Home | History | Annotate | Download | only in IR
      1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Constant* classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Constants.h"
     15 #include "ConstantFold.h"
     16 #include "LLVMContextImpl.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/StringExtras.h"
     20 #include "llvm/ADT/StringMap.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/GetElementPtrTypeIterator.h"
     23 #include "llvm/IR/GlobalValue.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/IR/Operator.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/ManagedStatic.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include <algorithm>
     33 #include <cstdarg>
     34 using namespace llvm;
     35 
     36 //===----------------------------------------------------------------------===//
     37 //                              Constant Class
     38 //===----------------------------------------------------------------------===//
     39 
     40 void Constant::anchor() { }
     41 
     42 void ConstantData::anchor() {}
     43 
     44 bool Constant::isNegativeZeroValue() const {
     45   // Floating point values have an explicit -0.0 value.
     46   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     47     return CFP->isZero() && CFP->isNegative();
     48 
     49   // Equivalent for a vector of -0.0's.
     50   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
     51     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     52       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
     53         return true;
     54 
     55   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
     56     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     57       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
     58         return true;
     59 
     60   // We've already handled true FP case; any other FP vectors can't represent -0.0.
     61   if (getType()->isFPOrFPVectorTy())
     62     return false;
     63 
     64   // Otherwise, just use +0.0.
     65   return isNullValue();
     66 }
     67 
     68 // Return true iff this constant is positive zero (floating point), negative
     69 // zero (floating point), or a null value.
     70 bool Constant::isZeroValue() const {
     71   // Floating point values have an explicit -0.0 value.
     72   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     73     return CFP->isZero();
     74 
     75   // Equivalent for a vector of -0.0's.
     76   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
     77     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     78       if (SplatCFP && SplatCFP->isZero())
     79         return true;
     80 
     81   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
     82     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     83       if (SplatCFP && SplatCFP->isZero())
     84         return true;
     85 
     86   // Otherwise, just use +0.0.
     87   return isNullValue();
     88 }
     89 
     90 bool Constant::isNullValue() const {
     91   // 0 is null.
     92   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     93     return CI->isZero();
     94 
     95   // +0.0 is null.
     96   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     97     return CFP->isZero() && !CFP->isNegative();
     98 
     99   // constant zero is zero for aggregates, cpnull is null for pointers, none for
    100   // tokens.
    101   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
    102          isa<ConstantTokenNone>(this);
    103 }
    104 
    105 bool Constant::isAllOnesValue() const {
    106   // Check for -1 integers
    107   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    108     return CI->isMinusOne();
    109 
    110   // Check for FP which are bitcasted from -1 integers
    111   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    112     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
    113 
    114   // Check for constant vectors which are splats of -1 values.
    115   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    116     if (Constant *Splat = CV->getSplatValue())
    117       return Splat->isAllOnesValue();
    118 
    119   // Check for constant vectors which are splats of -1 values.
    120   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    121     if (Constant *Splat = CV->getSplatValue())
    122       return Splat->isAllOnesValue();
    123 
    124   return false;
    125 }
    126 
    127 bool Constant::isOneValue() const {
    128   // Check for 1 integers
    129   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    130     return CI->isOne();
    131 
    132   // Check for FP which are bitcasted from 1 integers
    133   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    134     return CFP->getValueAPF().bitcastToAPInt() == 1;
    135 
    136   // Check for constant vectors which are splats of 1 values.
    137   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    138     if (Constant *Splat = CV->getSplatValue())
    139       return Splat->isOneValue();
    140 
    141   // Check for constant vectors which are splats of 1 values.
    142   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    143     if (Constant *Splat = CV->getSplatValue())
    144       return Splat->isOneValue();
    145 
    146   return false;
    147 }
    148 
    149 bool Constant::isMinSignedValue() const {
    150   // Check for INT_MIN integers
    151   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    152     return CI->isMinValue(/*isSigned=*/true);
    153 
    154   // Check for FP which are bitcasted from INT_MIN integers
    155   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    156     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
    157 
    158   // Check for constant vectors which are splats of INT_MIN values.
    159   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    160     if (Constant *Splat = CV->getSplatValue())
    161       return Splat->isMinSignedValue();
    162 
    163   // Check for constant vectors which are splats of INT_MIN values.
    164   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    165     if (Constant *Splat = CV->getSplatValue())
    166       return Splat->isMinSignedValue();
    167 
    168   return false;
    169 }
    170 
    171 bool Constant::isNotMinSignedValue() const {
    172   // Check for INT_MIN integers
    173   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    174     return !CI->isMinValue(/*isSigned=*/true);
    175 
    176   // Check for FP which are bitcasted from INT_MIN integers
    177   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    178     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
    179 
    180   // Check for constant vectors which are splats of INT_MIN values.
    181   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    182     if (Constant *Splat = CV->getSplatValue())
    183       return Splat->isNotMinSignedValue();
    184 
    185   // Check for constant vectors which are splats of INT_MIN values.
    186   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    187     if (Constant *Splat = CV->getSplatValue())
    188       return Splat->isNotMinSignedValue();
    189 
    190   // It *may* contain INT_MIN, we can't tell.
    191   return false;
    192 }
    193 
    194 /// Constructor to create a '0' constant of arbitrary type.
    195 Constant *Constant::getNullValue(Type *Ty) {
    196   switch (Ty->getTypeID()) {
    197   case Type::IntegerTyID:
    198     return ConstantInt::get(Ty, 0);
    199   case Type::HalfTyID:
    200     return ConstantFP::get(Ty->getContext(),
    201                            APFloat::getZero(APFloat::IEEEhalf));
    202   case Type::FloatTyID:
    203     return ConstantFP::get(Ty->getContext(),
    204                            APFloat::getZero(APFloat::IEEEsingle));
    205   case Type::DoubleTyID:
    206     return ConstantFP::get(Ty->getContext(),
    207                            APFloat::getZero(APFloat::IEEEdouble));
    208   case Type::X86_FP80TyID:
    209     return ConstantFP::get(Ty->getContext(),
    210                            APFloat::getZero(APFloat::x87DoubleExtended));
    211   case Type::FP128TyID:
    212     return ConstantFP::get(Ty->getContext(),
    213                            APFloat::getZero(APFloat::IEEEquad));
    214   case Type::PPC_FP128TyID:
    215     return ConstantFP::get(Ty->getContext(),
    216                            APFloat(APFloat::PPCDoubleDouble,
    217                                    APInt::getNullValue(128)));
    218   case Type::PointerTyID:
    219     return ConstantPointerNull::get(cast<PointerType>(Ty));
    220   case Type::StructTyID:
    221   case Type::ArrayTyID:
    222   case Type::VectorTyID:
    223     return ConstantAggregateZero::get(Ty);
    224   case Type::TokenTyID:
    225     return ConstantTokenNone::get(Ty->getContext());
    226   default:
    227     // Function, Label, or Opaque type?
    228     llvm_unreachable("Cannot create a null constant of that type!");
    229   }
    230 }
    231 
    232 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
    233   Type *ScalarTy = Ty->getScalarType();
    234 
    235   // Create the base integer constant.
    236   Constant *C = ConstantInt::get(Ty->getContext(), V);
    237 
    238   // Convert an integer to a pointer, if necessary.
    239   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    240     C = ConstantExpr::getIntToPtr(C, PTy);
    241 
    242   // Broadcast a scalar to a vector, if necessary.
    243   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    244     C = ConstantVector::getSplat(VTy->getNumElements(), C);
    245 
    246   return C;
    247 }
    248 
    249 Constant *Constant::getAllOnesValue(Type *Ty) {
    250   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    251     return ConstantInt::get(Ty->getContext(),
    252                             APInt::getAllOnesValue(ITy->getBitWidth()));
    253 
    254   if (Ty->isFloatingPointTy()) {
    255     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
    256                                           !Ty->isPPC_FP128Ty());
    257     return ConstantFP::get(Ty->getContext(), FL);
    258   }
    259 
    260   VectorType *VTy = cast<VectorType>(Ty);
    261   return ConstantVector::getSplat(VTy->getNumElements(),
    262                                   getAllOnesValue(VTy->getElementType()));
    263 }
    264 
    265 Constant *Constant::getAggregateElement(unsigned Elt) const {
    266   if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
    267     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
    268 
    269   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
    270     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
    271 
    272   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
    273     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
    274 
    275   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
    276     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
    277                                        : nullptr;
    278   return nullptr;
    279 }
    280 
    281 Constant *Constant::getAggregateElement(Constant *Elt) const {
    282   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
    283   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
    284     return getAggregateElement(CI->getZExtValue());
    285   return nullptr;
    286 }
    287 
    288 void Constant::destroyConstant() {
    289   /// First call destroyConstantImpl on the subclass.  This gives the subclass
    290   /// a chance to remove the constant from any maps/pools it's contained in.
    291   switch (getValueID()) {
    292   default:
    293     llvm_unreachable("Not a constant!");
    294 #define HANDLE_CONSTANT(Name)                                                  \
    295   case Value::Name##Val:                                                       \
    296     cast<Name>(this)->destroyConstantImpl();                                   \
    297     break;
    298 #include "llvm/IR/Value.def"
    299   }
    300 
    301   // When a Constant is destroyed, there may be lingering
    302   // references to the constant by other constants in the constant pool.  These
    303   // constants are implicitly dependent on the module that is being deleted,
    304   // but they don't know that.  Because we only find out when the CPV is
    305   // deleted, we must now notify all of our users (that should only be
    306   // Constants) that they are, in fact, invalid now and should be deleted.
    307   //
    308   while (!use_empty()) {
    309     Value *V = user_back();
    310 #ifndef NDEBUG // Only in -g mode...
    311     if (!isa<Constant>(V)) {
    312       dbgs() << "While deleting: " << *this
    313              << "\n\nUse still stuck around after Def is destroyed: " << *V
    314              << "\n\n";
    315     }
    316 #endif
    317     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    318     cast<Constant>(V)->destroyConstant();
    319 
    320     // The constant should remove itself from our use list...
    321     assert((use_empty() || user_back() != V) && "Constant not removed!");
    322   }
    323 
    324   // Value has no outstanding references it is safe to delete it now...
    325   delete this;
    326 }
    327 
    328 static bool canTrapImpl(const Constant *C,
    329                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
    330   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
    331   // The only thing that could possibly trap are constant exprs.
    332   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    333   if (!CE)
    334     return false;
    335 
    336   // ConstantExpr traps if any operands can trap.
    337   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
    338     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
    339       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
    340         return true;
    341     }
    342   }
    343 
    344   // Otherwise, only specific operations can trap.
    345   switch (CE->getOpcode()) {
    346   default:
    347     return false;
    348   case Instruction::UDiv:
    349   case Instruction::SDiv:
    350   case Instruction::FDiv:
    351   case Instruction::URem:
    352   case Instruction::SRem:
    353   case Instruction::FRem:
    354     // Div and rem can trap if the RHS is not known to be non-zero.
    355     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
    356       return true;
    357     return false;
    358   }
    359 }
    360 
    361 bool Constant::canTrap() const {
    362   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
    363   return canTrapImpl(this, NonTrappingOps);
    364 }
    365 
    366 /// Check if C contains a GlobalValue for which Predicate is true.
