Home | History | Annotate | Download | only in Scalar
      1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass moves instructions into successor blocks, when possible, so that
     11 // they aren't executed on paths where their results aren't needed.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/Analysis/LoopInfo.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/IR/CFG.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/IntrinsicInst.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 using namespace llvm;
     28 
     29 #define DEBUG_TYPE "sink"
     30 
     31 STATISTIC(NumSunk, "Number of instructions sunk");
     32 STATISTIC(NumSinkIter, "Number of sinking iterations");
     33 
     34 namespace {
     35   class Sinking : public FunctionPass {
     36     DominatorTree *DT;
     37     LoopInfo *LI;
     38     AliasAnalysis *AA;
     39 
     40   public:
     41     static char ID; // Pass identification
     42     Sinking() : FunctionPass(ID) {
     43       initializeSinkingPass(*PassRegistry::getPassRegistry());
     44     }
     45 
     46     bool runOnFunction(Function &F) override;
     47 
     48     void getAnalysisUsage(AnalysisUsage &AU) const override {
     49       AU.setPreservesCFG();
     50       FunctionPass::getAnalysisUsage(AU);
     51       AU.addRequired<AAResultsWrapperPass>();
     52       AU.addRequired<DominatorTreeWrapperPass>();
     53       AU.addRequired<LoopInfoWrapperPass>();
     54       AU.addPreserved<DominatorTreeWrapperPass>();
     55       AU.addPreserved<LoopInfoWrapperPass>();
     56     }
     57   private:
     58     bool ProcessBlock(BasicBlock &BB);
     59     bool SinkInstruction(Instruction *I, SmallPtrSetImpl<Instruction*> &Stores);
     60     bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
     61     bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
     62   };
     63 } // end anonymous namespace
     64 
     65 char Sinking::ID = 0;
     66 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
     67 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
     68 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     69 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
     70 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
     71 
     72 FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
     73 
     74 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
     75 /// occur in blocks dominated by the specified block.
     76 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
     77                                       BasicBlock *BB) const {
     78   // Ignoring debug uses is necessary so debug info doesn't affect the code.
     79   // This may leave a referencing dbg_value in the original block, before
     80   // the definition of the vreg.  Dwarf generator handles this although the
     81   // user might not get the right info at runtime.
     82   for (Use &U : Inst->uses()) {
     83     // Determine the block of the use.
     84     Instruction *UseInst = cast<Instruction>(U.getUser());
     85     BasicBlock *UseBlock = UseInst->getParent();
     86     if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
     87       // PHI nodes use the operand in the predecessor block, not the block with
     88       // the PHI.
     89       unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
     90       UseBlock = PN->getIncomingBlock(Num);
     91     }
     92     // Check that it dominates.
     93     if (!DT->dominates(BB, UseBlock))
     94       return false;
     95   }
     96   return true;
     97 }
     98 
     99 bool Sinking::runOnFunction(Function &F) {
    100   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    101   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    102   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    103 
    104   bool MadeChange, EverMadeChange = false;
    105 
    106   do {
    107     MadeChange = false;
    108     DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
    109     // Process all basic blocks.
    110     for (Function::iterator I = F.begin(), E = F.end();
    111          I != E; ++I)
    112       MadeChange |= ProcessBlock(*I);
    113     EverMadeChange |= MadeChange;
    114     NumSinkIter++;
    115   } while (MadeChange);
    116 
    117   return EverMadeChange;
    118 }
    119 
    120 bool Sinking::ProcessBlock(BasicBlock &BB) {
    121   // Can't sink anything out of a block that has less than two successors.
    122   if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
    123 
    124   // Don't bother sinking code out of unreachable blocks. In addition to being
    125   // unprofitable, it can also lead to infinite looping, because in an
    126   // unreachable loop there may be nowhere to stop.
    127   if (!DT->isReachableFromEntry(&BB)) return false;
    128 
    129   bool MadeChange = false;
    130 
    131   // Walk the basic block bottom-up.  Remember if we saw a store.
    132   BasicBlock::iterator I = BB.end();
    133   --I;
    134   bool ProcessedBegin = false;
    135   SmallPtrSet<Instruction *, 8> Stores;
    136   do {
    137     Instruction *Inst = &*I; // The instruction to sink.
    138 
    139     // Predecrement I (if it's not begin) so that it isn't invalidated by
    140     // sinking.
    141     ProcessedBegin = I == BB.begin();
    142     if (!ProcessedBegin)
    143       --I;
    144 
    145     if (isa<DbgInfoIntrinsic>(Inst))
    146       continue;
    147 
    148     if (SinkInstruction(Inst, Stores))
    149       ++NumSunk, MadeChange = true;
    150 
    151     // If we just processed the first instruction in the block, we're done.
