Home | History | Annotate | Download | only in arm
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been
     34 // modified significantly by Google Inc.
     35 // Copyright 2012 the V8 project authors. All rights reserved.
     36 
     37 #include "src/arm/assembler-arm.h"
     38 
     39 #if V8_TARGET_ARCH_ARM
     40 
     41 #include "src/arm/assembler-arm-inl.h"
     42 #include "src/base/bits.h"
     43 #include "src/base/cpu.h"
     44 #include "src/macro-assembler.h"
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 // Get the CPU features enabled by the build. For cross compilation the
     50 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
     51 // can be defined to enable ARMv7 and VFPv3 instructions when building the
     52 // snapshot.
     53 static unsigned CpuFeaturesImpliedByCompiler() {
     54   unsigned answer = 0;
     55 #ifdef CAN_USE_ARMV8_INSTRUCTIONS
     56   if (FLAG_enable_armv8) {
     57     answer |= 1u << ARMv8;
     58     // ARMv8 always features VFP and NEON.
     59     answer |= 1u << ARMv7 | 1u << VFP3 | 1u << NEON | 1u << VFP32DREGS;
     60     answer |= 1u << SUDIV;
     61   }
     62 #endif  // CAN_USE_ARMV8_INSTRUCTIONS
     63 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
     64   if (FLAG_enable_armv7) answer |= 1u << ARMv7;
     65 #endif  // CAN_USE_ARMV7_INSTRUCTIONS
     66 #ifdef CAN_USE_VFP3_INSTRUCTIONS
     67   if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7;
     68 #endif  // CAN_USE_VFP3_INSTRUCTIONS
     69 #ifdef CAN_USE_VFP32DREGS
     70   if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS;
     71 #endif  // CAN_USE_VFP32DREGS
     72 #ifdef CAN_USE_NEON
     73   if (FLAG_enable_neon) answer |= 1u << NEON;
     74 #endif  // CAN_USE_VFP32DREGS
     75   if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
     76     answer |= 1u << UNALIGNED_ACCESSES;
     77   }
     78 
     79   return answer;
     80 }
     81 
     82 
     83 void CpuFeatures::ProbeImpl(bool cross_compile) {
     84   supported_ |= CpuFeaturesImpliedByCompiler();
     85   dcache_line_size_ = 64;
     86 
     87   // Only use statically determined features for cross compile (snapshot).
     88   if (cross_compile) return;
     89 
     90 #ifndef __arm__
     91   // For the simulator build, use whatever the flags specify.
     92   if (FLAG_enable_armv8) {
     93     supported_ |= 1u << ARMv8;
     94     // ARMv8 always features VFP and NEON.
     95     supported_ |= 1u << ARMv7 | 1u << VFP3 | 1u << NEON | 1u << VFP32DREGS;
     96     supported_ |= 1u << SUDIV;
     97     if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
     98   }
     99   if (FLAG_enable_armv7) {
    100     supported_ |= 1u << ARMv7;
    101     if (FLAG_enable_vfp3) supported_ |= 1u << VFP3;
    102     if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS;
    103     if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV;
    104     if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
    105     if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS;
    106   }
    107   if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
    108 
    109 #else  // __arm__
    110   // Probe for additional features at runtime.
    111   base::CPU cpu;
    112   if (FLAG_enable_vfp3 && cpu.has_vfp3()) {
    113     // This implementation also sets the VFP flags if runtime
    114     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
    115     // 0406B, page A1-6.
    116     supported_ |= 1u << VFP3 | 1u << ARMv7;
    117   }
    118 
    119   if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON;
    120   if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV;
    121 
    122   if (cpu.architecture() >= 7) {
    123     if (FLAG_enable_armv7) supported_ |= 1u << ARMv7;
    124     if (FLAG_enable_armv8 && cpu.architecture() >= 8) {
    125       supported_ |= 1u << ARMv8;
    126     }
    127     if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
    128     // Use movw/movt for QUALCOMM ARMv7 cores.
    129     if (FLAG_enable_movw_movt && cpu.implementer() == base::CPU::QUALCOMM) {
    130       supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
    131     }
    132   }
    133 
    134   // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
    135   if (cpu.implementer() == base::CPU::ARM &&
    136       (cpu.part() == base::CPU::ARM_CORTEX_A5 ||
    137        cpu.part() == base::CPU::ARM_CORTEX_A9)) {
    138     dcache_line_size_ = 32;
    139   }
    140 
    141   if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS;
    142 #endif
    143 
    144   DCHECK(!IsSupported(VFP3) || IsSupported(ARMv7));
    145 }
    146 
    147 
    148 void CpuFeatures::PrintTarget() {
    149   const char* arm_arch = NULL;
    150   const char* arm_target_type = "";
    151   const char* arm_no_probe = "";
    152   const char* arm_fpu = "";
    153   const char* arm_thumb = "";
    154   const char* arm_float_abi = NULL;
    155 
    156 #if !defined __arm__
    157   arm_target_type = " simulator";
    158 #endif
    159 
    160 #if defined ARM_TEST_NO_FEATURE_PROBE
    161   arm_no_probe = " noprobe";
    162 #endif
    163 
    164 #if defined CAN_USE_ARMV8_INSTRUCTIONS
    165   arm_arch = "arm v8";
    166 #elif defined CAN_USE_ARMV7_INSTRUCTIONS
    167   arm_arch = "arm v7";
    168 #else
    169   arm_arch = "arm v6";
    170 #endif
    171 
    172 #if defined CAN_USE_NEON
    173   arm_fpu = " neon";
    174 #elif defined CAN_USE_VFP3_INSTRUCTIONS
    175 #  if defined CAN_USE_VFP32DREGS
    176   arm_fpu = " vfp3";
    177 #  else
    178   arm_fpu = " vfp3-d16";
    179 #  endif
    180 #else
    181   arm_fpu = " vfp2";
    182 #endif
    183 
    184 #ifdef __arm__
    185   arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp";
    186 #elif USE_EABI_HARDFLOAT
    187   arm_float_abi = "hard";
    188 #else
    189   arm_float_abi = "softfp";
    190 #endif
    191 
    192 #if defined __arm__ && (defined __thumb__) || (defined __thumb2__)
    193   arm_thumb = " thumb";
    194 #endif
    195 
    196   printf("target%s%s %s%s%s %s\n",
    197          arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb,
    198          arm_float_abi);
    199 }
    200 
    201 
    202 void CpuFeatures::PrintFeatures() {
    203   printf(
    204       "ARMv8=%d ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d "
    205       "UNALIGNED_ACCESSES=%d MOVW_MOVT_IMMEDIATE_LOADS=%d",
    206       CpuFeatures::IsSupported(ARMv8), CpuFeatures::IsSupported(ARMv7),
    207       CpuFeatures::IsSupported(VFP3), CpuFeatures::IsSupported(VFP32DREGS),
    208       CpuFeatures::IsSupported(NEON), CpuFeatures::IsSupported(SUDIV),
    209       CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
    210       CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
    211 #ifdef __arm__
    212   bool eabi_hardfloat = base::OS::ArmUsingHardFloat();
    213 #elif USE_EABI_HARDFLOAT
    214   bool eabi_hardfloat = true;
    215 #else
    216   bool eabi_hardfloat = false;
    217 #endif
    218     printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
    219 }
    220 
    221 
    222 // -----------------------------------------------------------------------------
    223 // Implementation of RelocInfo
    224 
    225 // static
    226 const int RelocInfo::kApplyMask = 0;
    227 
    228 
    229 bool RelocInfo::IsCodedSpecially() {
    230   // The deserializer needs to know whether a pointer is specially coded. Being
    231   // specially coded on ARM means that it is a movw/movt instruction, or is an
    232   // embedded constant pool entry. These only occur if
    233   // FLAG_enable_embedded_constant_pool is true.
    234   return FLAG_enable_embedded_constant_pool;
    235 }
    236 
    237 
    238 bool RelocInfo::IsInConstantPool() {
    239   return Assembler::is_constant_pool_load(pc_);
    240 }
    241 
    242 Address RelocInfo::wasm_memory_reference() {
    243   DCHECK(IsWasmMemoryReference(rmode_));
    244   return Assembler::target_address_at(pc_, host_);
    245 }
    246 
    247 uint32_t RelocInfo::wasm_memory_size_reference() {
    248   DCHECK(IsWasmMemorySizeReference(rmode_));
    249   return reinterpret_cast<uint32_t>(Assembler::target_address_at(pc_, host_));
    250 }
    251 
    252 Address RelocInfo::wasm_global_reference() {
    253   DCHECK(IsWasmGlobalReference(rmode_));
    254   return Assembler::target_address_at(pc_, host_);
    255 }
    256 
    257 void RelocInfo::unchecked_update_wasm_memory_reference(
    258     Address address, ICacheFlushMode flush_mode) {
    259   Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
    260 }
    261 
    262 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
    263                                                   ICacheFlushMode flush_mode) {
    264   Assembler::set_target_address_at(isolate_, pc_, host_,
    265                                    reinterpret_cast<Address>(size), flush_mode);
    266 }
    267 
    268 // -----------------------------------------------------------------------------
    269 // Implementation of Operand and MemOperand
    270 // See assembler-arm-inl.h for inlined constructors
    271 
    272 Operand::Operand(Handle<Object> handle) {
    273   AllowDeferredHandleDereference using_raw_address;
    274   rm_ = no_reg;
    275   // Verify all Objects referred by code are NOT in new space.
    276   Object* obj = *handle;
    277   if (obj->IsHeapObject()) {
    278     DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    279     imm32_ = reinterpret_cast<intptr_t>(handle.location());
    280     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    281   } else {
    282     // no relocation needed
    283     imm32_ = reinterpret_cast<intptr_t>(obj);
    284     rmode_ = RelocInfo::NONE32;
    285   }
    286 }
    287 
    288 
    289 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
    290   DCHECK(is_uint5(shift_imm));
    291 
    292   rm_ = rm;
    293   rs_ = no_reg;
    294   shift_op_ = shift_op;
    295   shift_imm_ = shift_imm & 31;
    296 
    297   if ((shift_op == ROR) && (shift_imm == 0)) {
    298     // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode
    299     // RRX as ROR #0 (See below).
    300     shift_op = LSL;
    301   } else if (shift_op == RRX) {
    302     // encoded as ROR with shift_imm == 0
    303     DCHECK(shift_imm == 0);
    304     shift_op_ = ROR;
    305     shift_imm_ = 0;
    306   }
    307 }
    308 
    309 
    310 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
    311   DCHECK(shift_op != RRX);
    312   rm_ = rm;
    313   rs_ = no_reg;
    314   shift_op_ = shift_op;
    315   rs_ = rs;
    316 }
    317 
    318 
    319 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
    320   rn_ = rn;
    321   rm_ = no_reg;
    322   offset_ = offset;
    323   am_ = am;
    324 
    325   // Accesses below the stack pointer are not safe, and are prohibited by the
    326   // ABI. We can check obvious violations here.
    327   if (rn.is(sp)) {
    328     if (am == Offset) DCHECK_LE(0, offset);
    329     if (am == NegOffset) DCHECK_GE(0, offset);
    330   }
    331 }
    332 
    333 
    334 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
    335   rn_ = rn;
    336   rm_ = rm;
    337   shift_op_ = LSL;
    338   shift_imm_ = 0;
    339   am_ = am;
    340 }
    341 
    342 
    343 MemOperand::MemOperand(Register rn, Register rm,
    344                        ShiftOp shift_op, int shift_imm, AddrMode am) {
    345   DCHECK(is_uint5(shift_imm));
    346   rn_ = rn;
    347   rm_ = rm;
    348   shift_op_ = shift_op;
    349   shift_imm_ = shift_imm & 31;
    350   am_ = am;
    351 }
    352 
    353 
    354 NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
    355   DCHECK((am == Offset) || (am == PostIndex));
    356   rn_ = rn;
    357   rm_ = (am == Offset) ? pc : sp;
    358   SetAlignment(align);
    359 }
    360 
    361 
    362 NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
    363   rn_ = rn;
    364   rm_ = rm;
    365   SetAlignment(align);
    366 }
    367 
    368 
    369 void NeonMemOperand::SetAlignment(int align) {
    370   switch (align) {
    371     case 0:
    372       align_ = 0;
    373       break;
    374     case 64:
    375       align_ = 1;
    376       break;
    377     case 128:
    378       align_ = 2;
    379       break;
    380     case 256:
    381       align_ = 3;
    382       break;
    383     default:
    384       UNREACHABLE();
    385       align_ = 0;
    386       break;
    387   }
    388 }
    389 
    390 
    391 NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
    392   base_ = base;
    393   switch (registers_count) {
    394     case 1:
    395       type_ = nlt_1;
    396       break;
    397     case 2:
    398       type_ = nlt_2;
    399       break;
    400     case 3:
    401       type_ = nlt_3;
    402       break;
    403     case 4:
    404       type_ = nlt_4;
    405       break;
    406     default:
    407       UNREACHABLE();
    408       type_ = nlt_1;
    409       break;
    410   }
    411 }
    412 
    413 
    414 // -----------------------------------------------------------------------------
    415 // Specific instructions, constants, and masks.
    416 
    417 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
    418 // register r is not encoded.
    419 const Instr kPushRegPattern =
    420     al | B26 | 4 | NegPreIndex | Register::kCode_sp * B16;
    421 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
    422 // register r is not encoded.
    423 const Instr kPopRegPattern =
    424     al | B26 | L | 4 | PostIndex | Register::kCode_sp * B16;
    425 // ldr rd, [pc, #offset]
    426 const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
    427 const Instr kLdrPCImmedPattern = 5 * B24 | L | Register::kCode_pc * B16;
    428 // ldr rd, [pp, #offset]
    429 const Instr kLdrPpImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
    430 const Instr kLdrPpImmedPattern = 5 * B24 | L | Register::kCode_r8 * B16;
    431 // ldr rd, [pp, rn]
    432 const Instr kLdrPpRegMask = 15 * B24 | 7 * B20 | 15 * B16;
    433 const Instr kLdrPpRegPattern = 7 * B24 | L | Register::kCode_r8 * B16;
    434 // vldr dd, [pc, #offset]
    435 const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
    436 const Instr kVldrDPCPattern = 13 * B24 | L | Register::kCode_pc * B16 | 11 * B8;
    437 // vldr dd, [pp, #offset]
    438 const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
    439 const Instr kVldrDPpPattern = 13 * B24 | L | Register::kCode_r8 * B16 | 11 * B8;
    440 // blxcc rm
    441 const Instr kBlxRegMask =
    442     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
    443 const Instr kBlxRegPattern =
    444     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
    445 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
    446 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
    447 const Instr kMovMvnPattern = 0xd * B21;
    448 const Instr kMovMvnFlip = B22;
    449 const Instr kMovLeaveCCMask = 0xdff * B16;
    450 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
    451 const Instr kMovwPattern = 0x30 * B20;
    452 const Instr kMovtPattern = 0x34 * B20;
    453 const Instr kMovwLeaveCCFlip = 0x5 * B21;
    454 const Instr kMovImmedMask = 0x7f * B21;
    455 const Instr kMovImmedPattern = 0x1d * B21;
    456 const Instr kOrrImmedMask = 0x7f * B21;
    457 const Instr kOrrImmedPattern = 0x1c * B21;
    458 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
    459 const Instr kCmpCmnPattern = 0x15 * B20;
    460 const Instr kCmpCmnFlip = B21;
    461 const Instr kAddSubFlip = 0x6 * B21;
    462 const Instr kAndBicFlip = 0xe * B21;
    463 
    464 // A mask for the Rd register for push, pop, ldr, str instructions.
    465 const Instr kLdrRegFpOffsetPattern =
    466     al | B26 | L | Offset | Register::kCode_fp * B16;
    467 const Instr kStrRegFpOffsetPattern =
    468     al | B26 | Offset | Register::kCode_fp * B16;
    469 const Instr kLdrRegFpNegOffsetPattern =
    470     al | B26 | L | NegOffset | Register::kCode_fp * B16;
    471 const Instr kStrRegFpNegOffsetPattern =
    472     al | B26 | NegOffset | Register::kCode_fp * B16;
    473 const Instr kLdrStrInstrTypeMask = 0xffff0000;
    474 
    475 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    476     : AssemblerBase(isolate, buffer, buffer_size),
    477       recorded_ast_id_(TypeFeedbackId::None()),
    478       pending_32_bit_constants_(),
    479       pending_64_bit_constants_(),
    480       constant_pool_builder_(kLdrMaxReachBits, kVldrMaxReachBits),
    481       positions_recorder_(this) {
    482   pending_32_bit_constants_.reserve(kMinNumPendingConstants);
    483   pending_64_bit_constants_.reserve(kMinNumPendingConstants);
    484   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
    485   next_buffer_check_ = 0;
    486   const_pool_blocked_nesting_ = 0;
    487   no_const_pool_before_ = 0;
    488   first_const_pool_32_use_ = -1;
    489   first_const_pool_64_use_ = -1;
    490   last_bound_pos_ = 0;
    491   ClearRecordedAstId();
    492 }
    493 
    494 
    495 Assembler::~Assembler() {
    496   DCHECK(const_pool_blocked_nesting_ == 0);
    497 }
    498 
    499 
    500 void Assembler::GetCode(CodeDesc* desc) {
    501   reloc_info_writer.Finish();
    502 
    503   // Emit constant pool if necessary.
    504   int constant_pool_offset = 0;
    505   if (FLAG_enable_embedded_constant_pool) {
    506     constant_pool_offset = EmitEmbeddedConstantPool();
    507   } else {
    508     CheckConstPool(true, false);
    509     DCHECK(pending_32_bit_constants_.empty());
    510     DCHECK(pending_64_bit_constants_.empty());
    511   }
    512   // Set up code descriptor.
    513   desc->buffer = buffer_;
    514   desc->buffer_size = buffer_size_;
    515   desc->instr_size = pc_offset();
    516   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    517   desc->constant_pool_size =
    518       (constant_pool_offset ? desc->instr_size - constant_pool_offset : 0);
    519   desc->origin = this;
    520   desc->unwinding_info_size = 0;
    521   desc->unwinding_info = nullptr;
    522 }
    523 
    524 
    525 void Assembler::Align(int m) {
    526   DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
    527   DCHECK((pc_offset() & (kInstrSize - 1)) == 0);
    528   while ((pc_offset() & (m - 1)) != 0) {
    529     nop();
    530   }
    531 }
    532 
    533 
    534 void Assembler::CodeTargetAlign() {
    535   // Preferred alignment of jump targets on some ARM chips.
    536   Align(8);
    537 }
    538 
    539 
    540 Condition Assembler::GetCondition(Instr instr) {
    541   return Instruction::ConditionField(instr);
    542 }
    543 
    544 
    545 bool Assembler::IsBranch(Instr instr) {
    546   return (instr & (B27 | B25)) == (B27 | B25);
    547 }
    548 
    549 
    550 int Assembler::GetBranchOffset(Instr instr) {
    551   DCHECK(IsBranch(instr));
    552   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
    553   // with 4 to get the offset in bytes.
