1 /* Copyright (C) 1995-1997 Eric Young (eay (at) cryptsoft.com) 2 * All rights reserved. 3 * 4 * This package is an SSL implementation written 5 * by Eric Young (eay (at) cryptsoft.com). 6 * The implementation was written so as to conform with Netscapes SSL. 7 * 8 * This library is free for commercial and non-commercial use as long as 9 * the following conditions are aheared to. The following conditions 10 * apply to all code found in this distribution, be it the RC4, RSA, 11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 12 * included with this distribution is covered by the same copyright terms 13 * except that the holder is Tim Hudson (tjh (at) cryptsoft.com). 14 * 15 * Copyright remains Eric Young's, and as such any Copyright notices in 16 * the code are not to be removed. 17 * If this package is used in a product, Eric Young should be given attribution 18 * as the author of the parts of the library used. 19 * This can be in the form of a textual message at program startup or 20 * in documentation (online or textual) provided with the package. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 1. Redistributions of source code must retain the copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. All advertising materials mentioning features or use of this software 31 * must display the following acknowledgement: 32 * "This product includes cryptographic software written by 33 * Eric Young (eay (at) cryptsoft.com)" 34 * The word 'cryptographic' can be left out if the rouines from the library 35 * being used are not cryptographic related :-). 36 * 4. If you include any Windows specific code (or a derivative thereof) from 37 * the apps directory (application code) you must include an acknowledgement: 38 * "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)" 39 * 40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * The licence and distribution terms for any publically available version or 53 * derivative of this code cannot be changed. i.e. this code cannot simply be 54 * copied and put under another distribution licence 55 * [including the GNU Public Licence.] 56 */ 57 /* ==================================================================== 58 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. 59 * 60 * Redistribution and use in source and binary forms, with or without 61 * modification, are permitted provided that the following conditions 62 * are met: 63 * 64 * 1. Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * 67 * 2. Redistributions in binary form must reproduce the above copyright 68 * notice, this list of conditions and the following disclaimer in 69 * the documentation and/or other materials provided with the 70 * distribution. 71 * 72 * 3. All advertising materials mentioning features or use of this 73 * software must display the following acknowledgment: 74 * "This product includes software developed by the OpenSSL Project 75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 76 * 77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 78 * endorse or promote products derived from this software without 79 * prior written permission. For written permission, please contact 80 * openssl-core (at) openssl.org. 81 * 82 * 5. Products derived from this software may not be called "OpenSSL" 83 * nor may "OpenSSL" appear in their names without prior written 84 * permission of the OpenSSL Project. 85 * 86 * 6. Redistributions of any form whatsoever must retain the following 87 * acknowledgment: 88 * "This product includes software developed by the OpenSSL Project 89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 102 * OF THE POSSIBILITY OF SUCH DAMAGE. 103 * ==================================================================== 104 * 105 * This product includes cryptographic software written by Eric Young 106 * (eay (at) cryptsoft.com). This product includes software written by Tim 107 * Hudson (tjh (at) cryptsoft.com). 108 * 109 */ 110 /* ==================================================================== 111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 112 * 113 * Portions of the attached software ("Contribution") are developed by 114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. 115 * 116 * The Contribution is licensed pursuant to the Eric Young open source 117 * license provided above. 118 * 119 * The binary polynomial arithmetic software is originally written by 120 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems 121 * Laboratories. */ 122 123 #ifndef OPENSSL_HEADER_BN_H 124 #define OPENSSL_HEADER_BN_H 125 126 #include <openssl/base.h> 127 #include <openssl/thread.h> 128 129 #include <inttypes.h> /* for PRIu64 and friends */ 130 #include <stdio.h> /* for FILE* */ 131 132 #if defined(__cplusplus) 133 extern "C" { 134 #endif 135 136 137 /* BN provides support for working with arbitrary sized integers. For example, 138 * although the largest integer supported by the compiler might be 64 bits, BN 139 * will allow you to work with numbers until you run out of memory. */ 140 141 142 /* BN_ULONG is the native word size when working with big integers. 