Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2015 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrTessellator.h"
      9 
     10 #include "GrBatchFlushState.h"
     11 #include "GrBatchTest.h"
     12 #include "GrDefaultGeoProcFactory.h"
     13 #include "GrPathUtils.h"
     14 #include "GrVertices.h"
     15 #include "GrResourceCache.h"
     16 #include "GrResourceProvider.h"
     17 #include "SkGeometry.h"
     18 #include "SkChunkAlloc.h"
     19 
     20 #include "batches/GrVertexBatch.h"
     21 
     22 #include <stdio.h>
     23 
     24 /*
     25  * There are six stages to the algorithm:
     26  *
     27  * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
     28  * 2) Build a mesh of edges connecting the vertices (build_edges()).
     29  * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
     30  * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
     31  * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
     32  * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
     33  *
     34  * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
     35  * of vertices (and the necessity of inserting new vertices on intersection).
     36  *
     37  * Stages (4) and (5) use an active edge list, which a list of all edges for which the
     38  * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
     39  * left-to-right based on the point where both edges are active (when both top vertices
     40  * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
     41  * (shared), it's sorted based on the last point where both edges are active, so the
     42  * "upper" bottom vertex.
     43  *
     44  * The most complex step is the simplification (4). It's based on the Bentley-Ottman
     45  * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
     46  * not exact and may violate the mesh topology or active edge list ordering. We
     47  * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
     48  * points. This occurs in three ways:
     49  *
     50  * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
     51  *    neighbouring edges at the top or bottom vertex. This is handled by merging the
     52  *    edges (merge_collinear_edges()).
     53  * B) Intersections may cause an edge to violate the left-to-right ordering of the
     54  *    active edge list. This is handled by splitting the neighbour edge on the
     55  *    intersected vertex (cleanup_active_edges()).
     56  * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
     57  *    to become active. This is handled by removing or inserting the edge in the active
     58  *    edge list (fix_active_state()).
     59  *
     60  * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
     61  * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
     62  * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
     63  * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
     64  * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
     65  * insertions and removals was greater than the cost of infrequent O(N) lookups with the
     66  * linked list implementation. With the latter, all removals are O(1), and most insertions
     67  * are O(1), since we know the adjacent edge in the active edge list based on the topology.
     68  * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
     69  * frequent. There may be other data structures worth investigating, however.
     70  *
     71  * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
     72  * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
     73  * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
     74  * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
     75  * that the "left" and "right" orientation in the code remains correct (edges to the left are
     76  * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
     77  * degrees counterclockwise, rather that transposing.
     78  */
     79 
     80 #define LOGGING_ENABLED 0
     81 
     82 #if LOGGING_ENABLED
     83 #define LOG printf
     84 #else
     85 #define LOG(...)
     86 #endif
     87 
     88 #define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args
     89 
     90 namespace {
     91 
     92 struct Vertex;
     93 struct Edge;
     94 struct Poly;
     95 
     96 template <class T, T* T::*Prev, T* T::*Next>
     97 void insert(T* t, T* prev, T* next, T** head, T** tail) {
     98     t->*Prev = prev;
     99     t->*Next = next;
    100     if (prev) {
    101         prev->*Next = t;
    102     } else if (head) {
    103         *head = t;
    104     }
    105     if (next) {
    106         next->*Prev = t;
    107     } else if (tail) {
    108         *tail = t;
    109     }
    110 }
    111 
    112 template <class T, T* T::*Prev, T* T::*Next>
    113 void remove(T* t, T** head, T** tail) {
    114     if (t->*Prev) {
    115         t->*Prev->*Next = t->*Next;
    116     } else if (head) {
    117         *head = t->*Next;
    118     }
    119     if (t->*Next) {
    120         t->*Next->*Prev = t->*Prev;
    121     } else if (tail) {
    122         *tail = t->*Prev;
    123     }
    124     t->*Prev = t->*Next = nullptr;
    125 }
    126 
    127 /**
    128  * Vertices are used in three ways: first, the path contours are converted into a
    129  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
    130  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
    131  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
    132  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
    133  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
    134  * an individual Vertex from the path mesh may belong to multiple
    135  * MonotonePolys, so the original Vertices cannot be re-used.
    136  */
    137 
    138 struct Vertex {
    139   Vertex(const SkPoint& point)
    140     : fPoint(point), fPrev(nullptr), fNext(nullptr)
    141     , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
    142     , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
    143     , fProcessed(false)
    144 #if LOGGING_ENABLED
    145     , fID (-1.0f)
    146 #endif
    147     {}
    148     SkPoint fPoint;           // Vertex position
    149     Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
    150     Vertex* fNext;            // "
    151     Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
    152     Edge*   fLastEdgeAbove;   // "
    153     Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
    154     Edge*   fLastEdgeBelow;   // "
    155     bool    fProcessed;       // Has this vertex been seen in simplify()?
    156 #if LOGGING_ENABLED
    157     float   fID;              // Identifier used for logging.
    158 #endif
    159 };
    160 
    161 /***************************************************************************************/
    162 
    163 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
    164 
    165 struct Comparator {
    166     CompareFunc sweep_lt;
    167     CompareFunc sweep_gt;
    168 };
    169 
    170 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
    171     return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
    172 }
    173 
    174 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
    175     return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
    176 }
    177 
    178 bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
    179     return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
    180 }
    181 
    182 bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
    183     return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
    184 }
    185 
    186 inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
    187     *data++ = v->fPoint;
    188     return data;
    189 }
    190 
    191 SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
    192 #if WIREFRAME
    193     data = emit_vertex(v0, data);
    194     data = emit_vertex(v1, data);
    195     data = emit_vertex(v1, data);
    196     data = emit_vertex(v2, data);
    197     data = emit_vertex(v2, data);
    198     data = emit_vertex(v0, data);
    199 #else
    200     data = emit_vertex(v0, data);
    201     data = emit_vertex(v1, data);
    202     data = emit_vertex(v2, data);
    203 #endif
    204     return data;
    205 }
    206 
    207 struct EdgeList {
    208     EdgeList() : fHead(nullptr), fTail(nullptr) {}
    209     Edge* fHead;
    210     Edge* fTail;
    211 };
    212 
    213 /**
    214  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
    215  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
    216  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
    217  * point). For speed, that case is only tested by the callers which require it (e.g.,
    218  * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
    219  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
    220  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
    221  * a lot faster in the "not found" case.
