Home | History | Annotate | Download | only in mips
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
     18 #define ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
     19 
     20 #include <deque>
     21 #include <utility>
     22 #include <vector>
     23 
     24 #include "arch/mips/instruction_set_features_mips.h"
     25 #include "base/arena_containers.h"
     26 #include "base/enums.h"
     27 #include "base/macros.h"
     28 #include "constants_mips.h"
     29 #include "globals.h"
     30 #include "managed_register_mips.h"
     31 #include "offsets.h"
     32 #include "utils/assembler.h"
     33 #include "utils/jni_macro_assembler.h"
     34 #include "utils/label.h"
     35 
     36 namespace art {
     37 namespace mips {
     38 
     39 static constexpr size_t kMipsWordSize = 4;
     40 static constexpr size_t kMipsDoublewordSize = 8;
     41 
     42 enum LoadOperandType {
     43   kLoadSignedByte,
     44   kLoadUnsignedByte,
     45   kLoadSignedHalfword,
     46   kLoadUnsignedHalfword,
     47   kLoadWord,
     48   kLoadDoubleword
     49 };
     50 
     51 enum StoreOperandType {
     52   kStoreByte,
     53   kStoreHalfword,
     54   kStoreWord,
     55   kStoreDoubleword
     56 };
     57 
     58 // Used to test the values returned by ClassS/ClassD.
     59 enum FPClassMaskType {
     60   kSignalingNaN      = 0x001,
     61   kQuietNaN          = 0x002,
     62   kNegativeInfinity  = 0x004,
     63   kNegativeNormal    = 0x008,
     64   kNegativeSubnormal = 0x010,
     65   kNegativeZero      = 0x020,
     66   kPositiveInfinity  = 0x040,
     67   kPositiveNormal    = 0x080,
     68   kPositiveSubnormal = 0x100,
     69   kPositiveZero      = 0x200,
     70 };
     71 
     72 class MipsLabel : public Label {
     73  public:
     74   MipsLabel() : prev_branch_id_plus_one_(0) {}
     75 
     76   MipsLabel(MipsLabel&& src)
     77       : Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {}
     78 
     79  private:
     80   uint32_t prev_branch_id_plus_one_;  // To get distance from preceding branch, if any.
     81 
     82   friend class MipsAssembler;
     83   DISALLOW_COPY_AND_ASSIGN(MipsLabel);
     84 };
     85 
     86 // Assembler literal is a value embedded in code, retrieved using a PC-relative load.
     87 class Literal {
     88  public:
     89   static constexpr size_t kMaxSize = 8;
     90 
     91   Literal(uint32_t size, const uint8_t* data)
     92       : label_(), size_(size) {
     93     DCHECK_LE(size, Literal::kMaxSize);
     94     memcpy(data_, data, size);
     95   }
     96 
     97   template <typename T>
     98   T GetValue() const {
     99     DCHECK_EQ(size_, sizeof(T));
    100     T value;
    101     memcpy(&value, data_, sizeof(T));
    102     return value;
    103   }
    104 
    105   uint32_t GetSize() const {
    106     return size_;
    107   }
    108 
    109   const uint8_t* GetData() const {
    110     return data_;
    111   }
    112 
    113   MipsLabel* GetLabel() {
    114     return &label_;
    115   }
    116 
    117   const MipsLabel* GetLabel() const {
    118     return &label_;
    119   }
    120 
    121  private:
    122   MipsLabel label_;
    123   const uint32_t size_;
    124   uint8_t data_[kMaxSize];
    125 
    126   DISALLOW_COPY_AND_ASSIGN(Literal);
    127 };
    128 
    129 // Jump table: table of labels emitted after the literals. Similar to literals.
    130 class JumpTable {
    131  public:
    132   explicit JumpTable(std::vector<MipsLabel*>&& labels)
    133       : label_(), labels_(std::move(labels)) {
    134   }
    135 
    136   uint32_t GetSize() const {
    137     return static_cast<uint32_t>(labels_.size()) * sizeof(uint32_t);
    138   }
    139 
    140   const std::vector<MipsLabel*>& GetData() const {
    141     return labels_;
    142   }
    143 
    144   MipsLabel* GetLabel() {
    145     return &label_;
    146   }
    147 
    148   const MipsLabel* GetLabel() const {
    149     return &label_;
    150   }
    151 
    152  private:
    153   MipsLabel label_;
    154   std::vector<MipsLabel*> labels_;
    155 
    156   DISALLOW_COPY_AND_ASSIGN(JumpTable);
    157 };
    158 
    159 // Slowpath entered when Thread::Current()->_exception is non-null.
    160 class MipsExceptionSlowPath {
    161  public:
    162   explicit MipsExceptionSlowPath(MipsManagedRegister scratch, size_t stack_adjust)
    163       : scratch_(scratch), stack_adjust_(stack_adjust) {}
    164 
    165   MipsExceptionSlowPath(MipsExceptionSlowPath&& src)
    166       : scratch_(src.scratch_),
    167         stack_adjust_(src.stack_adjust_),
    168         exception_entry_(std::move(src.exception_entry_)) {}
    169 
    170  private:
    171   MipsLabel* Entry() { return &exception_entry_; }
    172   const MipsManagedRegister scratch_;
    173   const size_t stack_adjust_;
    174   MipsLabel exception_entry_;
    175 
    176   friend class MipsAssembler;
    177   DISALLOW_COPY_AND_ASSIGN(MipsExceptionSlowPath);
    178 };
    179 
    180 class MipsAssembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k32> {
    181  public:
    182   using JNIBase = JNIMacroAssembler<PointerSize::k32>;
    183 
    184   explicit MipsAssembler(ArenaAllocator* arena,
    185                          const MipsInstructionSetFeatures* instruction_set_features = nullptr)
    186       : Assembler(arena),
    187         overwriting_(false),
    188         overwrite_location_(0),
    189         reordering_(true),
    190         ds_fsm_state_(kExpectingLabel),
    191         ds_fsm_target_pc_(0),
    192         literals_(arena->Adapter(kArenaAllocAssembler)),
    193         jump_tables_(arena->Adapter(kArenaAllocAssembler)),
    194         last_position_adjustment_(0),
    195         last_old_position_(0),
    196         last_branch_id_(0),
    197         isa_features_(instruction_set_features) {
    198     cfi().DelayEmittingAdvancePCs();
    199   }
    200 
    201   size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); }
    202   size_t CodePosition() OVERRIDE;
    203   DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
    204 
    205   virtual ~MipsAssembler() {
    206     for (auto& branch : branches_) {
    207       CHECK(branch.IsResolved());
    208     }
    209   }
    210 
    211   // Emit Machine Instructions.
