple>
     48 
     49 using namespace llvm;
     50 
     51 #define DEBUG_TYPE "consthoist"
     52 
     53 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
     54 STATISTIC(NumConstantsRebased, "Number of constants rebased");
     55 
     56 namespace {
     57 struct ConstantUser;
     58 struct RebasedConstantInfo;
     59 
     60 typedef SmallVector<ConstantUser, 8> ConstantUseListType;
     61 typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
     62 
     63 /// \brief Keeps track of the user of a constant and the operand index where the
     64 /// constant is used.
     65 struct ConstantUser {
     66   Instruction *Inst;
     67   unsigned OpndIdx;
     68 
     69   ConstantUser(Instruction *Inst, unsigned Idx) : Inst(Inst), OpndIdx(Idx) { }
     70 };
     71 
     72 /// \brief Keeps track of a constant candidate and its uses.
     73 struct ConstantCandidate {
     74   ConstantUseListType Uses;
     75   ConstantInt *ConstInt;
     76   unsigned CumulativeCost;
     77 
     78   ConstantCandidate(ConstantInt *ConstInt)
     79     : ConstInt(ConstInt), CumulativeCost(0) { }
     80 
     81   /// \brief Add the user to the use list and update the cost.
     82   void addUser(Instruction *Inst, unsigned Idx, unsigned Cost) {
     83     CumulativeCost += Cost;
     84     Uses.push_back(ConstantUser(Inst, Idx));
     85   }
     86 };
     87 
     88 /// \brief This represents a constant that has been rebased with respect to a
     89 /// base constant. The difference to the base constant is recorded in Offset.
     90 struct RebasedConstantInfo {
     91   ConstantUseListType Uses;
     92   Constant *Offset;
     93 
     94   RebasedConstantInfo(ConstantUseListType &&Uses, Constant *Offset)
     95     : Uses(std::move(Uses)), Offset(Offset) { }
     96 };
     97 
     98 /// \brief A base constant and all its rebased constants.
     99 struct ConstantInfo {
    100   ConstantInt *BaseConstant;
    101   RebasedConstantListType RebasedConstants;
    102 };
    103 
    104 /// \brief The constant hoisting pass.
    105 class ConstantHoisting : public FunctionPass {
    106   typedef DenseMap<ConstantInt *, unsigned> ConstCandMapType;
    107   typedef std::vector<ConstantCandidate> ConstCandVecType;
    108 
    109   const TargetTransformInfo *TTI;
    110   DominatorTree *DT;
    111   BasicBlock *Entry;
    112 
    113   /// Keeps track of constant candidates found in the function.
    114   ConstCandVecType ConstCandVec;
    115 
    116   /// Keep track of cast instructions we already cloned.
    117   SmallDenseMap<Instruction *, Instruction *> ClonedCastMap;
    118 
    119   /// These are the final constants we decided to hoist.
    120   SmallVector<ConstantInfo, 8> ConstantVec;
    121 public:
    122   static char ID; // Pass identification, replacement for typeid
    123   ConstantHoisting() : FunctionPass(ID), TTI(nullptr), DT(nullptr),
    124                        Entry(nullptr) {
    125     initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
    126   }
    127 
    128   bool runOnFunction(Function &Fn) override;
    129 
    130   const char *getPassName() const override { return "Constant Hoisting"; }
    131 
    132   void getAnalysisUsage(AnalysisUsage &AU) const override {
    133     AU.setPreservesCFG();
    134     AU.addRequired<DominatorTreeWrapperPass>();
    135     AU.addRequired<TargetTransformInfoWrapperPass>();
    136   }
    137 
    138 private:
    139   /// \brief Initialize the pass.
    140   void setup(Function &Fn) {
    141     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    142     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn);
    143     Entry = &Fn.getEntryBlock();
    144   }
    145 
    146   /// \brief Cleanup.