    222  *
    223  * The coefficients of the line equation stored in double precision to avoid catastrphic
    224  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
    225  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
    226  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
    227  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
    228  * this file).
    229  */
    230 
    231 struct Edge {
    232     Edge(Vertex* top, Vertex* bottom, int winding)
    233         : fWinding(winding)
    234         , fTop(top)
    235         , fBottom(bottom)
    236         , fLeft(nullptr)
    237         , fRight(nullptr)
    238         , fPrevEdgeAbove(nullptr)
    239         , fNextEdgeAbove(nullptr)
    240         , fPrevEdgeBelow(nullptr)
    241         , fNextEdgeBelow(nullptr)
    242         , fLeftPoly(nullptr)
    243         , fRightPoly(nullptr) {
    244             recompute();
    245         }
    246     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
    247     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
    248     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
    249     Edge*    fLeft;             // The linked list of edges in the active edge list.
    250     Edge*    fRight;            // "
    251     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
    252     Edge*    fNextEdgeAbove;    // "
    253     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
    254     Edge*    fNextEdgeBelow;    // "
    255     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
    256     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
    257     double   fDX;               // The line equation for this edge, in implicit form.
    258     double   fDY;               // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
    259     double   fC;
    260     double dist(const SkPoint& p) const {
    261         return fDY * p.fX - fDX * p.fY + fC;
    262     }
    263     bool isRightOf(Vertex* v) const {
    264         return dist(v->fPoint) < 0.0;
    265     }
    266     bool isLeftOf(Vertex* v) const {
    267         return dist(v->fPoint) > 0.0;
    268     }
    269     void recompute() {
    270         fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
    271         fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
    272         fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
    273              static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
    274     }
    275     bool intersect(const Edge& other, SkPoint* p) {
    276         LOG("intersecting %g -> %g with %g -> %g\n",
    277                fTop->fID, fBottom->fID,
    278                other.fTop->fID, other.fBottom->fID);
    279         if (fTop == other.fTop || fBottom == other.fBottom) {
    280             return false;
    281         }
    282         double denom = fDX * other.fDY - fDY * other.fDX;
    283         if (denom == 0.0) {
    284             return false;
    285         }
    286         double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
    287         double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
    288         double sNumer = dy * other.fDX - dx * other.fDY;
    289         double tNumer = dy * fDX - dx * fDY;
    290         // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
    291         // This saves us doing the divide below unless absolutely necessary.
    292         if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
    293                         : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
    294             return false;
    295         }
    296         double s = sNumer / denom;
    297         SkASSERT(s >= 0.0 && s <= 1.0);
    298         p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
    299         p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
    300         return true;
    301     }
    302     bool isActive(EdgeList* activeEdges) const {
    303         return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
    304     }
    305 };
    306 
    307 /***************************************************************************************/
    308 
    309 struct Poly {
    310     Poly(int winding)
    311         : fWinding(winding)
    312         , fHead(nullptr)
    313         , fTail(nullptr)
    314         , fActive(nullptr)
    315         , fNext(nullptr)
    316         , fPartner(nullptr)
    317         , fCount(0)
    318     {
    319 #if LOGGING_ENABLED
    320         static int gID = 0;
    321         fID = gID++;
    322         LOG("*** created Poly %d\n", fID);
    323 #endif
    324     }
    325     typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
    326     struct MonotonePoly {
    327         MonotonePoly()
    328             : fSide(kNeither_Side)
    329             , fHead(nullptr)
    330             , fTail(nullptr)
    331             , fPrev(nullptr)
    332             , fNext(nullptr) {}
    333         Side          fSide;
    334         Vertex*       fHead;
    335         Vertex*       fTail;
    336         MonotonePoly* fPrev;
    337         MonotonePoly* fNext;
    338         bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
    339             Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
    340             bool done = false;
    341             if (fSide == kNeither_Side) {
    342                 fSide = side;
    343             } else {
    344                 done = side != fSide;
    345             }
    346             if (fHead == nullptr) {
    347                 fHead = fTail = newV;
    348             } else if (fSide == kRight_Side) {
    349                 newV->fPrev = fTail;
    350                 fTail->fNext = newV;
    351                 fTail = newV;
    352             } else {
    353                 newV->fNext = fHead;
    354                 fHead->fPrev = newV;
    355                 fHead = newV;
    356             }
    357             return done;
    358         }
    359 
    360         SkPoint* emit(SkPoint* data) {
    361             Vertex* first = fHead;
    362             Vertex* v = first->fNext;
    363             while (v != fTail) {
    364                 SkASSERT(v && v->fPrev && v->fNext);
    365                 Vertex* prev = v->fPrev;
    366                 Vertex* curr = v;
    367                 Vertex* next = v->fNext;
    368                 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
    369                 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
    370                 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
    371                 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
    372                 if (ax * by - ay * bx >= 0.0) {
    373                     data = emit_triangle(prev, curr, next, data);
    374                     v->fPrev->fNext = v->fNext;
    375                     v->fNext->fPrev = v->fPrev;
    376                     if (v->fPrev == first) {
    377                         v = v->fNext;
    378                     } else {
    379                         v = v->fPrev;
    380                     }
    381                 } else {
    382                     v = v->fNext;
    383                 }
    384             }
    385             return data;
    386         }
    387     };
    388     Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
    389         LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
    390                side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
    391         Poly* partner = fPartner;
    392         Poly* poly = this;
    393         if (partner) {
    394             fPartner = partner->fPartner = nullptr;
    395         }
    396         if (!fActive) {
    397             fActive = ALLOC_NEW(MonotonePoly, (), alloc);
    398         }
    399         if (fActive->addVertex(v, side, alloc)) {
    400             if (fTail) {
    401                 fActive->fPrev = fTail;
    402                 fTail->fNext = fActive;
    403                 fTail = fActive;