    367 static bool
    368 ConstHasGlobalValuePredicate(const Constant *C,
    369                              bool (*Predicate)(const GlobalValue *)) {
    370   SmallPtrSet<const Constant *, 8> Visited;
    371   SmallVector<const Constant *, 8> WorkList;
    372   WorkList.push_back(C);
    373   Visited.insert(C);
    374 
    375   while (!WorkList.empty()) {
    376     const Constant *WorkItem = WorkList.pop_back_val();
    377     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
    378       if (Predicate(GV))
    379         return true;
    380     for (const Value *Op : WorkItem->operands()) {
    381       const Constant *ConstOp = dyn_cast<Constant>(Op);
    382       if (!ConstOp)
    383         continue;
    384       if (Visited.insert(ConstOp).second)
    385         WorkList.push_back(ConstOp);
    386     }
    387   }
    388   return false;
    389 }
    390 
    391 bool Constant::isThreadDependent() const {
    392   auto DLLImportPredicate = [](const GlobalValue *GV) {
    393     return GV->isThreadLocal();
    394   };
    395   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    396 }
    397 
    398 bool Constant::isDLLImportDependent() const {
    399   auto DLLImportPredicate = [](const GlobalValue *GV) {
    400     return GV->hasDLLImportStorageClass();
    401   };
    402   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    403 }
    404 
    405 bool Constant::isConstantUsed() const {
    406   for (const User *U : users()) {
    407     const Constant *UC = dyn_cast<Constant>(U);
    408     if (!UC || isa<GlobalValue>(UC))
    409       return true;
    410 
    411     if (UC->isConstantUsed())
    412       return true;
    413   }
    414   return false;
    415 }
    416 
    417 bool Constant::needsRelocation() const {
    418   if (isa<GlobalValue>(this))
    419     return true; // Global reference.
    420 
    421   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    422     return BA->getFunction()->needsRelocation();
    423 
    424   // While raw uses of blockaddress need to be relocated, differences between
    425   // two of them don't when they are for labels in the same function.  This is a
    426   // common idiom when creating a table for the indirect goto extension, so we
    427   // handle it efficiently here.
    428   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    429     if (CE->getOpcode() == Instruction::Sub) {
    430       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
    431       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
    432       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
    433           RHS->getOpcode() == Instruction::PtrToInt &&
    434           isa<BlockAddress>(LHS->getOperand(0)) &&
    435           isa<BlockAddress>(RHS->getOperand(0)) &&
    436           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
    437               cast<BlockAddress>(RHS->getOperand(0))->getFunction())
    438         return false;
    439     }
    440 
    441   bool Result = false;
    442   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    443     Result |= cast<Constant>(getOperand(i))->needsRelocation();
    444 
    445   return Result;
    446 }
    447 
    448 /// If the specified constantexpr is dead, remove it. This involves recursively
    449 /// eliminating any dead users of the constantexpr.
    450 static bool removeDeadUsersOfConstant(const Constant *C) {
    451   if (isa<GlobalValue>(C)) return false; // Cannot remove this
    452 
    453   while (!C->use_empty()) {
    454     const Constant *User = dyn_cast<Constant>(C->user_back());
    455     if (!User) return false; // Non-constant usage;
    456     if (!removeDeadUsersOfConstant(User))
    457       return false; // Constant wasn't dead
    458   }
    459 
    460   const_cast<Constant*>(C)->destroyConstant();
    461   return true;
    462 }
    463 
    464 
    465 void Constant::removeDeadConstantUsers() const {
    466   Value::const_user_iterator I = user_begin(), E = user_end();
    467   Value::const_user_iterator LastNonDeadUser = E;
    468   while (I != E) {
    469     const Constant *User = dyn_cast<Constant>(*I);
    470     if (!User) {
    471       LastNonDeadUser = I;
    472       ++I;
    473       continue;
    474     }
    475 
    476     if (!removeDeadUsersOfConstant(User)) {
    477       // If the constant wasn't dead, remember that this was the last live use
    478       // and move on to the next constant.
    479       LastNonDeadUser = I;
    480       ++I;
    481       continue;
    482     }
    483 
    484     // If the constant was dead, then the iterator is invalidated.
    485     if (LastNonDeadUser == E) {
    486       I = user_begin();
    487       if (I == E) break;
    488     } else {
    489       I = LastNonDeadUser;
    490       ++I;
    491     }
    492   }
    493 }
    494 
    495 
    496 
    497 //===----------------------------------------------------------------------===//
    498 //                                ConstantInt
    499 //===----------------------------------------------------------------------===//
    500 
    501 void ConstantInt::anchor() { }
    502 
    503 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
    504     : ConstantData(Ty, ConstantIntVal), Val(V) {
    505   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
    506 }
    507 
    508 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
    509   LLVMContextImpl *pImpl = Context.pImpl;
    510   if (!pImpl->TheTrueVal)
    511     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
    512   return pImpl->TheTrueVal;
    513 }
    514 
    515 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
    516   LLVMContextImpl *pImpl = Context.pImpl;
    517   if (!pImpl->TheFalseVal)
    518     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
    519   return pImpl->TheFalseVal;
    520 }
    521 
    522 Constant *ConstantInt::getTrue(Type *Ty) {
    523   VectorType *VTy = dyn_cast<VectorType>(Ty);
    524   if (!VTy) {
    525     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
    526     return ConstantInt::getTrue(Ty->getContext());
    527   }
    528   assert(VTy->getElementType()->isIntegerTy(1) &&
    529          "True must be vector of i1 or i1.");
    530   return ConstantVector::getSplat(VTy->getNumElements(),
    531                                   ConstantInt::getTrue(Ty->getContext()));
    532 }
    533 
    534 Constant *ConstantInt::getFalse(Type *Ty) {
    535   VectorType *VTy = dyn_cast<VectorType>(Ty);
    536   if (!VTy) {
    537     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
    538     return ConstantInt::getFalse(Ty->getContext());
    539   }
    540   assert(VTy->getElementType()->isIntegerTy(1) &&
    541          "False must be vector of i1 or i1.");
    542   return ConstantVector::getSplat(VTy->getNumElements(),
    543                                   ConstantInt::getFalse(Ty->getContext()));
    544 }
    545 
    546 // Get a ConstantInt from an APInt.
    547 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
    548   // get an existing value or the insertion position
    549   LLVMContextImpl *pImpl = Context.pImpl;
    550   ConstantInt *&Slot = pImpl->IntConstants[V];
    551   if (!Slot) {
    552     // Get the corresponding integer type for the bit width of the value.
    553     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
    554     Slot = new ConstantInt(ITy, V);
    555   }
    556   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
    557   return Slot;
    558 }
    559 
    560 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
    561   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
    562 
    563   // For vectors, broadcast the value.
    564   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    565     return ConstantVector::getSplat(VTy->getNumElements(), C);
    566 
    567   return C;
    568 }
    569 
    570 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
    571   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
    572 }
    573 
    574 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
    575   return get(Ty, V, true);
    576 }
    577 
    578 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
    579   return get(Ty, V, true);
    580 }
    581 
    582 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
    583   ConstantInt *C = get(Ty->getContext(), V);
    584   assert(C->getType() == Ty->getScalarType() &&
    585          "ConstantInt type doesn't match the type implied by its value!");
    586 
    587   // For vectors, broadcast the value.
    588   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    589     return ConstantVector::getSplat(VTy->getNumElements(), C);
    590 
    591   return C;
    592 }
    593 
    594 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
    595   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
    596 }
    597 
    598 /// Remove the constant from the constant table.
    599 void ConstantInt::destroyConstantImpl() {
    600   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
    601 }
    602 
    603 //===----------------------------------------------------------------------===//
    604 //                                ConstantFP
    605 //===----------------------------------------------------------------------===//
    606 
    607 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
    608   if (Ty->isHalfTy())
    609     return &APFloat::IEEEhalf;
    610   if (Ty->isFloatTy())
    611     return &APFloat::IEEEsingle;
    612   if (Ty->isDoubleTy())
    613     return &APFloat::IEEEdouble;
    614   if (Ty->isX86_FP80Ty())
    615     return &APFloat::x87DoubleExtended;
    616   else if (Ty->isFP128Ty())
    617     return &APFloat::IEEEquad;
    618 
    619   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
    620   return &APFloat::PPCDoubleDouble;
    621 }
    622 
    623 void ConstantFP::anchor() { }
    624 
    625 Constant *ConstantFP::get(Type *Ty, double V) {
    626   LLVMContext &Context = Ty->getContext();
    627 
    628   APFloat FV(V);
    629   bool ignored;
    630   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
    631              APFloat::rmNearestTiesToEven, &ignored);
    632   Constant *C = get(Context, FV);
    633 
    634   // For vectors, broadcast the value.
    635   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    636     return ConstantVector::getSplat(VTy->getNumElements(), C);
    637 
    638   return C;
    639 }
    640 
    641 
    642 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
    643   LLVMContext &Context = Ty->getContext();
    644 
    645   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
    646   Constant *C = get(Context, FV);
    647 
    648   // For vectors, broadcast the value.
    649   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    650     return ConstantVector::getSplat(VTy->getNumElements(), C);
    651 
    652   return C;
    653 }
    654 
    655 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
    656   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    657   APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
    658   Constant *C = get(Ty->getContext(), NaN);
    659 
    660   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    661     return ConstantVector::getSplat(VTy->getNumElements(), C);
    662 
    663   return C;
    664 }
    665 
    666 Constant *ConstantFP::getNegativeZero(Type *Ty) {
    667   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    668   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
    669   Constant *C = get(Ty->getContext(), NegZero);
    670 
    671   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    672     return ConstantVector::getSplat(VTy->getNumElements(), C);
    673 
    674   return C;
    675 }
    676 
    677 
    678 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
    679   if (Ty->isFPOrFPVectorTy())
    680     return getNegativeZero(Ty);
    681 
    682   return Constant::getNullValue(Ty);
    683 }
    684 
    685 
    686 // ConstantFP accessors.
    687 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
    688   LLVMContextImpl* pImpl = Context.pImpl;
    689 
    690   ConstantFP *&Slot = pImpl->FPConstants[V];
    691 
    692   if (!Slot) {
    693     Type *Ty;
    694     if (&V.getSemantics() == &APFloat::IEEEhalf)
    695       Ty = Type::getHalfTy(Context);
    696     else if (&V.getSemantics() == &APFloat::IEEEsingle)
    697       Ty = Type::getFloatTy(Context);
    698     else if (&V.getSemantics() == &APFloat::IEEEdouble)
    699       Ty = Type::getDoubleTy(Context);
    700     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
    701       Ty = Type::getX86_FP80Ty(Context);
    702     else if (&V.getSemantics() == &APFloat::IEEEquad)
    703       Ty = Type::getFP128Ty(Context);
    704     else {
    705       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
    706              "Unknown FP format");
    707       Ty = Type::getPPC_FP128Ty(Context);
    708     }
    709     Slot = new ConstantFP(Ty, V);
    710   }
    711 
    712   return Slot;
    713 }
    714 
    715 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
    716   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    717   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
    718 
    719   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    720     return ConstantVector::getSplat(VTy->getNumElements(), C);
    721 
    722   return C;
    723 }
    724 
    725 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
    726     : ConstantData(Ty, ConstantFPVal), Val(V) {
    727   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
    728          "FP type Mismatch");
    729 }
    730 
    731 bool ConstantFP::isExactlyValue(const APFloat &V) const {
    732   return Val.bitwiseIsEqual(V);
    733 }
    734 
    735 /// Remove the constant from the constant table.
