Home | History | Annotate | Download | only in X86
      1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file defines the pass that looks through the machine instructions
     11 /// late in the compilation, and finds byte or word instructions that
     12 /// can be profitably replaced with 32 bit instructions that give equivalent
     13 /// results for the bits of the results that are used. There are two possible
     14 /// reasons to do this.
     15 ///
     16 /// One reason is to avoid false-dependences on the upper portions
     17 /// of the registers.  Only instructions that have a destination register
     18 /// which is not in any of the source registers can be affected by this.
     19 /// Any instruction where one of the source registers is also the destination
     20 /// register is unaffected, because it has a true dependence on the source
     21 /// register already.  So, this consideration primarily affects load
     22 /// instructions and register-to-register moves.  It would
     23 /// seem like cmov(s) would also be affected, but because of the way cmov is
     24 /// really implemented by most machines as reading both the destination and
     25 /// and source regsters, and then "merging" the two based on a condition,
     26 /// it really already should be considered as having a true dependence on the
     27 /// destination register as well.
     28 ///
     29 /// The other reason to do this is for potential code size savings.  Word
     30 /// operations need an extra override byte compared to their 32 bit
     31 /// versions. So this can convert many word operations to their larger
     32 /// size, saving a byte in encoding. This could introduce partial register
     33 /// dependences where none existed however.  As an example take:
     34 ///   orw  ax, $0x1000
     35 ///   addw ax, $3
     36 /// now if this were to get transformed into
     37 ///   orw  ax, $1000
     38 ///   addl eax, $3
     39 /// because the addl encodes shorter than the addw, this would introduce
     40 /// a use of a register that was only partially written earlier.  On older
     41 /// Intel processors this can be quite a performance penalty, so this should
     42 /// probably only be done when it can be proven that a new partial dependence
     43 /// wouldn't be created, or when your know a newer processor is being
     44 /// targeted, or when optimizing for minimum code size.
     45 ///
     46 //===----------------------------------------------------------------------===//
     47 
     48 #include "X86.h"
     49 #include "X86InstrInfo.h"
     50 #include "X86Subtarget.h"
     51 #include "llvm/ADT/Statistic.h"
     52 #include "llvm/CodeGen/LivePhysRegs.h"
     53 #include "llvm/CodeGen/MachineFunctionPass.h"
     54 #include "llvm/CodeGen/MachineInstrBuilder.h"
     55 #include "llvm/CodeGen/MachineLoopInfo.h"
     56 #include "llvm/CodeGen/MachineRegisterInfo.h"
     57 #include "llvm/CodeGen/Passes.h"
     58 #include "llvm/Support/Debug.h"
     59 #include "llvm/Support/raw_ostream.h"
     60 #include "llvm/Target/TargetInstrInfo.h"
     61 using namespace llvm;
     62 
     63 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
     64 #define FIXUPBW_NAME "x86-fixup-bw-insts"
     65 
     66 #define DEBUG_TYPE FIXUPBW_NAME
     67 
     68 // Option to allow this optimization pass to have fine-grained control.
     69 // This is turned off by default so as not to affect a large number of
     70 // existing lit tests.
     71 static cl::opt<bool>
     72     FixupBWInsts("fixup-byte-word-insts",
     73                  cl::desc("Change byte and word instructions to larger sizes"),
     74                  cl::init(true), cl::Hidden);
     75 
     76 namespace {
     77 class FixupBWInstPass : public MachineFunctionPass {
     78   /// Loop over all of the instructions in the basic block replacing applicable
     79   /// byte or word instructions with better alternatives.
     80   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
     81 
     82   /// This sets the \p SuperDestReg to the 32 bit super reg of the original
     83   /// destination register of the MachineInstr passed in. It returns true if
     84   /// that super register is dead just prior to \p OrigMI, and false if not.
     85   bool getSuperRegDestIfDead(MachineInstr *OrigMI,
     86                              unsigned &SuperDestReg) const;
     87 
     88   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
     89   /// register if it is safe to do so.  Return the replacement instruction if
     90   /// OK, otherwise return nullptr.
     91   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
     92 
     93   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
     94   /// safe to do so.  Return the replacement instruction if OK, otherwise return
     95   /// nullptr.
     96   MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
     97 
     98   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
     99   // possible.  Return the replacement instruction if OK, return nullptr
    100   // otherwise. Set WasCandidate to true or false depending on whether the
    101   // MI was a candidate for this sort of transformation.
    102   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB,
    103                                 bool &WasCandidate) const;
    104 public:
    105   static char ID;
    106 
    107   const char *getPassName() const override {
    108     return FIXUPBW_DESC;
    109   }
    110 
    111   FixupBWInstPass() : MachineFunctionPass(ID) {
    112     initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
    113   }
    114 
    115   void getAnalysisUsage(AnalysisUsage &AU) const override {
    116     AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
    117                                        // guide some heuristics.