    212   void Addu(Register rd, Register rs, Register rt);
    213   void Addiu(Register rt, Register rs, uint16_t imm16);
    214   void Subu(Register rd, Register rs, Register rt);
    215 
    216   void MultR2(Register rs, Register rt);  // R2
    217   void MultuR2(Register rs, Register rt);  // R2
    218   void DivR2(Register rs, Register rt);  // R2
    219   void DivuR2(Register rs, Register rt);  // R2
    220   void MulR2(Register rd, Register rs, Register rt);  // R2
    221   void DivR2(Register rd, Register rs, Register rt);  // R2
    222   void ModR2(Register rd, Register rs, Register rt);  // R2
    223   void DivuR2(Register rd, Register rs, Register rt);  // R2
    224   void ModuR2(Register rd, Register rs, Register rt);  // R2
    225   void MulR6(Register rd, Register rs, Register rt);  // R6
    226   void MuhR6(Register rd, Register rs, Register rt);  // R6
    227   void MuhuR6(Register rd, Register rs, Register rt);  // R6
    228   void DivR6(Register rd, Register rs, Register rt);  // R6
    229   void ModR6(Register rd, Register rs, Register rt);  // R6
    230   void DivuR6(Register rd, Register rs, Register rt);  // R6
    231   void ModuR6(Register rd, Register rs, Register rt);  // R6
    232 
    233   void And(Register rd, Register rs, Register rt);
    234   void Andi(Register rt, Register rs, uint16_t imm16);
    235   void Or(Register rd, Register rs, Register rt);
    236   void Ori(Register rt, Register rs, uint16_t imm16);
    237   void Xor(Register rd, Register rs, Register rt);
    238   void Xori(Register rt, Register rs, uint16_t imm16);
    239   void Nor(Register rd, Register rs, Register rt);
    240 
    241   void Movz(Register rd, Register rs, Register rt);  // R2
    242   void Movn(Register rd, Register rs, Register rt);  // R2
    243   void Seleqz(Register rd, Register rs, Register rt);  // R6
    244   void Selnez(Register rd, Register rs, Register rt);  // R6
    245   void ClzR6(Register rd, Register rs);
    246   void ClzR2(Register rd, Register rs);
    247   void CloR6(Register rd, Register rs);
    248   void CloR2(Register rd, Register rs);
    249 
    250   void Seb(Register rd, Register rt);  // R2+
    251   void Seh(Register rd, Register rt);  // R2+
    252   void Wsbh(Register rd, Register rt);  // R2+
    253   void Bitswap(Register rd, Register rt);  // R6
    254 
    255   void Sll(Register rd, Register rt, int shamt);
    256   void Srl(Register rd, Register rt, int shamt);
    257   void Rotr(Register rd, Register rt, int shamt);  // R2+
    258   void Sra(Register rd, Register rt, int shamt);
    259   void Sllv(Register rd, Register rt, Register rs);
    260   void Srlv(Register rd, Register rt, Register rs);
    261   void Rotrv(Register rd, Register rt, Register rs);  // R2+
    262   void Srav(Register rd, Register rt, Register rs);
    263   void Ext(Register rd, Register rt, int pos, int size);  // R2+
    264   void Ins(Register rd, Register rt, int pos, int size);  // R2+
    265   void Lsa(Register rd, Register rs, Register rt, int saPlusOne);  // R6
    266   void ShiftAndAdd(Register dst, Register src_idx, Register src_base, int shamt, Register tmp = AT);
    267 
    268   void Lb(Register rt, Register rs, uint16_t imm16);
    269   void Lh(Register rt, Register rs, uint16_t imm16);
    270   void Lw(Register rt, Register rs, uint16_t imm16);
    271   void Lwl(Register rt, Register rs, uint16_t imm16);
    272   void Lwr(Register rt, Register rs, uint16_t imm16);
    273   void Lbu(Register rt, Register rs, uint16_t imm16);
    274   void Lhu(Register rt, Register rs, uint16_t imm16);
    275   void Lwpc(Register rs, uint32_t imm19);  // R6
    276   void Lui(Register rt, uint16_t imm16);
    277   void Aui(Register rt, Register rs, uint16_t imm16);  // R6
    278   void Sync(uint32_t stype);
    279   void Mfhi(Register rd);  // R2
    280   void Mflo(Register rd);  // R2
    281 
    282   void Sb(Register rt, Register rs, uint16_t imm16);
    283   void Sh(Register rt, Register rs, uint16_t imm16);
    284   void Sw(Register rt, Register rs, uint16_t imm16);
    285   void Swl(Register rt, Register rs, uint16_t imm16);
    286   void Swr(Register rt, Register rs, uint16_t imm16);
    287 
    288   void LlR2(Register rt, Register base, int16_t imm16 = 0);
    289   void ScR2(Register rt, Register base, int16_t imm16 = 0);
    290   void LlR6(Register rt, Register base, int16_t imm9 = 0);
    291   void ScR6(Register rt, Register base, int16_t imm9 = 0);
    292 
    293   void Slt(Register rd, Register rs, Register rt);
    294   void Sltu(Register rd, Register rs, Register rt);
    295   void Slti(Register rt, Register rs, uint16_t imm16);
    296   void Sltiu(Register rt, Register rs, uint16_t imm16);
    297 
    298   // Branches and jumps to immediate offsets/addresses do not take care of their
    299   // delay/forbidden slots and generally should not be used directly. This applies
    300   // to the following R2 and R6 branch/jump instructions with imm16, imm21, addr26
    301   // offsets/addresses.
    302   // Use branches/jumps to labels instead.
    303   void B(uint16_t imm16);
    304   void Bal(uint16_t imm16);
    305   void Beq(Register rs, Register rt, uint16_t imm16);
    306   void Bne(Register rs, Register rt, uint16_t imm16);
    307   void Beqz(Register rt, uint16_t imm16);
    308   void Bnez(Register rt, uint16_t imm16);
    309   void Bltz(Register rt, uint16_t imm16);
    310   void Bgez(Register rt, uint16_t imm16);
    311   void Blez(Register rt, uint16_t imm16);
    312   void Bgtz(Register rt, uint16_t imm16);
    313   void Bc1f(uint16_t imm16);  // R2
    314   void Bc1f(int cc, uint16_t imm16);  // R2
    315   void Bc1t(uint16_t imm16);  // R2
    316   void Bc1t(int cc, uint16_t imm16);  // R2
    317   void J(uint32_t addr26);
    318   void Jal(uint32_t addr26);
    319   // Jalr() and Jr() fill their delay slots when reordering is enabled.
    320   // When reordering is disabled, the delay slots must be filled manually.
    321   // You may use NopIfNoReordering() to fill them when reordering is disabled.
    322   void Jalr(Register rd, Register rs);
    323   void Jalr(Register rs);
    324   void Jr(Register rs);
    325   // Nal() does not fill its delay slot. It must be filled manually.