    554   return ((instr & kImm24Mask) << 8) >> 6;
    555 }
    556 
    557 
    558 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
    559   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
    560 }
    561 
    562 
    563 bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
    564   return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
    565 }
    566 
    567 
    568 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
    569   DCHECK(IsLdrRegisterImmediate(instr));
    570   bool positive = (instr & B23) == B23;
    571   int offset = instr & kOff12Mask;  // Zero extended offset.
    572   return positive ? offset : -offset;
    573 }
    574 
    575 
    576 int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
    577   DCHECK(IsVldrDRegisterImmediate(instr));
    578   bool positive = (instr & B23) == B23;
    579   int offset = instr & kOff8Mask;  // Zero extended offset.
    580   offset <<= 2;
    581   return positive ? offset : -offset;
    582 }
    583 
    584 
    585 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
    586   DCHECK(IsLdrRegisterImmediate(instr));
    587   bool positive = offset >= 0;
    588   if (!positive) offset = -offset;
    589   DCHECK(is_uint12(offset));
    590   // Set bit indicating whether the offset should be added.
    591   instr = (instr & ~B23) | (positive ? B23 : 0);
    592   // Set the actual offset.
    593   return (instr & ~kOff12Mask) | offset;
    594 }
    595 
    596 
    597 Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
    598   DCHECK(IsVldrDRegisterImmediate(instr));
    599   DCHECK((offset & ~3) == offset);  // Must be 64-bit aligned.
    600   bool positive = offset >= 0;
    601   if (!positive) offset = -offset;
    602   DCHECK(is_uint10(offset));
    603   // Set bit indicating whether the offset should be added.
    604   instr = (instr & ~B23) | (positive ? B23 : 0);
    605   // Set the actual offset. Its bottom 2 bits are zero.
    606   return (instr & ~kOff8Mask) | (offset >> 2);
    607 }
    608 
    609 
    610 bool Assembler::IsStrRegisterImmediate(Instr instr) {
    611   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
    612 }
    613 
    614 
    615 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
    616   DCHECK(IsStrRegisterImmediate(instr));
    617   bool positive = offset >= 0;
    618   if (!positive) offset = -offset;
    619   DCHECK(is_uint12(offset));
    620   // Set bit indicating whether the offset should be added.
    621   instr = (instr & ~B23) | (positive ? B23 : 0);
    622   // Set the actual offset.
    623   return (instr & ~kOff12Mask) | offset;
    624 }
    625 
    626 
    627 bool Assembler::IsAddRegisterImmediate(Instr instr) {
    628   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
    629 }
    630 
    631 
    632 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
    633   DCHECK(IsAddRegisterImmediate(instr));
    634   DCHECK(offset >= 0);
    635   DCHECK(is_uint12(offset));
    636   // Set the offset.
    637   return (instr & ~kOff12Mask) | offset;
    638 }
    639 
    640 
    641 Register Assembler::GetRd(Instr instr) {
    642   Register reg;
    643   reg.reg_code = Instruction::RdValue(instr);
    644   return reg;
    645 }
    646 
    647 
    648 Register Assembler::GetRn(Instr instr) {
    649   Register reg;
    650   reg.reg_code = Instruction::RnValue(instr);
    651   return reg;
    652 }
    653 
    654 
    655 Register Assembler::GetRm(Instr instr) {
    656   Register reg;
    657   reg.reg_code = Instruction::RmValue(instr);
    658   return reg;
    659 }
    660 
    661 
    662 Instr Assembler::GetConsantPoolLoadPattern() {
    663   if (FLAG_enable_embedded_constant_pool) {
    664     return kLdrPpImmedPattern;
    665   } else {
    666     return kLdrPCImmedPattern;
    667   }
    668 }
    669 
    670 
    671 Instr Assembler::GetConsantPoolLoadMask() {
    672   if (FLAG_enable_embedded_constant_pool) {
    673     return kLdrPpImmedMask;
    674   } else {
    675     return kLdrPCImmedMask;
    676   }
    677 }
    678 
    679 
    680 bool Assembler::IsPush(Instr instr) {
    681   return ((instr & ~kRdMask) == kPushRegPattern);
    682 }
    683 
    684 
    685 bool Assembler::IsPop(Instr instr) {
    686   return ((instr & ~kRdMask) == kPopRegPattern);
    687 }
    688 
    689 
    690 bool Assembler::IsStrRegFpOffset(Instr instr) {
    691   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
    692 }
    693 
    694 
    695 bool Assembler::IsLdrRegFpOffset(Instr instr) {
    696   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
    697 }
    698 
    699 
    700 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
    701   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
    702 }
    703 
    704 
    705 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
    706   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
    707 }
    708 
    709 
    710 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
    711   // Check the instruction is indeed a
    712   // ldr<cond> <Rd>, [pc +/- offset_12].
    713   return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern;
    714 }
    715 
    716 
    717 bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
    718   // Check the instruction is indeed a
    719   // ldr<cond> <Rd>, [pp +/- offset_12].
    720   return (instr & kLdrPpImmedMask) == kLdrPpImmedPattern;
    721 }
    722 
    723 
    724 bool Assembler::IsLdrPpRegOffset(Instr instr) {
    725   // Check the instruction is indeed a
    726   // ldr<cond> <Rd>, [pp, +/- <Rm>].
    727   return (instr & kLdrPpRegMask) == kLdrPpRegPattern;
    728 }
    729 
    730 
    731 Instr Assembler::GetLdrPpRegOffsetPattern() { return kLdrPpRegPattern; }
    732 
    733 
    734 bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
    735   // Check the instruction is indeed a
    736   // vldr<cond> <Dd>, [pc +/- offset_10].
    737   return (instr & kVldrDPCMask) == kVldrDPCPattern;
    738 }
    739 
    740 
    741 bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
    742   // Check the instruction is indeed a
    743   // vldr<cond> <Dd>, [pp +/- offset_10].
    744   return (instr & kVldrDPpMask) == kVldrDPpPattern;
    745 }
    746 
    747 
    748 bool Assembler::IsBlxReg(Instr instr) {
    749   // Check the instruction is indeed a
    750   // blxcc <Rm>
    751   return (instr & kBlxRegMask) == kBlxRegPattern;
    752 }
    753 
    754 
    755 bool Assembler::IsBlxIp(Instr instr) {
    756   // Check the instruction is indeed a
    757   // blx ip
    758   return instr == kBlxIp;
    759 }
    760 
    761 
    762 bool Assembler::IsTstImmediate(Instr instr) {
    763   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    764       (I | TST | S);
    765 }
    766 
    767 
    768 bool Assembler::IsCmpRegister(Instr instr) {
    769   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
    770       (CMP | S);
    771 }
    772 
    773 
    774 bool Assembler::IsCmpImmediate(Instr instr) {
    775   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    776       (I | CMP | S);
    777 }
    778 
    779 
    780 Register Assembler::GetCmpImmediateRegister(Instr instr) {
    781   DCHECK(IsCmpImmediate(instr));
    782   return GetRn(instr);
    783 }
    784 
    785 
    786 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
    787   DCHECK(IsCmpImmediate(instr));
    788   return instr & kOff12Mask;
    789 }
    790 
    791 
    792 // Labels refer to positions in the (to be) generated code.
    793 // There are bound, linked, and unused labels.
    794 //
    795 // Bound labels refer to known positions in the already
    796 // generated code. pos() is the position the label refers to.
    797 //
    798 // Linked labels refer to unknown positions in the code
    799 // to be generated; pos() is the position of the last
    800 // instruction using the label.
    801 //
    802 // The linked labels form a link chain by making the branch offset
    803 // in the instruction steam to point to the previous branch
    804 // instruction using the same label.
    805 //
    806 // The link chain is terminated by a branch offset pointing to the
    807 // same position.
    808 
    809 
    810 int Assembler::target_at(int pos) {
    811   Instr instr = instr_at(pos);
    812   if (is_uint24(instr)) {
    813     // Emitted link to a label, not part of a branch.
    814     return instr;
    815   }
    816   DCHECK_EQ(5 * B25, instr & 7 * B25);  // b, bl, or blx imm24
    817   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
    818   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
    819       ((instr & B24) != 0)) {
    820     // blx uses bit 24 to encode bit 2 of imm26
    821     imm26 += 2;
    822   }
    823   return pos + kPcLoadDelta + imm26;
    824 }
    825 
    826 
    827 void Assembler::target_at_put(int pos, int target_pos) {
    828   Instr instr = instr_at(pos);
    829   if (is_uint24(instr)) {
    830     DCHECK(target_pos == pos || target_pos >= 0);
    831     // Emitted link to a label, not part of a branch.
    832     // Load the position of the label relative to the generated code object
    833     // pointer in a register.
    834 
    835     // The existing code must be a single 24-bit label chain link, followed by
    836     // nops encoding the destination register. See mov_label_offset.
    837 
    838     // Extract the destination register from the first nop instructions.
    839     Register dst =
    840         Register::from_code(Instruction::RmValue(instr_at(pos + kInstrSize)));
    841     // In addition to the 24-bit label chain link, we expect to find one nop for
    842     // ARMv7 and above, or two nops for ARMv6. See mov_label_offset.
    843     DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code()));
    844     if (!CpuFeatures::IsSupported(ARMv7)) {
    845       DCHECK(IsNop(instr_at(pos + 2 * kInstrSize), dst.code()));
    846     }
    847 
    848     // Here are the instructions we need to emit:
    849     //   For ARMv7: target24 => target16_1:target16_0
    850     //      movw dst, #target16_0
    851     //      movt dst, #target16_1
    852     //   For ARMv6: target24 => target8_2:target8_1:target8_0
    853     //      mov dst, #target8_0
    854     //      orr dst, dst, #target8_1 << 8
    855     //      orr dst, dst, #target8_2 << 16
    856 
    857     uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
    858     DCHECK(is_uint24(target24));
    859     if (is_uint8(target24)) {
    860       // If the target fits in a byte then only patch with a mov
    861       // instruction.
    862       CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos), 1,
    863                           CodePatcher::DONT_FLUSH);
    864       patcher.masm()->mov(dst, Operand(target24));
    865     } else {
    866       uint16_t target16_0 = target24 & kImm16Mask;
    867       uint16_t target16_1 = target24 >> 16;
    868       if (CpuFeatures::IsSupported(ARMv7)) {
    869         // Patch with movw/movt.
    870         if (target16_1 == 0) {
    871           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
    872                               1, CodePatcher::DONT_FLUSH);
    873           patcher.masm()->movw(dst, target16_0);
    874         } else {
    875           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
    876                               2, CodePatcher::DONT_FLUSH);
    877           patcher.masm()->movw(dst, target16_0);
    878           patcher.masm()->movt(dst, target16_1);
    879         }
    880       } else {
    881         // Patch with a sequence of mov/orr/orr instructions.
    882         uint8_t target8_0 = target16_0 & kImm8Mask;
    883         uint8_t target8_1 = target16_0 >> 8;
    884         uint8_t target8_2 = target16_1 & kImm8Mask;
    885         if (target8_2 == 0) {
    886           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
    887                               2, CodePatcher::DONT_FLUSH);
    888           patcher.masm()->mov(dst, Operand(target8_0));
    889           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
    890         } else {
    891           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
    892                               3, CodePatcher::DONT_FLUSH);
    893           patcher.masm()->mov(dst, Operand(target8_0));
    894           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
    895           patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
    896         }
    897       }
    898     }
    899     return;
    900   }
    901   int imm26 = target_pos - (pos + kPcLoadDelta);
    902   DCHECK_EQ(5 * B25, instr & 7 * B25);  // b, bl, or blx imm24
    903   if (Instruction::ConditionField(instr) == kSpecialCondition) {
    904     // blx uses bit 24 to encode bit 2 of imm26
    905     DCHECK_EQ(0, imm26 & 1);
    906     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1) * B24;
    907   } else {
    908     DCHECK_EQ(0, imm26 & 3);
    909     instr &= ~kImm24Mask;
    910   }
    911   int imm24 = imm26 >> 2;
    912   DCHECK(is_int24(imm24));
    913   instr_at_put(pos, instr | (imm24 & kImm24Mask));
    914 }
    915 
    916 
    917 void Assembler::print(Label* L) {
    918   if (L->is_unused()) {
    919     PrintF("unused label\n");
    920   } else if (L->is_bound()) {
    921     PrintF("bound label to %d\n", L->pos());
    922   } else if (L->is_linked()) {
    923     Label l = *L;
    924     PrintF("unbound label");
    925     while (l.is_linked()) {
    926       PrintF("@ %d ", l.pos());
    927       Instr instr = instr_at(l.pos());
    928       if ((instr & ~kImm24Mask) == 0) {
    929         PrintF("value\n");
    930       } else {
    931         DCHECK((instr & 7*B25) == 5*B25);  // b, bl, or blx
    932         Condition cond = Instruction::ConditionField(instr);
    933         const char* b;
    934         const char* c;
    935         if (cond == kSpecialCondition) {
    936           b = "blx";
    937           c = "";
    938         } else {
    939           if ((instr & B24) != 0)
    940             b = "bl";
    941           else
    942             b = "b";
    943 
    944           switch (cond) {
    945             case eq: c = "eq"; break;
    946             case ne: c = "ne"; break;
    947             case hs: c = "hs"; break;
    948             case lo: c = "lo"; break;
    949             case mi: c = "mi"; break;
    950             case pl: c = "pl"; break;
    951             case vs: c = "vs"; break;
    952             case vc: c = "vc"; break;
    953             case hi: c = "hi"; break;
    954             case ls: c = "ls"; break;
    955             case ge: c = "ge"; break;
    956             case lt: c = "lt"; break;
    957             case gt: c = "gt"; break;
    958             case le: c = "le"; break;
    959             case al: c = ""; break;
    960             default:
    961               c = "";
    962               UNREACHABLE();
    963           }
    964         }
    965         PrintF("%s%s\n", b, c);
    966       }
    967       next(&l);
    968     }
    969   } else {
    970     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
    971   }
    972 }
    973 
    974 
    975 void Assembler::bind_to(Label* L, int pos) {
    976   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
    977   while (L->is_linked()) {
    978     int fixup_pos = L->pos();
    979     next(L);  // call next before overwriting link with target at fixup_pos
    980     target_at_put(fixup_pos, pos);
    981   }
    982   L->bind_to(pos);
    983 
    984   // Keep track of the last bound label so we don't eliminate any instructions
    985   // before a bound label.
    986   if (pos > last_bound_pos_)
    987     last_bound_pos_ = pos;
    988 }
    989 
    990 
    991 void Assembler::bind(Label* L) {
    992   DCHECK(!L->is_bound());  // label can only be bound once
    993   bind_to(L, pc_offset());
    994 }
    995 
    996 
    997 void Assembler::next(Label* L) {
    998   DCHECK(L->is_linked());
    999   int link = target_at(L->pos());
   1000   if (link == L->pos()) {
   1001     // Branch target points to the same instuction. This is the end of the link
   1002     // chain.
   1003     L->Unuse();
   1004   } else {
   1005     DCHECK(link >= 0);
   1006     L->link_to(link);
   1007   }
   1008 }
   1009 
   1010 
   1011 // Low-level code emission routines depending on the addressing mode.
   1012 // If this returns true then you have to use the rotate_imm and immed_8
   1013 // that it returns, because it may have already changed the instruction
   1014 // to match them!
   1015 static bool fits_shifter(uint32_t imm32,
   1016                          uint32_t* rotate_imm,
   1017                          uint32_t* immed_8,
   1018                          Instr* instr) {
   1019   // imm32 must be unsigned.
   1020   for (int rot = 0; rot < 16; rot++) {
   1021     uint32_t imm8 = base::bits::RotateLeft32(imm32, 2 * rot);
   1022     if ((imm8 <= 0xff)) {
   1023       *rotate_imm = rot;
   1024       *immed_8 = imm8;
   1025       return true;
   1026     }
   1027   }
   1028   // If the opcode is one with a complementary version and the complementary
   1029   // immediate fits, change the opcode.
   1030   if (instr != NULL) {
   1031     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
   1032       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
   1033         *instr ^= kMovMvnFlip;
   1034         return true;
   1035       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
   1036         if (CpuFeatures::IsSupported(ARMv7)) {
   1037           if (imm32 < 0x10000) {
   1038             *instr ^= kMovwLeaveCCFlip;
   1039             *instr |= Assembler::EncodeMovwImmediate(imm32);
   1040             *rotate_imm = *immed_8 = 0;  // Not used for movw.
   1041             return true;
   1042           }
   1043         }
   1044       }
   1045     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
   1046       if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
   1047         *instr ^= kCmpCmnFlip;
   1048         return true;
   1049       }
   1050     } else {
   1051       Instr alu_insn = (*instr & kALUMask);
   1052       if (alu_insn == ADD ||
   1053           alu_insn == SUB) {
   1054         if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
   1055           *instr ^= kAddSubFlip;
   1056           return true;
   1057         }
   1058       } else if (alu_insn == AND ||
   1059                  alu_insn == BIC) {
   1060         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
   1061           *instr ^= kAndBicFlip;
   1062           return true;
   1063         }
   1064       }
   1065     }
   1066   }
   1067   return false;
   1068 }
   1069 
   1070 
   1071 // We have to use the temporary register for things that can be relocated even
   1072 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
   1073 // space.  There is no guarantee that the relocated location can be similarly
   1074 // encoded.
   1075 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
   1076   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
   1077     if (assembler != NULL && assembler->predictable_code_size()) return true;
   1078     return assembler->serializer_enabled();
   1079   } else if (RelocInfo::IsNone(rmode_)) {
   1080     return false;
   1081   }
   1082   return true;
   1083 }
   1084 
   1085 
   1086 static bool use_mov_immediate_load(const Operand& x,
   1087                                    const Assembler* assembler) {
   1088   if (FLAG_enable_embedded_constant_pool && assembler != NULL &&
   1089       !assembler->is_constant_pool_available()) {
   1090     return true;
   1091   } else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
   1092              (assembler == NULL || !assembler->predictable_code_size())) {
   1093     // Prefer movw / movt to constant pool if it is more efficient on the CPU.
   1094     return true;
   1095   } else if (x.must_output_reloc_info(assembler)) {
   1096     // Prefer constant pool if data is likely to be patched.
   1097     return false;
   1098   } else {
   1099     // Otherwise, use immediate load if movw / movt is available.
   1100     return CpuFeatures::IsSupported(ARMv7);
   1101   }
   1102 }
   1103 
   1104 
   1105 int Operand::instructions_required(const Assembler* assembler,
   1106                                    Instr instr) const {
   1107   if (rm_.is_valid()) return 1;
   1108   uint32_t dummy1, dummy2;
   1109   if (must_output_reloc_info(assembler) ||
   1110       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
   1111     // The immediate operand cannot be encoded as a shifter operand, or use of
   1112     // constant pool is required.  First account for the instructions required
   1113     // for the constant pool or immediate load
   1114     int instructions;
   1115     if (use_mov_immediate_load(*this, assembler)) {
   1116       // A movw / movt or mov / orr immediate load.
   1117       instructions = CpuFeatures::IsSupported(ARMv7) ? 2 : 4;
   1118     } else if (assembler != NULL &&
   1119                assembler->ConstantPoolAccessIsInOverflow()) {
   1120       // An overflowed constant pool load.