    152   } while (!ProcessedBegin);
    153 
    154   return MadeChange;
    155 }
    156 
    157 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
    158                          SmallPtrSetImpl<Instruction *> &Stores) {
    159 
    160   if (Inst->mayWriteToMemory()) {
    161     Stores.insert(Inst);
    162     return false;
    163   }
    164 
    165   if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
    166     MemoryLocation Loc = MemoryLocation::get(L);
    167     for (Instruction *S : Stores)
    168       if (AA->getModRefInfo(S, Loc) & MRI_Mod)
    169         return false;
    170   }
    171 
    172   if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst) || Inst->isEHPad() ||
    173       Inst->mayThrow())
    174     return false;
    175 
    176   // Convergent operations cannot be made control-dependent on additional
    177   // values.
    178   if (auto CS = CallSite(Inst)) {
    179     if (CS.hasFnAttr(Attribute::Convergent))
    180       return false;
    181   }
    182 
    183   return true;
    184 }
    185 
    186 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
    187 /// in the specified basic block.
    188 bool Sinking::IsAcceptableTarget(Instruction *Inst,
    189                                  BasicBlock *SuccToSinkTo) const {
    190   assert(Inst && "Instruction to be sunk is null");
    191   assert(SuccToSinkTo && "Candidate sink target is null");
    192 
    193   // It is not possible to sink an instruction into its own block.  This can
    194   // happen with loops.
    195   if (Inst->getParent() == SuccToSinkTo)
    196     return false;
    197 
    198   // It's never legal to sink an instruction into a block which terminates in an
    199   // EH-pad.
    200   if (SuccToSinkTo->getTerminator()->isExceptional())
    201     return false;
    202 
    203   // If the block has multiple predecessors, this would introduce computation
    204   // on different code paths.  We could split the critical edge, but for now we
    205   // just punt.
    206   // FIXME: Split critical edges if not backedges.
    207   if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
    208     // We cannot sink a load across a critical edge - there may be stores in
    209     // other code paths.
    210     if (!isSafeToSpeculativelyExecute(Inst))
    211       return false;
    212 
    213     // We don't want to sink across a critical edge if we don't dominate the
    214     // successor. We could be introducing calculations to new code paths.
    215     if (!DT->dominates(Inst->getParent(), SuccToSinkTo))
    216       return false;
    217 
    218     // Don't sink instructions into a loop.
    219     Loop *succ = LI->getLoopFor(SuccToSinkTo);
    220     Loop *cur = LI->getLoopFor(Inst->getParent());
    221     if (succ != nullptr && succ != cur)
    222       return false;
    223   }
    224 
    225   // Finally, check that all the uses of the instruction are actually
    226   // dominated by the candidate
    227   return AllUsesDominatedByBlock(Inst, SuccToSinkTo);
    228 }
    229 
    230 /// SinkInstruction - Determine whether it is safe to sink the specified machine
    231 /// instruction out of its current block into a successor.
    232 bool Sinking::SinkInstruction(Instruction *Inst,
    233                               SmallPtrSetImpl<Instruction *> &Stores) {
    234 
    235   // Don't sink static alloca instructions.  CodeGen assumes allocas outside the
    236   // entry block are dynamically sized stack objects.
    237   if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
    238     if (AI->isStaticAlloca())
    239       return false;
    240 
    241   // Check if it's safe to move the instruction.
    242   if (!isSafeToMove(Inst, AA, Stores))
    243     return false;
    244 
    245   // FIXME: This should include support for sinking instructions within the
    246   // block they are currently in to shorten the live ranges.  We often get
    247   // instructions sunk into the top of a large block, but it would be better to
    248   // also sink them down before their first use in the block.  This xform has to
    249   // be careful not to *increase* register pressure though, e.g. sinking
    250   // "x = y + z" down if it kills y and z would increase the live ranges of y
    251   // and z and only shrink the live range of x.
    252 
    253   // SuccToSinkTo - This is the successor to sink this instruction to, once we
    254   // decide.
    255   BasicBlock *SuccToSinkTo = nullptr;
    256 
    257   // Instructions can only be sunk if all their uses are in blocks
    258   // dominated by one of the successors.
    259   // Look at all the postdominators and see if we can sink it in one.
    260   DomTreeNode *DTN = DT->getNode(Inst->getParent());
    261   for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
    262       I != E && SuccToSinkTo == nullptr; ++I) {
    263     BasicBlock *Candidate = (*I)->getBlock();
    264     if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
    265         IsAcceptableTarget(Inst, Candidate))
    266       SuccToSinkTo = Candidate;
    267   }
    268 
    269   // If no suitable postdominator was found, look at all the successors and
    270   // decide which one we should sink to, if any.
    271   for (succ_iterator I = succ_begin(Inst->getParent()),
    272       E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
    273     if (IsAcceptableTarget(Inst, *I))
    274       SuccToSinkTo = *I;
    275   }
    276 
    277   // If we couldn't find a block to sink to, ignore this instruction.
    278   if (!SuccToSinkTo)
    279     return false;
    280 
    281   DEBUG(dbgs() << "Sink" << *Inst << " (";
    282         Inst->getParent()->printAsOperand(dbgs(), false);
    283         dbgs() << " -> ";
    284         SuccToSinkTo->printAsOperand(dbgs(), false);
    285         dbgs() << ")\n");
    286 
    287   // Move the instruction.
    288   Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
    289   return true;
    290 }
    291