    404             } else {
    405                 fHead = fTail = fActive;
    406             }
    407             if (partner) {
    408                 partner->addVertex(v, side, alloc);
    409                 poly = partner;
    410             } else {
    411                 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
    412                                fActive->fHead->fNext : fActive->fTail->fPrev;
    413                 fActive = ALLOC_NEW(MonotonePoly, , alloc);
    414                 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
    415                 fActive->addVertex(v, side, alloc);
    416             }
    417         }
    418         fCount++;
    419         return poly;
    420     }
    421     void end(Vertex* v, SkChunkAlloc& alloc) {
    422         LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
    423         if (fPartner) {
    424             fPartner = fPartner->fPartner = nullptr;
    425         }
    426         addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
    427     }
    428     SkPoint* emit(SkPoint *data) {
    429         if (fCount < 3) {
    430             return data;
    431         }
    432         LOG("emit() %d, size %d\n", fID, fCount);
    433         for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
    434             data = m->emit(data);
    435         }
    436         return data;
    437     }
    438     int fWinding;
    439     MonotonePoly* fHead;
    440     MonotonePoly* fTail;
    441     MonotonePoly* fActive;
    442     Poly* fNext;
    443     Poly* fPartner;
    444     int fCount;
    445 #if LOGGING_ENABLED
    446     int fID;
    447 #endif
    448 };
    449 
    450 /***************************************************************************************/
    451 
    452 bool coincident(const SkPoint& a, const SkPoint& b) {
    453     return a == b;
    454 }
    455 
    456 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
    457     Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
    458     poly->addVertex(v, Poly::kNeither_Side, alloc);
    459     poly->fNext = *head;
    460     *head = poly;
    461     return poly;
    462 }
    463 
    464 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
    465                                 SkChunkAlloc& alloc) {
    466     Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
    467 #if LOGGING_ENABLED
    468     static float gID = 0.0f;
    469     v->fID = gID++;
    470 #endif
    471     if (prev) {
    472         prev->fNext = v;
    473         v->fPrev = prev;
    474     } else {
    475         *head = v;
    476     }
    477     return v;
    478 }
    479 
    480 Vertex* generate_quadratic_points(const SkPoint& p0,
    481                                   const SkPoint& p1,
    482                                   const SkPoint& p2,
    483                                   SkScalar tolSqd,
    484                                   Vertex* prev,
    485                                   Vertex** head,
    486                                   int pointsLeft,
    487                                   SkChunkAlloc& alloc) {
    488     SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
    489     if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
    490         return append_point_to_contour(p2, prev, head, alloc);
    491     }
    492 
    493     const SkPoint q[] = {
    494         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    495         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    496     };
    497     const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
    498 
    499     pointsLeft >>= 1;
    500     prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
    501     prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
    502     return prev;
    503 }
    504 
    505 Vertex* generate_cubic_points(const SkPoint& p0,
    506                               const SkPoint& p1,
    507                               const SkPoint& p2,
    508                               const SkPoint& p3,
    509                               SkScalar tolSqd,
    510                               Vertex* prev,
    511                               Vertex** head,
    512                               int pointsLeft,
    513                               SkChunkAlloc& alloc) {
    514     SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
    515     SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
    516     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
    517         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
    518         return append_point_to_contour(p3, prev, head, alloc);
    519     }
    520     const SkPoint q[] = {
    521         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    522         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    523         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    524     };
    525     const SkPoint r[] = {
    526         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    527         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    528     };
    529     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    530     pointsLeft >>= 1;
    531     prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
    532     prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
    533     return prev;
    534 }
    535 
    536 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
    537 
    538 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
    539                       Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
    540     SkScalar toleranceSqd = tolerance * tolerance;
    541 
    542     SkPoint pts[4];
    543     bool done = false;
    544     *isLinear = true;
    545     SkPath::Iter iter(path, false);
    546     Vertex* prev = nullptr;
    547     Vertex* head = nullptr;
    548     if (path.isInverseFillType()) {
    549         SkPoint quad[4];
    550         clipBounds.toQuad(quad);
    551         for (int i = 3; i >= 0; i--) {
    552             prev = append_point_to_contour(quad[i], prev, &head, alloc);
    553         }
    554         head->fPrev = prev;
    555         prev->fNext = head;
    556         *contours++ = head;
    557         head = prev = nullptr;
    558     }
    559     SkAutoConicToQuads converter;
    560     while (!done) {
    561         SkPath::Verb verb = iter.next(pts);
    562         switch (verb) {
    563             case SkPath::kConic_Verb: {
    564                 SkScalar weight = iter.conicWeight();
    565                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
    566                 for (int i = 0; i < converter.countQuads(); ++i) {
    567                     int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
    568                     prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
    569                                                      toleranceSqd, prev, &head, pointsLeft, alloc);
    570                     quadPts += 2;
    571                 }
    572                 *isLinear = false;
    573                 break;
    574             }
    575             case SkPath::kMove_Verb:
    576                 if (head) {
    577                     head->fPrev = prev;
    578                     prev->fNext = head;
    579                     *contours++ = head;
    580                 }
    581                 head = prev = nullptr;
    582                 prev = append_point_to_contour(pts[0], prev, &head, alloc);
    583                 break;
    584             case SkPath::kLine_Verb: {
    585                 prev = append_point_to_contour(pts[1], prev, &head, alloc);
    586                 break;
    587             }
    588             case SkPath::kQuad_Verb: {
    589                 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
    590                 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
    591                                                  &head, pointsLeft, alloc);
    592                 *isLinear = false;
