Home | History | Annotate | Download | only in Utils
      1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms loops by placing phi nodes at the end of the loops for
     11 // all values that are live across the loop boundary.  For example, it turns
     12 // the left into the right code:
     13 //
     14 // for (...)                for (...)
     15 //   if (c)                   if (c)
     16 //     X1 = ...                 X1 = ...
     17 //   else                     else
     18 //     X2 = ...                 X2 = ...
     19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
     20 // ... = X3 + 4             X4 = phi(X3)
     21 //                          ... = X4 + 4
     22 //
     23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
     24 // be trivially eliminated by InstCombine.  The major benefit of this
     25 // transformation is that it makes many other loop optimizations, such as
     26 // LoopUnswitching, simpler.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "llvm/Transforms/Scalar.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/Statistic.h"
     33 #include "llvm/Analysis/AliasAnalysis.h"
     34 #include "llvm/Analysis/GlobalsModRef.h"
     35 #include "llvm/Analysis/LoopPass.h"
     36 #include "llvm/Analysis/ScalarEvolution.h"
     37 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     38 #include "llvm/IR/Constants.h"
     39 #include "llvm/IR/Dominators.h"
     40 #include "llvm/IR/Function.h"
     41 #include "llvm/IR/Instructions.h"
     42 #include "llvm/IR/PredIteratorCache.h"
     43 #include "llvm/Pass.h"
     44 #include "llvm/Transforms/Utils/LoopUtils.h"
     45 #include "llvm/Transforms/Utils/SSAUpdater.h"
     46 using namespace llvm;
     47 
     48 #define DEBUG_TYPE "lcssa"
     49 
     50 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
     51 
     52 /// Return true if the specified block is in the list.
     53 static bool isExitBlock(BasicBlock *BB,
     54                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
     55   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
     56     if (ExitBlocks[i] == BB)
     57       return true;
     58   return false;
     59 }
     60 
     61 /// Given an instruction in the loop, check to see if it has any uses that are
     62 /// outside the current loop.  If so, insert LCSSA PHI nodes and rewrite the
     63 /// uses.
     64 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
     65                                const SmallVectorImpl<BasicBlock *> &ExitBlocks,
     66                                PredIteratorCache &PredCache, LoopInfo *LI) {
     67   SmallVector<Use *, 16> UsesToRewrite;
     68 
     69   // Tokens cannot be used in PHI nodes, so we skip over them.
     70   // We can run into tokens which are live out of a loop with catchswitch
     71   // instructions in Windows EH if the catchswitch has one catchpad which
     72   // is inside the loop and another which is not.
     73   if (Inst.getType()->isTokenTy())
     74     return false;
     75 
     76   BasicBlock *InstBB = Inst.getParent();
     77 
     78   for (Use &U : Inst.uses()) {
     79     Instruction *User = cast<Instruction>(U.getUser());
     80     BasicBlock *UserBB = User->getParent();
     81     if (PHINode *PN = dyn_cast<PHINode>(User))
     82       UserBB = PN->getIncomingBlock(U);
     83 
     84     if (InstBB != UserBB && !L.contains(UserBB))
     85       UsesToRewrite.push_back(&U);
     86   }
     87 
     88   // If there are no uses outside the loop, exit with no change.
     89   if (UsesToRewrite.empty())
     90     return false;
     91 
     92   ++NumLCSSA; // We are applying the transformation
     93 
     94   // Invoke instructions are special in that their result value is not available
     95   // along their unwind edge. The code below tests to see whether DomBB
     96   // dominates the value, so adjust DomBB to the normal destination block,
     97   // which is effectively where the value is first usable.
     98   BasicBlock *DomBB = Inst.getParent();
     99   if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
    100     DomBB = Inv->getNormalDest();
    101 
    102   DomTreeNode *DomNode = DT.getNode(DomBB);
    103 
    104   SmallVector<PHINode *, 16> AddedPHIs;
    105   SmallVector<PHINode *, 8> PostProcessPHIs;
    106 
    107   SSAUpdater SSAUpdate;
    108   SSAUpdate.Initialize(Inst.getType(), Inst.getName());
    109 
    110   // Insert the LCSSA phi's into all of the exit blocks dominated by the
    111   // value, and add them to the Phi's map.