    326   void Nal();
    327   void Auipc(Register rs, uint16_t imm16);  // R6
    328   void Addiupc(Register rs, uint32_t imm19);  // R6
    329   void Bc(uint32_t imm26);  // R6
    330   void Balc(uint32_t imm26);  // R6
    331   void Jic(Register rt, uint16_t imm16);  // R6
    332   void Jialc(Register rt, uint16_t imm16);  // R6
    333   void Bltc(Register rs, Register rt, uint16_t imm16);  // R6
    334   void Bltzc(Register rt, uint16_t imm16);  // R6
    335   void Bgtzc(Register rt, uint16_t imm16);  // R6
    336   void Bgec(Register rs, Register rt, uint16_t imm16);  // R6
    337   void Bgezc(Register rt, uint16_t imm16);  // R6
    338   void Blezc(Register rt, uint16_t imm16);  // R6
    339   void Bltuc(Register rs, Register rt, uint16_t imm16);  // R6
    340   void Bgeuc(Register rs, Register rt, uint16_t imm16);  // R6
    341   void Beqc(Register rs, Register rt, uint16_t imm16);  // R6
    342   void Bnec(Register rs, Register rt, uint16_t imm16);  // R6
    343   void Beqzc(Register rs, uint32_t imm21);  // R6
    344   void Bnezc(Register rs, uint32_t imm21);  // R6
    345   void Bc1eqz(FRegister ft, uint16_t imm16);  // R6
    346   void Bc1nez(FRegister ft, uint16_t imm16);  // R6
    347 
    348   void AddS(FRegister fd, FRegister fs, FRegister ft);
    349   void SubS(FRegister fd, FRegister fs, FRegister ft);
    350   void MulS(FRegister fd, FRegister fs, FRegister ft);
    351   void DivS(FRegister fd, FRegister fs, FRegister ft);
    352   void AddD(FRegister fd, FRegister fs, FRegister ft);
    353   void SubD(FRegister fd, FRegister fs, FRegister ft);
    354   void MulD(FRegister fd, FRegister fs, FRegister ft);
    355   void DivD(FRegister fd, FRegister fs, FRegister ft);
    356   void SqrtS(FRegister fd, FRegister fs);
    357   void SqrtD(FRegister fd, FRegister fs);
    358   void AbsS(FRegister fd, FRegister fs);
    359   void AbsD(FRegister fd, FRegister fs);
    360   void MovS(FRegister fd, FRegister fs);
    361   void MovD(FRegister fd, FRegister fs);
    362   void NegS(FRegister fd, FRegister fs);
    363   void NegD(FRegister fd, FRegister fs);
    364 
    365   void CunS(FRegister fs, FRegister ft);  // R2
    366   void CunS(int cc, FRegister fs, FRegister ft);  // R2
    367   void CeqS(FRegister fs, FRegister ft);  // R2
    368   void CeqS(int cc, FRegister fs, FRegister ft);  // R2
    369   void CueqS(FRegister fs, FRegister ft);  // R2
    370   void CueqS(int cc, FRegister fs, FRegister ft);  // R2
    371   void ColtS(FRegister fs, FRegister ft);  // R2
    372   void ColtS(int cc, FRegister fs, FRegister ft);  // R2
    373   void CultS(FRegister fs, FRegister ft);  // R2
    374   void CultS(int cc, FRegister fs, FRegister ft);  // R2
    375   void ColeS(FRegister fs, FRegister ft);  // R2
    376   void ColeS(int cc, FRegister fs, FRegister ft);  // R2
    377   void CuleS(FRegister fs, FRegister ft);  // R2
    378   void CuleS(int cc, FRegister fs, FRegister ft);  // R2
    379   void CunD(FRegister fs, FRegister ft);  // R2
    380   void CunD(int cc, FRegister fs, FRegister ft);  // R2
    381   void CeqD(FRegister fs, FRegister ft);  // R2
    382   void CeqD(int cc, FRegister fs, FRegister ft);  // R2
    383   void CueqD(FRegister fs, FRegister ft);  // R2
    384   void CueqD(int cc, FRegister fs, FRegister ft);  // R2
    385   void ColtD(FRegister fs, FRegister ft);  // R2
    386   void ColtD(int cc, FRegister fs, FRegister ft);  // R2
    387   void CultD(FRegister fs, FRegister ft);  // R2
    388   void CultD(int cc, FRegister fs, FRegister ft);  // R2
    389   void ColeD(FRegister fs, FRegister ft);  // R2
    390   void ColeD(int cc, FRegister fs, FRegister ft);  // R2
    391   void CuleD(FRegister fs, FRegister ft);  // R2
    392   void CuleD(int cc, FRegister fs, FRegister ft);  // R2
    393   void CmpUnS(FRegister fd, FRegister fs, FRegister ft);  // R6
    394   void CmpEqS(FRegister fd, FRegister fs, FRegister ft);  // R6
    395   void CmpUeqS(FRegister fd, FRegister fs, FRegister ft);  // R6
    396   void CmpLtS(FRegister fd, FRegister fs, FRegister ft);  // R6
    397   void CmpUltS(FRegister fd, FRegister fs, FRegister ft);  // R6
    398   void CmpLeS(FRegister fd, FRegister fs, FRegister ft);  // R6
    399   void CmpUleS(FRegister fd, FRegister fs, FRegister ft);  // R6
    400   void CmpOrS(FRegister fd, FRegister fs, FRegister ft);  // R6
    401   void CmpUneS(FRegister fd, FRegister fs, FRegister ft);  // R6
    402   void CmpNeS(FRegister fd, FRegister fs, FRegister ft);  // R6
    403   void CmpUnD(FRegister fd, FRegister fs, FRegister ft);  // R6
    404   void CmpEqD(FRegister fd, FRegister fs, FRegister ft);  // R6
    405   void CmpUeqD(FRegister fd, FRegister fs, FRegister ft);  // R6
    406   void CmpLtD(FRegister fd, FRegister fs, FRegister ft);  // R6
    407   void CmpUltD(FRegister fd, FRegister fs, FRegister ft);  // R6
    408   void CmpLeD(FRegister fd, FRegister fs, FRegister ft);  // R6
    409   void CmpUleD(FRegister fd, FRegister fs, FRegister ft);  // R6
    410   void CmpOrD(FRegister fd, FRegister fs, FRegister ft);  // R6
    411   void CmpUneD(FRegister fd, FRegister fs, FRegister ft);  // R6
    412   void CmpNeD(FRegister fd, FRegister fs, FRegister ft);  // R6
    413   void Movf(Register rd, Register rs, int cc = 0);  // R2
    414   void Movt(Register rd, Register rs, int cc = 0);  // R2
    415   void MovfS(FRegister fd, FRegister fs, int cc = 0);  // R2
    416   void MovfD(FRegister fd, FRegister fs, int cc = 0);  // R2
    417   void MovtS(FRegister fd, FRegister fs, int cc = 0);  // R2
    418   void MovtD(FRegister fd, FRegister fs, int cc = 0);  // R2
    419   void MovzS(FRegister fd, FRegister fs, Register rt);  // R2
    420   void MovzD(FRegister fd, FRegister fs, Register rt);  // R2
    421   void MovnS(FRegister fd, FRegister fs, Register rt);  // R2
    422   void MovnD(FRegister fd, FRegister fs, Register rt);  // R2
    423   void SelS(FRegister fd, FRegister fs, FRegister ft);  // R6
    424   void SelD(FRegister fd, FRegister fs, FRegister ft);  // R6
    425   void SeleqzS(FRegister fd, FRegister fs, FRegister ft);  // R6
    426   void SeleqzD(FRegister fd, FRegister fs, FRegister ft);  // R6
    427   void SelnezS(FRegister fd, FRegister fs, FRegister ft);  // R6
    428   void SelnezD(FRegister fd, FRegister fs, FRegister ft);  // R6
    429   void ClassS(FRegister fd, FRegister fs);  // R6
    430   void ClassD(FRegister fd, FRegister fs);  // R6
    431   void MinS(FRegister fd, FRegister fs, FRegister ft);  // R6
    432   void MinD(FRegister fd, FRegister fs, FRegister ft);  // R6
    433   void MaxS(FRegister fd, FRegister fs, FRegister ft);  // R6
    434   void MaxD(FRegister fd, FRegister fs, FRegister ft);  // R6
    435 
    436   void TruncLS(FRegister fd, FRegister fs);  // R2+, FR=1
    437   void TruncLD(FRegister fd, FRegister fs);  // R2+, FR=1
    438   void TruncWS(FRegister fd, FRegister fs);
    439   void TruncWD(FRegister fd, FRegister fs);
    440   void Cvtsw(FRegister fd, FRegister fs);
    441   void Cvtdw(FRegister fd, FRegister fs);
    442   void Cvtsd(FRegister fd, FRegister fs);
    443   void Cvtds(FRegister fd, FRegister fs);
    444   void Cvtsl(FRegister fd, FRegister fs);  // R2+, FR=1
    445   void Cvtdl(FRegister fd, FRegister fs);  // R2+, FR=1
    446   void FloorWS(FRegister fd, FRegister fs);
    447   void FloorWD(FRegister fd, FRegister fs);
    448 
    449   void Mfc1(Register rt, FRegister fs);
    450   void Mtc1(Register rt, FRegister fs);
    451   void Mfhc1(Register rt, FRegister fs);
    452   void Mthc1(Register rt, FRegister fs);
    453   void MoveFromFpuHigh(Register rt, FRegister fs);
    454   void MoveToFpuHigh(Register rt, FRegister fs);
    455   void Lwc1(FRegister ft, Register rs, uint16_t imm16);
    456   void Ldc1(FRegister ft, Register rs, uint16_t imm16);
    457   void Swc1(FRegister ft, Register rs, uint16_t imm16);
    458   void Sdc1(FRegister ft, Register rs, uint16_t imm16);
    459 
    460   void Break();
    461   void Nop();
    462   void NopIfNoReordering();
    463   void Move(Register rd, Register rs);
    464   void Clear(Register rd);
    465   void Not(Register rd, Register rs);
    466 
    467   // Higher level composite instructions.