    118     MachineFunctionPass::getAnalysisUsage(AU);
    119   }
    120 
    121   /// Loop over all of the basic blocks, replacing byte and word instructions by
    122   /// equivalent 32 bit instructions where performance or code size can be
    123   /// improved.
    124   bool runOnMachineFunction(MachineFunction &MF) override;
    125 
    126   MachineFunctionProperties getRequiredProperties() const override {
    127     return MachineFunctionProperties().set(
    128         MachineFunctionProperties::Property::AllVRegsAllocated);
    129   }
    130 
    131 private:
    132   MachineFunction *MF;
    133 
    134   /// Machine instruction info used throughout the class.
    135   const X86InstrInfo *TII;
    136 
    137   /// Local member for function's OptForSize attribute.
    138   bool OptForSize;
    139 
    140   /// Machine loop info used for guiding some heruistics.
    141   MachineLoopInfo *MLI;
    142 
    143   /// Register Liveness information after the current instruction.
    144   LivePhysRegs LiveRegs;
    145 };
    146 char FixupBWInstPass::ID = 0;
    147 }
    148 
    149 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
    150 
    151 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
    152 
    153 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
    154   if (!FixupBWInsts || skipFunction(*MF.getFunction()))
    155     return false;
    156 
    157   this->MF = &MF;
    158   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
    159   OptForSize = MF.getFunction()->optForSize();
    160   MLI = &getAnalysis<MachineLoopInfo>();
    161   LiveRegs.init(&TII->getRegisterInfo());
    162 
    163   DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
    164 
    165   // Process all basic blocks.
    166   for (auto &MBB : MF)
    167     processBasicBlock(MF, MBB);
    168 
    169   DEBUG(dbgs() << "End X86FixupBWInsts\n";);
    170 
    171   return true;
    172 }
    173 
    174 // TODO: This method of analysis can miss some legal cases, because the
    175 // super-register could be live into the address expression for a memory
    176 // reference for the instruction, and still be killed/last used by the
    177 // instruction. However, the existing query interfaces don't seem to
    178 // easily allow that to be checked.
    179 //
    180 // What we'd really like to know is whether after OrigMI, the
    181 // only portion of SuperDestReg that is alive is the portion that
    182 // was the destination register of OrigMI.
    183 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
    184                                             unsigned &SuperDestReg) const {
    185   auto *TRI = &TII->getRegisterInfo();
    186 
    187   unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
    188   SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
    189 
    190   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
    191 
    192   // Make sure that the sub-register that this instruction has as its
    193   // destination is the lowest order sub-register of the super-register.
    194   // If it isn't, then the register isn't really dead even if the
    195   // super-register is considered dead.
    196   if (SubRegIdx == X86::sub_8bit_hi)
    197     return false;
    198 
    199   if (LiveRegs.contains(SuperDestReg))
    200     return false;
    201 
    202   if (SubRegIdx == X86::sub_8bit) {
    203     // In the case of byte registers, we also have to check that the upper
    204     // byte register is also dead. That is considered to be independent of
    205     // whether the super-register is dead.
    206     unsigned UpperByteReg =
    207         getX86SubSuperRegister(SuperDestReg, 8, /*High=*/true);
    208 
    209     if (LiveRegs.contains(UpperByteReg))
    210       return false;
    211   }
    212 
    213   return true;
    214 }
    215 
    216 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
    217                                               MachineInstr *MI) const {
    218   unsigned NewDestReg;
    219 
    220   // We are going to try to rewrite this load to a larger zero-extending
    221   // load.  This is safe if all portions of the 32 bit super-register
    222   // of the original destination register, except for the original destination
    223   // register are dead. getSuperRegDestIfDead checks that.
    224   if (!getSuperRegDestIfDead(MI, NewDestReg))
    225     return nullptr;
    226 
    227   // Safe to change the instruction.
    228   MachineInstrBuilder MIB =
    229       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
    230 
    231   unsigned NumArgs = MI->getNumOperands();
    232   for (unsigned i = 1; i < NumArgs; ++i)
    233     MIB.addOperand(MI->getOperand(i));
    234 
    235   MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
    236 
    237   return MIB;
    238 }
    239 
    240 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
    241   assert(MI->getNumExplicitOperands() == 2);
    242   auto &OldDest = MI->getOperand(0);
    243   auto &OldSrc = MI->getOperand(1);
    244 
    245   unsigned NewDestReg;
    246   if (!getSuperRegDestIfDead(MI, NewDestReg))
    247     return nullptr;
    248 
    249   unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
    250 
    251   // This is only correct if we access the same subregister index: otherwise,
    252   // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
    253   auto *TRI = &TII->getRegisterInfo();
    254   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
    255       TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
    256     return nullptr;
    257 
    258   // Safe to change the instruction.