    736 void ConstantFP::destroyConstantImpl() {
    737   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
    738 }
    739 
    740 //===----------------------------------------------------------------------===//
    741 //                   ConstantAggregateZero Implementation
    742 //===----------------------------------------------------------------------===//
    743 
    744 Constant *ConstantAggregateZero::getSequentialElement() const {
    745   return Constant::getNullValue(getType()->getSequentialElementType());
    746 }
    747 
    748 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
    749   return Constant::getNullValue(getType()->getStructElementType(Elt));
    750 }
    751 
    752 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
    753   if (isa<SequentialType>(getType()))
    754     return getSequentialElement();
    755   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    756 }
    757 
    758 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
    759   if (isa<SequentialType>(getType()))
    760     return getSequentialElement();
    761   return getStructElement(Idx);
    762 }
    763 
    764 unsigned ConstantAggregateZero::getNumElements() const {
    765   Type *Ty = getType();
    766   if (auto *AT = dyn_cast<ArrayType>(Ty))
    767     return AT->getNumElements();
    768   if (auto *VT = dyn_cast<VectorType>(Ty))
    769     return VT->getNumElements();
    770   return Ty->getStructNumElements();
    771 }
    772 
    773 //===----------------------------------------------------------------------===//
    774 //                         UndefValue Implementation
    775 //===----------------------------------------------------------------------===//
    776 
    777 UndefValue *UndefValue::getSequentialElement() const {
    778   return UndefValue::get(getType()->getSequentialElementType());
    779 }
    780 
    781 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
    782   return UndefValue::get(getType()->getStructElementType(Elt));
    783 }
    784 
    785 UndefValue *UndefValue::getElementValue(Constant *C) const {
    786   if (isa<SequentialType>(getType()))
    787     return getSequentialElement();
    788   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    789 }
    790 
    791 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
    792   if (isa<SequentialType>(getType()))
    793     return getSequentialElement();
    794   return getStructElement(Idx);
    795 }
    796 
    797 unsigned UndefValue::getNumElements() const {
    798   Type *Ty = getType();
    799   if (auto *AT = dyn_cast<ArrayType>(Ty))
    800     return AT->getNumElements();
    801   if (auto *VT = dyn_cast<VectorType>(Ty))
    802     return VT->getNumElements();
    803   return Ty->getStructNumElements();
    804 }
    805 
    806 //===----------------------------------------------------------------------===//
    807 //                            ConstantXXX Classes
    808 //===----------------------------------------------------------------------===//
    809 
    810 template <typename ItTy, typename EltTy>
    811 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
    812   for (; Start != End; ++Start)
    813     if (*Start != Elt)
    814       return false;
    815   return true;
    816 }
    817 
    818 template <typename SequentialTy, typename ElementTy>
    819 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
    820   assert(!V.empty() && "Cannot get empty int sequence.");
    821 
    822   SmallVector<ElementTy, 16> Elts;
    823   for (Constant *C : V)
    824     if (auto *CI = dyn_cast<ConstantInt>(C))
    825       Elts.push_back(CI->getZExtValue());
    826     else
    827       return nullptr;
    828   return SequentialTy::get(V[0]->getContext(), Elts);
    829 }
    830 
    831 template <typename SequentialTy, typename ElementTy>
    832 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
    833   assert(!V.empty() && "Cannot get empty FP sequence.");
    834 
    835   SmallVector<ElementTy, 16> Elts;
    836   for (Constant *C : V)
    837     if (auto *CFP = dyn_cast<ConstantFP>(C))
    838       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
    839     else
    840       return nullptr;
    841   return SequentialTy::getFP(V[0]->getContext(), Elts);
    842 }
    843 
    844 template <typename SequenceTy>
    845 static Constant *getSequenceIfElementsMatch(Constant *C,
    846                                             ArrayRef<Constant *> V) {
    847   // We speculatively build the elements here even if it turns out that there is
    848   // a constantexpr or something else weird, since it is so uncommon for that to
    849   // happen.
    850   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    851     if (CI->getType()->isIntegerTy(8))
    852       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
    853     else if (CI->getType()->isIntegerTy(16))
    854       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
    855     else if (CI->getType()->isIntegerTy(32))
    856       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
    857     else if (CI->getType()->isIntegerTy(64))
    858       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
    859   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    860     if (CFP->getType()->isHalfTy())
    861       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
    862     else if (CFP->getType()->isFloatTy())
    863       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
    864     else if (CFP->getType()->isDoubleTy())
    865       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
    866   }
    867 
    868   return nullptr;
    869 }
    870 
    871 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
    872                                      ArrayRef<Constant *> V)
    873     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
    874                V.size()) {
    875   std::copy(V.begin(), V.end(), op_begin());
    876 
    877   // Check that types match, unless this is an opaque struct.
    878   if (auto *ST = dyn_cast<StructType>(T))
    879     if (ST->isOpaque())
    880       return;
    881   for (unsigned I = 0, E = V.size(); I != E; ++I)
    882     assert(V[I]->getType() == T->getTypeAtIndex(I) &&
    883            "Initializer for composite element doesn't match!");
    884 }
    885 
    886 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
    887     : ConstantAggregate(T, ConstantArrayVal, V) {
    888   assert(V.size() == T->getNumElements() &&
    889          "Invalid initializer for constant array");
    890 }
    891 
    892 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
    893   if (Constant *C = getImpl(Ty, V))
    894     return C;
    895   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
    896 }
    897 
    898 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
    899   // Empty arrays are canonicalized to ConstantAggregateZero.
    900   if (V.empty())
    901     return ConstantAggregateZero::get(Ty);
    902 
    903   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    904     assert(V[i]->getType() == Ty->getElementType() &&
    905            "Wrong type in array element initializer");
    906   }
    907 
    908   // If this is an all-zero array, return a ConstantAggregateZero object.  If
    909   // all undef, return an UndefValue, if "all simple", then return a
    910   // ConstantDataArray.
    911   Constant *C = V[0];
    912   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
    913     return UndefValue::get(Ty);
    914 
    915   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
    916     return ConstantAggregateZero::get(Ty);
    917 
    918   // Check to see if all of the elements are ConstantFP or ConstantInt and if
    919   // the element type is compatible with ConstantDataVector.  If so, use it.
    920   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
    921     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
    922 
    923   // Otherwise, we really do want to create a ConstantArray.
    924   return nullptr;
    925 }
    926 
    927 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
    928                                                ArrayRef<Constant*> V,
    929                                                bool Packed) {
    930   unsigned VecSize = V.size();
    931   SmallVector<Type*, 16> EltTypes(VecSize);
    932   for (unsigned i = 0; i != VecSize; ++i)
    933     EltTypes[i] = V[i]->getType();
    934 
    935   return StructType::get(Context, EltTypes, Packed);
    936 }
    937 
    938 
    939 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
    940                                                bool Packed) {
    941   assert(!V.empty() &&
    942          "ConstantStruct::getTypeForElements cannot be called on empty list");
    943   return getTypeForElements(V[0]->getContext(), V, Packed);
    944 }
    945 
    946 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
    947     : ConstantAggregate(T, ConstantStructVal, V) {
    948   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
    949          "Invalid initializer for constant struct");
    950 }
    951 
    952 // ConstantStruct accessors.
    953 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
    954   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
    955          "Incorrect # elements specified to ConstantStruct::get");
    956 
    957   // Create a ConstantAggregateZero value if all elements are zeros.
    958   bool isZero = true;
    959   bool isUndef = false;
    960 
    961   if (!V.empty()) {
    962     isUndef = isa<UndefValue>(V[0]);
    963     isZero = V[0]->isNullValue();
    964     if (isUndef || isZero) {
    965       for (unsigned i = 0, e = V.size(); i != e; ++i) {
    966         if (!V[i]->isNullValue())
    967           isZero = false;
    968         if (!isa<UndefValue>(V[i]))
    969           isUndef = false;
    970       }
    971     }
    972   }
    973   if (isZero)
    974     return ConstantAggregateZero::get(ST);
    975   if (isUndef)
    976     return UndefValue::get(ST);
    977 
    978   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
    979 }
    980 
    981 Constant *ConstantStruct::get(StructType *T, ...) {
    982   va_list ap;
    983   SmallVector<Constant*, 8> Values;
    984   va_start(ap, T);
    985   while (Constant *Val = va_arg(ap, llvm::Constant*))
    986     Values.push_back(Val);
    987   va_end(ap);
    988   return get(T, Values);
    989 }
    990 
    991 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
    992     : ConstantAggregate(T, ConstantVectorVal, V) {
    993   assert(V.size() == T->getNumElements() &&
    994          "Invalid initializer for constant vector");
    995 }
    996 
    997 // ConstantVector accessors.
    998 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
    999   if (Constant *C = getImpl(V))
   1000     return C;
   1001   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
   1002   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
   1003 }
   1004 
   1005 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
   1006   assert(!V.empty() && "Vectors can't be empty");
   1007   VectorType *T = VectorType::get(V.front()->getType(), V.size());
   1008 
   1009   // If this is an all-undef or all-zero vector, return a
   1010   // ConstantAggregateZero or UndefValue.
   1011   Constant *C = V[0];
   1012   bool isZero = C->isNullValue();
   1013   bool isUndef = isa<UndefValue>(C);
   1014 
   1015   if (isZero || isUndef) {
   1016     for (unsigned i = 1, e = V.size(); i != e; ++i)
   1017       if (V[i] != C) {
   1018         isZero = isUndef = false;
   1019         break;
   1020       }
   1021   }
   1022 
   1023   if (isZero)
   1024     return ConstantAggregateZero::get(T);
   1025   if (isUndef)
   1026     return UndefValue::get(T);
   1027 
   1028   // Check to see if all of the elements are ConstantFP or ConstantInt and if
   1029   // the element type is compatible with ConstantDataVector.  If so, use it.
   1030   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
   1031     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
   1032 
   1033   // Otherwise, the element type isn't compatible with ConstantDataVector, or
   1034   // the operand list constants a ConstantExpr or something else strange.
   1035   return nullptr;
   1036 }
   1037 
   1038 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
   1039   // If this splat is compatible with ConstantDataVector, use it instead of
   1040   // ConstantVector.
   1041   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
   1042       ConstantDataSequential::isElementTypeCompatible(V->getType()))
   1043     return ConstantDataVector::getSplat(NumElts, V);
   1044 
   1045   SmallVector<Constant*, 32> Elts(NumElts, V);
   1046   return get(Elts);
   1047 }
   1048 
   1049 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
   1050   LLVMContextImpl *pImpl = Context.pImpl;
   1051   if (!pImpl->TheNoneToken)
   1052     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
   1053   return pImpl->TheNoneToken.get();
   1054 }
   1055 
   1056 /// Remove the constant from the constant table.
   1057 void ConstantTokenNone::destroyConstantImpl() {
   1058   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
   1059 }
   1060 
   1061 // Utility function for determining if a ConstantExpr is a CastOp or not. This
   1062 // can't be inline because we don't want to #include Instruction.h into
   1063 // Constant.h
   1064 bool ConstantExpr::isCast() const {
   1065   return Instruction::isCast(getOpcode());
   1066 }
   1067 
   1068 bool ConstantExpr::isCompare() const {
   1069   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
   1070 }
   1071 
   1072 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
   1073   if (getOpcode() != Instruction::GetElementPtr) return false;
   1074 
   1075   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
   1076   User::const_op_iterator OI = std::next(this->op_begin());
   1077 
   1078   // Skip the first index, as it has no static limit.
   1079   ++GEPI;
   1080   ++OI;
   1081 
   1082   // The remaining indices must be compile-time known integers within the
   1083   // bounds of the corresponding notional static array types.