    593                 break;
    594             }
    595             case SkPath::kCubic_Verb: {
    596                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
    597                 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
    598                                 toleranceSqd, prev, &head, pointsLeft, alloc);
    599                 *isLinear = false;
    600                 break;
    601             }
    602             case SkPath::kClose_Verb:
    603                 if (head) {
    604                     head->fPrev = prev;
    605                     prev->fNext = head;
    606                     *contours++ = head;
    607                 }
    608                 head = prev = nullptr;
    609                 break;
    610             case SkPath::kDone_Verb:
    611                 if (head) {
    612                     head->fPrev = prev;
    613                     prev->fNext = head;
    614                     *contours++ = head;
    615                 }
    616                 done = true;
    617                 break;
    618         }
    619     }
    620 }
    621 
    622 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
    623     switch (fillType) {
    624         case SkPath::kWinding_FillType:
    625             return winding != 0;
    626         case SkPath::kEvenOdd_FillType:
    627             return (winding & 1) != 0;
    628         case SkPath::kInverseWinding_FillType:
    629             return winding == 1;
    630         case SkPath::kInverseEvenOdd_FillType:
    631             return (winding & 1) == 1;
    632         default:
    633             SkASSERT(false);
    634             return false;
    635     }
    636 }
    637 
    638 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
    639     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
    640     Vertex* top = winding < 0 ? next : prev;
    641     Vertex* bottom = winding < 0 ? prev : next;
    642     return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
    643 }
    644 
    645 void remove_edge(Edge* edge, EdgeList* edges) {
    646     LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
    647     SkASSERT(edge->isActive(edges));
    648     remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail);
    649 }
    650 
    651 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
    652     LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
    653     SkASSERT(!edge->isActive(edges));
    654     Edge* next = prev ? prev->fRight : edges->fHead;
    655     insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
    656 }
    657 
    658 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
    659     if (v->fFirstEdgeAbove) {
    660         *left = v->fFirstEdgeAbove->fLeft;
    661         *right = v->fLastEdgeAbove->fRight;
    662         return;
    663     }
    664     Edge* next = nullptr;
    665     Edge* prev;
    666     for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
    667         if (prev->isLeftOf(v)) {
    668             break;
    669         }
    670         next = prev;
    671     }
    672     *left = prev;
    673     *right = next;
    674     return;
    675 }
    676 
    677 void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
    678     Edge* prev = nullptr;
    679     Edge* next;
    680     for (next = edges->fHead; next != nullptr; next = next->fRight) {
    681         if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
    682             (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
    683             (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
    684              next->isRightOf(edge->fBottom)) ||
    685             (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
    686              edge->isLeftOf(next->fBottom))) {
    687             break;
    688         }
    689         prev = next;
    690     }
    691     *left = prev;
    692     *right = next;
    693     return;
    694 }
    695 
    696 void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
    697     if (edge->isActive(activeEdges)) {
    698         if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
    699             remove_edge(edge, activeEdges);
    700         }
    701     } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
    702         Edge* left;
    703         Edge* right;
    704         find_enclosing_edges(edge, activeEdges, c, &left, &right);
    705         insert_edge(edge, left, activeEdges);
    706     }
    707 }
    708 
    709 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
    710     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
    711         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
    712         return;
    713     }
    714     LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
    715     Edge* prev = nullptr;
    716     Edge* next;
    717     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
    718         if (next->isRightOf(edge->fTop)) {
    719             break;
    720         }
    721         prev = next;
    722     }
    723     insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
    724         edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
    725 }
    726 
    727 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
    728     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
    729         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
    730         return;
    731     }
    732     LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
    733     Edge* prev = nullptr;
    734     Edge* next;
    735     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
    736         if (next->isRightOf(edge->fBottom)) {
    737             break;
    738         }
    739         prev = next;
    740     }
    741     insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
    742         edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
    743 }
    744 
    745 void remove_edge_above(Edge* edge) {
    746     LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
    747         edge->fBottom->fID);
    748     remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
    749         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
    750 }
    751 
    752 void remove_edge_below(Edge* edge) {
    753     LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
    754         edge->fTop->fID);
    755     remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
    756         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
    757 }
    758 
    759 void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
    760     if (edge->fWinding != 0) {
    761         return;
    762     }
    763     LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
    764     remove_edge_above(edge);
    765     remove_edge_below(edge);
    766     if (edge->isActive(edges)) {
    767         remove_edge(edge, edges);
    768     }
    769 }
    770 
    771 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
    772 
    773 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
    774     remove_edge_below(edge);
    775     edge->fTop = v;
    776     edge->recompute();
    777     insert_edge_below(edge, v, c);
    778     fix_active_state(edge, activeEdges, c);
    779     merge_collinear_edges(edge, activeEdges, c);
    780 }
    781 
    782 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
    783     remove_edge_above(edge);
    784     edge->fBottom = v;
    785     edge->recompute();
    786     insert_edge_above(edge, v, c);
    787     fix_active_state(edge, activeEdges, c);
    788     merge_collinear_edges(edge, activeEdges, c);
    789 }
    790 
    791 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
    792     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
    793         LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
    794             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
    795             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
    796         other->fWinding += edge->fWinding;