143 * 144 * Note: on some platforms, inttypes.h does not define print format macros in 145 * C++ unless |__STDC_FORMAT_MACROS| defined. As this is a public header, bn.h 146 * does not define |__STDC_FORMAT_MACROS| itself. C++ source files which use the 147 * FMT macros must define it externally. */ 148 #if defined(OPENSSL_64_BIT) 149 #define BN_ULONG uint64_t 150 #define BN_BITS2 64 151 #define BN_DEC_FMT1 "%" PRIu64 152 #define BN_DEC_FMT2 "%019" PRIu64 153 #define BN_HEX_FMT1 "%" PRIx64 154 #define BN_HEX_FMT2 "%016" PRIx64 155 #elif defined(OPENSSL_32_BIT) 156 #define BN_ULONG uint32_t 157 #define BN_BITS2 32 158 #define BN_DEC_FMT1 "%" PRIu32 159 #define BN_DEC_FMT2 "%09" PRIu32 160 #define BN_HEX_FMT1 "%" PRIx32 161 #define BN_HEX_FMT2 "%08" PRIx64 162 #else 163 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" 164 #endif 165 166 167 /* Allocation and freeing. */ 168 169 /* BN_new creates a new, allocated BIGNUM and initialises it. */ 170 OPENSSL_EXPORT BIGNUM *BN_new(void); 171 172 /* BN_init initialises a stack allocated |BIGNUM|. */ 173 OPENSSL_EXPORT void BN_init(BIGNUM *bn); 174 175 /* BN_free frees the data referenced by |bn| and, if |bn| was originally 176 * allocated on the heap, frees |bn| also. */ 177 OPENSSL_EXPORT void BN_free(BIGNUM *bn); 178 179 /* BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was 180 * originally allocated on the heap, frees |bn| also. */ 181 OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn); 182 183 /* BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the 184 * allocated BIGNUM on success or NULL otherwise. */ 185 OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src); 186 187 /* BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation 188 * failure. */ 189 OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src); 190 191 /* BN_clear sets |bn| to zero and erases the old data. */ 192 OPENSSL_EXPORT void BN_clear(BIGNUM *bn); 193 194 /* BN_value_one returns a static BIGNUM with value 1. */ 195 OPENSSL_EXPORT const BIGNUM *BN_value_one(void); 196 197 198 /* Basic functions. */ 199 200 /* BN_num_bits returns the minimum number of bits needed to represent the 201 * absolute value of |bn|. */ 202 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn); 203 204 /* BN_num_bytes returns the minimum number of bytes needed to represent the 205 * absolute value of |bn|. */ 206 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn); 207 208 /* BN_zero sets |bn| to zero. */ 209 OPENSSL_EXPORT void BN_zero(BIGNUM *bn); 210 211 /* BN_one sets |bn| to one. It returns one on success or zero on allocation 212 * failure. */ 213 OPENSSL_EXPORT int BN_one(BIGNUM *bn); 214 215 /* BN_set_word sets |bn| to |value|. It returns one on success or zero on 216 * allocation failure. */ 217 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value); 218 219 /* BN_set_u64 sets |bn| to |value|. It returns one on success or zero on 220 * allocation failure. */ 221 OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value); 222 223 /* BN_set_negative sets the sign of |bn|. */ 224 OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign); 225 226 /* BN_is_negative returns one if |bn| is negative and zero otherwise. */ 227 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn); 228 229 230 /* Conversion functions. */ 231 232 /* BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as 233 * a big-endian number, and returns |ret|. If |ret| is NULL then a fresh 234 * |BIGNUM| is allocated and returned. It returns NULL on allocation 235 * failure. */ 236 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret); 237 238 /* BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian 239 * integer, which must have |BN_num_bytes| of space available. It returns the 240 * number of bytes written. */ 241 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out); 242 243 /* BN_le2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as 244 * a little-endian number, and returns |ret|. If |ret| is NULL then a fresh 245 * |BIGNUM| is allocated and returned. It returns NULL on allocation 246 * failure. */ 247 OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret); 248 249 /* BN_bn2le_padded serialises the absolute value of |in| to |out| as a 250 * little-endian integer, which must have |len| of space available, padding 251 * out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|, 252 * the function fails and returns 0. Otherwise, it returns 1. */ 253 OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in); 254 255 /* BN_bn2bin_padded serialises the absolute value of |in| to |out| as a 256 * big-endian integer. The integer is padded with leading zeros up to size 257 * |len|. If |len| is smaller than |BN_num_bytes|, the function fails and 258 * returns 0. Otherwise, it returns 1. */ 259 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in); 260 261 /* BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|. */ 262 OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in); 263 264 /* BN_bn2hex returns an allocated string that contains a NUL-terminated, hex 265 * representation of |bn|. If |bn| is negative, the first char in the resulting 266 * string will be '-'. Returns NULL on allocation failure. */ 267 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn); 