    147   void cleanup() {
    148     ConstantVec.clear();
    149     ClonedCastMap.clear();
    150     ConstCandVec.clear();
    151 
    152     TTI = nullptr;
    153     DT = nullptr;
    154     Entry = nullptr;
    155   }
    156 
    157   Instruction *findMatInsertPt(Instruction *Inst, unsigned Idx = ~0U) const;
    158   Instruction *findConstantInsertionPoint(const ConstantInfo &ConstInfo) const;
    159   void collectConstantCandidates(ConstCandMapType &ConstCandMap,
    160                                  Instruction *Inst, unsigned Idx,
    161                                  ConstantInt *ConstInt);
    162   void collectConstantCandidates(ConstCandMapType &ConstCandMap,
    163                                  Instruction *Inst);
    164   void collectConstantCandidates(Function &Fn);
    165   void findAndMakeBaseConstant(ConstCandVecType::iterator S,
    166                                ConstCandVecType::iterator E);
    167   void findBaseConstants();
    168   void emitBaseConstants(Instruction *Base, Constant *Offset,
    169                          const ConstantUser &ConstUser);
    170   bool emitBaseConstants();
    171   void deleteDeadCastInst() const;
    172   bool optimizeConstants(Function &Fn);
    173 };
    174 }
    175 
    176 char ConstantHoisting::ID = 0;
    177 INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
    178                       false, false)
    179 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    180 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    181 INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
    182                     false, false)
    183 
    184 FunctionPass *llvm::createConstantHoistingPass() {
    185   return new ConstantHoisting();
    186 }
    187 
    188 /// \brief Perform the constant hoisting optimization for the given function.
    189 bool ConstantHoisting::runOnFunction(Function &Fn) {
    190   if (skipOptnoneFunction(Fn))
    191     return false;
    192 
    193   DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
    194   DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
    195 
    196   setup(Fn);
    197 
    198   bool MadeChange = optimizeConstants(Fn);
    199 
    200   if (MadeChange) {
    201     DEBUG(dbgs() << "********** Function after Constant Hoisting: "
    202                  << Fn.getName() << '\n');
    203     DEBUG(dbgs() << Fn);
    204   }
    205   DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
    206 
    207   cleanup();
    208 
    209   return MadeChange;
    210 }
    211 
    212 
    213 /// \brief Find the constant materialization insertion point.
    214 Instruction *ConstantHoisting::findMatInsertPt(Instruction *Inst,
    215                                                unsigned Idx) const {
    216   // If the operand is a cast instruction, then we have to materialize the
    217   // constant before the cast instruction.
    218   if (Idx != ~0U) {
    219     Value *Opnd = Inst->getOperand(Idx);
    220     if (auto CastInst = dyn_cast<Instruction>(Opnd))
    221       if (CastInst->isCast())
    222         return CastInst;
    223   }
    224 
    225   // The simple and common case. This also includes constant expressions.
    226   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
    227     return Inst;
    228 
    229   // We can't insert directly before a phi node or an eh pad. Insert before
    230   // the terminator of the incoming or dominating block.
    231   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
    232   if (Idx != ~0U && isa<PHINode>(Inst))
    233     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
    234 
    235   BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
    236   return IDom->getTerminator();
    237 }
    238 
    239 /// \brief Find an insertion point that dominates all uses.
    240 Instruction *ConstantHoisting::
    241 findConstantInsertionPoint(const ConstantInfo &ConstInfo) const {
    242   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
    243   // Collect all basic blocks.
    244   SmallPtrSet<BasicBlock *, 8> BBs;
    245   for (auto const &RCI : ConstInfo.RebasedConstants)
    246     for (auto const &U : RCI.Uses)
    247       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
    248 
    249   if (BBs.count(Entry))
    250     return &Entry->front();
    251 
    252   while (BBs.size() >= 2) {
    253     BasicBlock *BB, *BB1, *BB2;
    254     BB1 = *BBs.begin();
    255     BB2 = *std::next(BBs.begin());
    256     BB = DT->findNearestCommonDominator(BB1, BB2);
    257     if (BB == Entry)
    258       return &Entry->front();
    259     BBs.erase(BB1);
    260     BBs.erase(BB2);
    261     BBs.insert(BB);
    262   }
    263   assert((BBs.size() == 1) && "Expected only one element.");
    264   Instruction &FirstInst = (*BBs.begin())->front();
    265   return findMatInsertPt(&FirstInst);
    266 }
    267 
    268 
    269 /// \brief Record constant integer ConstInt for instruction Inst at operand
    270 /// index Idx.