    797         erase_edge_if_zero_winding(other, activeEdges);
    798         edge->fWinding = 0;
    799         erase_edge_if_zero_winding(edge, activeEdges);
    800     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
    801         other->fWinding += edge->fWinding;
    802         erase_edge_if_zero_winding(other, activeEdges);
    803         set_bottom(edge, other->fTop, activeEdges, c);
    804     } else {
    805         edge->fWinding += other->fWinding;
    806         erase_edge_if_zero_winding(edge, activeEdges);
    807         set_bottom(other, edge->fTop, activeEdges, c);
    808     }
    809 }
    810 
    811 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
    812     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
    813         LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
    814             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
    815             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
    816         other->fWinding += edge->fWinding;
    817         erase_edge_if_zero_winding(other, activeEdges);
    818         edge->fWinding = 0;
    819         erase_edge_if_zero_winding(edge, activeEdges);
    820     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
    821         edge->fWinding += other->fWinding;
    822         erase_edge_if_zero_winding(edge, activeEdges);
    823         set_top(other, edge->fBottom, activeEdges, c);
    824     } else {
    825         other->fWinding += edge->fWinding;
    826         erase_edge_if_zero_winding(other, activeEdges);
    827         set_top(edge, other->fBottom, activeEdges, c);
    828     }
    829 }
    830 
    831 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
    832     if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
    833                                  !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
    834         merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
    835     } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
    836                                         !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
    837         merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
    838     }
    839     if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
    840                                  !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
    841         merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
    842     } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
    843                                         !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
    844         merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
    845     }
    846 }
    847 
    848 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
    849 
    850 void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
    851     Vertex* top = edge->fTop;
    852     Vertex* bottom = edge->fBottom;
    853     if (edge->fLeft) {
    854         Vertex* leftTop = edge->fLeft->fTop;
    855         Vertex* leftBottom = edge->fLeft->fBottom;
    856         if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
    857             split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
    858         } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
    859             split_edge(edge, leftTop, activeEdges, c, alloc);
    860         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
    861                    !edge->fLeft->isLeftOf(bottom)) {
    862             split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
    863         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
    864             split_edge(edge, leftBottom, activeEdges, c, alloc);
    865         }
    866     }
    867     if (edge->fRight) {
    868         Vertex* rightTop = edge->fRight->fTop;
    869         Vertex* rightBottom = edge->fRight->fBottom;
    870         if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
    871             split_edge(edge->fRight, top, activeEdges, c, alloc);
    872         } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
    873             split_edge(edge, rightTop, activeEdges, c, alloc);
    874         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
    875                    !edge->fRight->isRightOf(bottom)) {
    876             split_edge(edge->fRight, bottom, activeEdges, c, alloc);
    877         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
    878                    !edge->isLeftOf(rightBottom)) {
    879             split_edge(edge, rightBottom, activeEdges, c, alloc);
    880         }
    881     }
    882 }
    883 
    884 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
    885     LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
    886         edge->fTop->fID, edge->fBottom->fID,
    887         v->fID, v->fPoint.fX, v->fPoint.fY);
    888     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
    889         set_top(edge, v, activeEdges, c);
    890     } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
    891         set_bottom(edge, v, activeEdges, c);
    892     } else {
    893         Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
    894         insert_edge_below(newEdge, v, c);
    895         insert_edge_above(newEdge, edge->fBottom, c);
    896         set_bottom(edge, v, activeEdges, c);
    897         cleanup_active_edges(edge, activeEdges, c, alloc);
    898         fix_active_state(newEdge, activeEdges, c);
    899         merge_collinear_edges(newEdge, activeEdges, c);
    900     }
    901 }
    902 
    903 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
    904     LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
    905         src->fID, dst->fID);
    906     for (Edge* edge = src->fFirstEdgeAbove; edge;) {
    907         Edge* next = edge->fNextEdgeAbove;
    908         set_bottom(edge, dst, nullptr, c);
    909         edge = next;
    910     }
    911     for (Edge* edge = src->fFirstEdgeBelow; edge;) {
    912         Edge* next = edge->fNextEdgeBelow;
    913         set_top(edge, dst, nullptr, c);
    914         edge = next;
    915     }
    916     remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr);
    917 }
    918 
    919 Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
    920                                SkChunkAlloc& alloc) {
    921     SkPoint p;
    922     if (!edge || !other) {
    923         return nullptr;
    924     }
    925     if (edge->intersect(*other, &p)) {
    926         Vertex* v;
    927         LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
    928         if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
    929             split_edge(other, edge->fTop, activeEdges, c, alloc);
    930             v = edge->fTop;
    931         } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
    932             split_edge(other, edge->fBottom, activeEdges, c, alloc);
    933             v = edge->fBottom;
    934         } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
    935             split_edge(edge, other->fTop, activeEdges, c, alloc);
    936             v = other->fTop;
    937         } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
    938             split_edge(edge, other->fBottom, activeEdges, c, alloc);
    939             v = other->fBottom;
    940         } else {
    941             Vertex* nextV = edge->fTop;
    942             while (c.sweep_lt(p, nextV->fPoint)) {
    943                 nextV = nextV->fPrev;
    944             }
    945             while (c.sweep_lt(nextV->fPoint, p)) {
    946                 nextV = nextV->fNext;
    947             }
    948             Vertex* prevV = nextV->fPrev;
    949             if (coincident(prevV->fPoint, p)) {
    950                 v = prevV;
    951             } else if (coincident(nextV->fPoint, p)) {
    952                 v = nextV;
    953             } else {
    954                 v = ALLOC_NEW(Vertex, (p), alloc);
    955                 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