268 269 /* BN_hex2bn parses the leading hex number from |in|, which may be proceeded by 270 * a '-' to indicate a negative number and may contain trailing, non-hex data. 271 * If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and 272 * stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and 273 * updates |*outp|. It returns the number of bytes of |in| processed or zero on 274 * error. */ 275 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in); 276 277 /* BN_bn2dec returns an allocated string that contains a NUL-terminated, 278 * decimal representation of |bn|. If |bn| is negative, the first char in the 279 * resulting string will be '-'. Returns NULL on allocation failure. */ 280 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a); 281 282 /* BN_dec2bn parses the leading decimal number from |in|, which may be 283 * proceeded by a '-' to indicate a negative number and may contain trailing, 284 * non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the 285 * decimal number and stores it in |*outp|. If |*outp| is NULL then it 286 * allocates a new BIGNUM and updates |*outp|. It returns the number of bytes 287 * of |in| processed or zero on error. */ 288 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in); 289 290 /* BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in| 291 * begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A 292 * leading '-' is still permitted and comes before the optional 0X/0x. It 293 * returns one on success or zero on error. */ 294 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in); 295 296 /* BN_print writes a hex encoding of |a| to |bio|. It returns one on success 297 * and zero on error. */ 298 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a); 299 300 /* BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. */ 301 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a); 302 303 /* BN_get_word returns the absolute value of |bn| as a single word. If |bn| is 304 * too large to be represented as a single word, the maximum possible value 305 * will be returned. */ 306 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn); 307 308 /* BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and 309 * returns one. If |bn| is too large to be represented as a |uint64_t|, it 310 * returns zero. */ 311 OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out); 312 313 314 /* ASN.1 functions. */ 315 316 /* BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes 317 * the result to |ret|. It returns one on success and zero on failure. */ 318 OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret); 319 320 /* BN_parse_asn1_unsigned_buggy acts like |BN_parse_asn1_unsigned| but tolerates 321 * some invalid encodings. Do not use this function. */ 322 OPENSSL_EXPORT int BN_parse_asn1_unsigned_buggy(CBS *cbs, BIGNUM *ret); 323 324 /* BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the 325 * result to |cbb|. It returns one on success and zero on failure. */ 326 OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn); 327 328 329 /* Internal functions. 330 * 331 * These functions are useful for code that is doing low-level manipulations of 332 * BIGNUM values. However, be sure that no other function in this file does 333 * what you want before turning to these. */ 334 335 /* bn_correct_top decrements |bn->top| until |bn->d[top-1]| is non-zero or 336 * until |top| is zero. If |bn| is zero, |bn->neg| is set to zero. */ 337 OPENSSL_EXPORT void bn_correct_top(BIGNUM *bn); 338 339 /* bn_wexpand ensures that |bn| has at least |words| works of space without 340 * altering its value. It returns |bn| on success or NULL on allocation 341 * failure. */ 342 OPENSSL_EXPORT BIGNUM *bn_wexpand(BIGNUM *bn, size_t words); 343 344 345 /* BIGNUM pools. 346 * 347 * Certain BIGNUM operations need to use many temporary variables and 348 * allocating and freeing them can be quite slow. Thus such operations typically 349 * take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx| 350 * argument to a public function may be NULL, in which case a local |BN_CTX| 351 * will be created just for the lifetime of that call. 352 * 353 * A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called 354 * repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made 355 * before calling any other functions that use the |ctx| as an argument. 356 * 357 * Finally, |BN_CTX_end| must be called before returning from the function. 