    271 ///
    272 /// The operand at index Idx is not necessarily the constant integer itself. It
    273 /// could also be a cast instruction or a constant expression that uses the
    274 // constant integer.
    275 void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
    276                                                  Instruction *Inst,
    277                                                  unsigned Idx,
    278                                                  ConstantInt *ConstInt) {
    279   unsigned Cost;
    280   // Ask the target about the cost of materializing the constant for the given
    281   // instruction and operand index.
    282   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
    283     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
    284                               ConstInt->getValue(), ConstInt->getType());
    285   else
    286     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
    287                               ConstInt->getType());
    288 
    289   // Ignore cheap integer constants.
    290   if (Cost > TargetTransformInfo::TCC_Basic) {
    291     ConstCandMapType::iterator Itr;
    292     bool Inserted;
    293     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
    294     if (Inserted) {
    295       ConstCandVec.push_back(ConstantCandidate(ConstInt));
    296       Itr->second = ConstCandVec.size() - 1;
    297     }
    298     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
    299     DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
    300             dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
    301                    << " with cost " << Cost << '\n';
    302           else
    303           dbgs() << "Collect constant " << *ConstInt << " indirectly from "
    304                  << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
    305                  << Cost << '\n';
    306     );
    307   }
    308 }
    309 
    310 /// \brief Scan the instruction for expensive integer constants and record them
    311 /// in the constant candidate vector.
    312 void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
    313                                                  Instruction *Inst) {
    314   // Skip all cast instructions. They are visited indirectly later on.
    315   if (Inst->isCast())
    316     return;
    317 
    318   // Can't handle inline asm. Skip it.
    319   if (auto Call = dyn_cast<CallInst>(Inst))
    320     if (isa<InlineAsm>(Call->getCalledValue()))
    321       return;
    322 
    323   // Scan all operands.
    324   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
    325     Value *Opnd = Inst->getOperand(Idx);
    326 
    327     // Visit constant integers.
    328     if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
    329       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    330       continue;
    331     }
    332 
    333     // Visit cast instructions that have constant integers.
    334     if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    335       // Only visit cast instructions, which have been skipped. All other
    336       // instructions should have already been visited.
    337       if (!CastInst->isCast())
    338         continue;
    339 
    340       if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
    341         // Pretend the constant is directly used by the instruction and ignore
    342         // the cast instruction.
    343         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    344         continue;
    345       }
    346     }
    347 
    348     // Visit constant expressions that have constant integers.
    349     if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    350       // Only visit constant cast expressions.
    351       if (!ConstExpr->isCast())
    352         continue;
    353 
    354       if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
    355         // Pretend the constant is directly used by the instruction and ignore
    356         // the constant expression.
    357         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    358         continue;
    359       }
    360     }
    361   } // end of for all operands
    362 }
    363 
    364 /// \brief Collect all integer constants in the function that cannot be folded
    365 /// into an instruction itself.
    366 void ConstantHoisting::collectConstantCandidates(Function &Fn) {
    367   ConstCandMapType ConstCandMap;
    368   for (BasicBlock &BB : Fn)
    369     for (Instruction &Inst : BB)
    370       collectConstantCandidates(ConstCandMap, &Inst);
    371 }
    372 
    373 /// \brief Find the base constant within the given range and rebase all other
    374 /// constants with respect to the base constant.
    375 void ConstantHoisting::findAndMakeBaseConstant(ConstCandVecType::iterator S,
    376                                                ConstCandVecType::iterator E) {
    377   auto MaxCostItr = S;
    378   unsigned NumUses = 0;
    379   // Use the constant that has the maximum cost as base constant.