    468   void LoadConst32(Register rd, int32_t value);
    469   void LoadConst64(Register reg_hi, Register reg_lo, int64_t value);
    470   void LoadDConst64(FRegister rd, int64_t value, Register temp);
    471   void LoadSConst32(FRegister r, int32_t value, Register temp);
    472   void Addiu32(Register rt, Register rs, int32_t value, Register rtmp = AT);
    473 
    474   // These will generate R2 branches or R6 branches as appropriate and take care of
    475   // the delay/forbidden slots.
    476   void Bind(MipsLabel* label);
    477   void B(MipsLabel* label);
    478   void Bal(MipsLabel* label);
    479   void Beq(Register rs, Register rt, MipsLabel* label);
    480   void Bne(Register rs, Register rt, MipsLabel* label);
    481   void Beqz(Register rt, MipsLabel* label);
    482   void Bnez(Register rt, MipsLabel* label);
    483   void Bltz(Register rt, MipsLabel* label);
    484   void Bgez(Register rt, MipsLabel* label);
    485   void Blez(Register rt, MipsLabel* label);
    486   void Bgtz(Register rt, MipsLabel* label);
    487   void Blt(Register rs, Register rt, MipsLabel* label);
    488   void Bge(Register rs, Register rt, MipsLabel* label);
    489   void Bltu(Register rs, Register rt, MipsLabel* label);
    490   void Bgeu(Register rs, Register rt, MipsLabel* label);
    491   void Bc1f(MipsLabel* label);  // R2
    492   void Bc1f(int cc, MipsLabel* label);  // R2
    493   void Bc1t(MipsLabel* label);  // R2
    494   void Bc1t(int cc, MipsLabel* label);  // R2
    495   void Bc1eqz(FRegister ft, MipsLabel* label);  // R6
    496   void Bc1nez(FRegister ft, MipsLabel* label);  // R6
    497 
    498   void EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size);
    499   void AdjustBaseAndOffset(Register& base,
    500                            int32_t& offset,
    501                            bool is_doubleword,
    502                            bool is_float = false);
    503 
    504  private:
    505   // This will be used as an argument for loads/stores
    506   // when there is no need for implicit null checks.
    507   struct NoImplicitNullChecker {
    508     void operator()() const {}
    509   };
    510 
    511  public:
    512   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    513   void StoreConstToOffset(StoreOperandType type,
    514                           int64_t value,
    515                           Register base,
    516                           int32_t offset,
    517                           Register temp,
    518                           ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    519     // We permit `base` and `temp` to coincide (however, we check that neither is AT),
    520     // in which case the `base` register may be overwritten in the process.
    521     CHECK_NE(temp, AT);  // Must not use AT as temp, so as not to overwrite the adjusted base.
    522     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
    523     uint32_t low = Low32Bits(value);
    524     uint32_t high = High32Bits(value);
    525     Register reg;
    526     // If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp`
    527     // to load and hold the value but we can use AT instead as AT hasn't been used yet.
    528     // Otherwise, `temp` can be used for the value. And if `temp` is the same as the
    529     // original `base` (that is, `base` prior to the adjustment), the original `base`
    530     // register will be overwritten.
    531     if (base == temp) {
    532       temp = AT;
    533     }
    534     if (low == 0) {
    535       reg = ZERO;
    536     } else {
    537       reg = temp;
    538       LoadConst32(reg, low);
    539     }
    540     switch (type) {
    541       case kStoreByte:
    542         Sb(reg, base, offset);
    543         break;
    544       case kStoreHalfword:
    545         Sh(reg, base, offset);
    546         break;
    547       case kStoreWord:
    548         Sw(reg, base, offset);
    549         break;
    550       case kStoreDoubleword:
    551         Sw(reg, base, offset);
    552         null_checker();
    553         if (high == 0) {
    554           reg = ZERO;
    555         } else {
    556           reg = temp;
    557           if (high != low) {
    558             LoadConst32(reg, high);
    559           }
    560         }
    561         Sw(reg, base, offset + kMipsWordSize);
    562         break;
    563       default:
    564         LOG(FATAL) << "UNREACHABLE";
    565     }
    566     if (type != kStoreDoubleword) {
    567       null_checker();
    568     }
    569   }
    570 
    571   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    572   void LoadFromOffset(LoadOperandType type,
    573                       Register reg,
    574                       Register base,
    575                       int32_t offset,
    576                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    577     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
    578     switch (type) {
    579       case kLoadSignedByte:
    580         Lb(reg, base, offset);
    581         break;
    582       case kLoadUnsignedByte:
    583         Lbu(reg, base, offset);
    584         break;
    585       case kLoadSignedHalfword:
    586         Lh(reg, base, offset);
    587         break;
    588       case kLoadUnsignedHalfword:
    589         Lhu(reg, base, offset);
    590         break;
    591       case kLoadWord:
    592         Lw(reg, base, offset);
    593         break;
    594       case kLoadDoubleword:
    595         if (reg == base) {
    596           // This will clobber the base when loading the lower register. Since we have to load the
    597           // higher register as well, this will fail. Solution: reverse the order.
    598           Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
    599           null_checker();
    600           Lw(reg, base, offset);
    601         } else {
    602           Lw(reg, base, offset);
    603           null_checker();
    604           Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
    605         }
    606         break;
    607       default:
    608         LOG(FATAL) << "UNREACHABLE";
    609     }
    610     if (type != kLoadDoubleword) {
    611       null_checker();
    612     }
    613   }
    614 
    615   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    616   void LoadSFromOffset(FRegister reg,
    617                        Register base,
    618                        int32_t offset,
    619                        ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    620     AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
    621     Lwc1(reg, base, offset);
    622     null_checker();
    623   }
    624 
    625   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    626   void LoadDFromOffset(FRegister reg,
    627                        Register base,
    628                        int32_t offset,
    629                        ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    630     AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
    631     if (IsAligned<kMipsDoublewordSize>(offset)) {
    632       Ldc1(reg, base, offset);
    633       null_checker();
    634     } else {
    635       if (Is32BitFPU()) {
    636         Lwc1(reg, base, offset);
    637         null_checker();
    638         Lwc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
    639       } else {
    640         // 64-bit FPU.
    641         Lwc1(reg, base, offset);
    642         null_checker();
    643         Lw(T8, base, offset + kMipsWordSize);
    644         Mthc1(T8, reg);
    645       }
    646     }
    647   }
    648 
    649   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    650   void StoreToOffset(StoreOperandType type,
    651                      Register reg,
    652                      Register base,
    653                      int32_t offset,
    654                      ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    655     // Must not use AT as `reg`, so as not to overwrite the value being stored
    656     // with the adjusted `base`.