358 * When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from 359 * |BN_CTX_get| become invalid. */ 360 361 /* BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. */ 362 OPENSSL_EXPORT BN_CTX *BN_CTX_new(void); 363 364 /* BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx| 365 * itself. */ 366 OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx); 367 368 /* BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future 369 * calls to |BN_CTX_get|. */ 370 OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx); 371 372 /* BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once 373 * |BN_CTX_get| has returned NULL, all future calls will also return NULL until 374 * |BN_CTX_end| is called. */ 375 OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx); 376 377 /* BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the 378 * matching |BN_CTX_start| call. */ 379 OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx); 380 381 382 /* Simple arithmetic */ 383 384 /* BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a| 385 * or |b|. It returns one on success and zero on allocation failure. */ 386 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 387 388 /* BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may 389 * be the same pointer as either |a| or |b|. It returns one on success and zero 390 * on allocation failure. */ 391 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 392 393 /* BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. */ 394 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w); 395 396 /* BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a| 397 * or |b|. It returns one on success and zero on allocation failure. */ 398 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 399 400 /* BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers, 401 * |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns 402 * one on success and zero on allocation failure. */ 403 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 404 405 /* BN_sub_word subtracts |w| from |a|. It returns one on success and zero on 406 * allocation failure. */ 407 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w); 408 409 /* BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or 410 * |b|. Returns one on success and zero otherwise. */ 411 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 412 BN_CTX *ctx); 413 414 /* BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on 415 * allocation failure. */ 416 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w); 417 418 /* BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as 419 * |a|. Returns one on success and zero otherwise. This is more efficient than 420 * BN_mul(r, a, a, ctx). */ 421 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); 422 423 /* BN_div divides |numerator| by |divisor| and places the result in |quotient| 424 * and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in 425 * which case the respective value is not returned. The result is rounded 426 * towards zero; thus if |numerator| is negative, the remainder will be zero or 427 * negative. It returns one on success or zero on error. */ 428 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem, 429 const BIGNUM *numerator, const BIGNUM *divisor, 430 BN_CTX *ctx); 431 432 /* BN_div_word sets |numerator| = |numerator|/|divisor| and returns the 433 * remainder or (BN_ULONG)-1 on error. */ 434 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor); 435 436 /* BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the 437 * square root of |in|, using |ctx|. It returns one on success or zero on 438 * error. Negative numbers and non-square numbers will result in an error with 439 * appropriate errors on the error queue. */ 440 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx); 441 442 443 /* Comparison functions */ 444 445 /* BN_cmp returns a value less than, equal to or greater than zero if |a| is 446 * less than, equal to or greater than |b|, respectively. */ 447 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b); 448 449 /* BN_cmp_word is like |BN_cmp| except it takes its second argument as a 450 * |BN_ULONG| instead of a |BIGNUM|. */ 451 OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b); 452 453 /* BN_ucmp returns a value less than, equal to or greater than zero if the 454 * absolute value of |a| is less than, equal to or greater than the absolute 455 * value of |b|, respectively. */ 456 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b); 457 458 /* BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise. 459 * It takes an amount of time dependent on the sizes of |a| and |b|, but 460 * independent of the contents (including the signs) of |a| and |b|. */ 461 OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b); 462 463 /* BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero 464 * otherwise. */ 465 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w); 466 467 /* BN_is_zero returns one if |bn| is zero and zero otherwise. */ 468 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn); 469 470 /* BN_is_one returns one if |bn| equals one and zero otherwise. */ 471 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn); 472 473 /* BN_is_word returns one if |bn| is exactly |w| and zero otherwise. */ 474 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w); 475 476 /* BN_is_odd returns one if |bn| is odd and zero otherwise. */ 477 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn); 478 479 /* BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise. */ 480 OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a); 481 482 /* Bitwise operations. */ 483 484 /* BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the 485 * same |BIGNUM|. It returns one on success and zero on allocation failure. */ 486 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); 487 488 /* BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same 