    380   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    381     NumUses += ConstCand->Uses.size();
    382     if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
    383       MaxCostItr = ConstCand;
    384   }
    385 
    386   // Don't hoist constants that have only one use.
    387   if (NumUses <= 1)
    388     return;
    389 
    390   ConstantInfo ConstInfo;
    391   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
    392   Type *Ty = ConstInfo.BaseConstant->getType();
    393 
    394   // Rebase the constants with respect to the base constant.
    395   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    396     APInt Diff = ConstCand->ConstInt->getValue() -
    397                  ConstInfo.BaseConstant->getValue();
    398     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
    399     ConstInfo.RebasedConstants.push_back(
    400       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
    401   }
    402   ConstantVec.push_back(std::move(ConstInfo));
    403 }
    404 
    405 /// \brief Finds and combines constant candidates that can be easily
    406 /// rematerialized with an add from a common base constant.
    407 void ConstantHoisting::findBaseConstants() {
    408   // Sort the constants by value and type. This invalidates the mapping!
    409   std::sort(ConstCandVec.begin(), ConstCandVec.end(),
    410             [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
    411     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
    412       return LHS.ConstInt->getType()->getBitWidth() <
    413              RHS.ConstInt->getType()->getBitWidth();
    414     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
    415   });
    416 
    417   // Simple linear scan through the sorted constant candidate vector for viable
    418   // merge candidates.
    419   auto MinValItr = ConstCandVec.begin();
    420   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
    421        CC != E; ++CC) {
    422     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
    423       // Check if the constant is in range of an add with immediate.
    424       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
    425       if ((Diff.getBitWidth() <= 64) &&
    426           TTI->isLegalAddImmediate(Diff.getSExtValue()))
    427         continue;
    428     }
    429     // We either have now a different constant type or the constant is not in
    430     // range of an add with immediate anymore.
    431     findAndMakeBaseConstant(MinValItr, CC);
    432     // Start a new base constant search.
    433     MinValItr = CC;
    434   }
    435   // Finalize the last base constant search.
    436   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
    437 }
    438 
    439 /// \brief Updates the operand at Idx in instruction Inst with the result of
    440 ///        instruction Mat. If the instruction is a PHI node then special
    441 ///        handling for duplicate values form the same incomming basic block is
    442 ///        required.
    443 /// \return The update will always succeed, but the return value indicated if
    444 ///         Mat was used for the update or not.
    445 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
    446   if (auto PHI = dyn_cast<PHINode>(Inst)) {
    447     // Check if any previous operand of the PHI node has the same incoming basic
    448     // block. This is a very odd case that happens when the incoming basic block
    449     // has a switch statement. In this case use the same value as the previous
    450     // operand(s), otherwise we will fail verification due to different values.
    451     // The values are actually the same, but the variable names are different
    452     // and the verifier doesn't like that.
    453     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
    454     for (unsigned i = 0; i < Idx; ++i) {
    455       if (PHI->getIncomingBlock(i) == IncomingBB) {
    456         Value *IncomingVal = PHI->getIncomingValue(i);
    457         Inst->setOperand(Idx, IncomingVal);
    458         return false;
    459       }
    460     }
    461   }
    462 
    463   Inst->setOperand(Idx, Mat);
    464   return true;
    465 }
    466 
    467 /// \brief Emit materialization code for all rebased constants and update their
    468 /// users.
    469 void ConstantHoisting::emitBaseConstants(Instruction *Base, Constant *Offset,
    470                                          const ConstantUser &ConstUser) {
    471   Instruction *Mat = Base;
    472   if (Offset) {
    473     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
    474                                                ConstUser.OpndIdx);
    475     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
    476                                  "const_mat", InsertionPt);
    477 
    478     DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
    479                  << " + " << *Offset << ") in BB "
    480                  << Mat->getParent()->getName() << '\n' << *Mat << '\n');
    481     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
    482   }
    483   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
    484 
    485   // Visit constant integer.