   1121       instructions = CpuFeatures::IsSupported(ARMv7) ? 3 : 5;
   1122     } else {
   1123       // A small constant pool load.
   1124       instructions = 1;
   1125     }
   1126 
   1127     if ((instr & ~kCondMask) != 13 * B21) {  // mov, S not set
   1128       // For a mov or mvn instruction which doesn't set the condition
   1129       // code, the constant pool or immediate load is enough, otherwise we need
   1130       // to account for the actual instruction being requested.
   1131       instructions += 1;
   1132     }
   1133     return instructions;
   1134   } else {
   1135     // No use of constant pool and the immediate operand can be encoded as a
   1136     // shifter operand.
   1137     return 1;
   1138   }
   1139 }
   1140 
   1141 
   1142 void Assembler::move_32_bit_immediate(Register rd,
   1143                                       const Operand& x,
   1144                                       Condition cond) {
   1145   uint32_t imm32 = static_cast<uint32_t>(x.imm32_);
   1146   if (x.must_output_reloc_info(this)) {
   1147     RecordRelocInfo(x.rmode_);
   1148   }
   1149 
   1150   if (use_mov_immediate_load(x, this)) {
   1151     Register target = rd.code() == pc.code() ? ip : rd;
   1152     if (CpuFeatures::IsSupported(ARMv7)) {
   1153       if (!FLAG_enable_embedded_constant_pool &&
   1154           x.must_output_reloc_info(this)) {
   1155         // Make sure the movw/movt doesn't get separated.
   1156         BlockConstPoolFor(2);
   1157       }
   1158       movw(target, imm32 & 0xffff, cond);
   1159       movt(target, imm32 >> 16, cond);
   1160     } else {
   1161       DCHECK(FLAG_enable_embedded_constant_pool);
   1162       mov(target, Operand(imm32 & kImm8Mask), LeaveCC, cond);
   1163       orr(target, target, Operand(imm32 & (kImm8Mask << 8)), LeaveCC, cond);
   1164       orr(target, target, Operand(imm32 & (kImm8Mask << 16)), LeaveCC, cond);
   1165       orr(target, target, Operand(imm32 & (kImm8Mask << 24)), LeaveCC, cond);
   1166     }
   1167     if (target.code() != rd.code()) {
   1168       mov(rd, target, LeaveCC, cond);
   1169     }
   1170   } else {
   1171     DCHECK(!FLAG_enable_embedded_constant_pool || is_constant_pool_available());
   1172     ConstantPoolEntry::Access access =
   1173         ConstantPoolAddEntry(pc_offset(), x.rmode_, x.imm32_);
   1174     if (access == ConstantPoolEntry::OVERFLOWED) {
   1175       DCHECK(FLAG_enable_embedded_constant_pool);
   1176       Register target = rd.code() == pc.code() ? ip : rd;
   1177       // Emit instructions to load constant pool offset.
   1178       if (CpuFeatures::IsSupported(ARMv7)) {
   1179         movw(target, 0, cond);
   1180         movt(target, 0, cond);
   1181       } else {
   1182         mov(target, Operand(0), LeaveCC, cond);
   1183         orr(target, target, Operand(0), LeaveCC, cond);
   1184         orr(target, target, Operand(0), LeaveCC, cond);
   1185         orr(target, target, Operand(0), LeaveCC, cond);
   1186       }
   1187       // Load from constant pool at offset.
   1188       ldr(rd, MemOperand(pp, target), cond);
   1189     } else {
   1190       DCHECK(access == ConstantPoolEntry::REGULAR);
   1191       ldr(rd, MemOperand(FLAG_enable_embedded_constant_pool ? pp : pc, 0),
   1192           cond);
   1193     }
   1194   }
   1195 }
   1196 
   1197 
   1198 void Assembler::addrmod1(Instr instr,
   1199                          Register rn,
   1200                          Register rd,
   1201                          const Operand& x) {
   1202   CheckBuffer();
   1203   DCHECK((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
   1204   if (!x.rm_.is_valid()) {
   1205     // Immediate.
   1206     uint32_t rotate_imm;
   1207     uint32_t immed_8;
   1208     if (x.must_output_reloc_info(this) ||
   1209         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
   1210       // The immediate operand cannot be encoded as a shifter operand, so load
   1211       // it first to register ip and change the original instruction to use ip.
   1212       // However, if the original instruction is a 'mov rd, x' (not setting the
   1213       // condition code), then replace it with a 'ldr rd, [pc]'.
   1214       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
   1215       Condition cond = Instruction::ConditionField(instr);
   1216       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
   1217         move_32_bit_immediate(rd, x, cond);
   1218       } else {
   1219         mov(ip, x, LeaveCC, cond);
   1220         addrmod1(instr, rn, rd, Operand(ip));
   1221       }
   1222       return;
   1223     }
   1224     instr |= I | rotate_imm*B8 | immed_8;
   1225   } else if (!x.rs_.is_valid()) {
   1226     // Immediate shift.
   1227     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
   1228   } else {
   1229     // Register shift.
   1230     DCHECK(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
   1231     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
   1232   }
   1233   emit(instr | rn.code()*B16 | rd.code()*B12);
   1234   if (rn.is(pc) || x.rm_.is(pc)) {
   1235     // Block constant pool emission for one instruction after reading pc.
   1236     BlockConstPoolFor(1);
   1237   }
   1238 }
   1239 
   1240 
   1241 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
   1242   DCHECK((instr & ~(kCondMask | B | L)) == B26);
   1243   int am = x.am_;
   1244   if (!x.rm_.is_valid()) {
   1245     // Immediate offset.
   1246     int offset_12 = x.offset_;
   1247     if (offset_12 < 0) {
   1248       offset_12 = -offset_12;
   1249       am ^= U;
   1250     }
   1251     if (!is_uint12(offset_12)) {
   1252       // Immediate offset cannot be encoded, load it first to register ip
   1253       // rn (and rd in a load) should never be ip, or will be trashed.
   1254       DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1255       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
   1256       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1257       return;
   1258     }
   1259     DCHECK(offset_12 >= 0);  // no masking needed
   1260     instr |= offset_12;
   1261   } else {
   1262     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
   1263     // register offset the constructors make sure than both shift_imm_
   1264     // and shift_op_ are initialized.
   1265     DCHECK(!x.rm_.is(pc));
   1266     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
   1267   }
   1268   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1269   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
   1270 }
   1271 
   1272 
   1273 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
   1274   DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
   1275   DCHECK(x.rn_.is_valid());
   1276   int am = x.am_;
   1277   if (!x.rm_.is_valid()) {
   1278     // Immediate offset.
   1279     int offset_8 = x.offset_;
   1280     if (offset_8 < 0) {
   1281       offset_8 = -offset_8;
   1282       am ^= U;
   1283     }
   1284     if (!is_uint8(offset_8)) {
   1285       // Immediate offset cannot be encoded, load it first to register ip
   1286       // rn (and rd in a load) should never be ip, or will be trashed.
   1287       DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1288       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
   1289       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1290       return;
   1291     }
   1292     DCHECK(offset_8 >= 0);  // no masking needed
   1293     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
   1294   } else if (x.shift_imm_ != 0) {
   1295     // Scaled register offset not supported, load index first
   1296     // rn (and rd in a load) should never be ip, or will be trashed.
   1297     DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1298     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
   1299         Instruction::ConditionField(instr));
   1300     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1301     return;
   1302   } else {
   1303     // Register offset.
   1304     DCHECK((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
   1305     instr |= x.rm_.code();
   1306   }
   1307   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1308   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
   1309 }
   1310 
   1311 
   1312 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
   1313   DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27);
   1314   DCHECK(rl != 0);
   1315   DCHECK(!rn.is(pc));
   1316   emit(instr | rn.code()*B16 | rl);
   1317 }
   1318 
   1319 
   1320 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
   1321   // Unindexed addressing is not encoded by this function.
   1322   DCHECK_EQ((B27 | B26),
   1323             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
   1324   DCHECK(x.rn_.is_valid() && !x.rm_.is_valid());
   1325   int am = x.am_;
   1326   int offset_8 = x.offset_;
   1327   DCHECK((offset_8 & 3) == 0);  // offset must be an aligned word offset
   1328   offset_8 >>= 2;
   1329   if (offset_8 < 0) {
   1330     offset_8 = -offset_8;
   1331     am ^= U;
   1332   }
   1333   DCHECK(is_uint8(offset_8));  // unsigned word offset must fit in a byte
   1334   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1335 
   1336   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
   1337   if ((am & P) == 0)
   1338     am |= W;
   1339 
   1340   DCHECK(offset_8 >= 0);  // no masking needed
   1341   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
   1342 }
   1343 
   1344 
   1345 int Assembler::branch_offset(Label* L) {
   1346   int target_pos;
   1347   if (L->is_bound()) {
   1348     target_pos = L->pos();
   1349   } else {
   1350     if (L->is_linked()) {
   1351       // Point to previous instruction that uses the link.
   1352       target_pos = L->pos();
   1353     } else {
   1354       // First entry of the link chain points to itself.
   1355       target_pos = pc_offset();
   1356     }
   1357     L->link_to(pc_offset());
   1358   }
   1359 
   1360   // Block the emission of the constant pool, since the branch instruction must
   1361   // be emitted at the pc offset recorded by the label.
   1362   if (!is_const_pool_blocked()) BlockConstPoolFor(1);
   1363 
   1364   return target_pos - (pc_offset() + kPcLoadDelta);
   1365 }
   1366 
   1367 
   1368 // Branch instructions.
   1369 void Assembler::b(int branch_offset, Condition cond) {
   1370   DCHECK((branch_offset & 3) == 0);
   1371   int imm24 = branch_offset >> 2;
   1372   CHECK(is_int24(imm24));
   1373   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
   1374 
   1375   if (cond == al) {
   1376     // Dead code is a good location to emit the constant pool.
   1377     CheckConstPool(false, false);
   1378   }
   1379 }
   1380 
   1381 
   1382 void Assembler::bl(int branch_offset, Condition cond) {
   1383   DCHECK((branch_offset & 3) == 0);
   1384   int imm24 = branch_offset >> 2;
   1385   CHECK(is_int24(imm24));
   1386   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
   1387 }
   1388 
   1389 
   1390 void Assembler::blx(int branch_offset) {  // v5 and above
   1391   DCHECK((branch_offset & 1) == 0);
   1392   int h = ((branch_offset & 2) >> 1)*B24;
   1393   int imm24 = branch_offset >> 2;
   1394   CHECK(is_int24(imm24));
   1395   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
   1396 }
   1397 
   1398 
   1399 void Assembler::blx(Register target, Condition cond) {  // v5 and above
   1400   DCHECK(!target.is(pc));
   1401   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
   1402 }
   1403 
   1404 
   1405 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
   1406   DCHECK(!target.is(pc));  // use of pc is actually allowed, but discouraged
   1407   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
   1408 }
   1409 
   1410 
   1411 void Assembler::b(Label* L, Condition cond) {
   1412   CheckBuffer();
   1413   b(branch_offset(L), cond);
   1414 }
   1415 
   1416 
   1417 void Assembler::bl(Label* L, Condition cond) {
   1418   CheckBuffer();
   1419   bl(branch_offset(L), cond);
   1420 }
   1421 
   1422 
   1423 void Assembler::blx(Label* L) {
   1424   CheckBuffer();
   1425   blx(branch_offset(L));
   1426 }
   1427 
   1428 
   1429 // Data-processing instructions.
   1430 
   1431 void Assembler::and_(Register dst, Register src1, const Operand& src2,
   1432                      SBit s, Condition cond) {
   1433   addrmod1(cond | AND | s, src1, dst, src2);
   1434 }
   1435 
   1436 
   1437 void Assembler::eor(Register dst, Register src1, const Operand& src2,
   1438                     SBit s, Condition cond) {
   1439   addrmod1(cond | EOR | s, src1, dst, src2);
   1440 }
   1441 
   1442 
   1443 void Assembler::sub(Register dst, Register src1, const Operand& src2,
   1444                     SBit s, Condition cond) {
   1445   addrmod1(cond | SUB | s, src1, dst, src2);
   1446 }
   1447 
   1448 
   1449 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
   1450                     SBit s, Condition cond) {
   1451   addrmod1(cond | RSB | s, src1, dst, src2);
   1452 }
   1453 
   1454 
   1455 void Assembler::add(Register dst, Register src1, const Operand& src2,
   1456                     SBit s, Condition cond) {
   1457   addrmod1(cond | ADD | s, src1, dst, src2);
   1458 }
   1459 
   1460 
   1461 void Assembler::adc(Register dst, Register src1, const Operand& src2,
   1462                     SBit s, Condition cond) {
   1463   addrmod1(cond | ADC | s, src1, dst, src2);
   1464 }
   1465 
   1466 
   1467 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
   1468                     SBit s, Condition cond) {
   1469   addrmod1(cond | SBC | s, src1, dst, src2);
   1470 }
   1471 
   1472 
   1473 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
   1474                     SBit s, Condition cond) {
   1475   addrmod1(cond | RSC | s, src1, dst, src2);
   1476 }
   1477 
   1478 
   1479 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
   1480   addrmod1(cond | TST | S, src1, r0, src2);
   1481 }
   1482 
   1483 
   1484 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
   1485   addrmod1(cond | TEQ | S, src1, r0, src2);
   1486 }
   1487 
   1488 
   1489 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
   1490   addrmod1(cond | CMP | S, src1, r0, src2);
   1491 }
   1492 
   1493 
   1494 void Assembler::cmp_raw_immediate(
   1495     Register src, int raw_immediate, Condition cond) {
   1496   DCHECK(is_uint12(raw_immediate));
   1497   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
   1498 }
   1499 
   1500 
   1501 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
   1502   addrmod1(cond | CMN | S, src1, r0, src2);
   1503 }
   1504 
   1505 
   1506 void Assembler::orr(Register dst, Register src1, const Operand& src2,
   1507                     SBit s, Condition cond) {
   1508   addrmod1(cond | ORR | s, src1, dst, src2);
   1509 }
   1510 
   1511 
   1512 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
   1513   // Don't allow nop instructions in the form mov rn, rn to be generated using
   1514   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
   1515   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
   1516   DCHECK(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
   1517   addrmod1(cond | MOV | s, r0, dst, src);
   1518 }
   1519 
   1520 
   1521 void Assembler::mov_label_offset(Register dst, Label* label) {
   1522   if (label->is_bound()) {
   1523     mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
   1524   } else {
   1525     // Emit the link to the label in the code stream followed by extra nop
   1526     // instructions.
   1527     // If the label is not linked, then start a new link chain by linking it to
   1528     // itself, emitting pc_offset().
   1529     int link = label->is_linked() ? label->pos() : pc_offset();
   1530     label->link_to(pc_offset());
   1531 
   1532     // When the label is bound, these instructions will be patched with a
   1533     // sequence of movw/movt or mov/orr/orr instructions. They will load the
   1534     // destination register with the position of the label from the beginning
   1535     // of the code.
   1536     //
   1537     // The link will be extracted from the first instruction and the destination
   1538     // register from the second.
   1539     //   For ARMv7:
   1540     //      link
   1541     //      mov dst, dst
   1542     //   For ARMv6:
   1543     //      link
   1544     //      mov dst, dst
   1545     //      mov dst, dst
   1546     //
   1547     // When the label gets bound: target_at extracts the link and target_at_put
   1548     // patches the instructions.
   1549     CHECK(is_uint24(link));
   1550     BlockConstPoolScope block_const_pool(this);
   1551     emit(link);
   1552     nop(dst.code());
   1553     if (!CpuFeatures::IsSupported(ARMv7)) {
   1554       nop(dst.code());
   1555     }
   1556   }
   1557 }
   1558 
   1559 
   1560 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
   1561   DCHECK(CpuFeatures::IsSupported(ARMv7));
   1562   emit(cond | 0x30*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
   1563 }
   1564 
   1565 
   1566 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
   1567   DCHECK(CpuFeatures::IsSupported(ARMv7));
   1568   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
   1569 }
   1570 
   1571 
   1572 void Assembler::bic(Register dst, Register src1, const Operand& src2,
   1573                     SBit s, Condition cond) {
   1574   addrmod1(cond | BIC | s, src1, dst, src2);
   1575 }
   1576 
   1577 
   1578 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
   1579   addrmod1(cond | MVN | s, r0, dst, src);
   1580 }
   1581 
   1582 
   1583 // Multiply instructions.
   1584 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
   1585                     SBit s, Condition cond) {
   1586   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1587   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
   1588        src2.code()*B8 | B7 | B4 | src1.code());
   1589 }
   1590 
   1591 
   1592 void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
   1593                     Condition cond) {
   1594   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1595   DCHECK(IsEnabled(ARMv7));
   1596   emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
   1597        src2.code()*B8 | B7 | B4 | src1.code());
   1598 }
   1599 
   1600 
   1601 void Assembler::sdiv(Register dst, Register src1, Register src2,
   1602                      Condition cond) {
   1603   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1604   DCHECK(IsEnabled(SUDIV));
   1605   emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
   1606        src2.code()*B8 | B4 | src1.code());
   1607 }
   1608 
   1609 
   1610 void Assembler::udiv(Register dst, Register src1, Register src2,
   1611                      Condition cond) {
   1612   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1613   DCHECK(IsEnabled(SUDIV));
   1614   emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xf * B12 |
   1615        src2.code() * B8 | B4 | src1.code());
   1616 }
   1617 
   1618 
   1619 void Assembler::mul(Register dst, Register src1, Register src2, SBit s,
   1620                     Condition cond) {
   1621   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1622   // dst goes in bits 16-19 for this instruction!
   1623   emit(cond | s | dst.code() * B16 | src2.code() * B8 | B7 | B4 | src1.code());
   1624 }
   1625 
   1626 
   1627 void Assembler::smmla(Register dst, Register src1, Register src2, Register srcA,
   1628                       Condition cond) {
   1629   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1630   emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 |
   1631        srcA.code() * B12 | src2.code() * B8 | B4 | src1.code());
   1632 }
   1633 
   1634 
   1635 void Assembler::smmul(Register dst, Register src1, Register src2,
   1636                       Condition cond) {
   1637   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1638   emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | 0xf * B12 |
   1639        src2.code() * B8 | B4 | src1.code());
   1640 }
   1641 
   1642 
   1643 void Assembler::smlal(Register dstL,
   1644                       Register dstH,
   1645                       Register src1,
   1646                       Register src2,
   1647                       SBit s,
   1648                       Condition cond) {
   1649   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1650   DCHECK(!dstL.is(dstH));
   1651   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1652        src2.code()*B8 | B7 | B4 | src1.code());
   1653 }
   1654 
   1655 
   1656 void Assembler::smull(Register dstL,
   1657                       Register dstH,
   1658                       Register src1,
   1659                       Register src2,
   1660                       SBit s,
   1661                       Condition cond) {
   1662   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1663   DCHECK(!dstL.is(dstH));
   1664   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
   1665        src2.code()*B8 | B7 | B4 | src1.code());
   1666 }
   1667 
   1668 
   1669 void Assembler::umlal(Register dstL,
   1670                       Register dstH,
   1671                       Register src1,
   1672                       Register src2,
   1673                       SBit s,
   1674                       Condition cond) {
   1675   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1676   DCHECK(!dstL.is(dstH));
   1677   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1678        src2.code()*B8 | B7 | B4 | src1.code());
   1679 }
   1680 
   1681 
   1682 void Assembler::umull(Register dstL,
   1683                       Register dstH,
   1684                       Register src1,
   1685                       Register src2,
   1686                       SBit s,
   1687                       Condition cond) {
   1688   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1689   DCHECK(!dstL.is(dstH));
   1690   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
   1691        src2.code()*B8 | B7 | B4 | src1.code());
   1692 }
   1693 
   1694 
   1695 // Miscellaneous arithmetic instructions.