489 * pointer. It returns one on success and zero on allocation failure. */ 490 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a); 491 492 /* BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same 493 * pointer. It returns one on success and zero on allocation failure. */ 494 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); 495 496 /* BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same 497 * pointer. It returns one on success and zero on allocation failure. */ 498 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a); 499 500 /* BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a| 501 * is 2 then setting bit zero will make it 3. It returns one on success or zero 502 * on allocation failure. */ 503 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n); 504 505 /* BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if 506 * |a| is 3, clearing bit zero will make it two. It returns one on success or 507 * zero on allocation failure. */ 508 OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n); 509 510 /* BN_is_bit_set returns the value of the |n|th, least-significant bit in |a|, 511 * or zero if the bit doesn't exist. */ 512 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n); 513 514 /* BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one 515 * on success or zero if |n| is greater than the length of |a| already. */ 516 OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n); 517 518 519 /* Modulo arithmetic. */ 520 521 /* BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error. */ 522 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); 523 524 /* BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and 525 * 0 on error. */ 526 OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); 527 528 /* BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive. 529 * It returns 1 on success and 0 on error. */ 530 OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); 531 532 /* BN_mod is a helper macro that calls |BN_div| and discards the quotient. */ 533 #define BN_mod(rem, numerator, divisor, ctx) \ 534 BN_div(NULL, (rem), (numerator), (divisor), (ctx)) 535 536 /* BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <= 537 * |rem| < |divisor| is always true. It returns one on success and zero on 538 * error. */ 539 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator, 540 const BIGNUM *divisor, BN_CTX *ctx); 541 542 /* BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero 543 * on error. */ 544 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 545 const BIGNUM *m, BN_CTX *ctx); 546 547 /* BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be 548 * non-negative and less than |m|. */ 549 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 550 const BIGNUM *m); 551 552 /* BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero 553 * on error. */ 554 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 555 const BIGNUM *m, BN_CTX *ctx); 556 557 /* BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be 558 * non-negative and less than |m|. */ 559 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 560 const BIGNUM *m); 561 562 /* BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero 563 * on error. */ 564 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 565 const BIGNUM *m, BN_CTX *ctx); 566 567 /* BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero 568 * on error. */ 569 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, 570 BN_CTX *ctx); 571 572 /* BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the 573 * same pointer. It returns one on success and zero on error. */ 574 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, 575 const BIGNUM *m, BN_CTX *ctx); 576 577 /* BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be 578 * non-negative and less than |m|. */ 579 OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, 580 const BIGNUM *m); 581 582 /* BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the 583 * same pointer. It returns one on success and zero on error. */ 584 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, 585 BN_CTX *ctx); 586 587 /* BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be 588 * non-negative and less than |m|. */ 589 OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, 590 const BIGNUM *m); 591 592 /* BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that 593 * r^2 == a (mod p). |p| must be a prime. It returns NULL on error or if |a| is 594 * not a square mod |p|. In the latter case, it will add |BN_R_NOT_A_SQUARE| to 595 * the error queue. */ 596 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, 597 BN_CTX *ctx); 598 599 600 /* Random and prime number generation. */ 601 602 /* The following are values for the |top| parameter of |BN_rand|. */ 603 #define BN_RAND_TOP_ANY (-1) 604 #define BN_RAND_TOP_ONE 0 605 #define BN_RAND_TOP_TWO 1 606 607 /* The following are values for the |bottom| parameter of |BN_rand|. */ 608 #define BN_RAND_BOTTOM_ANY 0 609 #define BN_RAND_BOTTOM_ODD 1 610 611 /* BN_rand sets |rnd| to a random number of length |bits|. It returns one on 612 * success and zero otherwise. 