    486   if (isa<ConstantInt>(Opnd)) {
    487     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    488     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
    489       Mat->eraseFromParent();
    490     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    491     return;
    492   }
    493 
    494   // Visit cast instruction.
    495   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    496     assert(CastInst->isCast() && "Expected an cast instruction!");
    497     // Check if we already have visited this cast instruction before to avoid
    498     // unnecessary cloning.
    499     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
    500     if (!ClonedCastInst) {
    501       ClonedCastInst = CastInst->clone();
    502       ClonedCastInst->setOperand(0, Mat);
    503       ClonedCastInst->insertAfter(CastInst);
    504       // Use the same debug location as the original cast instruction.
    505       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
    506       DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
    507                    << "To               : " << *ClonedCastInst << '\n');
    508     }
    509 
    510     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    511     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
    512     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    513     return;
    514   }
    515 
    516   // Visit constant expression.
    517   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    518     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
    519     ConstExprInst->setOperand(0, Mat);
    520     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
    521                                                 ConstUser.OpndIdx));
    522 
    523     // Use the same debug location as the instruction we are about to update.
    524     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
    525 
    526     DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
    527                  << "From              : " << *ConstExpr << '\n');
    528     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    529     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
    530       ConstExprInst->eraseFromParent();
    531       if (Offset)
    532         Mat->eraseFromParent();
    533     }
    534     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    535     return;
    536   }
    537 }
    538 
    539 /// \brief Hoist and hide the base constant behind a bitcast and emit
    540 /// materialization code for derived constants.
    541 bool ConstantHoisting::emitBaseConstants() {
    542   bool MadeChange = false;
    543   for (auto const &ConstInfo : ConstantVec) {
    544     // Hoist and hide the base constant behind a bitcast.
    545     Instruction *IP = findConstantInsertionPoint(ConstInfo);
    546     IntegerType *Ty = ConstInfo.BaseConstant->getType();
    547     Instruction *Base =
    548       new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
    549     DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
    550                  << IP->getParent()->getName() << '\n' << *Base << '\n');
    551     NumConstantsHoisted++;
    552 
    553     // Emit materialization code for all rebased constants.
    554     for (auto const &RCI : ConstInfo.RebasedConstants) {
    555       NumConstantsRebased++;
    556       for (auto const &U : RCI.Uses)
    557         emitBaseConstants(Base, RCI.Offset, U);
    558     }
    559 
    560     // Use the same debug location as the last user of the constant.
    561     assert(!Base->use_empty() && "The use list is empty!?");
    562     assert(isa<Instruction>(Base->user_back()) &&
    563            "All uses should be instructions.");
    564     Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
    565 
    566     // Correct for base constant, which we counted above too.
    567     NumConstantsRebased--;
    568     MadeChange = true;
    569   }
    570   return MadeChange;
    571 }
    572 
    573 /// \brief Check all cast instructions we made a copy of and remove them if they
    574 /// have no more users.
    575 void ConstantHoisting::deleteDeadCastInst() const {
    576   for (auto const &I : ClonedCastMap)
    577     if (I.first->use_empty())
    578       I.first->eraseFromParent();
    579 }
    580 
    581 /// \brief Optimize expensive integer constants in the given function.
    582 bool ConstantHoisting::optimizeConstants(Function &Fn) {
    583   // Collect all constant candidates.
    584   collectConstantCandidates(Fn);
    585 
    586   // There are no constant candidates to worry about.
    587   if (ConstCandVec.empty())
    588     return false;
    589 
    590   // Combine constants that can be easily materialized with an add from a common
    591   // base constant.
    592   findBaseConstants();
    593 
    594   // There are no constants to emit.
    595   if (ConstantVec.empty())
    596     return false;
    597 
    598   // Finally hoist the base constant and emit materialization code for dependent
    599   // constants.
    600   bool MadeChange = emitBaseConstants();
    601 
    602   // Cleanup dead instructions.
    603   deleteDeadCastInst();
    604 
    605   return MadeChange;
    606 }
    607