    657     CHECK_NE(reg, AT);
    658     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
    659     switch (type) {
    660       case kStoreByte:
    661         Sb(reg, base, offset);
    662         break;
    663       case kStoreHalfword:
    664         Sh(reg, base, offset);
    665         break;
    666       case kStoreWord:
    667         Sw(reg, base, offset);
    668         break;
    669       case kStoreDoubleword:
    670         CHECK_NE(reg, base);
    671         CHECK_NE(static_cast<Register>(reg + 1), base);
    672         Sw(reg, base, offset);
    673         null_checker();
    674         Sw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
    675         break;
    676       default:
    677         LOG(FATAL) << "UNREACHABLE";
    678     }
    679     if (type != kStoreDoubleword) {
    680       null_checker();
    681     }
    682   }
    683 
    684   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    685   void StoreSToOffset(FRegister reg,
    686                       Register base,
    687                       int32_t offset,
    688                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    689     AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
    690     Swc1(reg, base, offset);
    691     null_checker();
    692   }
    693 
    694   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    695   void StoreDToOffset(FRegister reg,
    696                       Register base,
    697                       int32_t offset,
    698                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    699     AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
    700     if (IsAligned<kMipsDoublewordSize>(offset)) {
    701       Sdc1(reg, base, offset);
    702       null_checker();
    703     } else {
    704       if (Is32BitFPU()) {
    705         Swc1(reg, base, offset);
    706         null_checker();
    707         Swc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
    708       } else {
    709         // 64-bit FPU.
    710         Mfhc1(T8, reg);
    711         Swc1(reg, base, offset);
    712         null_checker();
    713         Sw(T8, base, offset + kMipsWordSize);
    714       }
    715     }
    716   }
    717 
    718   void LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset);
    719   void LoadSFromOffset(FRegister reg, Register base, int32_t offset);
    720   void LoadDFromOffset(FRegister reg, Register base, int32_t offset);
    721   void StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset);
    722   void StoreSToOffset(FRegister reg, Register base, int32_t offset);
    723   void StoreDToOffset(FRegister reg, Register base, int32_t offset);
    724 
    725   // Emit data (e.g. encoded instruction or immediate) to the instruction stream.
    726   void Emit(uint32_t value);
    727 
    728   // Push/pop composite routines.
    729   void Push(Register rs);
    730   void Pop(Register rd);
    731   void PopAndReturn(Register rd, Register rt);
    732 
    733   //
    734   // Heap poisoning.
    735   //
    736 
    737   // Poison a heap reference contained in `src` and store it in `dst`.
    738   void PoisonHeapReference(Register dst, Register src) {
    739     // dst = -src.
    740     Subu(dst, ZERO, src);
    741   }
    742   // Poison a heap reference contained in `reg`.
    743   void PoisonHeapReference(Register reg) {
    744     // reg = -reg.
    745     PoisonHeapReference(reg, reg);
    746   }
    747   // Unpoison a heap reference contained in `reg`.
    748   void UnpoisonHeapReference(Register reg) {
    749     // reg = -reg.
    750     Subu(reg, ZERO, reg);
    751   }
    752   // Poison a heap reference contained in `reg` if heap poisoning is enabled.
    753   void MaybePoisonHeapReference(Register reg) {
    754     if (kPoisonHeapReferences) {
    755       PoisonHeapReference(reg);
    756     }
    757   }
    758   // Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
    759   void MaybeUnpoisonHeapReference(Register reg) {
    760     if (kPoisonHeapReferences) {
    761       UnpoisonHeapReference(reg);
    762     }
    763   }
    764 
    765   void Bind(Label* label) OVERRIDE {
    766     Bind(down_cast<MipsLabel*>(label));
    767   }
    768   void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE {
    769     UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS";
    770   }
    771 
    772   // Don't warn about a different virtual Bind/Jump in the base class.
    773   using JNIBase::Bind;
    774   using JNIBase::Jump;
    775 
    776   // Create a new label that can be used with Jump/Bind calls.
    777   std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE {
    778     LOG(FATAL) << "Not implemented on MIPS32";
    779     UNREACHABLE();
    780   }
    781   // Emit an unconditional jump to the label.
    782   void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
    783     LOG(FATAL) << "Not implemented on MIPS32";
    784     UNREACHABLE();
    785   }
    786   // Emit a conditional jump to the label by applying a unary condition test to the register.
    787   void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED,
    788             JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,
    789             ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE {
    790     LOG(FATAL) << "Not implemented on MIPS32";
    791     UNREACHABLE();
    792   }
    793 
    794   // Code at this offset will serve as the target for the Jump call.
    795   void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
    796     LOG(FATAL) << "Not implemented on MIPS32";
    797     UNREACHABLE();
    798   }
    799 
    800   // Create a new literal with a given value.
    801   // NOTE: Force the template parameter to be explicitly specified.
    802   template <typename T>
    803   Literal* NewLiteral(typename Identity<T>::type value) {
    804     static_assert(std::is_integral<T>::value, "T must be an integral type.");
    805     return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
    806   }
    807 
    808   // Load label address using the base register (for R2 only) or using PC-relative loads
    809   // (for R6 only; base_reg must be ZERO). To be used with data labels in the literal /
    810   // jump table area only and not with regular code labels.
    811   void LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label);
    812 
    813   // Create a new literal with the given data.
    814   Literal* NewLiteral(size_t size, const uint8_t* data);
    815 
    816   // Load literal using the base register (for R2 only) or using PC-relative loads
    817   // (for R6 only; base_reg must be ZERO).
    818   void LoadLiteral(Register dest_reg, Register base_reg, Literal* literal);
    819 
    820   // Create a jump table for the given labels that will be emitted when finalizing.
    821   // When the table is emitted, offsets will be relative to the location of the table.
    822   // The table location is determined by the location of its label (the label precedes
    823   // the table data) and should be loaded using LoadLabelAddress().
    824   JumpTable* CreateJumpTable(std::vector<MipsLabel*>&& labels);
    825 
    826   //
    827   // Overridden common assembler high-level functionality.
    828   //
    829 
    830   // Emit code that will create an activation on the stack.
    831   void BuildFrame(size_t frame_size,
    832                   ManagedRegister method_reg,
    833                   ArrayRef<const ManagedRegister> callee_save_regs,
    834                   const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
    835 
    836   // Emit code that will remove an activation from the stack.
    837   void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs)
    838       OVERRIDE;
    839 
    840   void IncreaseFrameSize(size_t adjust) OVERRIDE;
    841   void DecreaseFrameSize(size_t adjust) OVERRIDE;
    842 
    843   // Store routines.
    844   void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE;
    845   void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
    846   void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
    847 
    848   void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE;
    849 
    850   void StoreStackOffsetToThread(ThreadOffset32 thr_offs,
    851                                 FrameOffset fr_offs,
    852                                 ManagedRegister mscratch) OVERRIDE;
    853 
    854   void StoreStackPointerToThread(ThreadOffset32 thr_offs) OVERRIDE;
    855 
    856   void StoreSpanning(FrameOffset dest,
    857                      ManagedRegister msrc,
    858                      FrameOffset in_off,
    859                      ManagedRegister mscratch) OVERRIDE;
    860 
    861   // Load routines.
    862   void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE;
    863 
    864   void LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) OVERRIDE;
    865 
    866   void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
    867 
    868   void LoadRef(ManagedRegister mdest,
    869                ManagedRegister base,
    870                MemberOffset offs,
    871                bool unpoison_reference) OVERRIDE;
    872 
    873   void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE;
    874 
    875   void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) OVERRIDE;
    876 
    877   // Copying routines.