   1696 void Assembler::clz(Register dst, Register src, Condition cond) {
   1697   // v5 and above.
   1698   DCHECK(!dst.is(pc) && !src.is(pc));
   1699   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
   1700        15*B8 | CLZ | src.code());
   1701 }
   1702 
   1703 
   1704 // Saturating instructions.
   1705 
   1706 // Unsigned saturate.
   1707 void Assembler::usat(Register dst,
   1708                      int satpos,
   1709                      const Operand& src,
   1710                      Condition cond) {
   1711   DCHECK(!dst.is(pc) && !src.rm_.is(pc));
   1712   DCHECK((satpos >= 0) && (satpos <= 31));
   1713   DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
   1714   DCHECK(src.rs_.is(no_reg));
   1715 
   1716   int sh = 0;
   1717   if (src.shift_op_ == ASR) {
   1718       sh = 1;
   1719   }
   1720 
   1721   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
   1722        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
   1723 }
   1724 
   1725 
   1726 // Bitfield manipulation instructions.
   1727 
   1728 // Unsigned bit field extract.
   1729 // Extracts #width adjacent bits from position #lsb in a register, and
   1730 // writes them to the low bits of a destination register.
   1731 //   ubfx dst, src, #lsb, #width
   1732 void Assembler::ubfx(Register dst,
   1733                      Register src,
   1734                      int lsb,
   1735                      int width,
   1736                      Condition cond) {
   1737   // v7 and above.
   1738   DCHECK(CpuFeatures::IsSupported(ARMv7));
   1739   DCHECK(!dst.is(pc) && !src.is(pc));
   1740   DCHECK((lsb >= 0) && (lsb <= 31));
   1741   DCHECK((width >= 1) && (width <= (32 - lsb)));
   1742   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1743        lsb*B7 | B6 | B4 | src.code());
   1744 }
   1745 
   1746 
   1747 // Signed bit field extract.
   1748 // Extracts #width adjacent bits from position #lsb in a register, and
   1749 // writes them to the low bits of a destination register. The extracted
   1750 // value is sign extended to fill the destination register.
   1751 //   sbfx dst, src, #lsb, #width
   1752 void Assembler::sbfx(Register dst,
   1753                      Register src,
   1754                      int lsb,
   1755                      int width,
   1756                      Condition cond) {
   1757   // v7 and above.
   1758   DCHECK(CpuFeatures::IsSupported(ARMv7));
   1759   DCHECK(!dst.is(pc) && !src.is(pc));
   1760   DCHECK((lsb >= 0) && (lsb <= 31));
   1761   DCHECK((width >= 1) && (width <= (32 - lsb)));
   1762   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1763        lsb*B7 | B6 | B4 | src.code());
   1764 }
   1765 
   1766 
   1767 // Bit field clear.
   1768 // Sets #width adjacent bits at position #lsb in the destination register
   1769 // to zero, preserving the value of the other bits.
   1770 //   bfc dst, #lsb, #width
   1771 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
   1772   // v7 and above.
   1773   DCHECK(CpuFeatures::IsSupported(ARMv7));
   1774   DCHECK(!dst.is(pc));
   1775   DCHECK((lsb >= 0) && (lsb <= 31));
   1776   DCHECK((width >= 1) && (width <= (32 - lsb)));
   1777   int msb = lsb + width - 1;
   1778   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
   1779 }
   1780 
   1781 
   1782 // Bit field insert.
   1783 // Inserts #width adjacent bits from the low bits of the source register
   1784 // into position #lsb of the destination register.
   1785 //   bfi dst, src, #lsb, #width
   1786 void Assembler::bfi(Register dst,
   1787                     Register src,
   1788                     int lsb,
   1789                     int width,
   1790                     Condition cond) {
   1791   // v7 and above.
   1792   DCHECK(CpuFeatures::IsSupported(ARMv7));
   1793   DCHECK(!dst.is(pc) && !src.is(pc));
   1794   DCHECK((lsb >= 0) && (lsb <= 31));
   1795   DCHECK((width >= 1) && (width <= (32 - lsb)));
   1796   int msb = lsb + width - 1;
   1797   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
   1798        src.code());
   1799 }
   1800 
   1801 
   1802 void Assembler::pkhbt(Register dst,
   1803                       Register src1,
   1804                       const Operand& src2,
   1805                       Condition cond ) {
   1806   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
   1807   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
   1808   // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
   1809   DCHECK(!dst.is(pc));
   1810   DCHECK(!src1.is(pc));
   1811   DCHECK(!src2.rm().is(pc));
   1812   DCHECK(!src2.rm().is(no_reg));
   1813   DCHECK(src2.rs().is(no_reg));
   1814   DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
   1815   DCHECK(src2.shift_op() == LSL);
   1816   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
   1817        src2.shift_imm_*B7 | B4 | src2.rm().code());
   1818 }
   1819 
   1820 
   1821 void Assembler::pkhtb(Register dst,
   1822                       Register src1,
   1823                       const Operand& src2,
   1824                       Condition cond) {
   1825   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
   1826   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
   1827   // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
   1828   DCHECK(!dst.is(pc));
   1829   DCHECK(!src1.is(pc));
   1830   DCHECK(!src2.rm().is(pc));
   1831   DCHECK(!src2.rm().is(no_reg));
   1832   DCHECK(src2.rs().is(no_reg));
   1833   DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
   1834   DCHECK(src2.shift_op() == ASR);
   1835   int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
   1836   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
   1837        asr*B7 | B6 | B4 | src2.rm().code());
   1838 }
   1839 
   1840 
   1841 void Assembler::sxtb(Register dst, Register src, int rotate, Condition cond) {
   1842   // Instruction details available in ARM DDI 0406C.b, A8.8.233.
   1843   // cond(31-28) | 01101010(27-20) | 1111(19-16) |
   1844   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1845   DCHECK(!dst.is(pc));
   1846   DCHECK(!src.is(pc));
   1847   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1848   emit(cond | 0x6A * B20 | 0xF * B16 | dst.code() * B12 |
   1849        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
   1850 }
   1851 
   1852 
   1853 void Assembler::sxtab(Register dst, Register src1, Register src2, int rotate,
   1854                       Condition cond) {
   1855   // Instruction details available in ARM DDI 0406C.b, A8.8.233.
   1856   // cond(31-28) | 01101010(27-20) | Rn(19-16) |
   1857   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1858   DCHECK(!dst.is(pc));
   1859   DCHECK(!src1.is(pc));
   1860   DCHECK(!src2.is(pc));
   1861   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1862   emit(cond | 0x6A * B20 | src1.code() * B16 | dst.code() * B12 |
   1863        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
   1864 }
   1865 
   1866 
   1867 void Assembler::sxth(Register dst, Register src, int rotate, Condition cond) {
   1868   // Instruction details available in ARM DDI 0406C.b, A8.8.235.
   1869   // cond(31-28) | 01101011(27-20) | 1111(19-16) |
   1870   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1871   DCHECK(!dst.is(pc));
   1872   DCHECK(!src.is(pc));
   1873   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1874   emit(cond | 0x6B * B20 | 0xF * B16 | dst.code() * B12 |
   1875        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
   1876 }
   1877 
   1878 
   1879 void Assembler::sxtah(Register dst, Register src1, Register src2, int rotate,
   1880                       Condition cond) {
   1881   // Instruction details available in ARM DDI 0406C.b, A8.8.235.
   1882   // cond(31-28) | 01101011(27-20) | Rn(19-16) |
   1883   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1884   DCHECK(!dst.is(pc));
   1885   DCHECK(!src1.is(pc));
   1886   DCHECK(!src2.is(pc));
   1887   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1888   emit(cond | 0x6B * B20 | src1.code() * B16 | dst.code() * B12 |
   1889        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
   1890 }
   1891 
   1892 
   1893 void Assembler::uxtb(Register dst, Register src, int rotate, Condition cond) {
   1894   // Instruction details available in ARM DDI 0406C.b, A8.8.274.
   1895   // cond(31-28) | 01101110(27-20) | 1111(19-16) |
   1896   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1897   DCHECK(!dst.is(pc));
   1898   DCHECK(!src.is(pc));
   1899   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1900   emit(cond | 0x6E * B20 | 0xF * B16 | dst.code() * B12 |
   1901        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
   1902 }
   1903 
   1904 
   1905 void Assembler::uxtab(Register dst, Register src1, Register src2, int rotate,
   1906                       Condition cond) {
   1907   // Instruction details available in ARM DDI 0406C.b, A8.8.271.
   1908   // cond(31-28) | 01101110(27-20) | Rn(19-16) |
   1909   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1910   DCHECK(!dst.is(pc));
   1911   DCHECK(!src1.is(pc));
   1912   DCHECK(!src2.is(pc));
   1913   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1914   emit(cond | 0x6E * B20 | src1.code() * B16 | dst.code() * B12 |
   1915        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
   1916 }
   1917 
   1918 
   1919 void Assembler::uxtb16(Register dst, Register src, int rotate, Condition cond) {
   1920   // Instruction details available in ARM DDI 0406C.b, A8.8.275.
   1921   // cond(31-28) | 01101100(27-20) | 1111(19-16) |
   1922   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1923   DCHECK(!dst.is(pc));
   1924   DCHECK(!src.is(pc));
   1925   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1926   emit(cond | 0x6C * B20 | 0xF * B16 | dst.code() * B12 |
   1927        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
   1928 }
   1929 
   1930 
   1931 void Assembler::uxth(Register dst, Register src, int rotate, Condition cond) {
   1932   // Instruction details available in ARM DDI 0406C.b, A8.8.276.
   1933   // cond(31-28) | 01101111(27-20) | 1111(19-16) |
   1934   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1935   DCHECK(!dst.is(pc));
   1936   DCHECK(!src.is(pc));
   1937   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1938   emit(cond | 0x6F * B20 | 0xF * B16 | dst.code() * B12 |
   1939        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
   1940 }
   1941 
   1942 
   1943 void Assembler::uxtah(Register dst, Register src1, Register src2, int rotate,
   1944                       Condition cond) {
   1945   // Instruction details available in ARM DDI 0406C.b, A8.8.273.
   1946   // cond(31-28) | 01101111(27-20) | Rn(19-16) |
   1947   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1948   DCHECK(!dst.is(pc));
   1949   DCHECK(!src1.is(pc));
   1950   DCHECK(!src2.is(pc));
   1951   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
   1952   emit(cond | 0x6F * B20 | src1.code() * B16 | dst.code() * B12 |
   1953        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
   1954 }
   1955 
   1956 
   1957 void Assembler::rbit(Register dst, Register src, Condition cond) {
   1958   // Instruction details available in ARM DDI 0406C.b, A8.8.144.
   1959   // cond(31-28) | 011011111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0)
   1960   DCHECK(IsEnabled(ARMv7));
   1961   DCHECK(!dst.is(pc));
   1962   DCHECK(!src.is(pc));
   1963   emit(cond | 0x6FF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code());
   1964 }
   1965 
   1966 
   1967 // Status register access instructions.
   1968 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
   1969   DCHECK(!dst.is(pc));
   1970   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
   1971 }
   1972 
   1973 
   1974 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
   1975                     Condition cond) {
   1976   DCHECK((fields & 0x000f0000) != 0);  // At least one field must be set.
   1977   DCHECK(((fields & 0xfff0ffff) == CPSR) || ((fields & 0xfff0ffff) == SPSR));
   1978   Instr instr;
   1979   if (!src.rm_.is_valid()) {
   1980     // Immediate.
   1981     uint32_t rotate_imm;
   1982     uint32_t immed_8;
   1983     if (src.must_output_reloc_info(this) ||
   1984         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
   1985       // Immediate operand cannot be encoded, load it first to register ip.
   1986       move_32_bit_immediate(ip, src);
   1987       msr(fields, Operand(ip), cond);
   1988       return;
   1989     }
   1990     instr = I | rotate_imm*B8 | immed_8;
   1991   } else {
   1992     DCHECK(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
   1993     instr = src.rm_.code();
   1994   }
   1995   emit(cond | instr | B24 | B21 | fields | 15*B12);
   1996 }
   1997 
   1998 
   1999 // Load/Store instructions.
   2000 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
   2001   addrmod2(cond | B26 | L, dst, src);
   2002 }
   2003 
   2004 
   2005 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
   2006   addrmod2(cond | B26, src, dst);
   2007 }
   2008 
   2009 
   2010 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
   2011   addrmod2(cond | B26 | B | L, dst, src);
   2012 }
   2013 
   2014 
   2015 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
   2016   addrmod2(cond | B26 | B, src, dst);
   2017 }
   2018 
   2019 
   2020 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
   2021   addrmod3(cond | L | B7 | H | B4, dst, src);
   2022 }
   2023 
   2024 
   2025 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
   2026   addrmod3(cond | B7 | H | B4, src, dst);
   2027 }
   2028 
   2029 
   2030 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
   2031   addrmod3(cond | L | B7 | S6 | B4, dst, src);
   2032 }
   2033 
   2034 
   2035 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
   2036   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
   2037 }
   2038 
   2039 
   2040 void Assembler::ldrd(Register dst1, Register dst2,
   2041                      const MemOperand& src, Condition cond) {
   2042   DCHECK(src.rm().is(no_reg));
   2043   DCHECK(!dst1.is(lr));  // r14.
   2044   DCHECK_EQ(0, dst1.code() % 2);
   2045   DCHECK_EQ(dst1.code() + 1, dst2.code());
   2046   addrmod3(cond | B7 | B6 | B4, dst1, src);
   2047 }
   2048 
   2049 
   2050 void Assembler::strd(Register src1, Register src2,
   2051                      const MemOperand& dst, Condition cond) {
   2052   DCHECK(dst.rm().is(no_reg));
   2053   DCHECK(!src1.is(lr));  // r14.
   2054   DCHECK_EQ(0, src1.code() % 2);
   2055   DCHECK_EQ(src1.code() + 1, src2.code());
   2056   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
   2057 }
   2058 
   2059 // Load/Store exclusive instructions.
   2060 void Assembler::ldrex(Register dst, Register src, Condition cond) {
   2061   // Instruction details available in ARM DDI 0406C.b, A8.8.75.
   2062   // cond(31-28) | 00011001(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0)
   2063   emit(cond | B24 | B23 | B20 | src.code() * B16 | dst.code() * B12 | 0xf9f);
   2064 }
   2065 
   2066 void Assembler::strex(Register src1, Register src2, Register dst,
   2067                       Condition cond) {
   2068   // Instruction details available in ARM DDI 0406C.b, A8.8.212.
   2069   // cond(31-28) | 00011000(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) |
   2070   // Rt(3-0)
   2071   emit(cond | B24 | B23 | dst.code() * B16 | src1.code() * B12 | 0xf9 * B4 |
   2072        src2.code());
   2073 }
   2074 
   2075 void Assembler::ldrexb(Register dst, Register src, Condition cond) {
   2076   // Instruction details available in ARM DDI 0406C.b, A8.8.76.
   2077   // cond(31-28) | 00011101(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0)
   2078   emit(cond | B24 | B23 | B22 | B20 | src.code() * B16 | dst.code() * B12 |
   2079        0xf9f);
   2080 }
   2081 
   2082 void Assembler::strexb(Register src1, Register src2, Register dst,
   2083                        Condition cond) {
   2084   // Instruction details available in ARM DDI 0406C.b, A8.8.213.
   2085   // cond(31-28) | 00011100(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) |
   2086   // Rt(3-0)
   2087   emit(cond | B24 | B23 | B22 | dst.code() * B16 | src1.code() * B12 |
   2088        0xf9 * B4 | src2.code());
   2089 }
   2090 
   2091 void Assembler::ldrexh(Register dst, Register src, Condition cond) {
   2092   // Instruction details available in ARM DDI 0406C.b, A8.8.78.
   2093   // cond(31-28) | 00011111(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0)
   2094   emit(cond | B24 | B23 | B22 | B21 | B20 | src.code() * B16 |
   2095        dst.code() * B12 | 0xf9f);
   2096 }
   2097 
   2098 void Assembler::strexh(Register src1, Register src2, Register dst,
   2099                        Condition cond) {
   2100   // Instruction details available in ARM DDI 0406C.b, A8.8.215.
   2101   // cond(31-28) | 00011110(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) |
   2102   // Rt(3-0)
   2103   emit(cond | B24 | B23 | B22 | B21 | dst.code() * B16 | src1.code() * B12 |
   2104        0xf9 * B4 | src2.code());
   2105 }
   2106 
   2107 // Preload instructions.
   2108 void Assembler::pld(const MemOperand& address) {
   2109   // Instruction details available in ARM DDI 0406C.b, A8.8.128.
   2110   // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
   2111   // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
   2112   DCHECK(address.rm().is(no_reg));
   2113   DCHECK(address.am() == Offset);
   2114   int U = B23;
   2115   int offset = address.offset();
   2116   if (offset < 0) {
   2117     offset = -offset;
   2118     U = 0;
   2119   }
   2120   DCHECK(offset < 4096);
   2121   emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
   2122        0xf*B12 | offset);
   2123 }
   2124 
   2125 
   2126 // Load/Store multiple instructions.
   2127 void Assembler::ldm(BlockAddrMode am,
   2128                     Register base,
   2129                     RegList dst,
   2130                     Condition cond) {
   2131   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
   2132   DCHECK(base.is(sp) || (dst & sp.bit()) == 0);
   2133 
   2134   addrmod4(cond | B27 | am | L, base, dst);
   2135 
   2136   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
   2137   if (cond == al && (dst & pc.bit()) != 0) {
   2138     // There is a slight chance that the ldm instruction was actually a call,
   2139     // in which case it would be wrong to return into the constant pool; we
   2140     // recognize this case by checking if the emission of the pool was blocked
   2141     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
   2142     // the case, we emit a jump over the pool.
   2143     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
   2144   }
   2145 }
   2146 
   2147 
   2148 void Assembler::stm(BlockAddrMode am,
   2149                     Register base,
   2150                     RegList src,
   2151                     Condition cond) {
   2152   addrmod4(cond | B27 | am, base, src);
   2153 }
   2154 
   2155 
   2156 // Exception-generating instructions and debugging support.
   2157 // Stops with a non-negative code less than kNumOfWatchedStops support
   2158 // enabling/disabling and a counter feature. See simulator-arm.h .
   2159 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
   2160 #ifndef __arm__
   2161   DCHECK(code >= kDefaultStopCode);
   2162   {
   2163     // The Simulator will handle the stop instruction and get the message
   2164     // address. It expects to find the address just after the svc instruction.