   1084   for (; GEPI != E; ++GEPI, ++OI) {
   1085     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
   1086     if (!CI) return false;
   1087     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
   1088       if (CI->getValue().getActiveBits() > 64 ||
   1089           CI->getZExtValue() >= ATy->getNumElements())
   1090         return false;
   1091   }
   1092 
   1093   // All the indices checked out.
   1094   return true;
   1095 }
   1096 
   1097 bool ConstantExpr::hasIndices() const {
   1098   return getOpcode() == Instruction::ExtractValue ||
   1099          getOpcode() == Instruction::InsertValue;
   1100 }
   1101 
   1102 ArrayRef<unsigned> ConstantExpr::getIndices() const {
   1103   if (const ExtractValueConstantExpr *EVCE =
   1104         dyn_cast<ExtractValueConstantExpr>(this))
   1105     return EVCE->Indices;
   1106 
   1107   return cast<InsertValueConstantExpr>(this)->Indices;
   1108 }
   1109 
   1110 unsigned ConstantExpr::getPredicate() const {
   1111   return cast<CompareConstantExpr>(this)->predicate;
   1112 }
   1113 
   1114 Constant *
   1115 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
   1116   assert(Op->getType() == getOperand(OpNo)->getType() &&
   1117          "Replacing operand with value of different type!");
   1118   if (getOperand(OpNo) == Op)
   1119     return const_cast<ConstantExpr*>(this);
   1120 
   1121   SmallVector<Constant*, 8> NewOps;
   1122   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1123     NewOps.push_back(i == OpNo ? Op : getOperand(i));
   1124 
   1125   return getWithOperands(NewOps);
   1126 }
   1127 
   1128 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
   1129                                         bool OnlyIfReduced, Type *SrcTy) const {
   1130   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
   1131 
   1132   // If no operands changed return self.
   1133   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
   1134     return const_cast<ConstantExpr*>(this);
   1135 
   1136   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
   1137   switch (getOpcode()) {
   1138   case Instruction::Trunc:
   1139   case Instruction::ZExt:
   1140   case Instruction::SExt:
   1141   case Instruction::FPTrunc:
   1142   case Instruction::FPExt:
   1143   case Instruction::UIToFP:
   1144   case Instruction::SIToFP:
   1145   case Instruction::FPToUI:
   1146   case Instruction::FPToSI:
   1147   case Instruction::PtrToInt:
   1148   case Instruction::IntToPtr:
   1149   case Instruction::BitCast:
   1150   case Instruction::AddrSpaceCast:
   1151     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
   1152   case Instruction::Select:
   1153     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
   1154   case Instruction::InsertElement:
   1155     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
   1156                                           OnlyIfReducedTy);
   1157   case Instruction::ExtractElement:
   1158     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
   1159   case Instruction::InsertValue:
   1160     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
   1161                                         OnlyIfReducedTy);
   1162   case Instruction::ExtractValue:
   1163     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
   1164   case Instruction::ShuffleVector:
   1165     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
   1166                                           OnlyIfReducedTy);
   1167   case Instruction::GetElementPtr: {
   1168     auto *GEPO = cast<GEPOperator>(this);
   1169     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
   1170     return ConstantExpr::getGetElementPtr(
   1171         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
   1172         GEPO->isInBounds(), OnlyIfReducedTy);
   1173   }
   1174   case Instruction::ICmp:
   1175   case Instruction::FCmp:
   1176     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
   1177                                     OnlyIfReducedTy);
   1178   default:
   1179     assert(getNumOperands() == 2 && "Must be binary operator?");
   1180     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
   1181                              OnlyIfReducedTy);
   1182   }
   1183 }
   1184 
   1185 
   1186 //===----------------------------------------------------------------------===//
   1187 //                      isValueValidForType implementations
   1188 
   1189 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
   1190   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
   1191   if (Ty->isIntegerTy(1))
   1192     return Val == 0 || Val == 1;
   1193   if (NumBits >= 64)
   1194     return true; // always true, has to fit in largest type
   1195   uint64_t Max = (1ll << NumBits) - 1;
   1196   return Val <= Max;
   1197 }
   1198 
   1199 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
   1200   unsigned NumBits = Ty->getIntegerBitWidth();
   1201   if (Ty->isIntegerTy(1))
   1202     return Val == 0 || Val == 1 || Val == -1;
   1203   if (NumBits >= 64)
   1204     return true; // always true, has to fit in largest type
   1205   int64_t Min = -(1ll << (NumBits-1));
   1206   int64_t Max = (1ll << (NumBits-1)) - 1;
   1207   return (Val >= Min && Val <= Max);
   1208 }
   1209 
   1210 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
   1211   // convert modifies in place, so make a copy.
   1212   APFloat Val2 = APFloat(Val);
   1213   bool losesInfo;
   1214   switch (Ty->getTypeID()) {
   1215   default:
   1216     return false;         // These can't be represented as floating point!
   1217 
   1218   // FIXME rounding mode needs to be more flexible
   1219   case Type::HalfTyID: {
   1220     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
   1221       return true;
   1222     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
   1223     return !losesInfo;
   1224   }
   1225   case Type::FloatTyID: {
   1226     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
   1227       return true;
   1228     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
   1229     return !losesInfo;
   1230   }
   1231   case Type::DoubleTyID: {
   1232     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
   1233         &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1234         &Val2.getSemantics() == &APFloat::IEEEdouble)
   1235       return true;
   1236     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
   1237     return !losesInfo;
   1238   }
   1239   case Type::X86_FP80TyID:
   1240     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1241            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1242            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1243            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
   1244   case Type::FP128TyID:
   1245     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1246            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1247            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1248            &Val2.getSemantics() == &APFloat::IEEEquad;
   1249   case Type::PPC_FP128TyID:
   1250     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1251            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1252            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1253            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
   1254   }
   1255 }
   1256 
   1257 
   1258 //===----------------------------------------------------------------------===//
   1259 //                      Factory Function Implementation
   1260 
   1261 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
   1262   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
   1263          "Cannot create an aggregate zero of non-aggregate type!");
   1264 
   1265   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
   1266   if (!Entry)
   1267     Entry = new ConstantAggregateZero(Ty);
   1268 
   1269   return Entry;
   1270 }
   1271 
   1272 /// Remove the constant from the constant table.
   1273 void ConstantAggregateZero::destroyConstantImpl() {
   1274   getContext().pImpl->CAZConstants.erase(getType());
   1275 }
   1276 
   1277 /// Remove the constant from the constant table.
   1278 void ConstantArray::destroyConstantImpl() {
   1279   getType()->getContext().pImpl->ArrayConstants.remove(this);
   1280 }
   1281 
   1282 
   1283 //---- ConstantStruct::get() implementation...
   1284 //
   1285 
   1286 /// Remove the constant from the constant table.
   1287 void ConstantStruct::destroyConstantImpl() {
   1288   getType()->getContext().pImpl->StructConstants.remove(this);
   1289 }
   1290 
   1291 /// Remove the constant from the constant table.
   1292 void ConstantVector::destroyConstantImpl() {
   1293   getType()->getContext().pImpl->VectorConstants.remove(this);
   1294 }
   1295 
   1296 Constant *Constant::getSplatValue() const {
   1297   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
   1298   if (isa<ConstantAggregateZero>(this))
   1299     return getNullValue(this->getType()->getVectorElementType());
   1300   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
   1301     return CV->getSplatValue();
   1302   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
   1303     return CV->getSplatValue();
   1304   return nullptr;
   1305 }
   1306 
   1307 Constant *ConstantVector::getSplatValue() const {
   1308   // Check out first element.
   1309   Constant *Elt = getOperand(0);
   1310   // Then make sure all remaining elements point to the same value.
   1311   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1312     if (getOperand(I) != Elt)
   1313       return nullptr;
   1314   return Elt;
   1315 }
   1316 
   1317 const APInt &Constant::getUniqueInteger() const {
   1318   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
   1319     return CI->getValue();
   1320   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
   1321   const Constant *C = this->getAggregateElement(0U);
   1322   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
   1323   return cast<ConstantInt>(C)->getValue();
   1324 }
   1325 
   1326 //---- ConstantPointerNull::get() implementation.
   1327 //
   1328 
   1329 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
   1330   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
   1331   if (!Entry)
   1332     Entry = new ConstantPointerNull(Ty);
   1333 
   1334   return Entry;
   1335 }
   1336 
   1337 /// Remove the constant from the constant table.
   1338 void ConstantPointerNull::destroyConstantImpl() {
   1339   getContext().pImpl->CPNConstants.erase(getType());
   1340 }
   1341 
   1342 UndefValue *UndefValue::get(Type *Ty) {
   1343   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
   1344   if (!Entry)
   1345     Entry = new UndefValue(Ty);
   1346 
   1347   return Entry;
   1348 }
   1349 
   1350 /// Remove the constant from the constant table.
   1351 void UndefValue::destroyConstantImpl() {
   1352   // Free the constant and any dangling references to it.
   1353   getContext().pImpl->UVConstants.erase(getType());
   1354 }
   1355 
   1356 BlockAddress *BlockAddress::get(BasicBlock *BB) {
   1357   assert(BB->getParent() && "Block must have a parent");
   1358   return get(BB->getParent(), BB);
   1359 }
   1360 
   1361 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
   1362   BlockAddress *&BA =
   1363     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
   1364   if (!BA)
   1365     BA = new BlockAddress(F, BB);
   1366 
   1367   assert(BA->getFunction() == F && "Basic block moved between functions");
   1368   return BA;
   1369 }
   1370 
   1371 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
   1372 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
   1373            &Op<0>(), 2) {
   1374   setOperand(0, F);
   1375   setOperand(1, BB);
   1376   BB->AdjustBlockAddressRefCount(1);
   1377 }
   1378 
   1379 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
   1380   if (!BB->hasAddressTaken())
   1381     return nullptr;
   1382 
   1383   const Function *F = BB->getParent();
   1384   assert(F && "Block must have a parent");
   1385   BlockAddress *BA =
   1386       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
   1387   assert(BA && "Refcount and block address map disagree!");
   1388   return BA;
   1389 }
   1390 
   1391 /// Remove the constant from the constant table.
   1392 void BlockAddress::destroyConstantImpl() {
   1393   getFunction()->getType()->getContext().pImpl
   1394     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
   1395   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1396 }
   1397 
   1398 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
   1399   // This could be replacing either the Basic Block or the Function.  In either
   1400   // case, we have to remove the map entry.
   1401   Function *NewF = getFunction();
   1402   BasicBlock *NewBB = getBasicBlock();
   1403 
   1404   if (From == NewF)
   1405     NewF = cast<Function>(To->stripPointerCasts());
   1406   else {
   1407     assert(From == NewBB && "From does not match any operand");
   1408     NewBB = cast<BasicBlock>(To);
   1409   }
   1410 
   1411   // See if the 'new' entry already exists, if not, just update this in place
   1412   // and return early.
   1413   BlockAddress *&NewBA =
   1414     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
   1415   if (NewBA)
   1416     return NewBA;
   1417 
   1418   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1419 
   1420   // Remove the old entry, this can't cause the map to rehash (just a
   1421   // tombstone will get added).
   1422   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
   1423                                                           getBasicBlock()));
   1424   NewBA = this;
   1425   setOperand(0, NewF);
   1426   setOperand(1, NewBB);
   1427   getBasicBlock()->AdjustBlockAddressRefCount(1);
   1428 
   1429   // If we just want to keep the existing value, then return null.
   1430   // Callers know that this means we shouldn't delete this value.
   1431   return nullptr;
   1432 }
   1433 
   1434 //---- ConstantExpr::get() implementations.