    956                     prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
    957                     nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
    958 #if LOGGING_ENABLED
    959                 v->fID = (nextV->fID + prevV->fID) * 0.5f;
    960 #endif
    961                 v->fPrev = prevV;
    962                 v->fNext = nextV;
    963                 prevV->fNext = v;
    964                 nextV->fPrev = v;
    965             }
    966             split_edge(edge, v, activeEdges, c, alloc);
    967             split_edge(other, v, activeEdges, c, alloc);
    968         }
    969         return v;
    970     }
    971     return nullptr;
    972 }
    973 
    974 void sanitize_contours(Vertex** contours, int contourCnt) {
    975     for (int i = 0; i < contourCnt; ++i) {
    976         SkASSERT(contours[i]);
    977         for (Vertex* v = contours[i];;) {
    978             if (coincident(v->fPrev->fPoint, v->fPoint)) {
    979                 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
    980                 if (v->fPrev == v) {
    981                     contours[i] = nullptr;
    982                     break;
    983                 }
    984                 v->fPrev->fNext = v->fNext;
    985                 v->fNext->fPrev = v->fPrev;
    986                 if (contours[i] == v) {
    987                     contours[i] = v->fNext;
    988                 }
    989                 v = v->fPrev;
    990             } else {
    991                 v = v->fNext;
    992                 if (v == contours[i]) break;
    993             }
    994         }
    995     }
    996 }
    997 
    998 void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
    999     for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) {
   1000         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
   1001             v->fPoint = v->fPrev->fPoint;
   1002         }
   1003         if (coincident(v->fPrev->fPoint, v->fPoint)) {
   1004             merge_vertices(v->fPrev, v, vertices, c, alloc);
   1005         }
   1006     }
   1007 }
   1008 
   1009 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
   1010 
   1011 Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
   1012     Vertex* vertices = nullptr;
   1013     Vertex* prev = nullptr;
   1014     for (int i = 0; i < contourCnt; ++i) {
   1015         for (Vertex* v = contours[i]; v != nullptr;) {
   1016             Vertex* vNext = v->fNext;
   1017             Edge* edge = new_edge(v->fPrev, v, alloc, c);
   1018             if (edge->fWinding > 0) {
   1019                 insert_edge_below(edge, v->fPrev, c);
   1020                 insert_edge_above(edge, v, c);
   1021             } else {
   1022                 insert_edge_below(edge, v, c);
   1023                 insert_edge_above(edge, v->fPrev, c);
   1024             }
   1025             merge_collinear_edges(edge, nullptr, c);
   1026             if (prev) {
   1027                 prev->fNext = v;
   1028                 v->fPrev = prev;
   1029             } else {
   1030                 vertices = v;
   1031             }
   1032             prev = v;
   1033             v = vNext;
   1034             if (v == contours[i]) break;
   1035         }
   1036     }
   1037     if (prev) {
   1038         prev->fNext = vertices->fPrev = nullptr;
   1039     }
   1040     return vertices;
   1041 }
   1042 
   1043 // Stage 3: sort the vertices by increasing sweep direction.
   1044 
   1045 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
   1046 
   1047 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
   1048     Vertex* fast;
   1049     Vertex* slow;
   1050     if (!v || !v->fNext) {
   1051         *pFront = v;
   1052         *pBack = nullptr;
   1053     } else {
   1054         slow = v;
   1055         fast = v->fNext;
   1056 
   1057         while (fast != nullptr) {
   1058             fast = fast->fNext;
   1059             if (fast != nullptr) {
   1060                 slow = slow->fNext;
   1061                 fast = fast->fNext;
   1062             }
   1063         }
   1064 
   1065         *pFront = v;
   1066         *pBack = slow->fNext;
   1067         slow->fNext->fPrev = nullptr;
   1068         slow->fNext = nullptr;
   1069     }
   1070 }
   1071 
   1072 void merge_sort(Vertex** head, Comparator& c) {
   1073     if (!*head || !(*head)->fNext) {
   1074         return;
   1075     }
   1076 
   1077     Vertex* a;
   1078     Vertex* b;
   1079     front_back_split(*head, &a, &b);
   1080 
   1081     merge_sort(&a, c);
   1082     merge_sort(&b, c);
   1083 
   1084     *head = sorted_merge(a, b, c);
   1085 }
   1086 
   1087 inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) {
   1088     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, nullptr, head, tail);
   1089 }
   1090 
   1091 inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) {
   1092     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail);
   1093 }
   1094 
   1095 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
   1096     Vertex* head = nullptr;
   1097     Vertex* tail = nullptr;
   1098 
   1099     while (a && b) {
   1100         if (c.sweep_lt(a->fPoint, b->fPoint)) {
   1101             Vertex* next = a->fNext;
   1102             append_vertex(a, &head, &tail);
   1103             a = next;
   1104         } else {
   1105             Vertex* next = b->fNext;
   1106             append_vertex(b, &head, &tail);
   1107             b = next;
   1108         }
   1109     }
   1110     if (a) {
   1111         append_vertex_list(a, &head, &tail);
   1112     }
   1113     if (b) {
   1114         append_vertex_list(b, &head, &tail);
   1115     }
   1116     return head;
   1117 }
   1118 
   1119 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
   1120 
   1121 void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
   1122     LOG("simplifying complex polygons\n");
   1123     EdgeList activeEdges;
   1124     for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
   1125         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1126             continue;
   1127         }
   1128 #if LOGGING_ENABLED
   1129         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
   1130 #endif
   1131         Edge* leftEnclosingEdge = nullptr;
   1132         Edge* rightEnclosingEdge = nullptr;
   1133         bool restartChecks;
   1134         do {
   1135             restartChecks = false;
   1136             find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1137             if (v->fFirstEdgeBelow) {
   1138                 for (Edge* edge = v->fFirstEdgeBelow; edge != nullptr; edge = edge->fNextEdgeBelow) {
   1139                     if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
   1140                         restartChecks = true;
   1141                         break;
   1142                     }
   1143                     if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
   1144                         restartChecks = true;
   1145                         break;
   1146                     }
   1147                 }
   1148             } else {
   1149                 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
   1150                                                         &activeEdges, c, alloc)) {
   1151                     if (c.sweep_lt(pv->fPoint, v->fPoint)) {
   1152                         v = pv;
   1153                     }
   1154                     restartChecks = true;
   1155                 }
   1156 
   1157             }
   1158         } while (restartChecks);
   1159         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
   1160             remove_edge(e, &activeEdges);
   1161         }
   1162         Edge* leftEdge = leftEnclosingEdge;
   1163         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1164             insert_edge(e, leftEdge, &activeEdges);
   1165             leftEdge = e;
   1166         }
   1167         v->fProcessed = true;
   1168     }
   1169 }
   1170 
   1171 // Stage 5: Tessellate the simplified mesh into monotone polygons.