   2165     BlockConstPoolScope block_const_pool(this);
   2166     if (code >= 0) {
   2167       svc(kStopCode + code, cond);
   2168     } else {
   2169       svc(kStopCode + kMaxStopCode, cond);
   2170     }
   2171     emit(reinterpret_cast<Instr>(msg));
   2172   }
   2173 #else  // def __arm__
   2174   if (cond != al) {
   2175     Label skip;
   2176     b(&skip, NegateCondition(cond));
   2177     bkpt(0);
   2178     bind(&skip);
   2179   } else {
   2180     bkpt(0);
   2181   }
   2182 #endif  // def __arm__
   2183 }
   2184 
   2185 
   2186 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
   2187   DCHECK(is_uint16(imm16));
   2188   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
   2189 }
   2190 
   2191 
   2192 void Assembler::svc(uint32_t imm24, Condition cond) {
   2193   DCHECK(is_uint24(imm24));
   2194   emit(cond | 15*B24 | imm24);
   2195 }
   2196 
   2197 
   2198 void Assembler::dmb(BarrierOption option) {
   2199   emit(kSpecialCondition | 0x57ff*B12 | 5*B4 | option);
   2200 }
   2201 
   2202 
   2203 void Assembler::dsb(BarrierOption option) {
   2204   emit(kSpecialCondition | 0x57ff*B12 | 4*B4 | option);
   2205 }
   2206 
   2207 
   2208 void Assembler::isb(BarrierOption option) {
   2209   emit(kSpecialCondition | 0x57ff*B12 | 6*B4 | option);
   2210 }
   2211 
   2212 
   2213 // Coprocessor instructions.
   2214 void Assembler::cdp(Coprocessor coproc,
   2215                     int opcode_1,
   2216                     CRegister crd,
   2217                     CRegister crn,
   2218                     CRegister crm,
   2219                     int opcode_2,
   2220                     Condition cond) {
   2221   DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2));
   2222   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
   2223        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
   2224 }
   2225 
   2226 
   2227 void Assembler::cdp2(Coprocessor coproc,
   2228                      int opcode_1,
   2229                      CRegister crd,
   2230                      CRegister crn,
   2231                      CRegister crm,
   2232                      int opcode_2) {  // v5 and above
   2233   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
   2234 }
   2235 
   2236 
   2237 void Assembler::mcr(Coprocessor coproc,
   2238                     int opcode_1,
   2239                     Register rd,
   2240                     CRegister crn,
   2241                     CRegister crm,
   2242                     int opcode_2,
   2243                     Condition cond) {
   2244   DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
   2245   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
   2246        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   2247 }
   2248 
   2249 
   2250 void Assembler::mcr2(Coprocessor coproc,
   2251                      int opcode_1,
   2252                      Register rd,
   2253                      CRegister crn,
   2254                      CRegister crm,
   2255                      int opcode_2) {  // v5 and above
   2256   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   2257 }
   2258 
   2259 
   2260 void Assembler::mrc(Coprocessor coproc,
   2261                     int opcode_1,
   2262                     Register rd,
   2263                     CRegister crn,
   2264                     CRegister crm,
   2265                     int opcode_2,
   2266                     Condition cond) {
   2267   DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
   2268   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
   2269        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   2270 }
   2271 
   2272 
   2273 void Assembler::mrc2(Coprocessor coproc,
   2274                      int opcode_1,
   2275                      Register rd,
   2276                      CRegister crn,
   2277                      CRegister crm,
   2278                      int opcode_2) {  // v5 and above
   2279   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   2280 }
   2281 
   2282 
   2283 void Assembler::ldc(Coprocessor coproc,
   2284                     CRegister crd,
   2285                     const MemOperand& src,
   2286                     LFlag l,
   2287                     Condition cond) {
   2288   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
   2289 }
   2290 
   2291 
   2292 void Assembler::ldc(Coprocessor coproc,
   2293                     CRegister crd,
   2294                     Register rn,
   2295                     int option,
   2296                     LFlag l,
   2297                     Condition cond) {
   2298   // Unindexed addressing.
   2299   DCHECK(is_uint8(option));
   2300   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
   2301        coproc*B8 | (option & 255));
   2302 }
   2303 
   2304 
   2305 void Assembler::ldc2(Coprocessor coproc,
   2306                      CRegister crd,
   2307                      const MemOperand& src,
   2308                      LFlag l) {  // v5 and above
   2309   ldc(coproc, crd, src, l, kSpecialCondition);
   2310 }
   2311 
   2312 
   2313 void Assembler::ldc2(Coprocessor coproc,
   2314                      CRegister crd,
   2315                      Register rn,
   2316                      int option,
   2317                      LFlag l) {  // v5 and above
   2318   ldc(coproc, crd, rn, option, l, kSpecialCondition);
   2319 }
   2320 
   2321 
   2322 // Support for VFP.
   2323 
   2324 void Assembler::vldr(const DwVfpRegister dst,
   2325                      const Register base,
   2326                      int offset,
   2327                      const Condition cond) {
   2328   // Ddst = MEM(Rbase + offset).
   2329   // Instruction details available in ARM DDI 0406C.b, A8-924.
   2330   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
   2331   // Vd(15-12) | 1011(11-8) | offset
   2332   int u = 1;
   2333   if (offset < 0) {
   2334     CHECK(offset != kMinInt);
   2335     offset = -offset;
   2336     u = 0;
   2337   }
   2338   int vd, d;
   2339   dst.split_code(&vd, &d);
   2340 
   2341   DCHECK(offset >= 0);
   2342   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2343     emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
   2344          0xB*B8 | ((offset / 4) & 255));
   2345   } else {
   2346     // Larger offsets must be handled by computing the correct address
   2347     // in the ip register.
   2348     DCHECK(!base.is(ip));
   2349     if (u == 1) {
   2350       add(ip, base, Operand(offset));
   2351     } else {
   2352       sub(ip, base, Operand(offset));
   2353     }
   2354     emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
   2355   }
   2356 }
   2357 
   2358 
   2359 void Assembler::vldr(const DwVfpRegister dst,
   2360                      const MemOperand& operand,
   2361                      const Condition cond) {
   2362   DCHECK(operand.am_ == Offset);
   2363   if (operand.rm().is_valid()) {
   2364     add(ip, operand.rn(),
   2365         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
   2366     vldr(dst, ip, 0, cond);
   2367   } else {
   2368     vldr(dst, operand.rn(), operand.offset(), cond);
   2369   }
   2370 }
   2371 
   2372 
   2373 void Assembler::vldr(const SwVfpRegister dst,
   2374                      const Register base,
   2375                      int offset,
   2376                      const Condition cond) {
   2377   // Sdst = MEM(Rbase + offset).
   2378   // Instruction details available in ARM DDI 0406A, A8-628.
   2379   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
   2380   // Vdst(15-12) | 1010(11-8) | offset
   2381   int u = 1;
   2382   if (offset < 0) {
   2383     offset = -offset;
   2384     u = 0;
   2385   }
   2386   int sd, d;
   2387   dst.split_code(&sd, &d);
   2388   DCHECK(offset >= 0);
   2389 
   2390   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2391   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
   2392        0xA*B8 | ((offset / 4) & 255));
   2393   } else {
   2394     // Larger offsets must be handled by computing the correct address
   2395     // in the ip register.
   2396     DCHECK(!base.is(ip));
   2397     if (u == 1) {
   2398       add(ip, base, Operand(offset));
   2399     } else {
   2400       sub(ip, base, Operand(offset));
   2401     }
   2402     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   2403   }
   2404 }
   2405 
   2406 
   2407 void Assembler::vldr(const SwVfpRegister dst,
   2408                      const MemOperand& operand,
   2409                      const Condition cond) {
   2410   DCHECK(operand.am_ == Offset);
   2411   if (operand.rm().is_valid()) {
   2412     add(ip, operand.rn(),
   2413         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
   2414     vldr(dst, ip, 0, cond);
   2415   } else {
   2416     vldr(dst, operand.rn(), operand.offset(), cond);
   2417   }
   2418 }
   2419 
   2420 
   2421 void Assembler::vstr(const DwVfpRegister src,
   2422                      const Register base,
   2423                      int offset,
   2424                      const Condition cond) {
   2425   // MEM(Rbase + offset) = Dsrc.
   2426   // Instruction details available in ARM DDI 0406C.b, A8-1082.
   2427   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
   2428   // Vd(15-12) | 1011(11-8) | (offset/4)
   2429   int u = 1;
   2430   if (offset < 0) {
   2431     CHECK(offset != kMinInt);
   2432     offset = -offset;
   2433     u = 0;
   2434   }
   2435   DCHECK(offset >= 0);
   2436   int vd, d;
   2437   src.split_code(&vd, &d);
   2438 
   2439   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2440     emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
   2441          ((offset / 4) & 255));
   2442   } else {
   2443     // Larger offsets must be handled by computing the correct address
   2444     // in the ip register.
   2445     DCHECK(!base.is(ip));
   2446     if (u == 1) {
   2447       add(ip, base, Operand(offset));
   2448     } else {
   2449       sub(ip, base, Operand(offset));
   2450     }
   2451     emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
   2452   }
   2453 }
   2454 
   2455 
   2456 void Assembler::vstr(const DwVfpRegister src,
   2457                      const MemOperand& operand,
   2458                      const Condition cond) {
   2459   DCHECK(operand.am_ == Offset);
   2460   if (operand.rm().is_valid()) {
   2461     add(ip, operand.rn(),
   2462         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
   2463     vstr(src, ip, 0, cond);
   2464   } else {
   2465     vstr(src, operand.rn(), operand.offset(), cond);
   2466   }
   2467 }
   2468 
   2469 
   2470 void Assembler::vstr(const SwVfpRegister src,
   2471                      const Register base,
   2472                      int offset,
   2473                      const Condition cond) {
   2474   // MEM(Rbase + offset) = SSrc.
   2475   // Instruction details available in ARM DDI 0406A, A8-786.
   2476   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
   2477   // Vdst(15-12) | 1010(11-8) | (offset/4)
   2478   int u = 1;
   2479   if (offset < 0) {
   2480     CHECK(offset != kMinInt);
   2481     offset = -offset;
   2482     u = 0;
   2483   }
   2484   int sd, d;
   2485   src.split_code(&sd, &d);
   2486   DCHECK(offset >= 0);
   2487   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2488     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
   2489          0xA*B8 | ((offset / 4) & 255));
   2490   } else {
   2491     // Larger offsets must be handled by computing the correct address
   2492     // in the ip register.
   2493     DCHECK(!base.is(ip));
   2494     if (u == 1) {
   2495       add(ip, base, Operand(offset));
   2496     } else {
   2497       sub(ip, base, Operand(offset));
   2498     }
   2499     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   2500   }
   2501 }
   2502 
   2503 
   2504 void Assembler::vstr(const SwVfpRegister src,
   2505                      const MemOperand& operand,
   2506                      const Condition cond) {
   2507   DCHECK(operand.am_ == Offset);
   2508   if (operand.rm().is_valid()) {
   2509     add(ip, operand.rn(),
   2510         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
   2511     vstr(src, ip, 0, cond);
   2512   } else {
   2513     vstr(src, operand.rn(), operand.offset(), cond);
   2514   }
   2515 }
   2516 
   2517 
   2518 void  Assembler::vldm(BlockAddrMode am,
   2519                       Register base,
   2520                       DwVfpRegister first,
   2521                       DwVfpRegister last,
   2522                       Condition cond) {
   2523   // Instruction details available in ARM DDI 0406C.b, A8-922.
   2524   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2525   // first(15-12) | 1011(11-8) | (count * 2)
   2526   DCHECK_LE(first.code(), last.code());
   2527   DCHECK(am == ia || am == ia_w || am == db_w);
   2528   DCHECK(!base.is(pc));
   2529 
   2530   int sd, d;
   2531   first.split_code(&sd, &d);
   2532   int count = last.code() - first.code() + 1;
   2533   DCHECK(count <= 16);
   2534   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2535        0xB*B8 | count*2);
   2536 }
   2537 
   2538 
   2539 void  Assembler::vstm(BlockAddrMode am,
   2540                       Register base,
   2541                       DwVfpRegister first,
   2542                       DwVfpRegister last,
   2543                       Condition cond) {
   2544   // Instruction details available in ARM DDI 0406C.b, A8-1080.
   2545   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2546   // first(15-12) | 1011(11-8) | (count * 2)
   2547   DCHECK_LE(first.code(), last.code());
   2548   DCHECK(am == ia || am == ia_w || am == db_w);
   2549   DCHECK(!base.is(pc));
   2550 
   2551   int sd, d;
   2552   first.split_code(&sd, &d);
   2553   int count = last.code() - first.code() + 1;
   2554   DCHECK(count <= 16);
   2555   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2556        0xB*B8 | count*2);
   2557 }
   2558 
   2559 void  Assembler::vldm(BlockAddrMode am,
   2560                       Register base,
   2561                       SwVfpRegister first,
   2562                       SwVfpRegister last,
   2563                       Condition cond) {
   2564   // Instruction details available in ARM DDI 0406A, A8-626.
   2565   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2566   // first(15-12) | 1010(11-8) | (count/2)
   2567   DCHECK_LE(first.code(), last.code());
   2568   DCHECK(am == ia || am == ia_w || am == db_w);
   2569   DCHECK(!base.is(pc));
   2570 
   2571   int sd, d;
   2572   first.split_code(&sd, &d);
   2573   int count = last.code() - first.code() + 1;
   2574   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2575        0xA*B8 | count);
   2576 }
   2577 
   2578 
   2579 void  Assembler::vstm(BlockAddrMode am,
   2580                       Register base,
   2581                       SwVfpRegister first,
   2582                       SwVfpRegister last,
   2583                       Condition cond) {
   2584   // Instruction details available in ARM DDI 0406A, A8-784.
   2585   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2586   // first(15-12) | 1011(11-8) | (count/2)
   2587   DCHECK_LE(first.code(), last.code());
   2588   DCHECK(am == ia || am == ia_w || am == db_w);
   2589   DCHECK(!base.is(pc));
   2590 
   2591   int sd, d;
   2592   first.split_code(&sd, &d);
   2593   int count = last.code() - first.code() + 1;
   2594   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2595        0xA*B8 | count);
   2596 }
   2597 
   2598 
   2599 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
   2600   uint64_t i;
   2601   memcpy(&i, &d, 8);
   2602 
   2603   *lo = i & 0xffffffff;
   2604   *hi = i >> 32;
   2605 }
   2606 
   2607 
   2608 // Only works for little endian floating point formats.
   2609 // We don't support VFP on the mixed endian floating point platform.
   2610 static bool FitsVmovFPImmediate(double d, uint32_t* encoding) {
   2611   DCHECK(CpuFeatures::IsSupported(VFP3));
   2612 
   2613   // VMOV can accept an immediate of the form:
   2614   //
   2615   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
   2616   //
   2617   // The immediate is encoded using an 8-bit quantity, comprised of two
   2618   // 4-bit fields. For an 8-bit immediate of the form:
   2619   //
   2620   //  [abcdefgh]
   2621   //
   2622   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
   2623   // created of the form:
   2624   //
   2625   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
   2626   //      00000000,00000000,00000000,00000000]
   2627   //
   2628   // where B = ~b.
   2629   //
   2630 
   2631   uint32_t lo, hi;
   2632   DoubleAsTwoUInt32(d, &lo, &hi);
   2633 
   2634   // The most obvious constraint is the long block of zeroes.
   2635   if ((lo != 0) || ((hi & 0xffff) != 0)) {
   2636     return false;
   2637   }
   2638 
   2639   // Bits 61:54 must be all clear or all set.
   2640   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
   2641     return false;
   2642   }
   2643 
   2644   // Bit 62 must be NOT bit 61.
   2645   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
   2646     return false;
   2647   }
   2648 
   2649   // Create the encoded immediate in the form:
   2650   //  [00000000,0000abcd,00000000,0000efgh]
   2651   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
   2652   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
   2653   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
   2654 
   2655   return true;
   2656 }
   2657 
   2658 
   2659 void Assembler::vmov(const SwVfpRegister dst, float imm) {
   2660   uint32_t enc;
   2661   if (CpuFeatures::IsSupported(VFP3) && FitsVmovFPImmediate(imm, &enc)) {
   2662     // The float can be encoded in the instruction.
   2663     //
   2664     // Sd = immediate
   2665     // Instruction details available in ARM DDI 0406C.b, A8-936.
   2666     // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
   2667     // Vd(15-12) | 101(11-9) | sz=0(8) | imm4L(3-0)
   2668     int vd, d;
   2669     dst.split_code(&vd, &d);
   2670     emit(al | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | enc);
   2671   } else {
   2672     mov(ip, Operand(bit_cast<int32_t>(imm)));
   2673     vmov(dst, ip);
   2674   }
   2675 }
   2676 
   2677 
   2678 void Assembler::vmov(const DwVfpRegister dst,
   2679                      double imm,
   2680                      const Register scratch) {
   2681   uint32_t enc;
   2682   // If the embedded constant pool is disabled, we can use the normal, inline
   2683   // constant pool. If the embedded constant pool is enabled (via
   2684   // FLAG_enable_embedded_constant_pool), we can only use it where the pool
   2685   // pointer (pp) is valid.
   2686   bool can_use_pool =
   2687       !FLAG_enable_embedded_constant_pool || is_constant_pool_available();
   2688   if (CpuFeatures::IsSupported(VFP3) && FitsVmovFPImmediate(imm, &enc)) {
   2689     // The double can be encoded in the instruction.
   2690     //
   2691     // Dd = immediate
   2692     // Instruction details available in ARM DDI 0406C.b, A8-936.
   2693     // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
   2694     // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
   2695     int vd, d;
   2696     dst.split_code(&vd, &d);
   2697     emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
   2698   } else if (FLAG_enable_vldr_imm && can_use_pool) {
   2699     // TODO(jfb) Temporarily turned off until we have constant blinding or
   2700     //           some equivalent mitigation: an attacker can otherwise control
   2701     //           generated data which also happens to be executable, a Very Bad
   2702     //           Thing indeed.
   2703     //           Blinding gets tricky because we don't have xor, we probably
   2704     //           need to add/subtract without losing precision, which requires a
   2705     //           cookie value that Lithium is probably better positioned to
   2706     //           choose.
   2707     //           We could also add a few peepholes here like detecting 0.0 and
   2708     //           -0.0 and doing a vmov from the sequestered d14, forcing denorms
   2709     //           to zero (we set flush-to-zero), and normalizing NaN values.
   2710     //           We could also detect redundant values.
   2711     //           The code could also randomize the order of values, though
   2712     //           that's tricky because vldr has a limited reach. Furthermore
   2713     //           it breaks load locality.
   2714     ConstantPoolEntry::Access access = ConstantPoolAddEntry(pc_offset(), imm);
   2715     if (access == ConstantPoolEntry::OVERFLOWED) {
   2716       DCHECK(FLAG_enable_embedded_constant_pool);
   2717       // Emit instructions to load constant pool offset.
   2718       movw(ip, 0);
   2719       movt(ip, 0);
   2720       // Load from constant pool at offset.
   2721       vldr(dst, MemOperand(pp, ip));
   2722     } else {
   2723       DCHECK(access == ConstantPoolEntry::REGULAR);
   2724       vldr(dst, MemOperand(FLAG_enable_embedded_constant_pool ? pp : pc, 0));
   2725     }
   2726   } else {
   2727     // Synthesise the double from ARM immediates.