    878   void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE;
    879 
    880   void CopyRawPtrFromThread(FrameOffset fr_offs,
    881                             ThreadOffset32 thr_offs,
    882                             ManagedRegister mscratch) OVERRIDE;
    883 
    884   void CopyRawPtrToThread(ThreadOffset32 thr_offs,
    885                           FrameOffset fr_offs,
    886                           ManagedRegister mscratch) OVERRIDE;
    887 
    888   void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE;
    889 
    890   void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE;
    891 
    892   void Copy(FrameOffset dest,
    893             ManagedRegister src_base,
    894             Offset src_offset,
    895             ManagedRegister mscratch,
    896             size_t size) OVERRIDE;
    897 
    898   void Copy(ManagedRegister dest_base,
    899             Offset dest_offset,
    900             FrameOffset src,
    901             ManagedRegister mscratch,
    902             size_t size) OVERRIDE;
    903 
    904   void Copy(FrameOffset dest,
    905             FrameOffset src_base,
    906             Offset src_offset,
    907             ManagedRegister mscratch,
    908             size_t size) OVERRIDE;
    909 
    910   void Copy(ManagedRegister dest,
    911             Offset dest_offset,
    912             ManagedRegister src,
    913             Offset src_offset,
    914             ManagedRegister mscratch,
    915             size_t size) OVERRIDE;
    916 
    917   void Copy(FrameOffset dest,
    918             Offset dest_offset,
    919             FrameOffset src,
    920             Offset src_offset,
    921             ManagedRegister mscratch,
    922             size_t size) OVERRIDE;
    923 
    924   void MemoryBarrier(ManagedRegister) OVERRIDE;
    925 
    926   // Sign extension.
    927   void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
    928 
    929   // Zero extension.
    930   void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
    931 
    932   // Exploit fast access in managed code to Thread::Current().
    933   void GetCurrentThread(ManagedRegister tr) OVERRIDE;
    934   void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE;
    935 
    936   // Set up out_reg to hold a Object** into the handle scope, or to be null if the
    937   // value is null and null_allowed. in_reg holds a possibly stale reference
    938   // that can be used to avoid loading the handle scope entry to see if the value is
    939   // null.
    940   void CreateHandleScopeEntry(ManagedRegister out_reg,
    941                               FrameOffset handlescope_offset,
    942                               ManagedRegister in_reg,
    943                               bool null_allowed) OVERRIDE;
    944 
    945   // Set up out_off to hold a Object** into the handle scope, or to be null if the
    946   // value is null and null_allowed.
    947   void CreateHandleScopeEntry(FrameOffset out_off,
    948                               FrameOffset handlescope_offset,
    949                               ManagedRegister mscratch,
    950                               bool null_allowed) OVERRIDE;
    951 
    952   // src holds a handle scope entry (Object**) load this into dst.
    953   void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
    954 
    955   // Heap::VerifyObject on src. In some cases (such as a reference to this) we
    956   // know that src may not be null.
    957   void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
    958   void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
    959 
    960   // Call to address held at [base+offset].
    961   void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE;
    962   void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE;
    963   void CallFromThread(ThreadOffset32 offset, ManagedRegister mscratch) OVERRIDE;
    964 
    965   // Generate code to check if Thread::Current()->exception_ is non-null
    966   // and branch to a ExceptionSlowPath if it is.
    967   void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE;
    968 
    969   // Emit slow paths queued during assembly and promote short branches to long if needed.
    970   void FinalizeCode() OVERRIDE;
    971 
    972   // Emit branches and finalize all instructions.
    973   void FinalizeInstructions(const MemoryRegion& region);
    974 
    975   // Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS,
    976   // must be used instead of MipsLabel::GetPosition()).
    977   uint32_t GetLabelLocation(const MipsLabel* label) const;
    978 
    979   // Get the final position of a label after local fixup based on the old position
    980   // recorded before FinalizeCode().
    981   uint32_t GetAdjustedPosition(uint32_t old_position);
    982 
    983   // R2 doesn't have PC-relative addressing, which we need to access literals. We simulate it by
    984   // reading the PC value into a general-purpose register with the NAL instruction and then loading
    985   // literals through this base register. The code generator calls this method (at most once per
    986   // method being compiled) to bind a label to the location for which the PC value is acquired.
    987   // The assembler then computes literal offsets relative to this label.
    988   void BindPcRelBaseLabel();
    989 
    990   // Returns the location of the label bound with BindPcRelBaseLabel().
    991   uint32_t GetPcRelBaseLabelLocation() const;
    992 
    993   // Note that PC-relative literal loads are handled as pseudo branches because they need very
    994   // similar relocation and may similarly expand in size to accomodate for larger offsets relative
    995   // to PC.
    996   enum BranchCondition {
    997     kCondLT,
    998     kCondGE,
    999     kCondLE,
   1000     kCondGT,
   1001     kCondLTZ,
   1002     kCondGEZ,
   1003     kCondLEZ,
   1004     kCondGTZ,
   1005     kCondEQ,
   1006     kCondNE,
   1007     kCondEQZ,
   1008     kCondNEZ,
   1009     kCondLTU,
   1010     kCondGEU,
   1011     kCondF,    // Floating-point predicate false.
   1012     kCondT,    // Floating-point predicate true.
   1013     kUncond,
   1014   };
   1015   friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs);
   1016 
   1017   // Enables or disables instruction reordering (IOW, automatic filling of delay slots)
   1018   // similarly to ".set reorder" / ".set noreorder" in traditional MIPS assembly.
   1019   // Returns the last state, which may be useful for temporary enabling/disabling of
   1020   // reordering.
   1021   bool SetReorder(bool enable);
   1022 
   1023  private:
   1024   // Description of the last instruction in terms of input and output registers.
   1025   // Used to make the decision of moving the instruction into a delay slot.
   1026   struct DelaySlot {
   1027     DelaySlot();
   1028     // Encoded instruction that may be used to fill the delay slot or 0
   1029     // (0 conveniently represents NOP).
   1030     uint32_t instruction_;
   1031     // Mask of output GPRs for the instruction.
   1032     uint32_t gpr_outs_mask_;
   1033     // Mask of input GPRs for the instruction.
   1034     uint32_t gpr_ins_mask_;
   1035     // Mask of output FPRs for the instruction.
   1036     uint32_t fpr_outs_mask_;
   1037     // Mask of input FPRs for the instruction.
   1038     uint32_t fpr_ins_mask_;
   1039     // Mask of output FPU condition code flags for the instruction.
   1040     uint32_t cc_outs_mask_;
   1041     // Mask of input FPU condition code flags for the instruction.
   1042     uint32_t cc_ins_mask_;
   1043     // Branches never operate on the LO and HI registers, hence there's
   1044     // no mask for LO and HI.
   1045   };
   1046 
   1047   // Delay slot finite state machine's (DS FSM's) state. The FSM state is updated
   1048   // upon every new instruction and label generated. The FSM detects instructions
   1049   // suitable for delay slots and immediately preceded with labels. These are target
   1050   // instructions for branches. If an unconditional R2 branch does not get its delay
   1051   // slot filled with the immediately preceding instruction, it may instead get the
   1052   // slot filled with the target instruction (the branch will need its offset
   1053   // incremented past the target instruction). We call this "absorption". The FSM
   1054   // records PCs of the target instructions suitable for this optimization.
   1055   enum DsFsmState {
   1056     kExpectingLabel,
   1057     kExpectingInstruction,
   1058     kExpectingCommit
   1059   };
   1060   friend std::ostream& operator<<(std::ostream& os, const DsFsmState& rhs);
   1061 
   1062   class Branch {
   1063    public:
   1064     enum Type {
   1065       // R2 short branches.
   1066       kUncondBranch,
   1067       kCondBranch,
   1068       kCall,
   1069       // R2 near label.
   1070       kLabel,
   1071       // R2 near literal.
   1072       kLiteral,
   1073       // R2 long branches.
   1074       kLongUncondBranch,
   1075       kLongCondBranch,
   1076       kLongCall,
   1077       // R2 far label.
   1078       kFarLabel,
   1079       // R2 far literal.