   1435 //
   1436 
   1437 /// This is a utility function to handle folding of casts and lookup of the
   1438 /// cast in the ExprConstants map. It is used by the various get* methods below.
   1439 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
   1440                                bool OnlyIfReduced = false) {
   1441   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
   1442   // Fold a few common cases
   1443   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
   1444     return FC;
   1445 
   1446   if (OnlyIfReduced)
   1447     return nullptr;
   1448 
   1449   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
   1450 
   1451   // Look up the constant in the table first to ensure uniqueness.
   1452   ConstantExprKeyType Key(opc, C);
   1453 
   1454   return pImpl->ExprConstants.getOrCreate(Ty, Key);
   1455 }
   1456 
   1457 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
   1458                                 bool OnlyIfReduced) {
   1459   Instruction::CastOps opc = Instruction::CastOps(oc);
   1460   assert(Instruction::isCast(opc) && "opcode out of range");
   1461   assert(C && Ty && "Null arguments to getCast");
   1462   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
   1463 
   1464   switch (opc) {
   1465   default:
   1466     llvm_unreachable("Invalid cast opcode");
   1467   case Instruction::Trunc:
   1468     return getTrunc(C, Ty, OnlyIfReduced);
   1469   case Instruction::ZExt:
   1470     return getZExt(C, Ty, OnlyIfReduced);
   1471   case Instruction::SExt:
   1472     return getSExt(C, Ty, OnlyIfReduced);
   1473   case Instruction::FPTrunc:
   1474     return getFPTrunc(C, Ty, OnlyIfReduced);
   1475   case Instruction::FPExt:
   1476     return getFPExtend(C, Ty, OnlyIfReduced);
   1477   case Instruction::UIToFP:
   1478     return getUIToFP(C, Ty, OnlyIfReduced);
   1479   case Instruction::SIToFP:
   1480     return getSIToFP(C, Ty, OnlyIfReduced);
   1481   case Instruction::FPToUI:
   1482     return getFPToUI(C, Ty, OnlyIfReduced);
   1483   case Instruction::FPToSI:
   1484     return getFPToSI(C, Ty, OnlyIfReduced);
   1485   case Instruction::PtrToInt:
   1486     return getPtrToInt(C, Ty, OnlyIfReduced);
   1487   case Instruction::IntToPtr:
   1488     return getIntToPtr(C, Ty, OnlyIfReduced);
   1489   case Instruction::BitCast:
   1490     return getBitCast(C, Ty, OnlyIfReduced);
   1491   case Instruction::AddrSpaceCast:
   1492     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
   1493   }
   1494 }
   1495 
   1496 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
   1497   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1498     return getBitCast(C, Ty);
   1499   return getZExt(C, Ty);
   1500 }
   1501 
   1502 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
   1503   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1504     return getBitCast(C, Ty);
   1505   return getSExt(C, Ty);
   1506 }
   1507 
   1508 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
   1509   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1510     return getBitCast(C, Ty);
   1511   return getTrunc(C, Ty);
   1512 }
   1513 
   1514 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
   1515   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1516   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
   1517           "Invalid cast");
   1518 
   1519   if (Ty->isIntOrIntVectorTy())
   1520     return getPtrToInt(S, Ty);
   1521 
   1522   unsigned SrcAS = S->getType()->getPointerAddressSpace();
   1523   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
   1524     return getAddrSpaceCast(S, Ty);
   1525 
   1526   return getBitCast(S, Ty);
   1527 }
   1528 
   1529 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
   1530                                                          Type *Ty) {
   1531   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1532   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
   1533 
   1534   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
   1535     return getAddrSpaceCast(S, Ty);
   1536 
   1537   return getBitCast(S, Ty);
   1538 }
   1539 
   1540 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
   1541   assert(C->getType()->isIntOrIntVectorTy() &&
   1542          Ty->isIntOrIntVectorTy() && "Invalid cast");
   1543   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1544   unsigned DstBits = Ty->getScalarSizeInBits();
   1545   Instruction::CastOps opcode =
   1546     (SrcBits == DstBits ? Instruction::BitCast :
   1547      (SrcBits > DstBits ? Instruction::Trunc :
   1548       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   1549   return getCast(opcode, C, Ty);
   1550 }
   1551 
   1552 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
   1553   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1554          "Invalid cast");
   1555   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1556   unsigned DstBits = Ty->getScalarSizeInBits();
   1557   if (SrcBits == DstBits)
   1558     return C; // Avoid a useless cast
   1559   Instruction::CastOps opcode =
   1560     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
   1561   return getCast(opcode, C, Ty);
   1562 }
   1563 
   1564 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1565 #ifndef NDEBUG
   1566   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1567   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1568 #endif
   1569   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1570   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
   1571   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
   1572   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1573          "SrcTy must be larger than DestTy for Trunc!");
   1574 
   1575   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
   1576 }
   1577 
   1578 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1579 #ifndef NDEBUG
   1580   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1581   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1582 #endif
   1583   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1584   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
   1585   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
   1586   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1587          "SrcTy must be smaller than DestTy for SExt!");
   1588 
   1589   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
   1590 }
   1591 
   1592 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1593 #ifndef NDEBUG
   1594   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1595   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1596 #endif
   1597   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1598   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
   1599   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
   1600   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1601          "SrcTy must be smaller than DestTy for ZExt!");
   1602 
   1603   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
   1604 }
   1605 
   1606 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1607 #ifndef NDEBUG
   1608   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1609   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1610 #endif
   1611   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1612   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1613          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1614          "This is an illegal floating point truncation!");
   1615   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
   1616 }
   1617 
   1618 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1619 #ifndef NDEBUG
   1620   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1621   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1622 #endif
   1623   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1624   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1625          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1626          "This is an illegal floating point extension!");
   1627   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
   1628 }
   1629 
   1630 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1631 #ifndef NDEBUG
   1632   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1633   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1634 #endif
   1635   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1636   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1637          "This is an illegal uint to floating point cast!");
   1638   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
   1639 }
   1640 
   1641 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1642 #ifndef NDEBUG
   1643   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1644   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1645 #endif
   1646   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1647   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1648          "This is an illegal sint to floating point cast!");
   1649   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
   1650 }
   1651 
   1652 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1653 #ifndef NDEBUG
   1654   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1655   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1656 #endif
   1657   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1658   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1659          "This is an illegal floating point to uint cast!");
   1660   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
   1661 }
   1662 
   1663 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1664 #ifndef NDEBUG
   1665   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1666   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1667 #endif
   1668   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1669   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1670          "This is an illegal floating point to sint cast!");
   1671   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
   1672 }
   1673 
   1674 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
   1675                                     bool OnlyIfReduced) {
   1676   assert(C->getType()->getScalarType()->isPointerTy() &&
   1677          "PtrToInt source must be pointer or pointer vector");
   1678   assert(DstTy->getScalarType()->isIntegerTy() &&
   1679          "PtrToInt destination must be integer or integer vector");
   1680   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1681   if (isa<VectorType>(C->getType()))
   1682     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1683            "Invalid cast between a different number of vector elements");
   1684   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
   1685 }
   1686 
   1687 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
   1688                                     bool OnlyIfReduced) {
   1689   assert(C->getType()->getScalarType()->isIntegerTy() &&
   1690          "IntToPtr source must be integer or integer vector");
   1691   assert(DstTy->getScalarType()->isPointerTy() &&
   1692          "IntToPtr destination must be a pointer or pointer vector");
   1693   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1694   if (isa<VectorType>(C->getType()))
   1695     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1696            "Invalid cast between a different number of vector elements");
   1697   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
   1698 }
   1699 
   1700 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
   1701                                    bool OnlyIfReduced) {
   1702   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
   1703          "Invalid constantexpr bitcast!");
   1704 
   1705   // It is common to ask for a bitcast of a value to its own type, handle this
   1706   // speedily.
   1707   if (C->getType() == DstTy) return C;
   1708 
   1709   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
   1710 }
   1711 
   1712 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
   1713                                          bool OnlyIfReduced) {
   1714   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
   1715          "Invalid constantexpr addrspacecast!");
   1716 
   1717   // Canonicalize addrspacecasts between different pointer types by first
   1718   // bitcasting the pointer type and then converting the address space.
   1719   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
   1720   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
   1721   Type *DstElemTy = DstScalarTy->getElementType();
   1722   if (SrcScalarTy->getElementType() != DstElemTy) {
   1723     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
   1724     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
   1725       // Handle vectors of pointers.
   1726       MidTy = VectorType::get(MidTy, VT->getNumElements());
   1727     }
   1728     C = getBitCast(C, MidTy);
   1729   }
   1730   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
   1731 }
   1732 
   1733 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
   1734                             unsigned Flags, Type *OnlyIfReducedTy) {
   1735   // Check the operands for consistency first.
   1736   assert(Opcode >= Instruction::BinaryOpsBegin &&
   1737          Opcode <  Instruction::BinaryOpsEnd   &&
   1738          "Invalid opcode in binary constant expression");
   1739   assert(C1->getType() == C2->getType() &&
   1740          "Operand types in binary constant expression should match");
   1741 
   1742 #ifndef NDEBUG
   1743   switch (Opcode) {
   1744   case Instruction::Add:
   1745   case Instruction::Sub:
   1746   case Instruction::Mul:
   1747     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1748     assert(C1->getType()->isIntOrIntVectorTy() &&
   1749            "Tried to create an integer operation on a non-integer type!");
   1750     break;
   1751   case Instruction::FAdd:
   1752   case Instruction::FSub:
   1753   case Instruction::FMul:
   1754     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1755     assert(C1->getType()->isFPOrFPVectorTy() &&
   1756            "Tried to create a floating-point operation on a "
   1757            "non-floating-point type!");
   1758     break;
   1759   case Instruction::UDiv:
   1760   case Instruction::SDiv:
   1761     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1762     assert(C1->getType()->isIntOrIntVectorTy() &&
   1763            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1764     break;
   1765   case Instruction::FDiv:
   1766     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1767     assert(C1->getType()->isFPOrFPVectorTy() &&
   1768            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1769     break;
   1770   case Instruction::URem:
   1771   case Instruction::SRem:
   1772     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1773     assert(C1->getType()->isIntOrIntVectorTy() &&
   1774            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1775     break;
   1776   case Instruction::FRem:
   1777     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1778     assert(C1->getType()->isFPOrFPVectorTy() &&
   1779            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1780     break;
   1781   case Instruction::And:
   1782   case Instruction::Or:
   1783   case Instruction::Xor:
   1784     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1785     assert(C1->getType()->isIntOrIntVectorTy() &&
   1786            "Tried to create a logical operation on a non-integral type!");
   1787     break;
   1788   case Instruction::Shl:
   1789   case Instruction::LShr:
   1790   case Instruction::AShr:
   1791     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1792     assert(C1->getType()->isIntOrIntVectorTy() &&
   1793            "Tried to create a shift operation on a non-integer type!");
   1794     break;
   1795   default:
   1796     break;
   1797   }
   1798 #endif
   1799 
   1800   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
   1801     return FC;          // Fold a few common cases.
   1802 
   1803   if (OnlyIfReducedTy == C1->getType())
   1804     return nullptr;
   1805 
   1806   Constant *ArgVec[] = { C1, C2 };
   1807   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
   1808 
   1809   LLVMContextImpl *pImpl = C1->getContext().pImpl;
   1810   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
   1811 }
   1812 
   1813 Constant *ConstantExpr::getSizeOf(Type* Ty) {
   1814   // sizeof is implemented as: (i64) gep (Ty*)null, 1
   1815   // Note that a non-inbounds gep is used, as null isn't within any object.