   2728     uint32_t lo, hi;
   2729     DoubleAsTwoUInt32(imm, &lo, &hi);
   2730 
   2731     if (lo == hi) {
   2732       // Move the low and high parts of the double to a D register in one
   2733       // instruction.
   2734       mov(ip, Operand(lo));
   2735       vmov(dst, ip, ip);
   2736     } else if (scratch.is(no_reg)) {
   2737       mov(ip, Operand(lo));
   2738       vmov(dst, VmovIndexLo, ip);
   2739       if (((lo & 0xffff) == (hi & 0xffff)) &&
   2740           CpuFeatures::IsSupported(ARMv7)) {
   2741         movt(ip, hi >> 16);
   2742       } else {
   2743         mov(ip, Operand(hi));
   2744       }
   2745       vmov(dst, VmovIndexHi, ip);
   2746     } else {
   2747       // Move the low and high parts of the double to a D register in one
   2748       // instruction.
   2749       mov(ip, Operand(lo));
   2750       mov(scratch, Operand(hi));
   2751       vmov(dst, ip, scratch);
   2752     }
   2753   }
   2754 }
   2755 
   2756 
   2757 void Assembler::vmov(const SwVfpRegister dst,
   2758                      const SwVfpRegister src,
   2759                      const Condition cond) {
   2760   // Sd = Sm
   2761   // Instruction details available in ARM DDI 0406B, A8-642.
   2762   int sd, d, sm, m;
   2763   dst.split_code(&sd, &d);
   2764   src.split_code(&sm, &m);
   2765   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
   2766 }
   2767 
   2768 
   2769 void Assembler::vmov(const DwVfpRegister dst,
   2770                      const DwVfpRegister src,
   2771                      const Condition cond) {
   2772   // Dd = Dm
   2773   // Instruction details available in ARM DDI 0406C.b, A8-938.
   2774   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
   2775   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2776   int vd, d;
   2777   dst.split_code(&vd, &d);
   2778   int vm, m;
   2779   src.split_code(&vm, &m);
   2780   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
   2781        vm);
   2782 }
   2783 
   2784 
   2785 void Assembler::vmov(const DwVfpRegister dst,
   2786                      const VmovIndex index,
   2787                      const Register src,
   2788                      const Condition cond) {
   2789   // Dd[index] = Rt
   2790   // Instruction details available in ARM DDI 0406C.b, A8-940.
   2791   // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
   2792   // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
   2793   DCHECK(index.index == 0 || index.index == 1);
   2794   int vd, d;
   2795   dst.split_code(&vd, &d);
   2796   emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
   2797        d*B7 | B4);
   2798 }
   2799 
   2800 
   2801 void Assembler::vmov(const Register dst,
   2802                      const VmovIndex index,
   2803                      const DwVfpRegister src,
   2804                      const Condition cond) {
   2805   // Dd[index] = Rt
   2806   // Instruction details available in ARM DDI 0406C.b, A8.8.342.
   2807   // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
   2808   // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
   2809   DCHECK(index.index == 0 || index.index == 1);
   2810   int vn, n;
   2811   src.split_code(&vn, &n);
   2812   emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
   2813        0xB*B8 | n*B7 | B4);
   2814 }
   2815 
   2816 
   2817 void Assembler::vmov(const DwVfpRegister dst,
   2818                      const Register src1,
   2819                      const Register src2,
   2820                      const Condition cond) {
   2821   // Dm = <Rt,Rt2>.
   2822   // Instruction details available in ARM DDI 0406C.b, A8-948.
   2823   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
   2824   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2825   DCHECK(!src1.is(pc) && !src2.is(pc));
   2826   int vm, m;
   2827   dst.split_code(&vm, &m);
   2828   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
   2829        src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
   2830 }
   2831 
   2832 
   2833 void Assembler::vmov(const Register dst1,
   2834                      const Register dst2,
   2835                      const DwVfpRegister src,
   2836                      const Condition cond) {
   2837   // <Rt,Rt2> = Dm.
   2838   // Instruction details available in ARM DDI 0406C.b, A8-948.
   2839   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
   2840   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2841   DCHECK(!dst1.is(pc) && !dst2.is(pc));
   2842   int vm, m;
   2843   src.split_code(&vm, &m);
   2844   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
   2845        dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
   2846 }
   2847 
   2848 
   2849 void Assembler::vmov(const SwVfpRegister dst,
   2850                      const Register src,
   2851                      const Condition cond) {
   2852   // Sn = Rt.
   2853   // Instruction details available in ARM DDI 0406A, A8-642.
   2854   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
   2855   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2856   DCHECK(!src.is(pc));
   2857   int sn, n;
   2858   dst.split_code(&sn, &n);
   2859   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
   2860 }
   2861 
   2862 
   2863 void Assembler::vmov(const Register dst,
   2864                      const SwVfpRegister src,
   2865                      const Condition cond) {
   2866   // Rt = Sn.
   2867   // Instruction details available in ARM DDI 0406A, A8-642.
   2868   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
   2869   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2870   DCHECK(!dst.is(pc));
   2871   int sn, n;
   2872   src.split_code(&sn, &n);
   2873   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
   2874 }
   2875 
   2876 
   2877 // Type of data to read from or write to VFP register.
   2878 // Used as specifier in generic vcvt instruction.
   2879 enum VFPType { S32, U32, F32, F64 };
   2880 
   2881 
   2882 static bool IsSignedVFPType(VFPType type) {
   2883   switch (type) {
   2884     case S32:
   2885       return true;
   2886     case U32:
   2887       return false;
   2888     default:
   2889       UNREACHABLE();
   2890       return false;
   2891   }
   2892 }
   2893 
   2894 
   2895 static bool IsIntegerVFPType(VFPType type) {
   2896   switch (type) {
   2897     case S32:
   2898     case U32:
   2899       return true;
   2900     case F32:
   2901     case F64:
   2902       return false;
   2903     default:
   2904       UNREACHABLE();
   2905       return false;
   2906   }
   2907 }
   2908 
   2909 
   2910 static bool IsDoubleVFPType(VFPType type) {
   2911   switch (type) {
   2912     case F32:
   2913       return false;
   2914     case F64:
   2915       return true;
   2916     default:
   2917       UNREACHABLE();
   2918       return false;
   2919   }
   2920 }
   2921 
   2922 
   2923 // Split five bit reg_code based on size of reg_type.
   2924 //  32-bit register codes are Vm:M
   2925 //  64-bit register codes are M:Vm
   2926 // where Vm is four bits, and M is a single bit.
   2927 static void SplitRegCode(VFPType reg_type,
   2928                          int reg_code,
   2929                          int* vm,
   2930                          int* m) {
   2931   DCHECK((reg_code >= 0) && (reg_code <= 31));
   2932   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
   2933     // 32 bit type.
   2934     *m  = reg_code & 0x1;
   2935     *vm = reg_code >> 1;
   2936   } else {
   2937     // 64 bit type.
   2938     *m  = (reg_code & 0x10) >> 4;
   2939     *vm = reg_code & 0x0F;
   2940   }
   2941 }
   2942 
   2943 
   2944 // Encode vcvt.src_type.dst_type instruction.
   2945 static Instr EncodeVCVT(const VFPType dst_type,
   2946                         const int dst_code,
   2947                         const VFPType src_type,
   2948                         const int src_code,
   2949                         VFPConversionMode mode,
   2950                         const Condition cond) {
   2951   DCHECK(src_type != dst_type);
   2952   int D, Vd, M, Vm;
   2953   SplitRegCode(src_type, src_code, &Vm, &M);
   2954   SplitRegCode(dst_type, dst_code, &Vd, &D);
   2955 
   2956   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
   2957     // Conversion between IEEE floating point and 32-bit integer.
   2958     // Instruction details available in ARM DDI 0406B, A8.6.295.
   2959     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
   2960     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2961     DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
   2962 
   2963     int sz, opc2, op;
   2964 
   2965     if (IsIntegerVFPType(dst_type)) {
   2966       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
   2967       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2968       op = mode;
   2969     } else {
   2970       DCHECK(IsIntegerVFPType(src_type));
   2971       opc2 = 0x0;
   2972       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
   2973       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
   2974     }
   2975 
   2976     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
   2977             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
   2978   } else {
   2979     // Conversion between IEEE double and single precision.
   2980     // Instruction details available in ARM DDI 0406B, A8.6.298.
   2981     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
   2982     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2983     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2984     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
   2985             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
   2986   }
   2987 }
   2988 
   2989 
   2990 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   2991                              const SwVfpRegister src,
   2992                              VFPConversionMode mode,
   2993                              const Condition cond) {
   2994   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
   2995 }
   2996 
   2997 
   2998 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
   2999                              const SwVfpRegister src,
   3000                              VFPConversionMode mode,
   3001                              const Condition cond) {
   3002   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
   3003 }
   3004 
   3005 
   3006 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
   3007                              const SwVfpRegister src,
   3008                              VFPConversionMode mode,
   3009                              const Condition cond) {
   3010   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
   3011 }
   3012 
   3013 
   3014 void Assembler::vcvt_f32_u32(const SwVfpRegister dst, const SwVfpRegister src,
   3015                              VFPConversionMode mode, const Condition cond) {
   3016   emit(EncodeVCVT(F32, dst.code(), U32, src.code(), mode, cond));
   3017 }
   3018 
   3019 
   3020 void Assembler::vcvt_s32_f32(const SwVfpRegister dst, const SwVfpRegister src,
   3021                              VFPConversionMode mode, const Condition cond) {
   3022   emit(EncodeVCVT(S32, dst.code(), F32, src.code(), mode, cond));
   3023 }
   3024 
   3025 
   3026 void Assembler::vcvt_u32_f32(const SwVfpRegister dst, const SwVfpRegister src,
   3027                              VFPConversionMode mode, const Condition cond) {
   3028   emit(EncodeVCVT(U32, dst.code(), F32, src.code(), mode, cond));
   3029 }
   3030 
   3031 
   3032 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
   3033                              const DwVfpRegister src,
   3034                              VFPConversionMode mode,
   3035                              const Condition cond) {
   3036   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
   3037 }
   3038 
   3039 
   3040 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
   3041                              const DwVfpRegister src,
   3042                              VFPConversionMode mode,
   3043                              const Condition cond) {
   3044   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
   3045 }
   3046 
   3047 
   3048 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
   3049                              const SwVfpRegister src,
   3050                              VFPConversionMode mode,
   3051                              const Condition cond) {
   3052   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
   3053 }
   3054 
   3055 
   3056 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
   3057                              const DwVfpRegister src,
   3058                              VFPConversionMode mode,
   3059                              const Condition cond) {
   3060   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
   3061 }
   3062 
   3063 
   3064 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   3065                              int fraction_bits,
   3066                              const Condition cond) {
   3067   // Instruction details available in ARM DDI 0406C.b, A8-874.
   3068   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
   3069   // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
   3070   DCHECK(fraction_bits > 0 && fraction_bits <= 32);
   3071   DCHECK(CpuFeatures::IsSupported(VFP3));
   3072   int vd, d;
   3073   dst.split_code(&vd, &d);
   3074   int imm5 = 32 - fraction_bits;
   3075   int i = imm5 & 1;
   3076   int imm4 = (imm5 >> 1) & 0xf;
   3077   emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
   3078        vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
   3079 }
   3080 
   3081 
   3082 void Assembler::vneg(const DwVfpRegister dst,
   3083                      const DwVfpRegister src,
   3084                      const Condition cond) {
   3085   // Instruction details available in ARM DDI 0406C.b, A8-968.
   3086   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
   3087   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3088   int vd, d;
   3089   dst.split_code(&vd, &d);
   3090   int vm, m;
   3091   src.split_code(&vm, &m);
   3092 
   3093   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
   3094        m*B5 | vm);
   3095 }
   3096 
   3097 
   3098 void Assembler::vneg(const SwVfpRegister dst, const SwVfpRegister src,
   3099                      const Condition cond) {
   3100   // Instruction details available in ARM DDI 0406C.b, A8-968.
   3101   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
   3102   // 101(11-9) | sz=0(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3103   int vd, d;
   3104   dst.split_code(&vd, &d);
   3105   int vm, m;
   3106   src.split_code(&vm, &m);
   3107 
   3108   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 |
   3109        B6 | m * B5 | vm);
   3110 }
   3111 
   3112 
   3113 void Assembler::vabs(const DwVfpRegister dst,
   3114                      const DwVfpRegister src,
   3115                      const Condition cond) {
   3116   // Instruction details available in ARM DDI 0406C.b, A8-524.
   3117   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
   3118   // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3119   int vd, d;
   3120   dst.split_code(&vd, &d);
   3121   int vm, m;
   3122   src.split_code(&vm, &m);
   3123   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
   3124        m*B5 | vm);
   3125 }
   3126 
   3127 
   3128 void Assembler::vabs(const SwVfpRegister dst, const SwVfpRegister src,
   3129                      const Condition cond) {
   3130   // Instruction details available in ARM DDI 0406C.b, A8-524.
   3131   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
   3132   // 101(11-9) | sz=0(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3133   int vd, d;
   3134   dst.split_code(&vd, &d);
   3135   int vm, m;
   3136   src.split_code(&vm, &m);
   3137   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B7 | B6 |
   3138        m * B5 | vm);
   3139 }
   3140 
   3141 
   3142 void Assembler::vadd(const DwVfpRegister dst,
   3143                      const DwVfpRegister src1,
   3144                      const DwVfpRegister src2,
   3145                      const Condition cond) {
   3146   // Dd = vadd(Dn, Dm) double precision floating point addition.
   3147   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   3148   // Instruction details available in ARM DDI 0406C.b, A8-830.
   3149   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   3150   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   3151   int vd, d;
   3152   dst.split_code(&vd, &d);
   3153   int vn, n;
   3154   src1.split_code(&vn, &n);
   3155   int vm, m;
   3156   src2.split_code(&vm, &m);
   3157   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   3158        n*B7 | m*B5 | vm);
   3159 }
   3160 
   3161 
   3162 void Assembler::vadd(const SwVfpRegister dst, const SwVfpRegister src1,
   3163                      const SwVfpRegister src2, const Condition cond) {
   3164   // Sd = vadd(Sn, Sm) single precision floating point addition.
   3165   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
   3166   // Instruction details available in ARM DDI 0406C.b, A8-830.
   3167   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   3168   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   3169   int vd, d;
   3170   dst.split_code(&vd, &d);
   3171   int vn, n;
   3172   src1.split_code(&vn, &n);
   3173   int vm, m;
   3174   src2.split_code(&vm, &m);
   3175   emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 |
   3176        0x5 * B9 | n * B7 | m * B5 | vm);
   3177 }
   3178 
   3179 
   3180 void Assembler::vsub(const DwVfpRegister dst,
   3181                      const DwVfpRegister src1,
   3182                      const DwVfpRegister src2,
   3183                      const Condition cond) {
   3184   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
   3185   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   3186   // Instruction details available in ARM DDI 0406C.b, A8-1086.
   3187   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   3188   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3189   int vd, d;
   3190   dst.split_code(&vd, &d);
   3191   int vn, n;
   3192   src1.split_code(&vn, &n);
   3193   int vm, m;
   3194   src2.split_code(&vm, &m);
   3195   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   3196        n*B7 | B6 | m*B5 | vm);
   3197 }
   3198 
   3199 
   3200 void Assembler::vsub(const SwVfpRegister dst, const SwVfpRegister src1,
   3201                      const SwVfpRegister src2, const Condition cond) {
   3202   // Sd = vsub(Sn, Sm) single precision floating point subtraction.
   3203   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
   3204   // Instruction details available in ARM DDI 0406C.b, A8-1086.
   3205   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   3206   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3207   int vd, d;
   3208   dst.split_code(&vd, &d);
   3209   int vn, n;
   3210   src1.split_code(&vn, &n);
   3211   int vm, m;
   3212   src2.split_code(&vm, &m);
   3213   emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 |
   3214        0x5 * B9 | n * B7 | B6 | m * B5 | vm);
   3215 }
   3216 
   3217 
   3218 void Assembler::vmul(const DwVfpRegister dst,
   3219                      const DwVfpRegister src1,
   3220                      const DwVfpRegister src2,
   3221                      const Condition cond) {
   3222   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
   3223   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   3224   // Instruction details available in ARM DDI 0406C.b, A8-960.
   3225   // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
   3226   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   3227   int vd, d;
   3228   dst.split_code(&vd, &d);
   3229   int vn, n;
   3230   src1.split_code(&vn, &n);
   3231   int vm, m;
   3232   src2.split_code(&vm, &m);
   3233   emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   3234        n*B7 | m*B5 | vm);
   3235 }
   3236 
   3237 
   3238 void Assembler::vmul(const SwVfpRegister dst, const SwVfpRegister src1,
   3239                      const SwVfpRegister src2, const Condition cond) {
   3240   // Sd = vmul(Sn, Sm) single precision floating point multiplication.
   3241   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
   3242   // Instruction details available in ARM DDI 0406C.b, A8-960.
   3243   // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
   3244   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   3245   int vd, d;
   3246   dst.split_code(&vd, &d);
   3247   int vn, n;
   3248   src1.split_code(&vn, &n);
   3249   int vm, m;
   3250   src2.split_code(&vm, &m);
   3251   emit(cond | 0x1C * B23 | d * B22 | 0x2 * B20 | vn * B16 | vd * B12 |
   3252        0x5 * B9 | n * B7 | m * B5 | vm);
   3253 }
   3254 
   3255 
   3256 void Assembler::vmla(const DwVfpRegister dst,
   3257                      const DwVfpRegister src1,
   3258                      const DwVfpRegister src2,
   3259                      const Condition cond) {
   3260   // Instruction details available in ARM DDI 0406C.b, A8-932.
   3261   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   3262   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
   3263   int vd, d;
   3264   dst.split_code(&vd, &d);
   3265   int vn, n;
   3266   src1.split_code(&vn, &n);
   3267   int vm, m;
   3268   src2.split_code(&vm, &m);
   3269   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
   3270        vm);
   3271 }
   3272 
   3273 
   3274 void Assembler::vmla(const SwVfpRegister dst, const SwVfpRegister src1,
   3275                      const SwVfpRegister src2, const Condition cond) {
   3276   // Instruction details available in ARM DDI 0406C.b, A8-932.
   3277   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   3278   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
   3279   int vd, d;
   3280   dst.split_code(&vd, &d);
   3281   int vn, n;
   3282   src1.split_code(&vn, &n);
   3283   int vm, m;
   3284   src2.split_code(&vm, &m);
   3285   emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
   3286        m * B5 | vm);
   3287 }
   3288 
   3289 
   3290 void Assembler::vmls(const DwVfpRegister dst,
   3291                      const DwVfpRegister src1,
   3292                      const DwVfpRegister src2,
   3293                      const Condition cond) {
   3294   // Instruction details available in ARM DDI 0406C.b, A8-932.