613 * 614 * |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the 615 * most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two 616 * most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra 617 * action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most 618 * significant bits randomly ended up as zeros. 619 * 620 * |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If 621 * |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If 622 * |BN_RAND_BOTTOM_ANY|, no extra action will be taken. */ 623 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); 624 625 /* BN_pseudo_rand is an alias for |BN_rand|. */ 626 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); 627 628 /* BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set 629 * to zero and |max_exclusive| set to |range|. */ 630 OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); 631 632 /* BN_rand_range_ex sets |rnd| to a random value in 633 * [min_inclusive..max_exclusive). It returns one on success and zero 634 * otherwise. */ 635 OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, 636 const BIGNUM *max_exclusive); 637 638 /* BN_pseudo_rand_range is an alias for BN_rand_range. */ 639 OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); 640 641 /* BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike 642 * BN_rand_range, it also includes the contents of |priv| and |message| in the 643 * generation so that an RNG failure isn't fatal as long as |priv| remains 644 * secret. This is intended for use in DSA and ECDSA where an RNG weakness 645 * leads directly to private key exposure unless this function is used. 646 * It returns one on success and zero on error. */ 647 OPENSSL_EXPORT int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, 648 const BIGNUM *priv, 649 const uint8_t *message, 650 size_t message_len, BN_CTX *ctx); 651 652 /* BN_GENCB holds a callback function that is used by generation functions that 653 * can take a very long time to complete. Use |BN_GENCB_set| to initialise a 654 * |BN_GENCB| structure. 655 * 656 * The callback receives the address of that |BN_GENCB| structure as its last 657 * argument and the user is free to put an arbitrary pointer in |arg|. The other 658 * arguments are set as follows: 659 * event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime 660 * number. 661 * event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality 662 * checks. 663 * event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished. 664 * 665 * The callback can return zero to abort the generation progress or one to 666 * allow it to continue. 667 * 668 * When other code needs to call a BN generation function it will often take a 669 * BN_GENCB argument and may call the function with other argument values. */ 670 #define BN_GENCB_GENERATED 0 671 #define BN_GENCB_PRIME_TEST 1 672 673 struct bn_gencb_st { 674 void *arg; /* callback-specific data */ 675 int (*callback)(int event, int n, struct bn_gencb_st *); 676 }; 677 678 /* BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to 679 * |arg|. */ 680 OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback, 681 int (*f)(int event, int n, 682 struct bn_gencb_st *), 683 void *arg); 684 685 /* BN_GENCB_call calls |callback|, if not NULL, and returns the return value of 686 * the callback, or 1 if |callback| is NULL. */ 687 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n); 688 689 /* BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe 690 * is non-zero then the prime will be such that (ret-1)/2 is also a prime. 691 * (This is needed for Diffie-Hellman groups to ensure that the only subgroups 692 * are of size 2 and (p-1)/2.). 693 * 694 * If |add| is not NULL, the prime will fulfill the condition |ret| % |add| == 695 * |rem| in order to suit a given generator. (If |rem| is NULL then |ret| % 696 * |add| == 1.) 697 * 698 * If |cb| is not NULL, it will be called during processing to give an 699 * indication of progress. See the comments for |BN_GENCB|. It returns one on 700 * success and zero otherwise. */ 701 OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, 702 const BIGNUM *add, const BIGNUM *rem, 703 BN_GENCB *cb); 704 705 /* BN_prime_checks is magic value that can be used as the |checks| argument to 706 * the primality testing functions in order to automatically select a number of 707 * Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */ 708 #define BN_prime_checks 0 709 710 /* BN_primality_test sets |*is_probably_prime| to one if |candidate| is 711 * probably a prime number by the Miller-Rabin test or zero if it's certainly 712 * not. 713 * 714 * If |do_trial_division| is non-zero then |candidate| will be tested against a 715 * list of small primes before Miller-Rabin tests. The probability of this 716 * function returning a false positive is 2^{2*checks}. If |checks| is 717 * |BN_prime_checks| then a value that results in approximately 2^{-80} false 718 * positive probability is used. If |cb| is not NULL then it is called during 719 * the checking process. See the comment above |BN_GENCB|. 720 * 721 * The function returns one on success and zero on error. 