   1172 
   1173 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
   1174     LOG("tessellating simple polygons\n");
   1175     EdgeList activeEdges;
   1176     Poly* polys = nullptr;
   1177     for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
   1178         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1179             continue;
   1180         }
   1181 #if LOGGING_ENABLED
   1182         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
   1183 #endif
   1184         Edge* leftEnclosingEdge = nullptr;
   1185         Edge* rightEnclosingEdge = nullptr;
   1186         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1187         Poly* leftPoly = nullptr;
   1188         Poly* rightPoly = nullptr;
   1189         if (v->fFirstEdgeAbove) {
   1190             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
   1191             rightPoly = v->fLastEdgeAbove->fRightPoly;
   1192         } else {
   1193             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
   1194             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
   1195         }
   1196 #if LOGGING_ENABLED
   1197         LOG("edges above:\n");
   1198         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
   1199             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1200                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1201         }
   1202         LOG("edges below:\n");
   1203         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1204             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1205                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1206         }
   1207 #endif
   1208         if (v->fFirstEdgeAbove) {
   1209             if (leftPoly) {
   1210                 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1211             }
   1212             if (rightPoly) {
   1213                 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1214             }
   1215             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
   1216                 Edge* leftEdge = e;
   1217                 Edge* rightEdge = e->fNextEdgeAbove;
   1218                 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
   1219                 remove_edge(leftEdge, &activeEdges);
   1220                 if (leftEdge->fRightPoly) {
   1221                     leftEdge->fRightPoly->end(v, alloc);
   1222                 }
   1223                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
   1224                     rightEdge->fLeftPoly->end(v, alloc);
   1225                 }
   1226             }
   1227             remove_edge(v->fLastEdgeAbove, &activeEdges);
   1228             if (!v->fFirstEdgeBelow) {
   1229                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
   1230                     SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
   1231                     rightPoly->fPartner = leftPoly;
   1232                     leftPoly->fPartner = rightPoly;
   1233                 }
   1234             }
   1235         }
   1236         if (v->fFirstEdgeBelow) {
   1237             if (!v->fFirstEdgeAbove) {
   1238                 if (leftPoly && leftPoly == rightPoly) {
   1239                     // Split the poly.
   1240                     if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
   1241                         leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
   1242                                             alloc);
   1243                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1244                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1245                         leftEnclosingEdge->fRightPoly = leftPoly;
   1246                     } else {
   1247                         rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
   1248                                              alloc);
   1249                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1250                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1251                         rightEnclosingEdge->fLeftPoly = rightPoly;
   1252                     }
   1253                 } else {
   1254                     if (leftPoly) {
   1255                         leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1256                     }
   1257                     if (rightPoly) {
   1258                         rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1259                     }
   1260                 }
   1261             }
   1262             Edge* leftEdge = v->fFirstEdgeBelow;
   1263             leftEdge->fLeftPoly = leftPoly;
   1264             insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
   1265             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
   1266                  rightEdge = rightEdge->fNextEdgeBelow) {
   1267                 insert_edge(rightEdge, leftEdge, &activeEdges);
   1268                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
   1269                 winding += leftEdge->fWinding;
   1270                 if (winding != 0) {
   1271                     Poly* poly = new_poly(&polys, v, winding, alloc);
   1272                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
   1273                 }
   1274                 leftEdge = rightEdge;
   1275             }
   1276             v->fLastEdgeBelow->fRightPoly = rightPoly;
   1277         }
   1278 #if LOGGING_ENABLED
   1279         LOG("\nactive edges:\n");
   1280         for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
   1281             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1282                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1283         }
   1284 #endif
   1285     }
   1286     return polys;
   1287 }
   1288 
   1289 // This is a driver function which calls stages 2-5 in turn.
   1290 
   1291 Poly* contours_to_polys(Vertex** contours, int contourCnt, const SkRect& pathBounds,
   1292                         SkChunkAlloc& alloc) {
   1293     Comparator c;
   1294     if (pathBounds.width() > pathBounds.height()) {
   1295         c.sweep_lt = sweep_lt_horiz;
   1296         c.sweep_gt = sweep_gt_horiz;
   1297     } else {
   1298         c.sweep_lt = sweep_lt_vert;
   1299         c.sweep_gt = sweep_gt_vert;
   1300     }
   1301 #if LOGGING_ENABLED
   1302     for (int i = 0; i < contourCnt; ++i) {
   1303         Vertex* v = contours[i];
   1304         SkASSERT(v);
   1305         LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
   1306         for (v = v->fNext; v != contours[i]; v = v->fNext) {
   1307             LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
   1308         }
   1309     }
   1310 #endif
   1311     sanitize_contours(contours, contourCnt);
   1312     Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
   1313     if (!vertices) {
   1314         return nullptr;
   1315     }
   1316 
   1317     // Sort vertices in Y (secondarily in X).