    112   for (BasicBlock *ExitBB : ExitBlocks) {
    113     if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
    114       continue;
    115 
    116     // If we already inserted something for this BB, don't reprocess it.
    117     if (SSAUpdate.HasValueForBlock(ExitBB))
    118       continue;
    119 
    120     PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB),
    121                                   Inst.getName() + ".lcssa", &ExitBB->front());
    122 
    123     // Add inputs from inside the loop for this PHI.
    124     for (BasicBlock *Pred : PredCache.get(ExitBB)) {
    125       PN->addIncoming(&Inst, Pred);
    126 
    127       // If the exit block has a predecessor not within the loop, arrange for
    128       // the incoming value use corresponding to that predecessor to be
    129       // rewritten in terms of a different LCSSA PHI.
    130       if (!L.contains(Pred))
    131         UsesToRewrite.push_back(
    132             &PN->getOperandUse(PN->getOperandNumForIncomingValue(
    133                  PN->getNumIncomingValues() - 1)));
    134     }
    135 
    136     AddedPHIs.push_back(PN);
    137 
    138     // Remember that this phi makes the value alive in this block.
    139     SSAUpdate.AddAvailableValue(ExitBB, PN);
    140 
    141     // LoopSimplify might fail to simplify some loops (e.g. when indirect
    142     // branches are involved). In such situations, it might happen that an exit
    143     // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
    144     // PHIs in such an exit block, we are also inserting PHIs into L2's header.
    145     // This could break LCSSA form for L2 because these inserted PHIs can also
    146     // have uses outside of L2. Remember all PHIs in such situation as to
    147     // revisit than later on. FIXME: Remove this if indirectbr support into
    148     // LoopSimplify gets improved.
    149     if (auto *OtherLoop = LI->getLoopFor(ExitBB))
    150       if (!L.contains(OtherLoop))
    151         PostProcessPHIs.push_back(PN);
    152   }
    153 
    154   // Rewrite all uses outside the loop in terms of the new PHIs we just
    155   // inserted.
    156   for (Use *UseToRewrite : UsesToRewrite) {
    157     // If this use is in an exit block, rewrite to use the newly inserted PHI.
    158     // This is required for correctness because SSAUpdate doesn't handle uses in
    159     // the same block.  It assumes the PHI we inserted is at the end of the
    160     // block.
    161     Instruction *User = cast<Instruction>(UseToRewrite->getUser());
    162     BasicBlock *UserBB = User->getParent();
    163     if (PHINode *PN = dyn_cast<PHINode>(User))
    164       UserBB = PN->getIncomingBlock(*UseToRewrite);
    165 
    166     if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
    167       // Tell the VHs that the uses changed. This updates SCEV's caches.
    168       if (UseToRewrite->get()->hasValueHandle())
    169         ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
    170       UseToRewrite->set(&UserBB->front());
    171       continue;
    172     }
    173 
    174     // Otherwise, do full PHI insertion.
    175     SSAUpdate.RewriteUse(*UseToRewrite);
    176   }
    177 
    178   // Post process PHI instructions that were inserted into another disjoint loop
    179   // and update their exits properly.
    180   for (auto *I : PostProcessPHIs) {
    181     if (I->use_empty())
    182       continue;
    183 
    184     BasicBlock *PHIBB = I->getParent();
    185     Loop *OtherLoop = LI->getLoopFor(PHIBB);
    186     SmallVector<BasicBlock *, 8> EBs;
    187     OtherLoop->getExitBlocks(EBs);
    188     if (EBs.empty())
    189       continue;
    190 
    191     // Recurse and re-process each PHI instruction. FIXME: we should really
    192     // convert this entire thing to a worklist approach where we process a
    193     // vector of instructions...
    194     processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
    195   }
    196 
    197   // Remove PHI nodes that did not have any uses rewritten.
    198   for (PHINode *PN : AddedPHIs)
    199     if (PN->use_empty())
    200       PN->eraseFromParent();
    201 
    202   return true;
    203 }
    204 
    205 /// Return true if the specified block dominates at least
    206 /// one of the blocks in the specified list.