722 * 723 * (If you are unsure whether you want |do_trial_division|, don't set it.) */ 724 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime, 725 const BIGNUM *candidate, int checks, 726 BN_CTX *ctx, int do_trial_division, 727 BN_GENCB *cb); 728 729 /* BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime 730 * number by the Miller-Rabin test, zero if it's certainly not and -1 on error. 731 * 732 * If |do_trial_division| is non-zero then |candidate| will be tested against a 733 * list of small primes before Miller-Rabin tests. The probability of this 734 * function returning one when |candidate| is composite is 2^{2*checks}. If 735 * |checks| is |BN_prime_checks| then a value that results in approximately 736 * 2^{-80} false positive probability is used. If |cb| is not NULL then it is 737 * called during the checking process. See the comment above |BN_GENCB|. 738 * 739 * WARNING: deprecated. Use |BN_primality_test|. */ 740 OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks, 741 BN_CTX *ctx, int do_trial_division, 742 BN_GENCB *cb); 743 744 /* BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with 745 * |do_trial_division| set to zero. 746 * 747 * WARNING: deprecated: Use |BN_primality_test|. */ 748 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks, 749 BN_CTX *ctx, BN_GENCB *cb); 750 751 752 /* Number theory functions */ 753 754 /* BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero 755 * otherwise. */ 756 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, 757 BN_CTX *ctx); 758 759 /* BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a 760 * fresh BIGNUM is allocated. It returns the result or NULL on error. 761 * 762 * If |n| is even then the operation is performed using an algorithm that avoids 763 * some branches but which isn't constant-time. This function shouldn't be used 764 * for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is 765 * guaranteed to be prime, use 766 * |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking 767 * advantage of Fermat's Little Theorem. */ 768 OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, 769 const BIGNUM *n, BN_CTX *ctx); 770 771 /* BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the 772 * Montgomery modulus for |mont|. |a| must be non-negative and must be less 773 * than |n|. |n| must be greater than 1. |a| is blinded (masked by a random 774 * value) to protect it against side-channel attacks. On failure, if the failure 775 * was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be 776 * set to one; otherwise it will be set to zero. */ 777 int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, 778 const BN_MONT_CTX *mont, BN_CTX *ctx); 779 780 /* BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be 781 * non-negative and must be less than |n|. |n| must be odd. This function 782 * shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead. 783 * Or, if |n| is guaranteed to be prime, use 784 * |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking 785 * advantage of Fermat's Little Theorem. It returns one on success or zero on 786 * failure. On failure, if the failure was caused by |a| having no inverse mod 787 * |n| then |*out_no_inverse| will be set to one; otherwise it will be set to 788 * zero. */ 789 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, 790 const BIGNUM *n, BN_CTX *ctx); 791 792 /* BN_kronecker returns the Kronecker symbol of |a| and |b| (which is -1, 0 or 793 * 1), or -2 on error. */ 794 OPENSSL_EXPORT int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); 795 796 797 /* Montgomery arithmetic. */ 798 799 /* BN_MONT_CTX contains the precomputed values needed to work in a specific 800 * Montgomery domain. */ 801 802 /* BN_MONT_CTX_new returns a fresh BN_MONT_CTX or NULL on allocation failure. */ 803 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void); 804 805 /* BN_MONT_CTX_free frees memory associated with |mont|. */ 806 OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont); 807 808 /* BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or 809 * NULL on error. */ 810 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, 811 const BN_MONT_CTX *from); 812 813 /* BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It 814 * returns one on success and zero on error. */ 815 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, 816 BN_CTX *ctx); 817 818 /* BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If 819 * so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It 820 * then stores it as |*pmont|. It returns one on success and zero on error. 