   1080       kFarLiteral,
   1081       // R6 short branches.
   1082       kR6UncondBranch,
   1083       kR6CondBranch,
   1084       kR6Call,
   1085       // R6 near label.
   1086       kR6Label,
   1087       // R6 near literal.
   1088       kR6Literal,
   1089       // R6 long branches.
   1090       kR6LongUncondBranch,
   1091       kR6LongCondBranch,
   1092       kR6LongCall,
   1093       // R6 far label.
   1094       kR6FarLabel,
   1095       // R6 far literal.
   1096       kR6FarLiteral,
   1097     };
   1098     // Bit sizes of offsets defined as enums to minimize chance of typos.
   1099     enum OffsetBits {
   1100       kOffset16 = 16,
   1101       kOffset18 = 18,
   1102       kOffset21 = 21,
   1103       kOffset23 = 23,
   1104       kOffset28 = 28,
   1105       kOffset32 = 32,
   1106     };
   1107 
   1108     static constexpr uint32_t kUnresolved = 0xffffffff;  // Unresolved target_
   1109     static constexpr int32_t kMaxBranchLength = 32;
   1110     static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t);
   1111     // The following two instruction encodings can never legally occur in branch delay
   1112     // slots and are used as markers.
   1113     //
   1114     // kUnfilledDelaySlot means that the branch may use either the preceding or the target
   1115     // instruction to fill its delay slot (the latter is only possible with unconditional
   1116     // R2 branches and is termed here as "absorption").
   1117     static constexpr uint32_t kUnfilledDelaySlot = 0x10000000;  // beq zero, zero, 0.
   1118     // kUnfillableDelaySlot means that the branch cannot use an instruction (other than NOP)
   1119     // to fill its delay slot. This is only used for unconditional R2 branches to prevent
   1120     // absorption of the target instruction when reordering is disabled.
   1121     static constexpr uint32_t kUnfillableDelaySlot = 0x13FF0000;  // beq ra, ra, 0.
   1122 
   1123     struct BranchInfo {
   1124       // Branch length as a number of 4-byte-long instructions.
   1125       uint32_t length;
   1126       // Ordinal number (0-based) of the first (or the only) instruction that contains the branch's
   1127       // PC-relative offset (or its most significant 16-bit half, which goes first).
   1128       uint32_t instr_offset;
   1129       // Different MIPS instructions with PC-relative offsets apply said offsets to slightly
   1130       // different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte
   1131       // instructions) from the instruction containing the offset.
   1132       uint32_t pc_org;
   1133       // How large (in bits) a PC-relative offset can be for a given type of branch (kR6CondBranch
   1134       // is an exception: use kOffset23 for beqzc/bnezc).
   1135       OffsetBits offset_size;
   1136       // Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift
   1137       // count.
   1138       int offset_shift;
   1139     };
   1140     static const BranchInfo branch_info_[/* Type */];
   1141 
   1142     // Unconditional branch or call.
   1143     Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call);
   1144     // Conditional branch.
   1145     Branch(bool is_r6,
   1146            uint32_t location,
   1147            uint32_t target,
   1148            BranchCondition condition,
   1149            Register lhs_reg,
   1150            Register rhs_reg);
   1151     // Label address (in literal area) or literal.
   1152     Branch(bool is_r6,
   1153            uint32_t location,
   1154            Register dest_reg,
   1155            Register base_reg,
   1156            Type label_or_literal_type);
   1157 
   1158     // Some conditional branches with lhs = rhs are effectively NOPs, while some
   1159     // others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs.
   1160     // So, we need a way to identify such branches in order to emit no instructions for them
   1161     // or change them to unconditional.
   1162     static bool IsNop(BranchCondition condition, Register lhs, Register rhs);
   1163     static bool IsUncond(BranchCondition condition, Register lhs, Register rhs);
   1164 
   1165     static BranchCondition OppositeCondition(BranchCondition cond);
   1166 
   1167     Type GetType() const;
   1168     BranchCondition GetCondition() const;
   1169     Register GetLeftRegister() const;
   1170     Register GetRightRegister() const;
   1171     uint32_t GetTarget() const;
   1172     uint32_t GetLocation() const;
   1173     uint32_t GetOldLocation() const;
   1174     uint32_t GetPrecedingInstructionLength(Type type) const;
   1175     uint32_t GetPrecedingInstructionSize(Type type) const;
   1176     uint32_t GetLength() const;
   1177     uint32_t GetOldLength() const;
   1178     uint32_t GetSize() const;
   1179     uint32_t GetOldSize() const;
   1180     uint32_t GetEndLocation() const;
   1181     uint32_t GetOldEndLocation() const;
   1182     bool IsLong() const;
   1183     bool IsResolved() const;
   1184 
   1185     // Various helpers for branch delay slot management.
   1186     bool CanHaveDelayedInstruction(const DelaySlot& delay_slot) const;
   1187     void SetDelayedInstruction(uint32_t instruction);
   1188     uint32_t GetDelayedInstruction() const;
   1189     void DecrementLocations();
   1190 
   1191     // Returns the bit size of the signed offset that the branch instruction can handle.
   1192     OffsetBits GetOffsetSize() const;
   1193 
   1194     // Calculates the distance between two byte locations in the assembler buffer and
   1195     // returns the number of bits needed to represent the distance as a signed integer.
   1196     //
   1197     // Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc),
   1198     // and 26 (bc) bits, which are additionally shifted left 2 positions at run time.
   1199     //
   1200     // Composite branches (made of several instructions) with longer reach have 32-bit
   1201     // offsets encoded as 2 16-bit "halves" in two instructions (high half goes first).
   1202     // The composite branches cover the range of PC + +/-2GB on MIPS32 CPUs. However,
   1203     // the range is not end-to-end on MIPS64 (unless addresses are forced to zero- or
   1204     // sign-extend from 32 to 64 bits by the appropriate CPU configuration).
   1205     // Consider the following implementation of a long unconditional branch, for
   1206     // example:
   1207     //
   1208     //   auipc at, offset_31_16  // at = pc + sign_extend(offset_31_16) << 16
   1209     //   jic   at, offset_15_0   // pc = at + sign_extend(offset_15_0)
   1210     //
   1211     // Both of the above instructions take 16-bit signed offsets as immediate operands.
   1212     // When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000
   1213     // due to sign extension. This must be compensated for by incrementing offset_31_16
   1214     // by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is
   1215     // 0x7FFF, adding 1 will overflow the positive offset into the negative range.
   1216     // Therefore, the long branch range is something like from PC - 0x80000000 to
   1217     // PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side.
   1218     //
   1219     // The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special
   1220     // case with the addiu instruction and a 16 bit offset.
   1221     static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
   1222 
   1223     // Resolve a branch when the target is known.
   1224     void Resolve(uint32_t target);
   1225 
   1226     // Relocate a branch by a given delta if needed due to expansion of this or another
   1227     // branch at a given location by this delta (just changes location_ and target_).
   1228     void Relocate(uint32_t expand_location, uint32_t delta);
   1229 
   1230     // If the branch is short, changes its type to long.
   1231     void PromoteToLong();
   1232 
   1233     // If necessary, updates the type by promoting a short branch to a long branch
   1234     // based on the branch location and target. Returns the amount (in bytes) by
   1235     // which the branch size has increased.
   1236     // max_short_distance caps the maximum distance between location_ and target_
   1237     // that is allowed for short branches. This is for debugging/testing purposes.
   1238     // max_short_distance = 0 forces all short branches to become long.
   1239     // Use the implicit default argument when not debugging/testing.
   1240     uint32_t PromoteIfNeeded(uint32_t location,
   1241                              uint32_t max_short_distance = std::numeric_limits<uint32_t>::max());
   1242 
   1243     // Returns the location of the instruction(s) containing the offset.