    207 static bool
    208 blockDominatesAnExit(BasicBlock *BB,
    209                      DominatorTree &DT,
    210                      const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
    211   DomTreeNode *DomNode = DT.getNode(BB);
    212   for (BasicBlock *ExitBB : ExitBlocks)
    213     if (DT.dominates(DomNode, DT.getNode(ExitBB)))
    214       return true;
    215 
    216   return false;
    217 }
    218 
    219 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
    220                      ScalarEvolution *SE) {
    221   bool Changed = false;
    222 
    223   // Get the set of exiting blocks.
    224   SmallVector<BasicBlock *, 8> ExitBlocks;
    225   L.getExitBlocks(ExitBlocks);
    226 
    227   if (ExitBlocks.empty())
    228     return false;
    229 
    230   PredIteratorCache PredCache;
    231 
    232   // Look at all the instructions in the loop, checking to see if they have uses
    233   // outside the loop.  If so, rewrite those uses.
    234   for (BasicBlock *BB : L.blocks()) {
    235     // For large loops, avoid use-scanning by using dominance information:  In
    236     // particular, if a block does not dominate any of the loop exits, then none
    237     // of the values defined in the block could be used outside the loop.
    238     if (!blockDominatesAnExit(BB, DT, ExitBlocks))
    239       continue;
    240 
    241     for (Instruction &I : *BB) {
    242       // Reject two common cases fast: instructions with no uses (like stores)
    243       // and instructions with one use that is in the same block as this.
    244       if (I.use_empty() ||
    245           (I.hasOneUse() && I.user_back()->getParent() == BB &&
    246            !isa<PHINode>(I.user_back())))
    247         continue;
    248 
    249       Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI);
    250     }
    251   }
    252 
    253   // If we modified the code, remove any caches about the loop from SCEV to
    254   // avoid dangling entries.
    255   // FIXME: This is a big hammer, can we clear the cache more selectively?
    256   if (SE && Changed)
    257     SE->forgetLoop(&L);
    258 
    259   assert(L.isLCSSAForm(DT));
    260 
    261   return Changed;
    262 }
    263 
    264 /// Process a loop nest depth first.
    265 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
    266                                 ScalarEvolution *SE) {
    267   bool Changed = false;
    268 
    269   // Recurse depth-first through inner loops.
    270   for (Loop *SubLoop : L.getSubLoops())
    271     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
    272 
    273   Changed |= formLCSSA(L, DT, LI, SE);
    274   return Changed;
    275 }
    276 
    277 namespace {
    278 struct LCSSA : public FunctionPass {
    279   static char ID; // Pass identification, replacement for typeid
    280   LCSSA() : FunctionPass(ID) {
    281     initializeLCSSAPass(*PassRegistry::getPassRegistry());
    282   }
    283 
    284   // Cached analysis information for the current function.
    285   DominatorTree *DT;
    286   LoopInfo *LI;
    287   ScalarEvolution *SE;
    288 
    289   bool runOnFunction(Function &F) override;
    290 
    291   /// This transformation requires natural loop information & requires that
    292   /// loop preheaders be inserted into the CFG.  It maintains both of these,
    293   /// as well as the CFG.  It also requires dominator information.
    294   void getAnalysisUsage(AnalysisUsage &AU) const override {
    295     AU.setPreservesCFG();
    296 
    297     AU.addRequired<DominatorTreeWrapperPass>();
    298     AU.addRequired<LoopInfoWrapperPass>();
    299     AU.addPreservedID(LoopSimplifyID);
    300     AU.addPreserved<AAResultsWrapperPass>();
    301     AU.addPreserved<GlobalsAAWrapperPass>();
    302     AU.addPreserved<ScalarEvolutionWrapperPass>();
    303     AU.addPreserved<SCEVAAWrapperPass>();
    304   }
    305 };
    306 }
    307 
    308 char LCSSA::ID = 0;
    309 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
    310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    311 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    312 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    313 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
    314 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
    315 
    316 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
    317 char &llvm::LCSSAID = LCSSA::ID;
    318 
    319 
    320 /// Process all loops in the function, inner-most out.
    321 bool LCSSA::runOnFunction(Function &F) {
    322   bool Changed = false;
    323   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    324   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    325   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    326   SE = SEWP ? &SEWP->getSE() : nullptr;
    327 
    328   // Simplify each loop nest in the function.
    329   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    330     Changed |= formLCSSARecursively(**I, *DT, LI, SE);
    331 
    332   return Changed;
    333 }
    334 
    335