   3295   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   3296   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
   3297   int vd, d;
   3298   dst.split_code(&vd, &d);
   3299   int vn, n;
   3300   src1.split_code(&vn, &n);
   3301   int vm, m;
   3302   src2.split_code(&vm, &m);
   3303   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
   3304        m*B5 | vm);
   3305 }
   3306 
   3307 
   3308 void Assembler::vmls(const SwVfpRegister dst, const SwVfpRegister src1,
   3309                      const SwVfpRegister src2, const Condition cond) {
   3310   // Instruction details available in ARM DDI 0406C.b, A8-932.
   3311   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   3312   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
   3313   int vd, d;
   3314   dst.split_code(&vd, &d);
   3315   int vn, n;
   3316   src1.split_code(&vn, &n);
   3317   int vm, m;
   3318   src2.split_code(&vm, &m);
   3319   emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
   3320        B6 | m * B5 | vm);
   3321 }
   3322 
   3323 
   3324 void Assembler::vdiv(const DwVfpRegister dst,
   3325                      const DwVfpRegister src1,
   3326                      const DwVfpRegister src2,
   3327                      const Condition cond) {
   3328   // Dd = vdiv(Dn, Dm) double precision floating point division.
   3329   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   3330   // Instruction details available in ARM DDI 0406C.b, A8-882.
   3331   // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
   3332   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   3333   int vd, d;
   3334   dst.split_code(&vd, &d);
   3335   int vn, n;
   3336   src1.split_code(&vn, &n);
   3337   int vm, m;
   3338   src2.split_code(&vm, &m);
   3339   emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
   3340        vm);
   3341 }
   3342 
   3343 
   3344 void Assembler::vdiv(const SwVfpRegister dst, const SwVfpRegister src1,
   3345                      const SwVfpRegister src2, const Condition cond) {
   3346   // Sd = vdiv(Sn, Sm) single precision floating point division.
   3347   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
   3348   // Instruction details available in ARM DDI 0406C.b, A8-882.
   3349   // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
   3350   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   3351   int vd, d;
   3352   dst.split_code(&vd, &d);
   3353   int vn, n;
   3354   src1.split_code(&vn, &n);
   3355   int vm, m;
   3356   src2.split_code(&vm, &m);
   3357   emit(cond | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
   3358        m * B5 | vm);
   3359 }
   3360 
   3361 
   3362 void Assembler::vcmp(const DwVfpRegister src1,
   3363                      const DwVfpRegister src2,
   3364                      const Condition cond) {
   3365   // vcmp(Dd, Dm) double precision floating point comparison.
   3366   // Instruction details available in ARM DDI 0406C.b, A8-864.
   3367   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
   3368   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3369   int vd, d;
   3370   src1.split_code(&vd, &d);
   3371   int vm, m;
   3372   src2.split_code(&vm, &m);
   3373   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
   3374        m*B5 | vm);
   3375 }
   3376 
   3377 
   3378 void Assembler::vcmp(const SwVfpRegister src1, const SwVfpRegister src2,
   3379                      const Condition cond) {
   3380   // vcmp(Sd, Sm) single precision floating point comparison.
   3381   // Instruction details available in ARM DDI 0406C.b, A8-864.
   3382   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
   3383   // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3384   int vd, d;
   3385   src1.split_code(&vd, &d);
   3386   int vm, m;
   3387   src2.split_code(&vm, &m);
   3388   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x4 * B16 | vd * B12 |
   3389        0x5 * B9 | B6 | m * B5 | vm);
   3390 }
   3391 
   3392 
   3393 void Assembler::vcmp(const DwVfpRegister src1,
   3394                      const double src2,
   3395                      const Condition cond) {
   3396   // vcmp(Dd, #0.0) double precision floating point comparison.
   3397   // Instruction details available in ARM DDI 0406C.b, A8-864.
   3398   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
   3399   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
   3400   DCHECK(src2 == 0.0);
   3401   int vd, d;
   3402   src1.split_code(&vd, &d);
   3403   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
   3404 }
   3405 
   3406 
   3407 void Assembler::vcmp(const SwVfpRegister src1, const float src2,
   3408                      const Condition cond) {
   3409   // vcmp(Sd, #0.0) single precision floating point comparison.
   3410   // Instruction details available in ARM DDI 0406C.b, A8-864.
   3411   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
   3412   // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
   3413   DCHECK(src2 == 0.0);
   3414   int vd, d;
   3415   src1.split_code(&vd, &d);
   3416   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x5 * B16 | vd * B12 |
   3417        0x5 * B9 | B6);
   3418 }
   3419 
   3420 void Assembler::vsel(Condition cond, const DwVfpRegister dst,
   3421                      const DwVfpRegister src1, const DwVfpRegister src2) {
   3422   // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) |
   3423   // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=1(8) | N(7) |
   3424   // 0(6) | M(5) | 0(4) | Vm(3-0)
   3425   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3426   int vd, d;
   3427   dst.split_code(&vd, &d);
   3428   int vn, n;
   3429   src1.split_code(&vn, &n);
   3430   int vm, m;
   3431   src2.split_code(&vm, &m);
   3432   int sz = 1;
   3433 
   3434   // VSEL has a special (restricted) condition encoding.
   3435   //   eq(0b0000)... -> 0b00
   3436   //   ge(0b1010)... -> 0b10
   3437   //   gt(0b1100)... -> 0b11
   3438   //   vs(0b0110)... -> 0b01
   3439   // No other conditions are supported.
   3440   int vsel_cond = (cond >> 30) & 0x3;
   3441   if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) {
   3442     // We can implement some other conditions by swapping the inputs.
   3443     DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc));
   3444     std::swap(vn, vm);
   3445     std::swap(n, m);
   3446   }
   3447 
   3448   emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 |
   3449        vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm);
   3450 }
   3451 
   3452 void Assembler::vsel(Condition cond, const SwVfpRegister dst,
   3453                      const SwVfpRegister src1, const SwVfpRegister src2) {
   3454   // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) |
   3455   // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=0(8) | N(7) |
   3456   // 0(6) | M(5) | 0(4) | Vm(3-0)
   3457   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3458   int vd, d;
   3459   dst.split_code(&vd, &d);
   3460   int vn, n;
   3461   src1.split_code(&vn, &n);
   3462   int vm, m;
   3463   src2.split_code(&vm, &m);
   3464   int sz = 0;
   3465 
   3466   // VSEL has a special (restricted) condition encoding.
   3467   //   eq(0b0000)... -> 0b00
   3468   //   ge(0b1010)... -> 0b10
   3469   //   gt(0b1100)... -> 0b11
   3470   //   vs(0b0110)... -> 0b01
   3471   // No other conditions are supported.
   3472   int vsel_cond = (cond >> 30) & 0x3;
   3473   if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) {
   3474     // We can implement some other conditions by swapping the inputs.
   3475     DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc));
   3476     std::swap(vn, vm);
   3477     std::swap(n, m);
   3478   }
   3479 
   3480   emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 |
   3481        vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm);
   3482 }
   3483 
   3484 void Assembler::vsqrt(const DwVfpRegister dst,
   3485                       const DwVfpRegister src,
   3486                       const Condition cond) {
   3487   // Instruction details available in ARM DDI 0406C.b, A8-1058.
   3488   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
   3489   // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
   3490   int vd, d;
   3491   dst.split_code(&vd, &d);
   3492   int vm, m;
   3493   src.split_code(&vm, &m);
   3494   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
   3495        m*B5 | vm);
   3496 }
   3497 
   3498 
   3499 void Assembler::vsqrt(const SwVfpRegister dst, const SwVfpRegister src,
   3500                       const Condition cond) {
   3501   // Instruction details available in ARM DDI 0406C.b, A8-1058.
   3502   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
   3503   // Vd(15-12) | 101(11-9) | sz=0(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
   3504   int vd, d;
   3505   dst.split_code(&vd, &d);
   3506   int vm, m;
   3507   src.split_code(&vm, &m);
   3508   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 |
   3509        0x3 * B6 | m * B5 | vm);
   3510 }
   3511 
   3512 
   3513 void Assembler::vmsr(Register dst, Condition cond) {
   3514   // Instruction details available in ARM DDI 0406A, A8-652.
   3515   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
   3516   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   3517   emit(cond | 0xE * B24 | 0xE * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4);
   3518 }
   3519 
   3520 
   3521 void Assembler::vmrs(Register dst, Condition cond) {
   3522   // Instruction details available in ARM DDI 0406A, A8-652.
   3523   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
   3524   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   3525   emit(cond | 0xE * B24 | 0xF * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4);
   3526 }
   3527 
   3528 
   3529 void Assembler::vrinta(const SwVfpRegister dst, const SwVfpRegister src) {
   3530   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3531   // 10(19-18) | RM=00(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
   3532   // M(5) | 0(4) | Vm(3-0)
   3533   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3534   int vd, d;
   3535   dst.split_code(&vd, &d);
   3536   int vm, m;
   3537   src.split_code(&vm, &m);
   3538   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 |
   3539        0x5 * B9 | B6 | m * B5 | vm);
   3540 }
   3541 
   3542 
   3543 void Assembler::vrinta(const DwVfpRegister dst, const DwVfpRegister src) {
   3544   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3545   // 10(19-18) | RM=00(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
   3546   // M(5) | 0(4) | Vm(3-0)
   3547   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3548   int vd, d;
   3549   dst.split_code(&vd, &d);
   3550   int vm, m;
   3551   src.split_code(&vm, &m);
   3552   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 |
   3553        0x5 * B9 | B8 | B6 | m * B5 | vm);
   3554 }
   3555 
   3556 
   3557 void Assembler::vrintn(const SwVfpRegister dst, const SwVfpRegister src) {
   3558   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3559   // 10(19-18) | RM=01(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
   3560   // M(5) | 0(4) | Vm(3-0)
   3561   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3562   int vd, d;
   3563   dst.split_code(&vd, &d);
   3564   int vm, m;
   3565   src.split_code(&vm, &m);
   3566   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 |
   3567        vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
   3568 }
   3569 
   3570 
   3571 void Assembler::vrintn(const DwVfpRegister dst, const DwVfpRegister src) {
   3572   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3573   // 10(19-18) | RM=01(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
   3574   // M(5) | 0(4) | Vm(3-0)
   3575   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3576   int vd, d;
   3577   dst.split_code(&vd, &d);
   3578   int vm, m;
   3579   src.split_code(&vm, &m);
   3580   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 |
   3581        vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
   3582 }
   3583 
   3584 
   3585 void Assembler::vrintp(const SwVfpRegister dst, const SwVfpRegister src) {
   3586   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3587   // 10(19-18) | RM=10(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
   3588   // M(5) | 0(4) | Vm(3-0)
   3589   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3590   int vd, d;
   3591   dst.split_code(&vd, &d);
   3592   int vm, m;
   3593   src.split_code(&vm, &m);
   3594   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 |
   3595        vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
   3596 }
   3597 
   3598 
   3599 void Assembler::vrintp(const DwVfpRegister dst, const DwVfpRegister src) {
   3600   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3601   // 10(19-18) | RM=10(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
   3602   // M(5) | 0(4) | Vm(3-0)
   3603   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3604   int vd, d;
   3605   dst.split_code(&vd, &d);
   3606   int vm, m;
   3607   src.split_code(&vm, &m);
   3608   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 |
   3609        vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
   3610 }
   3611 
   3612 
   3613 void Assembler::vrintm(const SwVfpRegister dst, const SwVfpRegister src) {
   3614   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3615   // 10(19-18) | RM=11(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
   3616   // M(5) | 0(4) | Vm(3-0)
   3617   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3618   int vd, d;
   3619   dst.split_code(&vd, &d);
   3620   int vm, m;
   3621   src.split_code(&vm, &m);
   3622   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 |
   3623        vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
   3624 }
   3625 
   3626 
   3627 void Assembler::vrintm(const DwVfpRegister dst, const DwVfpRegister src) {
   3628   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
   3629   // 10(19-18) | RM=11(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
   3630   // M(5) | 0(4) | Vm(3-0)
   3631   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3632   int vd, d;
   3633   dst.split_code(&vd, &d);
   3634   int vm, m;
   3635   src.split_code(&vm, &m);
   3636   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 |
   3637        vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
   3638 }
   3639 
   3640 
   3641 void Assembler::vrintz(const SwVfpRegister dst, const SwVfpRegister src,
   3642                        const Condition cond) {
   3643   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) |
   3644   // Vd(15-12) | 101(11-9) | sz=0(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3645   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3646   int vd, d;
   3647   dst.split_code(&vd, &d);
   3648   int vm, m;
   3649   src.split_code(&vm, &m);
   3650   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 |
   3651        0x5 * B9 | B7 | B6 | m * B5 | vm);
   3652 }
   3653 
   3654 
   3655 void Assembler::vrintz(const DwVfpRegister dst, const DwVfpRegister src,
   3656                        const Condition cond) {
   3657   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) |
   3658   // Vd(15-12) | 101(11-9) | sz=1(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   3659   DCHECK(CpuFeatures::IsSupported(ARMv8));
   3660   int vd, d;
   3661   dst.split_code(&vd, &d);
   3662   int vm, m;
   3663   src.split_code(&vm, &m);
   3664   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 |
   3665        0x5 * B9 | B8 | B7 | B6 | m * B5 | vm);
   3666 }
   3667 
   3668 
   3669 // Support for NEON.
   3670 
   3671 void Assembler::vld1(NeonSize size,
   3672                      const NeonListOperand& dst,
   3673                      const NeonMemOperand& src) {
   3674   // Instruction details available in ARM DDI 0406C.b, A8.8.320.
   3675   // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
   3676   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
   3677   DCHECK(CpuFeatures::IsSupported(NEON));
   3678   int vd, d;
   3679   dst.base().split_code(&vd, &d);
   3680   emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
   3681        dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
   3682 }
   3683 
   3684 
   3685 void Assembler::vst1(NeonSize size,
   3686                      const NeonListOperand& src,
   3687                      const NeonMemOperand& dst) {
   3688   // Instruction details available in ARM DDI 0406C.b, A8.8.404.
   3689   // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
   3690   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
   3691   DCHECK(CpuFeatures::IsSupported(NEON));
   3692   int vd, d;
   3693   src.base().split_code(&vd, &d);
   3694   emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
   3695        size*B6 | dst.align()*B4 | dst.rm().code());
   3696 }
   3697 
   3698 
   3699 void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
   3700   // Instruction details available in ARM DDI 0406C.b, A8.8.346.
   3701   // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
   3702   // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
   3703   DCHECK(CpuFeatures::IsSupported(NEON));
   3704   int vd, d;
   3705   dst.split_code(&vd, &d);
   3706   int vm, m;
   3707   src.split_code(&vm, &m);
   3708   emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
   3709         (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
   3710 }
   3711 
   3712 
   3713 // Pseudo instructions.
   3714 void Assembler::nop(int type) {
   3715   // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
   3716   // some of the CPU's pipeline and has to issue. Older ARM chips simply used
   3717   // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
   3718   // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
   3719   // a type.
   3720   DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
   3721   emit(al | 13*B21 | type*B12 | type);
   3722 }
   3723 
   3724 
   3725 bool Assembler::IsMovT(Instr instr) {
   3726   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
   3727              ((kNumRegisters-1)*B12) |            // mask out register
   3728              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
   3729   return instr == kMovtPattern;
   3730 }
   3731 
   3732 
   3733 bool Assembler::IsMovW(Instr instr) {
   3734   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
   3735              ((kNumRegisters-1)*B12) |            // mask out destination
   3736              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
   3737   return instr == kMovwPattern;
   3738 }
   3739 
   3740 
   3741 Instr Assembler::GetMovTPattern() { return kMovtPattern; }
   3742 
   3743 
   3744 Instr Assembler::GetMovWPattern() { return kMovwPattern; }
   3745 
   3746 
   3747 Instr Assembler::EncodeMovwImmediate(uint32_t immediate) {
   3748   DCHECK(immediate < 0x10000);
   3749   return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
   3750 }
   3751 
   3752 
   3753 Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) {
   3754   instruction &= ~EncodeMovwImmediate(0xffff);
   3755   return instruction | EncodeMovwImmediate(immediate);
   3756 }
   3757 
   3758 
   3759 int Assembler::DecodeShiftImm(Instr instr) {
   3760   int rotate = Instruction::RotateValue(instr) * 2;
   3761   int immed8 = Instruction::Immed8Value(instr);
   3762   return base::bits::RotateRight32(immed8, rotate);
   3763 }
   3764 
   3765 
   3766 Instr Assembler::PatchShiftImm(Instr instr, int immed) {
   3767   uint32_t rotate_imm = 0;
   3768   uint32_t immed_8 = 0;
   3769   bool immed_fits = fits_shifter(immed, &rotate_imm, &immed_8, NULL);
   3770   DCHECK(immed_fits);
   3771   USE(immed_fits);
   3772   return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8;
   3773 }
   3774 
   3775 
   3776 bool Assembler::IsNop(Instr instr, int type) {
   3777   DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
   3778   // Check for mov rx, rx where x = type.
   3779   return instr == (al | 13*B21 | type*B12 | type);
   3780 }
   3781 
   3782 
   3783 bool Assembler::IsMovImmed(Instr instr) {
   3784   return (instr & kMovImmedMask) == kMovImmedPattern;
   3785 }
   3786 
   3787 
   3788 bool Assembler::IsOrrImmed(Instr instr) {
   3789   return (instr & kOrrImmedMask) == kOrrImmedPattern;
   3790 }
   3791 
   3792 
   3793 // static
   3794 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
   3795   uint32_t dummy1;
   3796   uint32_t dummy2;
   3797   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
   3798 }
   3799 
   3800 
   3801 bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) {
   3802   return is_uint12(abs(imm32));
   3803 }
   3804 
   3805 
   3806 // Debugging.
   3807 void Assembler::RecordConstPool(int size) {
   3808   // We only need this for debugger support, to correctly compute offsets in the
   3809   // code.
   3810   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
   3811 }
   3812 
   3813 
   3814 void Assembler::GrowBuffer() {
   3815   if (!own_buffer_) FATAL("external code buffer is too small");
   3816 
   3817   // Compute new buffer size.
   3818   CodeDesc desc;  // the new buffer
   3819   if (buffer_size_ < 1 * MB) {
   3820     desc.buffer_size = 2*buffer_size_;
   3821   } else {
   3822     desc.buffer_size = buffer_size_ + 1*MB;
   3823   }
   3824   CHECK_GT(desc.buffer_size, 0);  // no overflow
   3825 
   3826   // Set up new buffer.
   3827   desc.buffer = NewArray<byte>(desc.buffer_size);
   3828 
   3829   desc.instr_size = pc_offset();
   3830   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
   3831   desc.origin = this;
   3832 
   3833   // Copy the data.
   3834   int pc_delta = desc.buffer - buffer_;
   3835   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   3836   MemMove(desc.buffer, buffer_, desc.instr_size);
   3837   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
   3838           desc.reloc_size);
   3839 
   3840   // Switch buffers.
   3841   DeleteArray(buffer_);
   3842   buffer_ = desc.buffer;
   3843   buffer_size_ = desc.buffer_size;
   3844   pc_ += pc_delta;
   3845   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   3846                                reloc_info_writer.last_pc() + pc_delta);
   3847 
   3848   // None of our relocation types are pc relative pointing outside the code
   3849   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   3850   // to relocate any emitted relocation entries.