   1816   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1817   Constant *GEP = getGetElementPtr(
   1818       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1819   return getPtrToInt(GEP,
   1820                      Type::getInt64Ty(Ty->getContext()));
   1821 }
   1822 
   1823 Constant *ConstantExpr::getAlignOf(Type* Ty) {
   1824   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
   1825   // Note that a non-inbounds gep is used, as null isn't within any object.
   1826   Type *AligningTy =
   1827     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
   1828   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
   1829   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
   1830   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1831   Constant *Indices[2] = { Zero, One };
   1832   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
   1833   return getPtrToInt(GEP,
   1834                      Type::getInt64Ty(Ty->getContext()));
   1835 }
   1836 
   1837 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
   1838   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
   1839                                            FieldNo));
   1840 }
   1841 
   1842 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
   1843   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
   1844   // Note that a non-inbounds gep is used, as null isn't within any object.
   1845   Constant *GEPIdx[] = {
   1846     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
   1847     FieldNo
   1848   };
   1849   Constant *GEP = getGetElementPtr(
   1850       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1851   return getPtrToInt(GEP,
   1852                      Type::getInt64Ty(Ty->getContext()));
   1853 }
   1854 
   1855 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
   1856                                    Constant *C2, bool OnlyIfReduced) {
   1857   assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1858 
   1859   switch (Predicate) {
   1860   default: llvm_unreachable("Invalid CmpInst predicate");
   1861   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
   1862   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
   1863   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
   1864   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
   1865   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
   1866   case CmpInst::FCMP_TRUE:
   1867     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
   1868 
   1869   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
   1870   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
   1871   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
   1872   case CmpInst::ICMP_SLE:
   1873     return getICmp(Predicate, C1, C2, OnlyIfReduced);
   1874   }
   1875 }
   1876 
   1877 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
   1878                                   Type *OnlyIfReducedTy) {
   1879   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
   1880 
   1881   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
   1882     return SC;        // Fold common cases
   1883 
   1884   if (OnlyIfReducedTy == V1->getType())
   1885     return nullptr;
   1886 
   1887   Constant *ArgVec[] = { C, V1, V2 };
   1888   ConstantExprKeyType Key(Instruction::Select, ArgVec);
   1889 
   1890   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1891   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
   1892 }
   1893 
   1894 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
   1895                                          ArrayRef<Value *> Idxs, bool InBounds,
   1896                                          Type *OnlyIfReducedTy) {
   1897   if (!Ty)
   1898     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
   1899   else
   1900     assert(
   1901         Ty ==
   1902         cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
   1903 
   1904   if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
   1905     return FC;          // Fold a few common cases.
   1906 
   1907   // Get the result type of the getelementptr!
   1908   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
   1909   assert(DestTy && "GEP indices invalid!");
   1910   unsigned AS = C->getType()->getPointerAddressSpace();
   1911   Type *ReqTy = DestTy->getPointerTo(AS);
   1912 
   1913   unsigned NumVecElts = 0;
   1914   if (C->getType()->isVectorTy())
   1915     NumVecElts = C->getType()->getVectorNumElements();
   1916   else for (auto Idx : Idxs)
   1917     if (Idx->getType()->isVectorTy())
   1918       NumVecElts = Idx->getType()->getVectorNumElements();
   1919 
   1920   if (NumVecElts)
   1921     ReqTy = VectorType::get(ReqTy, NumVecElts);
   1922 
   1923   if (OnlyIfReducedTy == ReqTy)
   1924     return nullptr;
   1925 
   1926   // Look up the constant in the table first to ensure uniqueness
   1927   std::vector<Constant*> ArgVec;
   1928   ArgVec.reserve(1 + Idxs.size());
   1929   ArgVec.push_back(C);
   1930   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   1931     assert((!Idxs[i]->getType()->isVectorTy() ||
   1932             Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
   1933            "getelementptr index type missmatch");
   1934 
   1935     Constant *Idx = cast<Constant>(Idxs[i]);
   1936     if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
   1937       Idx = ConstantVector::getSplat(NumVecElts, Idx);
   1938     ArgVec.push_back(Idx);
   1939   }
   1940   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
   1941                                 InBounds ? GEPOperator::IsInBounds : 0, None,
   1942                                 Ty);
   1943 
   1944   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1945   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1946 }
   1947 
   1948 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
   1949                                 Constant *RHS, bool OnlyIfReduced) {
   1950   assert(LHS->getType() == RHS->getType());
   1951   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
   1952          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
   1953 
   1954   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1955     return FC;          // Fold a few common cases...
   1956 
   1957   if (OnlyIfReduced)
   1958     return nullptr;
   1959 
   1960   // Look up the constant in the table first to ensure uniqueness
   1961   Constant *ArgVec[] = { LHS, RHS };
   1962   // Get the key type with both the opcode and predicate
   1963   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
   1964 
   1965   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1966   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1967     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1968 
   1969   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1970   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1971 }
   1972 
   1973 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
   1974                                 Constant *RHS, bool OnlyIfReduced) {
   1975   assert(LHS->getType() == RHS->getType());
   1976   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
   1977 
   1978   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1979     return FC;          // Fold a few common cases...
   1980 
   1981   if (OnlyIfReduced)
   1982     return nullptr;
   1983 
   1984   // Look up the constant in the table first to ensure uniqueness
   1985   Constant *ArgVec[] = { LHS, RHS };
   1986   // Get the key type with both the opcode and predicate
   1987   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
   1988 
   1989   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1990   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1991     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1992 
   1993   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1994   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1995 }
   1996 
   1997 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
   1998                                           Type *OnlyIfReducedTy) {
   1999   assert(Val->getType()->isVectorTy() &&
   2000          "Tried to create extractelement operation on non-vector type!");
   2001   assert(Idx->getType()->isIntegerTy() &&
   2002          "Extractelement index must be an integer type!");
   2003 
   2004   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
   2005     return FC;          // Fold a few common cases.
   2006 
   2007   Type *ReqTy = Val->getType()->getVectorElementType();
   2008   if (OnlyIfReducedTy == ReqTy)
   2009     return nullptr;
   2010 
   2011   // Look up the constant in the table first to ensure uniqueness
   2012   Constant *ArgVec[] = { Val, Idx };
   2013   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
   2014 
   2015   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   2016   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2017 }
   2018 
   2019 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
   2020                                          Constant *Idx, Type *OnlyIfReducedTy) {
   2021   assert(Val->getType()->isVectorTy() &&
   2022          "Tried to create insertelement operation on non-vector type!");
   2023   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
   2024          "Insertelement types must match!");
   2025   assert(Idx->getType()->isIntegerTy() &&
   2026          "Insertelement index must be i32 type!");
   2027 
   2028   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
   2029     return FC;          // Fold a few common cases.
   2030 
   2031   if (OnlyIfReducedTy == Val->getType())
   2032     return nullptr;
   2033 
   2034   // Look up the constant in the table first to ensure uniqueness
   2035   Constant *ArgVec[] = { Val, Elt, Idx };
   2036   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
   2037 
   2038   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   2039   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
   2040 }
   2041 
   2042 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
   2043                                          Constant *Mask, Type *OnlyIfReducedTy) {
   2044   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
   2045          "Invalid shuffle vector constant expr operands!");
   2046 
   2047   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
   2048     return FC;          // Fold a few common cases.
   2049 
   2050   unsigned NElts = Mask->getType()->getVectorNumElements();
   2051   Type *EltTy = V1->getType()->getVectorElementType();
   2052   Type *ShufTy = VectorType::get(EltTy, NElts);
   2053 
   2054   if (OnlyIfReducedTy == ShufTy)
   2055     return nullptr;
   2056 
   2057   // Look up the constant in the table first to ensure uniqueness
   2058   Constant *ArgVec[] = { V1, V2, Mask };
   2059   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
   2060 
   2061   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
   2062   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
   2063 }
   2064 
   2065 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
   2066                                        ArrayRef<unsigned> Idxs,
   2067                                        Type *OnlyIfReducedTy) {
   2068   assert(Agg->getType()->isFirstClassType() &&
   2069          "Non-first-class type for constant insertvalue expression");
   2070 
   2071   assert(ExtractValueInst::getIndexedType(Agg->getType(),
   2072                                           Idxs) == Val->getType() &&
   2073          "insertvalue indices invalid!");
   2074   Type *ReqTy = Val->getType();
   2075 
   2076   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
   2077     return FC;
   2078 
   2079   if (OnlyIfReducedTy == ReqTy)
   2080     return nullptr;
   2081 
   2082   Constant *ArgVec[] = { Agg, Val };
   2083   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
   2084 
   2085   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2086   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2087 }
   2088 
   2089 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
   2090                                         Type *OnlyIfReducedTy) {
   2091   assert(Agg->getType()->isFirstClassType() &&
   2092          "Tried to create extractelement operation on non-first-class type!");
   2093 
   2094   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
   2095   (void)ReqTy;
   2096   assert(ReqTy && "extractvalue indices invalid!");
   2097 
   2098   assert(Agg->getType()->isFirstClassType() &&
   2099          "Non-first-class type for constant extractvalue expression");
   2100   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
   2101     return FC;
   2102 
   2103   if (OnlyIfReducedTy == ReqTy)
   2104     return nullptr;
   2105 
   2106   Constant *ArgVec[] = { Agg };
   2107   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
   2108 
   2109   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2110   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2111 }
   2112 
   2113 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
   2114   assert(C->getType()->isIntOrIntVectorTy() &&
   2115          "Cannot NEG a nonintegral value!");
   2116   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
   2117                 C, HasNUW, HasNSW);
   2118 }
   2119 
   2120 Constant *ConstantExpr::getFNeg(Constant *C) {
   2121   assert(C->getType()->isFPOrFPVectorTy() &&
   2122          "Cannot FNEG a non-floating-point value!");
   2123   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
   2124 }
   2125 
   2126 Constant *ConstantExpr::getNot(Constant *C) {
   2127   assert(C->getType()->isIntOrIntVectorTy() &&
   2128          "Cannot NOT a nonintegral value!");
   2129   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
   2130 }
   2131 
   2132 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
   2133                                bool HasNUW, bool HasNSW) {
   2134   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2135                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2136   return get(Instruction::Add, C1, C2, Flags);
   2137 }
   2138 
   2139 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
   2140   return get(Instruction::FAdd, C1, C2);
   2141 }
   2142 
   2143 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
   2144                                bool HasNUW, bool HasNSW) {
   2145   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2146                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2147   return get(Instruction::Sub, C1, C2, Flags);
   2148 }
   2149 
   2150 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
   2151   return get(Instruction::FSub, C1, C2);
   2152 }
   2153 
   2154 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
   2155                                bool HasNUW, bool HasNSW) {
   2156   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2157                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2158   return get(Instruction::Mul, C1, C2, Flags);
   2159 }
   2160 
   2161 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
   2162   return get(Instruction::FMul, C1, C2);
   2163 }
   2164 
   2165 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
   2166   return get(Instruction::UDiv, C1, C2,
   2167              isExact ? PossiblyExactOperator::IsExact : 0);
   2168 }
   2169 
   2170 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
   2171   return get(Instruction::SDiv, C1, C2,
   2172              isExact ? PossiblyExactOperator::IsExact : 0);
   2173 }
   2174 
   2175 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
   2176   return get(Instruction::FDiv, C1, C2);
   2177 }
   2178 
   2179 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
   2180   return get(Instruction::URem, C1, C2);
   2181 }
   2182 
   2183 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
   2184   return get(Instruction::SRem, C1, C2);
   2185 }
   2186 
   2187 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
   2188   return get(Instruction::FRem, C1, C2);
   2189 }
   2190 
   2191 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
   2192   return get(Instruction::And, C1, C2);
   2193 }
   2194 
   2195 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
   2196   return get(Instruction::Or, C1, C2);
   2197 }
   2198 
   2199 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
   2200   return get(Instruction::Xor, C1, C2);
   2201 }
   2202 
   2203 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
   2204                                bool HasNUW, bool HasNSW) {
   2205   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2206                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2207   return get(Instruction::Shl, C1, C2, Flags);
   2208 }
   2209 
   2210 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
   2211   return get(Instruction::LShr, C1, C2,
   2212              isExact ? PossiblyExactOperator::IsExact : 0);
   2213 }
   2214 
   2215 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
   2216   return get(Instruction::AShr, C1, C2,
   2217              isExact ? PossiblyExactOperator::IsExact : 0);
   2218 }
   2219 
   2220 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
   2221   switch (Opcode) {
   2222   default:
   2223     // Doesn't have an identity.