821 * 822 * If |*pmont| is already non-NULL then it does nothing and returns one. */ 823 int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock, 824 const BIGNUM *mod, BN_CTX *bn_ctx); 825 826 /* BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is 827 * assumed to be in the range [0, n), where |n| is the Montgomery modulus. It 828 * returns one on success or zero on error. */ 829 OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, 830 const BN_MONT_CTX *mont, BN_CTX *ctx); 831 832 /* BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out 833 * of the Montgomery domain. |a| is assumed to be in the range [0, n), where |n| 834 * is the Montgomery modulus. It returns one on success or zero on error. */ 835 OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, 836 const BN_MONT_CTX *mont, BN_CTX *ctx); 837 838 /* BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain. 839 * Both |a| and |b| must already be in the Montgomery domain (by 840 * |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the 841 * range [0, n), where |n| is the Montgomery modulus. It returns one on success 842 * or zero on error. */ 843 OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, 844 const BIGNUM *b, 845 const BN_MONT_CTX *mont, BN_CTX *ctx); 846 847 848 /* Exponentiation. */ 849 850 /* BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply 851 * algorithm that leaks side-channel information. It returns one on success or 852 * zero otherwise. */ 853 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, 854 BN_CTX *ctx); 855 856 /* BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best 857 * algorithm for the values provided. It returns one on success or zero 858 * otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the 859 * exponent is secret. */ 860 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, 861 const BIGNUM *m, BN_CTX *ctx); 862 863 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, 864 const BIGNUM *m, BN_CTX *ctx, 865 const BN_MONT_CTX *mont); 866 867 OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, 868 const BIGNUM *p, const BIGNUM *m, 869 BN_CTX *ctx, 870 const BN_MONT_CTX *mont); 871 872 873 /* Deprecated functions */ 874 875 /* BN_bn2mpi serialises the value of |in| to |out|, using a format that consists 876 * of the number's length in bytes represented as a 4-byte big-endian number, 877 * and the number itself in big-endian format, where the most significant bit 878 * signals a negative number. (The representation of numbers with the MSB set is 879 * prefixed with null byte). |out| must have sufficient space available; to 880 * find the needed amount of space, call the function with |out| set to NULL. */ 881 OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out); 882 883 /* BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The 884 * bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|. 885 * 886 * If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise 887 * |out| is reused and returned. On error, NULL is returned and the error queue 888 * is updated. */ 889 OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out); 890 891 /* BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is 892 * given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success 893 * or zero otherwise. */ 894 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, 895 const BIGNUM *m, BN_CTX *ctx, 896 const BN_MONT_CTX *mont); 897 898 /* BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success 899 * or zero otherwise. */ 900 OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, 901 const BIGNUM *p1, const BIGNUM *a2, 902 const BIGNUM *p2, const BIGNUM *m, 903 BN_CTX *ctx, const BN_MONT_CTX *mont); 904 905 906 /* Private functions */ 907 908 struct bignum_st { 909 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks in little-endian 910 order. */ 911 int top; /* Index of last used element in |d|, plus one. */ 912 int dmax; /* Size of |d|, in words. */ 913 int neg; /* one if the number is negative */ 914 int flags; /* bitmask of BN_FLG_* values */ 915 }; 916 917 struct bn_mont_ctx_st { 918 BIGNUM RR; /* used to convert to montgomery form */ 919 BIGNUM N; /* The modulus */ 920 BN_ULONG n0[2]; /* least significant words of (R*Ri-1)/N */ 921 }; 922 923 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l); 924 925 #define BN_FLG_MALLOCED 0x01 926 #define BN_FLG_STATIC_DATA 0x02 927 /* |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying 928 * on it will not compile. Consumers outside BoringSSL should use the 929 * higher-level cryptographic algorithms exposed by other modules. Consumers 930 * within the library should call the appropriate timing-sensitive algorithm 931 * directly. */ 932 933 934 #if defined(__cplusplus) 935 } /* extern C */ 936 937 extern "C++" { 938 939 namespace bssl { 940 941 BORINGSSL_MAKE_DELETER(BIGNUM, BN_free) 942 BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free) 943 BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free) 944 945 } // namespace bssl 946 947 } /* extern C++ */ 948 949 #endif 950 951 #define BN_R_ARG2_LT_ARG3 100 952 #define BN_R_BAD_RECIPROCAL 101 953 #define BN_R_BIGNUM_TOO_LONG 102 954 #define BN_R_BITS_TOO_SMALL 103 955 #define BN_R_CALLED_WITH_EVEN_MODULUS 104 956 #define BN_R_DIV_BY_ZERO 105 957 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106 958 #define BN_R_INPUT_NOT_REDUCED 107 959 #define BN_R_INVALID_RANGE 108 960 #define BN_R_NEGATIVE_NUMBER 109 961 #define BN_R_NOT_A_SQUARE 110 962 #define BN_R_NOT_INITIALIZED 111 963 #define BN_R_NO_INVERSE 112 964 #define BN_R_PRIVATE_KEY_TOO_LARGE 113 965 #define BN_R_P_IS_NOT_PRIME 114 966 #define BN_R_TOO_MANY_ITERATIONS 115 967 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116 968 #define BN_R_BAD_ENCODING 117 969 #define BN_R_ENCODE_ERROR 118 970 971 #endif /* OPENSSL_HEADER_BN_H */ 972