   1244     uint32_t GetOffsetLocation() const;
   1245 
   1246     // Calculates and returns the offset ready for encoding in the branch instruction(s).
   1247     uint32_t GetOffset(uint32_t location) const;
   1248 
   1249    private:
   1250     // Completes branch construction by determining and recording its type.
   1251     void InitializeType(Type initial_type, bool is_r6);
   1252     // Helper for the above.
   1253     void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type);
   1254 
   1255     uint32_t old_location_;         // Offset into assembler buffer in bytes.
   1256     uint32_t location_;             // Offset into assembler buffer in bytes.
   1257     uint32_t target_;               // Offset into assembler buffer in bytes.
   1258 
   1259     uint32_t lhs_reg_;              // Left-hand side register in conditional branches or
   1260                                     // FPU condition code. Destination register in literals.
   1261     uint32_t rhs_reg_;              // Right-hand side register in conditional branches.
   1262                                     // Base register in literals (ZERO on R6).
   1263     BranchCondition condition_;     // Condition for conditional branches.
   1264 
   1265     Type type_;                     // Current type of the branch.
   1266     Type old_type_;                 // Initial type of the branch.
   1267 
   1268     uint32_t delayed_instruction_;  // Encoded instruction for the delay slot or
   1269                                     // kUnfilledDelaySlot if none but fillable or
   1270                                     // kUnfillableDelaySlot if none and unfillable
   1271                                     // (the latter is only used for unconditional R2
   1272                                     // branches).
   1273   };
   1274   friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs);
   1275   friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs);
   1276 
   1277   uint32_t EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct);
   1278   uint32_t EmitI(int opcode, Register rs, Register rt, uint16_t imm);
   1279   uint32_t EmitI21(int opcode, Register rs, uint32_t imm21);
   1280   uint32_t EmitI26(int opcode, uint32_t imm26);
   1281   uint32_t EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct);
   1282   uint32_t EmitFI(int opcode, int fmt, FRegister rt, uint16_t imm);
   1283   void EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16);
   1284   void EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21);
   1285 
   1286   void Buncond(MipsLabel* label);
   1287   void Bcond(MipsLabel* label, BranchCondition condition, Register lhs, Register rhs = ZERO);
   1288   void Call(MipsLabel* label);
   1289   void FinalizeLabeledBranch(MipsLabel* label);
   1290 
   1291   // Various helpers for branch delay slot management.
   1292   void DsFsmInstr(uint32_t instruction,
   1293                   uint32_t gpr_outs_mask,
   1294                   uint32_t gpr_ins_mask,
   1295                   uint32_t fpr_outs_mask,
   1296                   uint32_t fpr_ins_mask,
   1297                   uint32_t cc_outs_mask,
   1298                   uint32_t cc_ins_mask);
   1299   void DsFsmInstrNop(uint32_t instruction);
   1300   void DsFsmInstrRrr(uint32_t instruction, Register out, Register in1, Register in2);
   1301   void DsFsmInstrRrrr(uint32_t instruction, Register in1_out, Register in2, Register in3);
   1302   void DsFsmInstrFff(uint32_t instruction, FRegister out, FRegister in1, FRegister in2);
   1303   void DsFsmInstrFfff(uint32_t instruction, FRegister in1_out, FRegister in2, FRegister in3);
   1304   void DsFsmInstrFffr(uint32_t instruction, FRegister in1_out, FRegister in2, Register in3);
   1305   void DsFsmInstrRf(uint32_t instruction, Register out, FRegister in);
   1306   void DsFsmInstrFr(uint32_t instruction, FRegister out, Register in);
   1307   void DsFsmInstrFR(uint32_t instruction, FRegister in1, Register in2);
   1308   void DsFsmInstrCff(uint32_t instruction, int cc_out, FRegister in1, FRegister in2);
   1309   void DsFsmInstrRrrc(uint32_t instruction, Register in1_out, Register in2, int cc_in);
   1310   void DsFsmInstrFffc(uint32_t instruction, FRegister in1_out, FRegister in2, int cc_in);
   1311   void DsFsmLabel();
   1312   void DsFsmCommitLabel();
   1313   void DsFsmDropLabel();
   1314   void MoveInstructionToDelaySlot(Branch& branch);
   1315   bool CanExchangeWithSlt(Register rs, Register rt) const;
   1316   void ExchangeWithSlt(const DelaySlot& forwarded_slot);
   1317   void GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt);
   1318 
   1319   Branch* GetBranch(uint32_t branch_id);
   1320   const Branch* GetBranch(uint32_t branch_id) const;
   1321   uint32_t GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const;
   1322   uint32_t GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const;
   1323 
   1324   void EmitLiterals();
   1325   void ReserveJumpTableSpace();
   1326   void EmitJumpTables();
   1327   void PromoteBranches();
   1328   void EmitBranch(Branch* branch);
   1329   void EmitBranches();
   1330   void PatchCFI(size_t number_of_delayed_adjust_pcs);
   1331 
   1332   // Emits exception block.
   1333   void EmitExceptionPoll(MipsExceptionSlowPath* exception);
   1334 
   1335   bool IsR6() const {
   1336     if (isa_features_ != nullptr) {
   1337       return isa_features_->IsR6();
   1338     } else {
   1339       return false;
   1340     }
   1341   }
   1342 
   1343   bool Is32BitFPU() const {
   1344     if (isa_features_ != nullptr) {
   1345       return isa_features_->Is32BitFloatingPoint();
   1346     } else {
   1347       return true;
   1348     }
   1349   }
   1350 
   1351   // List of exception blocks to generate at the end of the code cache.
   1352   std::vector<MipsExceptionSlowPath> exception_blocks_;
   1353 
   1354   std::vector<Branch> branches_;
   1355 
   1356   // Whether appending instructions at the end of the buffer or overwriting the existing ones.
   1357   bool overwriting_;
   1358   // The current overwrite location.
   1359   uint32_t overwrite_location_;
   1360 
   1361   // Whether instruction reordering (IOW, automatic filling of delay slots) is enabled.
   1362   bool reordering_;
   1363   // Information about the last instruction that may be used to fill a branch delay slot.
   1364   DelaySlot delay_slot_;
   1365   // Delay slot FSM state.
   1366   DsFsmState ds_fsm_state_;
   1367   // PC of the current labeled target instruction.
   1368   uint32_t ds_fsm_target_pc_;
   1369   // PCs of labeled target instructions.
   1370   std::vector<uint32_t> ds_fsm_target_pcs_;
   1371 
   1372   // Use std::deque<> for literal labels to allow insertions at the end
   1373   // without invalidating pointers and references to existing elements.
   1374   ArenaDeque<Literal> literals_;
   1375 
   1376   // Jump table list.
   1377   ArenaDeque<JumpTable> jump_tables_;
   1378 
   1379   // There's no PC-relative addressing on MIPS32R2. So, in order to access literals relative to PC
   1380   // we get PC using the NAL instruction. This label marks the position within the assembler buffer
   1381   // that PC (from NAL) points to.
   1382   MipsLabel pc_rel_base_label_;
   1383 
   1384   // Data for GetAdjustedPosition(), see the description there.
   1385   uint32_t last_position_adjustment_;
   1386   uint32_t last_old_position_;
   1387   uint32_t last_branch_id_;
   1388 
   1389   const MipsInstructionSetFeatures* isa_features_;
   1390 
   1391   DISALLOW_COPY_AND_ASSIGN(MipsAssembler);
   1392 };
   1393 
   1394 }  // namespace mips
   1395 }  // namespace art
   1396 
   1397 #endif  // ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
   1398