   3851 }
   3852 
   3853 
   3854 void Assembler::db(uint8_t data) {
   3855   // db is used to write raw data. The constant pool should be emitted or
   3856   // blocked before using db.
   3857   DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty());
   3858   DCHECK(is_const_pool_blocked() || pending_64_bit_constants_.empty());
   3859   CheckBuffer();
   3860   *reinterpret_cast<uint8_t*>(pc_) = data;
   3861   pc_ += sizeof(uint8_t);
   3862 }
   3863 
   3864 
   3865 void Assembler::dd(uint32_t data) {
   3866   // dd is used to write raw data. The constant pool should be emitted or
   3867   // blocked before using dd.
   3868   DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty());
   3869   DCHECK(is_const_pool_blocked() || pending_64_bit_constants_.empty());
   3870   CheckBuffer();
   3871   *reinterpret_cast<uint32_t*>(pc_) = data;
   3872   pc_ += sizeof(uint32_t);
   3873 }
   3874 
   3875 
   3876 void Assembler::dq(uint64_t value) {
   3877   // dq is used to write raw data. The constant pool should be emitted or
   3878   // blocked before using dq.
   3879   DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty());
   3880   DCHECK(is_const_pool_blocked() || pending_64_bit_constants_.empty());
   3881   CheckBuffer();
   3882   *reinterpret_cast<uint64_t*>(pc_) = value;
   3883   pc_ += sizeof(uint64_t);
   3884 }
   3885 
   3886 
   3887 void Assembler::emit_code_stub_address(Code* stub) {
   3888   CheckBuffer();
   3889   *reinterpret_cast<uint32_t*>(pc_) =
   3890       reinterpret_cast<uint32_t>(stub->instruction_start());
   3891   pc_ += sizeof(uint32_t);
   3892 }
   3893 
   3894 
   3895 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   3896   if (RelocInfo::IsNone(rmode) ||
   3897       // Don't record external references unless the heap will be serialized.
   3898       (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
   3899        !emit_debug_code())) {
   3900     return;
   3901   }
   3902   DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   3903   if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
   3904     data = RecordedAstId().ToInt();
   3905     ClearRecordedAstId();
   3906   }
   3907   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
   3908   reloc_info_writer.Write(&rinfo);
   3909 }
   3910 
   3911 
   3912 ConstantPoolEntry::Access Assembler::ConstantPoolAddEntry(int position,
   3913                                                           RelocInfo::Mode rmode,
   3914                                                           intptr_t value) {
   3915   DCHECK(rmode != RelocInfo::COMMENT && rmode != RelocInfo::POSITION &&
   3916          rmode != RelocInfo::STATEMENT_POSITION &&
   3917          rmode != RelocInfo::CONST_POOL && rmode != RelocInfo::NONE64);
   3918   bool sharing_ok = RelocInfo::IsNone(rmode) ||
   3919                     !(serializer_enabled() || rmode < RelocInfo::CELL);
   3920   if (FLAG_enable_embedded_constant_pool) {
   3921     return constant_pool_builder_.AddEntry(position, value, sharing_ok);
   3922   } else {
   3923     DCHECK(pending_32_bit_constants_.size() < kMaxNumPending32Constants);
   3924     if (pending_32_bit_constants_.empty()) {
   3925       first_const_pool_32_use_ = position;
   3926     }
   3927     ConstantPoolEntry entry(position, value, sharing_ok);
   3928     pending_32_bit_constants_.push_back(entry);
   3929 
   3930     // Make sure the constant pool is not emitted in place of the next
   3931     // instruction for which we just recorded relocation info.
   3932     BlockConstPoolFor(1);
   3933     return ConstantPoolEntry::REGULAR;
   3934   }
   3935 }
   3936 
   3937 
   3938 ConstantPoolEntry::Access Assembler::ConstantPoolAddEntry(int position,
   3939                                                           double value) {
   3940   if (FLAG_enable_embedded_constant_pool) {
   3941     return constant_pool_builder_.AddEntry(position, value);
   3942   } else {
   3943     DCHECK(pending_64_bit_constants_.size() < kMaxNumPending64Constants);
   3944     if (pending_64_bit_constants_.empty()) {
   3945       first_const_pool_64_use_ = position;
   3946     }
   3947     ConstantPoolEntry entry(position, value);
   3948     pending_64_bit_constants_.push_back(entry);
   3949 
   3950     // Make sure the constant pool is not emitted in place of the next
   3951     // instruction for which we just recorded relocation info.
   3952     BlockConstPoolFor(1);
   3953     return ConstantPoolEntry::REGULAR;
   3954   }
   3955 }
   3956 
   3957 
   3958 void Assembler::BlockConstPoolFor(int instructions) {
   3959   if (FLAG_enable_embedded_constant_pool) {
   3960     // Should be a no-op if using an embedded constant pool.
   3961     DCHECK(pending_32_bit_constants_.empty());
   3962     DCHECK(pending_64_bit_constants_.empty());
   3963     return;
   3964   }
   3965 
   3966   int pc_limit = pc_offset() + instructions * kInstrSize;
   3967   if (no_const_pool_before_ < pc_limit) {
   3968     // Max pool start (if we need a jump and an alignment).
   3969 #ifdef DEBUG
   3970     int start = pc_limit + kInstrSize + 2 * kPointerSize;
   3971     DCHECK(pending_32_bit_constants_.empty() ||
   3972            (start - first_const_pool_32_use_ +
   3973                 pending_64_bit_constants_.size() * kDoubleSize <
   3974             kMaxDistToIntPool));
   3975     DCHECK(pending_64_bit_constants_.empty() ||
   3976            (start - first_const_pool_64_use_ < kMaxDistToFPPool));
   3977 #endif
   3978     no_const_pool_before_ = pc_limit;
   3979   }
   3980 
   3981   if (next_buffer_check_ < no_const_pool_before_) {
   3982     next_buffer_check_ = no_const_pool_before_;
   3983   }
   3984 }
   3985 
   3986 
   3987 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   3988   if (FLAG_enable_embedded_constant_pool) {
   3989     // Should be a no-op if using an embedded constant pool.
   3990     DCHECK(pending_32_bit_constants_.empty());
   3991     DCHECK(pending_64_bit_constants_.empty());
   3992     return;
   3993   }
   3994 
   3995   // Some short sequence of instruction mustn't be broken up by constant pool
   3996   // emission, such sequences are protected by calls to BlockConstPoolFor and
   3997   // BlockConstPoolScope.
   3998   if (is_const_pool_blocked()) {
   3999     // Something is wrong if emission is forced and blocked at the same time.
   4000     DCHECK(!force_emit);
   4001     return;
   4002   }
   4003 
   4004   // There is nothing to do if there are no pending constant pool entries.
   4005   if (pending_32_bit_constants_.empty() && pending_64_bit_constants_.empty()) {
   4006     // Calculate the offset of the next check.
   4007     next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   4008     return;
   4009   }
   4010 
   4011   // Check that the code buffer is large enough before emitting the constant
   4012   // pool (include the jump over the pool and the constant pool marker and
   4013   // the gap to the relocation information).
   4014   int jump_instr = require_jump ? kInstrSize : 0;
   4015   int size_up_to_marker = jump_instr + kInstrSize;
   4016   int estimated_size_after_marker =
   4017       pending_32_bit_constants_.size() * kPointerSize;
   4018   bool has_int_values = !pending_32_bit_constants_.empty();
   4019   bool has_fp_values = !pending_64_bit_constants_.empty();
   4020   bool require_64_bit_align = false;
   4021   if (has_fp_values) {
   4022     require_64_bit_align =
   4023         !IsAligned(reinterpret_cast<intptr_t>(pc_ + size_up_to_marker),
   4024                    kDoubleAlignment);
   4025     if (require_64_bit_align) {
   4026       estimated_size_after_marker += kInstrSize;
   4027     }
   4028     estimated_size_after_marker +=
   4029         pending_64_bit_constants_.size() * kDoubleSize;
   4030   }
   4031   int estimated_size = size_up_to_marker + estimated_size_after_marker;
   4032 
   4033   // We emit a constant pool when:
   4034   //  * requested to do so by parameter force_emit (e.g. after each function).
   4035   //  * the distance from the first instruction accessing the constant pool to
   4036   //    any of the constant pool entries will exceed its limit the next
   4037   //    time the pool is checked. This is overly restrictive, but we don't emit
   4038   //    constant pool entries in-order so it's conservatively correct.
   4039   //  * the instruction doesn't require a jump after itself to jump over the
   4040   //    constant pool, and we're getting close to running out of range.
   4041   if (!force_emit) {
   4042     DCHECK(has_fp_values || has_int_values);
   4043     bool need_emit = false;
   4044     if (has_fp_values) {
   4045       // The 64-bit constants are always emitted before the 32-bit constants, so
   4046       // we can ignore the effect of the 32-bit constants on estimated_size.
   4047       int dist64 = pc_offset() + estimated_size -
   4048                    pending_32_bit_constants_.size() * kPointerSize -
   4049                    first_const_pool_64_use_;
   4050       if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
   4051           (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
   4052         need_emit = true;
   4053       }
   4054     }
   4055     if (has_int_values) {
   4056       int dist32 = pc_offset() + estimated_size - first_const_pool_32_use_;
   4057       if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
   4058           (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
   4059         need_emit = true;
   4060       }
   4061     }
   4062     if (!need_emit) return;
   4063   }
   4064 
   4065   // Deduplicate constants.
   4066   int size_after_marker = estimated_size_after_marker;
   4067   for (int i = 0; i < pending_64_bit_constants_.size(); i++) {
   4068     ConstantPoolEntry& entry = pending_64_bit_constants_[i];
   4069     DCHECK(!entry.is_merged());
   4070     for (int j = 0; j < i; j++) {
   4071       if (entry.value64() == pending_64_bit_constants_[j].value64()) {
   4072         DCHECK(!pending_64_bit_constants_[j].is_merged());
   4073         entry.set_merged_index(j);
   4074         size_after_marker -= kDoubleSize;
   4075         break;
   4076       }
   4077     }
   4078   }
   4079 
   4080   for (int i = 0; i < pending_32_bit_constants_.size(); i++) {
   4081     ConstantPoolEntry& entry = pending_32_bit_constants_[i];
   4082     DCHECK(!entry.is_merged());
   4083     if (!entry.sharing_ok()) continue;
   4084     for (int j = 0; j < i; j++) {
   4085       if (entry.value() == pending_32_bit_constants_[j].value()) {
   4086         DCHECK(!pending_32_bit_constants_[j].is_merged());
   4087         entry.set_merged_index(j);
   4088         size_after_marker -= kPointerSize;
   4089         break;
   4090       }
   4091     }
   4092   }
   4093 
   4094   int size = size_up_to_marker + size_after_marker;
   4095 
   4096   int needed_space = size + kGap;
   4097   while (buffer_space() <= needed_space) GrowBuffer();
   4098 
   4099   {
   4100     // Block recursive calls to CheckConstPool.
   4101     BlockConstPoolScope block_const_pool(this);
   4102     RecordComment("[ Constant Pool");
   4103     RecordConstPool(size);
   4104 
   4105     Label size_check;
   4106     bind(&size_check);
   4107 
   4108     // Emit jump over constant pool if necessary.
   4109     Label after_pool;
   4110     if (require_jump) {
   4111       b(&after_pool);
   4112     }
   4113 
   4114     // Put down constant pool marker "Undefined instruction".
   4115     // The data size helps disassembly know what to print.
   4116     emit(kConstantPoolMarker |
   4117          EncodeConstantPoolLength(size_after_marker / kPointerSize));
   4118 
   4119     if (require_64_bit_align) {
   4120       emit(kConstantPoolMarker);
   4121     }
   4122 
   4123     // Emit 64-bit constant pool entries first: their range is smaller than
   4124     // 32-bit entries.
   4125     for (int i = 0; i < pending_64_bit_constants_.size(); i++) {
   4126       ConstantPoolEntry& entry = pending_64_bit_constants_[i];
   4127 
   4128       Instr instr = instr_at(entry.position());
   4129       // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
   4130       DCHECK((IsVldrDPcImmediateOffset(instr) &&
   4131               GetVldrDRegisterImmediateOffset(instr) == 0));
   4132 
   4133       int delta = pc_offset() - entry.position() - kPcLoadDelta;
   4134       DCHECK(is_uint10(delta));
   4135 
   4136       if (entry.is_merged()) {
   4137         ConstantPoolEntry& merged =
   4138             pending_64_bit_constants_[entry.merged_index()];
   4139         DCHECK(entry.value64() == merged.value64());
   4140         Instr merged_instr = instr_at(merged.position());
   4141         DCHECK(IsVldrDPcImmediateOffset(merged_instr));
   4142         delta = GetVldrDRegisterImmediateOffset(merged_instr);
   4143         delta += merged.position() - entry.position();
   4144       }
   4145       instr_at_put(entry.position(),
   4146                    SetVldrDRegisterImmediateOffset(instr, delta));
   4147       if (!entry.is_merged()) {
   4148         DCHECK(IsAligned(reinterpret_cast<intptr_t>(pc_), kDoubleAlignment));
   4149         dq(entry.value64());
   4150       }
   4151     }
   4152 
   4153     // Emit 32-bit constant pool entries.
   4154     for (int i = 0; i < pending_32_bit_constants_.size(); i++) {
   4155       ConstantPoolEntry& entry = pending_32_bit_constants_[i];
   4156       Instr instr = instr_at(entry.position());
   4157 
   4158       // 64-bit loads shouldn't get here.
   4159       DCHECK(!IsVldrDPcImmediateOffset(instr));
   4160       DCHECK(!IsMovW(instr));
   4161       DCHECK(IsLdrPcImmediateOffset(instr) &&
   4162              GetLdrRegisterImmediateOffset(instr) == 0);
   4163 
   4164       int delta = pc_offset() - entry.position() - kPcLoadDelta;
   4165       DCHECK(is_uint12(delta));
   4166       // 0 is the smallest delta:
   4167       //   ldr rd, [pc, #0]
   4168       //   constant pool marker
   4169       //   data
   4170 
   4171       if (entry.is_merged()) {
   4172         DCHECK(entry.sharing_ok());
   4173         ConstantPoolEntry& merged =
   4174             pending_32_bit_constants_[entry.merged_index()];
   4175         DCHECK(entry.value() == merged.value());
   4176         Instr merged_instr = instr_at(merged.position());
   4177         DCHECK(IsLdrPcImmediateOffset(merged_instr));
   4178         delta = GetLdrRegisterImmediateOffset(merged_instr);
   4179         delta += merged.position() - entry.position();
   4180       }
   4181       instr_at_put(entry.position(),
   4182                    SetLdrRegisterImmediateOffset(instr, delta));
   4183       if (!entry.is_merged()) {
   4184         emit(entry.value());
   4185       }
   4186     }
   4187 
   4188     pending_32_bit_constants_.clear();
   4189     pending_64_bit_constants_.clear();
   4190     first_const_pool_32_use_ = -1;
   4191     first_const_pool_64_use_ = -1;
   4192 
   4193     RecordComment("]");
   4194 
   4195     DCHECK_EQ(size, SizeOfCodeGeneratedSince(&size_check));
   4196 
   4197     if (after_pool.is_linked()) {
   4198       bind(&after_pool);
   4199     }
   4200   }
   4201 
   4202   // Since a constant pool was just emitted, move the check offset forward by
   4203   // the standard interval.
   4204   next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   4205 }
   4206 
   4207 
   4208 void Assembler::PatchConstantPoolAccessInstruction(
   4209     int pc_offset, int offset, ConstantPoolEntry::Access access,
   4210     ConstantPoolEntry::Type type) {
   4211   DCHECK(FLAG_enable_embedded_constant_pool);
   4212   Address pc = buffer_ + pc_offset;
   4213 
   4214   // Patch vldr/ldr instruction with correct offset.
   4215   Instr instr = instr_at(pc);
   4216   if (access == ConstantPoolEntry::OVERFLOWED) {
   4217     if (CpuFeatures::IsSupported(ARMv7)) {
   4218       // Instructions to patch must be 'movw rd, [#0]' and 'movt rd, [#0].
   4219       Instr next_instr = instr_at(pc + kInstrSize);
   4220       DCHECK((IsMovW(instr) && Instruction::ImmedMovwMovtValue(instr) == 0));
   4221       DCHECK((IsMovT(next_instr) &&
   4222               Instruction::ImmedMovwMovtValue(next_instr) == 0));
   4223       instr_at_put(pc, PatchMovwImmediate(instr, offset & 0xffff));
   4224       instr_at_put(pc + kInstrSize,
   4225                    PatchMovwImmediate(next_instr, offset >> 16));
   4226     } else {
   4227       // Instructions to patch must be 'mov rd, [#0]' and 'orr rd, rd, [#0].
   4228       Instr instr_2 = instr_at(pc + kInstrSize);
   4229       Instr instr_3 = instr_at(pc + 2 * kInstrSize);
   4230       Instr instr_4 = instr_at(pc + 3 * kInstrSize);
   4231       DCHECK((IsMovImmed(instr) && Instruction::Immed8Value(instr) == 0));
   4232       DCHECK((IsOrrImmed(instr_2) && Instruction::Immed8Value(instr_2) == 0) &&
   4233              GetRn(instr_2).is(GetRd(instr_2)));
   4234       DCHECK((IsOrrImmed(instr_3) && Instruction::Immed8Value(instr_3) == 0) &&
   4235              GetRn(instr_3).is(GetRd(instr_3)));
   4236       DCHECK((IsOrrImmed(instr_4) && Instruction::Immed8Value(instr_4) == 0) &&
   4237              GetRn(instr_4).is(GetRd(instr_4)));
   4238       instr_at_put(pc, PatchShiftImm(instr, (offset & kImm8Mask)));
   4239       instr_at_put(pc + kInstrSize,
   4240                    PatchShiftImm(instr_2, (offset & (kImm8Mask << 8))));
   4241       instr_at_put(pc + 2 * kInstrSize,
   4242                    PatchShiftImm(instr_3, (offset & (kImm8Mask << 16))));
   4243       instr_at_put(pc + 3 * kInstrSize,
   4244                    PatchShiftImm(instr_4, (offset & (kImm8Mask << 24))));
   4245     }
   4246   } else if (type == ConstantPoolEntry::DOUBLE) {
   4247     // Instruction to patch must be 'vldr rd, [pp, #0]'.
   4248     DCHECK((IsVldrDPpImmediateOffset(instr) &&
   4249             GetVldrDRegisterImmediateOffset(instr) == 0));
   4250     DCHECK(is_uint10(offset));
   4251     instr_at_put(pc, SetVldrDRegisterImmediateOffset(instr, offset));
   4252   } else {
   4253     // Instruction to patch must be 'ldr rd, [pp, #0]'.
   4254     DCHECK((IsLdrPpImmediateOffset(instr) &&
   4255             GetLdrRegisterImmediateOffset(instr) == 0));
   4256     DCHECK(is_uint12(offset));
   4257     instr_at_put(pc, SetLdrRegisterImmediateOffset(instr, offset));
   4258   }
   4259 }
   4260 
   4261 
   4262 }  // namespace internal
   4263 }  // namespace v8
   4264 
   4265 #endif  // V8_TARGET_ARCH_ARM
   4266