   1318     merge_sort(&vertices, c);
   1319     merge_coincident_vertices(&vertices, c, alloc);
   1320 #if LOGGING_ENABLED
   1321     for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
   1322         static float gID = 0.0f;
   1323         v->fID = gID++;
   1324     }
   1325 #endif
   1326     simplify(vertices, c, alloc);
   1327     return tessellate(vertices, alloc);
   1328 }
   1329 
   1330 Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
   1331                     int contourCnt, SkChunkAlloc& alloc, bool* isLinear) {
   1332     SkPath::FillType fillType = path.getFillType();
   1333     if (SkPath::IsInverseFillType(fillType)) {
   1334         contourCnt++;
   1335     }
   1336     SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
   1337 
   1338     path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
   1339     return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc);
   1340 }
   1341 
   1342 void get_contour_count_and_size_estimate(const SkPath& path, SkScalar tolerance, int* contourCnt,
   1343                                          int* sizeEstimate) {
   1344     int maxPts = GrPathUtils::worstCasePointCount(path, contourCnt, tolerance);
   1345     if (maxPts <= 0) {
   1346         *contourCnt = 0;
   1347         return;
   1348     }
   1349     if (maxPts > ((int)SK_MaxU16 + 1)) {
   1350         SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
   1351         *contourCnt = 0;
   1352         return;
   1353     }
   1354     // For the initial size of the chunk allocator, estimate based on the point count:
   1355     // one vertex per point for the initial passes, plus two for the vertices in the
   1356     // resulting Polys, since the same point may end up in two Polys.  Assume minimal
   1357     // connectivity of one Edge per Vertex (will grow for intersections).
   1358     *sizeEstimate = maxPts * (3 * sizeof(Vertex) + sizeof(Edge));
   1359 }
   1360 
   1361 int count_points(Poly* polys, SkPath::FillType fillType) {
   1362     int count = 0;
   1363     for (Poly* poly = polys; poly; poly = poly->fNext) {
   1364         if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
   1365             count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
   1366         }
   1367     }
   1368     return count;
   1369 }
   1370 
   1371 } // namespace
   1372 
   1373 namespace GrTessellator {
   1374 
   1375 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
   1376 
   1377 int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
   1378                     GrResourceProvider* resourceProvider,
   1379                     SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB, bool* isLinear) {
   1380     int contourCnt;
   1381     int sizeEstimate;
   1382     get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
   1383     if (contourCnt <= 0) {
   1384         *isLinear = true;
   1385         return 0;
   1386     }
   1387     SkChunkAlloc alloc(sizeEstimate);
   1388     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, isLinear);
   1389     SkPath::FillType fillType = path.getFillType();
   1390     int count = count_points(polys, fillType);
   1391     if (0 == count) {
   1392         return 0;
   1393     }
   1394 
   1395     size_t size = count * sizeof(SkPoint);
   1396     if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
   1397         vertexBuffer.reset(resourceProvider->createVertexBuffer(
   1398             size, GrResourceProvider::kStatic_BufferUsage, 0));
   1399     }
   1400     if (!vertexBuffer.get()) {
   1401         SkDebugf("Could not allocate vertices\n");
   1402         return 0;
   1403     }
   1404     SkPoint* verts;
   1405     if (canMapVB) {
   1406         verts = static_cast<SkPoint*>(vertexBuffer->map());
   1407     } else {
   1408         verts = new SkPoint[count];
   1409     }
   1410     SkPoint* end = verts;
   1411     for (Poly* poly = polys; poly; poly = poly->fNext) {
   1412         if (apply_fill_type(fillType, poly->fWinding)) {
   1413             end = poly->emit(end);
   1414         }
   1415     }
   1416     int actualCount = static_cast<int>(end - verts);
   1417     LOG("actual count: %d\n", actualCount);
   1418     SkASSERT(actualCount <= count);
   1419     if (canMapVB) {
   1420         vertexBuffer->unmap();
   1421     } else {
   1422         vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
   1423         delete[] verts;
   1424     }
   1425 
   1426     return actualCount;
   1427 }
   1428 
   1429 int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
   1430                    GrTessellator::WindingVertex** verts) {
   1431     int contourCnt;
   1432     int sizeEstimate;
   1433     get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
   1434     if (contourCnt <= 0) {
   1435         return 0;
   1436     }
   1437     SkChunkAlloc alloc(sizeEstimate);
   1438     bool isLinear;
   1439     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, &isLinear);
   1440     SkPath::FillType fillType = path.getFillType();
   1441     int count = count_points(polys, fillType);
   1442     if (0 == count) {
   1443         *verts = nullptr;
   1444         return 0;
   1445     }
   1446 
   1447     *verts = new GrTessellator::WindingVertex[count];
   1448     GrTessellator::WindingVertex* vertsEnd = *verts;
   1449     SkPoint* points = new SkPoint[count];
   1450     SkPoint* pointsEnd = points;
   1451     for (Poly* poly = polys; poly; poly = poly->fNext) {
   1452         if (apply_fill_type(fillType, poly->fWinding)) {
   1453             SkPoint* start = pointsEnd;
   1454             pointsEnd = poly->emit(pointsEnd);
   1455             while (start != pointsEnd) {
   1456                 vertsEnd->fPos = *start;
   1457                 vertsEnd->fWinding = poly->fWinding;
   1458                 ++start;
   1459                 ++vertsEnd;
   1460             }
   1461         }
   1462     }
   1463     int actualCount = static_cast<int>(vertsEnd - *verts);
   1464     SkASSERT(actualCount <= count);
   1465     SkASSERT(pointsEnd - points == actualCount);
   1466     delete[] points;
   1467     return actualCount;
   1468 }
   1469 
   1470 } // namespace
   1471