   2224     return nullptr;
   2225 
   2226   case Instruction::Add:
   2227   case Instruction::Or:
   2228   case Instruction::Xor:
   2229     return Constant::getNullValue(Ty);
   2230 
   2231   case Instruction::Mul:
   2232     return ConstantInt::get(Ty, 1);
   2233 
   2234   case Instruction::And:
   2235     return Constant::getAllOnesValue(Ty);
   2236   }
   2237 }
   2238 
   2239 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
   2240   switch (Opcode) {
   2241   default:
   2242     // Doesn't have an absorber.
   2243     return nullptr;
   2244 
   2245   case Instruction::Or:
   2246     return Constant::getAllOnesValue(Ty);
   2247 
   2248   case Instruction::And:
   2249   case Instruction::Mul:
   2250     return Constant::getNullValue(Ty);
   2251   }
   2252 }
   2253 
   2254 /// Remove the constant from the constant table.
   2255 void ConstantExpr::destroyConstantImpl() {
   2256   getType()->getContext().pImpl->ExprConstants.remove(this);
   2257 }
   2258 
   2259 const char *ConstantExpr::getOpcodeName() const {
   2260   return Instruction::getOpcodeName(getOpcode());
   2261 }
   2262 
   2263 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
   2264     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
   2265     : ConstantExpr(DestTy, Instruction::GetElementPtr,
   2266                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
   2267                        (IdxList.size() + 1),
   2268                    IdxList.size() + 1),
   2269       SrcElementTy(SrcElementTy),
   2270       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
   2271   Op<0>() = C;
   2272   Use *OperandList = getOperandList();
   2273   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
   2274     OperandList[i+1] = IdxList[i];
   2275 }
   2276 
   2277 Type *GetElementPtrConstantExpr::getSourceElementType() const {
   2278   return SrcElementTy;
   2279 }
   2280 
   2281 Type *GetElementPtrConstantExpr::getResultElementType() const {
   2282   return ResElementTy;
   2283 }
   2284 
   2285 //===----------------------------------------------------------------------===//
   2286 //                       ConstantData* implementations
   2287 
   2288 void ConstantDataArray::anchor() {}
   2289 void ConstantDataVector::anchor() {}
   2290 
   2291 Type *ConstantDataSequential::getElementType() const {
   2292   return getType()->getElementType();
   2293 }
   2294 
   2295 StringRef ConstantDataSequential::getRawDataValues() const {
   2296   return StringRef(DataElements, getNumElements()*getElementByteSize());
   2297 }
   2298 
   2299 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
   2300   if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
   2301   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
   2302     switch (IT->getBitWidth()) {
   2303     case 8:
   2304     case 16:
   2305     case 32:
   2306     case 64:
   2307       return true;
   2308     default: break;
   2309     }
   2310   }
   2311   return false;
   2312 }
   2313 
   2314 unsigned ConstantDataSequential::getNumElements() const {
   2315   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
   2316     return AT->getNumElements();
   2317   return getType()->getVectorNumElements();
   2318 }
   2319 
   2320 
   2321 uint64_t ConstantDataSequential::getElementByteSize() const {
   2322   return getElementType()->getPrimitiveSizeInBits()/8;
   2323 }
   2324 
   2325 /// Return the start of the specified element.
   2326 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
   2327   assert(Elt < getNumElements() && "Invalid Elt");
   2328   return DataElements+Elt*getElementByteSize();
   2329 }
   2330 
   2331 
   2332 /// Return true if the array is empty or all zeros.
   2333 static bool isAllZeros(StringRef Arr) {
   2334   for (char I : Arr)
   2335     if (I != 0)
   2336       return false;
   2337   return true;
   2338 }
   2339 
   2340 /// This is the underlying implementation of all of the
   2341 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
   2342 /// the correct element type.  We take the bytes in as a StringRef because
   2343 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
   2344 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
   2345   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
   2346   // If the elements are all zero or there are no elements, return a CAZ, which
   2347   // is more dense and canonical.
   2348   if (isAllZeros(Elements))
   2349     return ConstantAggregateZero::get(Ty);
   2350 
   2351   // Do a lookup to see if we have already formed one of these.
   2352   auto &Slot =
   2353       *Ty->getContext()
   2354            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
   2355            .first;
   2356 
   2357   // The bucket can point to a linked list of different CDS's that have the same
   2358   // body but different types.  For example, 0,0,0,1 could be a 4 element array
   2359   // of i8, or a 1-element array of i32.  They'll both end up in the same
   2360   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
   2361   ConstantDataSequential **Entry = &Slot.second;
   2362   for (ConstantDataSequential *Node = *Entry; Node;
   2363        Entry = &Node->Next, Node = *Entry)
   2364     if (Node->getType() == Ty)
   2365       return Node;
   2366 
   2367   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
   2368   // and return it.
   2369   if (isa<ArrayType>(Ty))
   2370     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
   2371 
   2372   assert(isa<VectorType>(Ty));
   2373   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
   2374 }
   2375 
   2376 void ConstantDataSequential::destroyConstantImpl() {
   2377   // Remove the constant from the StringMap.
   2378   StringMap<ConstantDataSequential*> &CDSConstants =
   2379     getType()->getContext().pImpl->CDSConstants;
   2380 
   2381   StringMap<ConstantDataSequential*>::iterator Slot =
   2382     CDSConstants.find(getRawDataValues());
   2383 
   2384   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
   2385 
   2386   ConstantDataSequential **Entry = &Slot->getValue();
   2387 
   2388   // Remove the entry from the hash table.
   2389   if (!(*Entry)->Next) {
   2390     // If there is only one value in the bucket (common case) it must be this
   2391     // entry, and removing the entry should remove the bucket completely.
   2392     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
   2393     getContext().pImpl->CDSConstants.erase(Slot);
   2394   } else {
   2395     // Otherwise, there are multiple entries linked off the bucket, unlink the
   2396     // node we care about but keep the bucket around.
   2397     for (ConstantDataSequential *Node = *Entry; ;
   2398          Entry = &Node->Next, Node = *Entry) {
   2399       assert(Node && "Didn't find entry in its uniquing hash table!");
   2400       // If we found our entry, unlink it from the list and we're done.
   2401       if (Node == this) {
   2402         *Entry = Node->Next;
   2403         break;
   2404       }
   2405     }
   2406   }
   2407 
   2408   // If we were part of a list, make sure that we don't delete the list that is
   2409   // still owned by the uniquing map.
   2410   Next = nullptr;
   2411 }
   2412 
   2413 /// get() constructors - Return a constant with array type with an element
   2414 /// count and element type matching the ArrayRef passed in.  Note that this
   2415 /// can return a ConstantAggregateZero object.
   2416 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
   2417   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
   2418   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2419   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2420 }
   2421 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2422   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
   2423   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2424   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2425 }
   2426 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2427   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
   2428   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2429   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2430 }
   2431 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2432   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
   2433   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2434   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2435 }
   2436 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2437   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
   2438   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2439   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2440 }
   2441 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2442   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
   2443   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2444   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2445 }
   2446 
   2447 /// getFP() constructors - Return a constant with array type with an element
   2448 /// count and element type of float with precision matching the number of
   2449 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
   2450 /// double for 64bits) Note that this can return a ConstantAggregateZero
   2451 /// object.
   2452 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2453                                    ArrayRef<uint16_t> Elts) {
   2454   Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
   2455   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2456   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
   2457 }
   2458 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2459                                    ArrayRef<uint32_t> Elts) {
   2460   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
   2461   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2462   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
   2463 }
   2464 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2465                                    ArrayRef<uint64_t> Elts) {
   2466   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
   2467   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2468   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2469 }
   2470 
   2471 Constant *ConstantDataArray::getString(LLVMContext &Context,
   2472                                        StringRef Str, bool AddNull) {
   2473   if (!AddNull) {
   2474     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
   2475     return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
   2476                Str.size()));
   2477   }
   2478 
   2479   SmallVector<uint8_t, 64> ElementVals;
   2480   ElementVals.append(Str.begin(), Str.end());
   2481   ElementVals.push_back(0);
   2482   return get(Context, ElementVals);
   2483 }
   2484 
   2485 /// get() constructors - Return a constant with vector type with an element
   2486 /// count and element type matching the ArrayRef passed in.  Note that this
   2487 /// can return a ConstantAggregateZero object.
   2488 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
   2489   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
   2490   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2491   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2492 }
   2493 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2494   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
   2495   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2496   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2497 }
   2498 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2499   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
   2500   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2501   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2502 }
   2503 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2504   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
   2505   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2506   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2507 }
   2508 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2509   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2510   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2511   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2512 }
   2513 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2514   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2515   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2516   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2517 }
   2518 
   2519 /// getFP() constructors - Return a constant with vector type with an element
   2520 /// count and element type of float with the precision matching the number of
   2521 /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
   2522 /// double for 64bits) Note that this can return a ConstantAggregateZero
   2523 /// object.
   2524 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2525                                     ArrayRef<uint16_t> Elts) {
   2526   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
   2527   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2528   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
   2529 }
   2530 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2531                                     ArrayRef<uint32_t> Elts) {
   2532   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2533   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2534   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
   2535 }
   2536 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2537                                     ArrayRef<uint64_t> Elts) {
   2538   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2539   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2540   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2541 }
   2542 
   2543 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
   2544   assert(isElementTypeCompatible(V->getType()) &&
   2545          "Element type not compatible with ConstantData");
   2546   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   2547     if (CI->getType()->isIntegerTy(8)) {
   2548       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
   2549       return get(V->getContext(), Elts);
   2550     }
   2551     if (CI->getType()->isIntegerTy(16)) {
   2552       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
   2553       return get(V->getContext(), Elts);
   2554     }
   2555     if (CI->getType()->isIntegerTy(32)) {
   2556       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
   2557       return get(V->getContext(), Elts);
   2558     }
   2559     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
   2560     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
   2561     return get(V->getContext(), Elts);
   2562   }
   2563 
   2564   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   2565     if (CFP->getType()->isHalfTy()) {
   2566       SmallVector<uint16_t, 16> Elts(
   2567           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2568       return getFP(V->getContext(), Elts);
   2569     }
   2570     if (CFP->getType()->isFloatTy()) {
   2571       SmallVector<uint32_t, 16> Elts(
   2572           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2573       return getFP(V->getContext(), Elts);
   2574     }
   2575     if (CFP->getType()->isDoubleTy()) {
   2576       SmallVector<uint64_t, 16> Elts(
   2577           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2578       return getFP(V->getContext(), Elts);
   2579     }
   2580   }
   2581   return ConstantVector::getSplat(NumElts, V);
   2582 }
   2583 
   2584 
   2585 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
   2586   assert(isa<IntegerType>(getElementType()) &&
   2587          "Accessor can only be used when element is an integer");
   2588   const char *EltPtr = getElementPointer(Elt);
   2589 
   2590   // The data is stored in host byte order, make sure to cast back to the right
   2591   // type to load with the right endianness.