    259   // Don't set src flags, as we don't know if we're also killing the superreg.
    260   // However, the superregister might not be defined; make it explicit that
    261   // we don't care about the higher bits by reading it as Undef, and adding
    262   // an imp-use on the original subregister.
    263   MachineInstrBuilder MIB =
    264       BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
    265           .addReg(NewSrcReg, RegState::Undef)
    266           .addReg(OldSrc.getReg(), RegState::Implicit);
    267 
    268   // Drop imp-defs/uses that would be redundant with the new def/use.
    269   for (auto &Op : MI->implicit_operands())
    270     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
    271       MIB.addOperand(Op);
    272 
    273   return MIB;
    274 }
    275 
    276 MachineInstr *FixupBWInstPass::tryReplaceInstr(
    277                   MachineInstr *MI, MachineBasicBlock &MBB,
    278                   bool &WasCandidate) const {
    279   MachineInstr *NewMI = nullptr;
    280   WasCandidate = false;
    281 
    282   // See if this is an instruction of the type we are currently looking for.
    283   switch (MI->getOpcode()) {
    284 
    285   case X86::MOV8rm:
    286     // Only replace 8 bit loads with the zero extending versions if
    287     // in an inner most loop and not optimizing for size. This takes
    288     // an extra byte to encode, and provides limited performance upside.
    289     if (MachineLoop *ML = MLI->getLoopFor(&MBB)) {
    290       if (ML->begin() == ML->end() && !OptForSize) {
    291         NewMI = tryReplaceLoad(X86::MOVZX32rm8, MI);
    292         WasCandidate = true;
    293       }
    294     }
    295     break;
    296 
    297   case X86::MOV16rm:
    298     // Always try to replace 16 bit load with 32 bit zero extending.
    299     // Code size is the same, and there is sometimes a perf advantage
    300     // from eliminating a false dependence on the upper portion of
    301     // the register.
    302     NewMI = tryReplaceLoad(X86::MOVZX32rm16, MI);
    303     WasCandidate = true;
    304     break;
    305 
    306   case X86::MOV8rr:
    307   case X86::MOV16rr:
    308     // Always try to replace 8/16 bit copies with a 32 bit copy.
    309     // Code size is either less (16) or equal (8), and there is sometimes a
    310     // perf advantage from eliminating a false dependence on the upper portion
    311     // of the register.
    312     NewMI = tryReplaceCopy(MI);
    313     WasCandidate = true;
    314     break;
    315 
    316   default:
    317     // nothing to do here.
    318     break;
    319   }
    320 
    321   return NewMI;
    322 }
    323 
    324 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
    325                                         MachineBasicBlock &MBB) {
    326 
    327   // This algorithm doesn't delete the instructions it is replacing
    328   // right away.  By leaving the existing instructions in place, the
    329   // register liveness information doesn't change, and this makes the
    330   // analysis that goes on be better than if the replaced instructions
    331   // were immediately removed.
    332   //
    333   // This algorithm always creates a replacement instruction
    334   // and notes that and the original in a data structure, until the
    335   // whole BB has been analyzed.  This keeps the replacement instructions
    336   // from making it seem as if the larger register might be live.
    337   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
    338 
    339   // Start computing liveness for this block. We iterate from the end to be able
    340   // to update this for each instruction.
    341   LiveRegs.clear();
    342   // We run after PEI, so we need to AddPristinesAndCSRs.
    343   LiveRegs.addLiveOuts(MBB);
    344 
    345   bool WasCandidate = false;
    346 
    347   for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
    348     MachineInstr *MI = &*I;
    349 
    350     MachineInstr *NewMI = tryReplaceInstr(MI, MBB, WasCandidate);
    351 
    352     // Add this to replacements if it was a candidate, even if NewMI is
    353     // nullptr.  We will revisit that in a bit.
    354     if (WasCandidate) {
    355       MIReplacements.push_back(std::make_pair(MI, NewMI));
    356     }
    357 
    358     // We're done with this instruction, update liveness for the next one.
    359     LiveRegs.stepBackward(*MI);
    360   }
    361 
    362   while (!MIReplacements.empty()) {
    363     MachineInstr *MI = MIReplacements.back().first;
    364     MachineInstr *NewMI = MIReplacements.back().second;
    365     MIReplacements.pop_back();
    366     if (NewMI) {
    367       MBB.insert(MI, NewMI);
    368       MBB.erase(MI);
    369     }
    370   }
    371 }
    372