   2592   switch (getElementType()->getIntegerBitWidth()) {
   2593   default: llvm_unreachable("Invalid bitwidth for CDS");
   2594   case 8:
   2595     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
   2596   case 16:
   2597     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
   2598   case 32:
   2599     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
   2600   case 64:
   2601     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
   2602   }
   2603 }
   2604 
   2605 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
   2606   const char *EltPtr = getElementPointer(Elt);
   2607 
   2608   switch (getElementType()->getTypeID()) {
   2609   default:
   2610     llvm_unreachable("Accessor can only be used when element is float/double!");
   2611   case Type::HalfTyID: {
   2612     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
   2613     return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
   2614   }
   2615   case Type::FloatTyID: {
   2616     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
   2617     return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
   2618   }
   2619   case Type::DoubleTyID: {
   2620     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
   2621     return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
   2622   }
   2623   }
   2624 }
   2625 
   2626 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
   2627   assert(getElementType()->isFloatTy() &&
   2628          "Accessor can only be used when element is a 'float'");
   2629   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
   2630   return *const_cast<float *>(EltPtr);
   2631 }
   2632 
   2633 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
   2634   assert(getElementType()->isDoubleTy() &&
   2635          "Accessor can only be used when element is a 'float'");
   2636   const double *EltPtr =
   2637       reinterpret_cast<const double *>(getElementPointer(Elt));
   2638   return *const_cast<double *>(EltPtr);
   2639 }
   2640 
   2641 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
   2642   if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
   2643       getElementType()->isDoubleTy())
   2644     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
   2645 
   2646   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
   2647 }
   2648 
   2649 bool ConstantDataSequential::isString() const {
   2650   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
   2651 }
   2652 
   2653 bool ConstantDataSequential::isCString() const {
   2654   if (!isString())
   2655     return false;
   2656 
   2657   StringRef Str = getAsString();
   2658 
   2659   // The last value must be nul.
   2660   if (Str.back() != 0) return false;
   2661 
   2662   // Other elements must be non-nul.
   2663   return Str.drop_back().find(0) == StringRef::npos;
   2664 }
   2665 
   2666 Constant *ConstantDataVector::getSplatValue() const {
   2667   const char *Base = getRawDataValues().data();
   2668 
   2669   // Compare elements 1+ to the 0'th element.
   2670   unsigned EltSize = getElementByteSize();
   2671   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
   2672     if (memcmp(Base, Base+i*EltSize, EltSize))
   2673       return nullptr;
   2674 
   2675   // If they're all the same, return the 0th one as a representative.
   2676   return getElementAsConstant(0);
   2677 }
   2678 
   2679 //===----------------------------------------------------------------------===//
   2680 //                handleOperandChange implementations
   2681 
   2682 /// Update this constant array to change uses of
   2683 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
   2684 /// etc.
   2685 ///
   2686 /// Note that we intentionally replace all uses of From with To here.  Consider
   2687 /// a large array that uses 'From' 1000 times.  By handling this case all here,
   2688 /// ConstantArray::handleOperandChange is only invoked once, and that
   2689 /// single invocation handles all 1000 uses.  Handling them one at a time would
   2690 /// work, but would be really slow because it would have to unique each updated
   2691 /// array instance.
   2692 ///
   2693 void Constant::handleOperandChange(Value *From, Value *To) {
   2694   Value *Replacement = nullptr;
   2695   switch (getValueID()) {
   2696   default:
   2697     llvm_unreachable("Not a constant!");
   2698 #define HANDLE_CONSTANT(Name)                                                  \
   2699   case Value::Name##Val:                                                       \
   2700     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
   2701     break;
   2702 #include "llvm/IR/Value.def"
   2703   }
   2704 
   2705   // If handleOperandChangeImpl returned nullptr, then it handled
   2706   // replacing itself and we don't want to delete or replace anything else here.
   2707   if (!Replacement)
   2708     return;
   2709 
   2710   // I do need to replace this with an existing value.
   2711   assert(Replacement != this && "I didn't contain From!");
   2712 
   2713   // Everyone using this now uses the replacement.
   2714   replaceAllUsesWith(Replacement);
   2715 
   2716   // Delete the old constant!
   2717   destroyConstant();
   2718 }
   2719 
   2720 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
   2721   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2722   Constant *ToC = cast<Constant>(To);
   2723 
   2724   SmallVector<Constant*, 8> Values;
   2725   Values.reserve(getNumOperands());  // Build replacement array.
   2726 
   2727   // Fill values with the modified operands of the constant array.  Also,
   2728   // compute whether this turns into an all-zeros array.
   2729   unsigned NumUpdated = 0;
   2730 
   2731   // Keep track of whether all the values in the array are "ToC".
   2732   bool AllSame = true;
   2733   Use *OperandList = getOperandList();
   2734   unsigned OperandNo = 0;
   2735   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2736     Constant *Val = cast<Constant>(O->get());
   2737     if (Val == From) {
   2738       OperandNo = (O - OperandList);
   2739       Val = ToC;
   2740       ++NumUpdated;
   2741     }
   2742     Values.push_back(Val);
   2743     AllSame &= Val == ToC;
   2744   }
   2745 
   2746   if (AllSame && ToC->isNullValue())
   2747     return ConstantAggregateZero::get(getType());
   2748 
   2749   if (AllSame && isa<UndefValue>(ToC))
   2750     return UndefValue::get(getType());
   2751 
   2752   // Check for any other type of constant-folding.
   2753   if (Constant *C = getImpl(getType(), Values))
   2754     return C;
   2755 
   2756   // Update to the new value.
   2757   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
   2758       Values, this, From, ToC, NumUpdated, OperandNo);
   2759 }
   2760 
   2761 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
   2762   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2763   Constant *ToC = cast<Constant>(To);
   2764 
   2765   Use *OperandList = getOperandList();
   2766 
   2767   SmallVector<Constant*, 8> Values;
   2768   Values.reserve(getNumOperands());  // Build replacement struct.
   2769 
   2770   // Fill values with the modified operands of the constant struct.  Also,
   2771   // compute whether this turns into an all-zeros struct.
   2772   unsigned NumUpdated = 0;
   2773   bool AllSame = true;
   2774   unsigned OperandNo = 0;
   2775   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
   2776     Constant *Val = cast<Constant>(O->get());
   2777     if (Val == From) {
   2778       OperandNo = (O - OperandList);
   2779       Val = ToC;
   2780       ++NumUpdated;
   2781     }
   2782     Values.push_back(Val);
   2783     AllSame &= Val == ToC;
   2784   }
   2785 
   2786   if (AllSame && ToC->isNullValue())
   2787     return ConstantAggregateZero::get(getType());
   2788 
   2789   if (AllSame && isa<UndefValue>(ToC))
   2790     return UndefValue::get(getType());
   2791 
   2792   // Update to the new value.
   2793   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
   2794       Values, this, From, ToC, NumUpdated, OperandNo);
   2795 }
   2796 
   2797 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
   2798   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2799   Constant *ToC = cast<Constant>(To);
   2800 
   2801   SmallVector<Constant*, 8> Values;
   2802   Values.reserve(getNumOperands());  // Build replacement array...
   2803   unsigned NumUpdated = 0;
   2804   unsigned OperandNo = 0;
   2805   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2806     Constant *Val = getOperand(i);
   2807     if (Val == From) {
   2808       OperandNo = i;
   2809       ++NumUpdated;
   2810       Val = ToC;
   2811     }
   2812     Values.push_back(Val);
   2813   }
   2814 
   2815   if (Constant *C = getImpl(Values))
   2816     return C;
   2817 
   2818   // Update to the new value.
   2819   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
   2820       Values, this, From, ToC, NumUpdated, OperandNo);
   2821 }
   2822 
   2823 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
   2824   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
   2825   Constant *To = cast<Constant>(ToV);
   2826 
   2827   SmallVector<Constant*, 8> NewOps;
   2828   unsigned NumUpdated = 0;
   2829   unsigned OperandNo = 0;
   2830   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2831     Constant *Op = getOperand(i);
   2832     if (Op == From) {
   2833       OperandNo = i;
   2834       ++NumUpdated;
   2835       Op = To;
   2836     }
   2837     NewOps.push_back(Op);
   2838   }
   2839   assert(NumUpdated && "I didn't contain From!");
   2840 
   2841   if (Constant *C = getWithOperands(NewOps, getType(), true))
   2842     return C;
   2843 
   2844   // Update to the new value.
   2845   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
   2846       NewOps, this, From, To, NumUpdated, OperandNo);
   2847 }
   2848 
   2849 Instruction *ConstantExpr::getAsInstruction() {
   2850   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
   2851   ArrayRef<Value*> Ops(ValueOperands);
   2852 
   2853   switch (getOpcode()) {
   2854   case Instruction::Trunc:
   2855   case Instruction::ZExt:
   2856   case Instruction::SExt:
   2857   case Instruction::FPTrunc:
   2858   case Instruction::FPExt:
   2859   case Instruction::UIToFP:
   2860   case Instruction::SIToFP:
   2861   case Instruction::FPToUI:
   2862   case Instruction::FPToSI:
   2863   case Instruction::PtrToInt:
   2864   case Instruction::IntToPtr:
   2865   case Instruction::BitCast:
   2866   case Instruction::AddrSpaceCast:
   2867     return CastInst::Create((Instruction::CastOps)getOpcode(),
   2868                             Ops[0], getType());
   2869   case Instruction::Select:
   2870     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
   2871   case Instruction::InsertElement:
   2872     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
   2873   case Instruction::ExtractElement:
   2874     return ExtractElementInst::Create(Ops[0], Ops[1]);
   2875   case Instruction::InsertValue:
   2876     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
   2877   case Instruction::ExtractValue:
   2878     return ExtractValueInst::Create(Ops[0], getIndices());
   2879   case Instruction::ShuffleVector:
   2880     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
   2881 
   2882   case Instruction::GetElementPtr: {
   2883     const auto *GO = cast<GEPOperator>(this);
   2884     if (GO->isInBounds())
   2885       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
   2886                                                Ops[0], Ops.slice(1));
   2887     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
   2888                                      Ops.slice(1));
   2889   }
   2890   case Instruction::ICmp:
   2891   case Instruction::FCmp:
   2892     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
   2893                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
   2894 
   2895   default:
   2896     assert(getNumOperands() == 2 && "Must be binary operator?");
   2897     BinaryOperator *BO =
   2898       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
   2899                              Ops[0], Ops[1]);
   2900     if (isa<OverflowingBinaryOperator>(BO)) {
   2901       BO->setHasNoUnsignedWrap(SubclassOptionalData &
   2902                                OverflowingBinaryOperator::NoUnsignedWrap);
   2903       BO->setHasNoSignedWrap(SubclassOptionalData &
   2904                              OverflowingBinaryOperator::NoSignedWrap);
   2905     }
   2906     if (isa<PossiblyExactOperator>(BO))
   2907       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
   2908     return BO;
   2909   }
   2910 }
   2911