1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Constant* classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Constants.h" 15 #include "ConstantFold.h" 16 #include "LLVMContextImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringMap.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/GlobalValue.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cstdarg> 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Constant Class 38 //===----------------------------------------------------------------------===// 39 40 void Constant::anchor() { } 41 42 void ConstantData::anchor() {} 43 44 bool Constant::isNegativeZeroValue() const { 45 // Floating point values have an explicit -0.0 value. 46 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 47 return CFP->isZero() && CFP->isNegative(); 48 49 // Equivalent for a vector of -0.0's. 50 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 51 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 52 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) 53 return true; 54 55 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 56 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 57 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) 58 return true; 59 60 // We've already handled true FP case; any other FP vectors can't represent -0.0. 61 if (getType()->isFPOrFPVectorTy()) 62 return false; 63 64 // Otherwise, just use +0.0. 65 return isNullValue(); 66 } 67 68 // Return true iff this constant is positive zero (floating point), negative 69 // zero (floating point), or a null value. 70 bool Constant::isZeroValue() const { 71 // Floating point values have an explicit -0.0 value. 72 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 73 return CFP->isZero(); 74 75 // Equivalent for a vector of -0.0's. 76 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 77 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 78 if (SplatCFP && SplatCFP->isZero()) 79 return true; 80 81 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 82 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 83 if (SplatCFP && SplatCFP->isZero()) 84 return true; 85 86 // Otherwise, just use +0.0. 87 return isNullValue(); 88 } 89 90 bool Constant::isNullValue() const { 91 // 0 is null. 92 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 93 return CI->isZero(); 94 95 // +0.0 is null. 96 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 97 return CFP->isZero() && !CFP->isNegative(); 98 99 // constant zero is zero for aggregates, cpnull is null for pointers, none for 100 // tokens. 101 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 102 isa<ConstantTokenNone>(this); 103 } 104 105 bool Constant::isAllOnesValue() const { 106 // Check for -1 integers 107 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 108 return CI->isMinusOne(); 109 110 // Check for FP which are bitcasted from -1 integers 111 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 112 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); 113 114 // Check for constant vectors which are splats of -1 values. 115 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 116 if (Constant *Splat = CV->getSplatValue()) 117 return Splat->isAllOnesValue(); 118 119 // Check for constant vectors which are splats of -1 values. 120 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 121 if (Constant *Splat = CV->getSplatValue()) 122 return Splat->isAllOnesValue(); 123 124 return false; 125 } 126 127 bool Constant::isOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return CI->isOne(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return CFP->getValueAPF().bitcastToAPInt() == 1; 135 136 // Check for constant vectors which are splats of 1 values. 137 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 138 if (Constant *Splat = CV->getSplatValue()) 139 return Splat->isOneValue(); 140 141 // Check for constant vectors which are splats of 1 values. 142 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 143 if (Constant *Splat = CV->getSplatValue()) 144 return Splat->isOneValue(); 145 146 return false; 147 } 148 149 bool Constant::isMinSignedValue() const { 150 // Check for INT_MIN integers 151 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 152 return CI->isMinValue(/*isSigned=*/true); 153 154 // Check for FP which are bitcasted from INT_MIN integers 155 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 156 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 157 158 // Check for constant vectors which are splats of INT_MIN values. 159 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 160 if (Constant *Splat = CV->getSplatValue()) 161 return Splat->isMinSignedValue(); 162 163 // Check for constant vectors which are splats of INT_MIN values. 164 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 165 if (Constant *Splat = CV->getSplatValue()) 166 return Splat->isMinSignedValue(); 167 168 return false; 169 } 170 171 bool Constant::isNotMinSignedValue() const { 172 // Check for INT_MIN integers 173 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 174 return !CI->isMinValue(/*isSigned=*/true); 175 176 // Check for FP which are bitcasted from INT_MIN integers 177 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 178 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 179 180 // Check for constant vectors which are splats of INT_MIN values. 181 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 182 if (Constant *Splat = CV->getSplatValue()) 183 return Splat->isNotMinSignedValue(); 184 185 // Check for constant vectors which are splats of INT_MIN values. 186 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 187 if (Constant *Splat = CV->getSplatValue()) 188 return Splat->isNotMinSignedValue(); 189 190 // It *may* contain INT_MIN, we can't tell. 191 return false; 192 } 193 194 /// Constructor to create a '0' constant of arbitrary type. 195 Constant *Constant::getNullValue(Type *Ty) { 196 switch (Ty->getTypeID()) { 197 case Type::IntegerTyID: 198 return ConstantInt::get(Ty, 0); 199 case Type::HalfTyID: 200 return ConstantFP::get(Ty->getContext(), 201 APFloat::getZero(APFloat::IEEEhalf)); 202 case Type::FloatTyID: 203 return ConstantFP::get(Ty->getContext(), 204 APFloat::getZero(APFloat::IEEEsingle)); 205 case Type::DoubleTyID: 206 return ConstantFP::get(Ty->getContext(), 207 APFloat::getZero(APFloat::IEEEdouble)); 208 case Type::X86_FP80TyID: 209 return ConstantFP::get(Ty->getContext(), 210 APFloat::getZero(APFloat::x87DoubleExtended)); 211 case Type::FP128TyID: 212 return ConstantFP::get(Ty->getContext(), 213 APFloat::getZero(APFloat::IEEEquad)); 214 case Type::PPC_FP128TyID: 215 return ConstantFP::get(Ty->getContext(), 216 APFloat(APFloat::PPCDoubleDouble, 217 APInt::getNullValue(128))); 218 case Type::PointerTyID: 219 return ConstantPointerNull::get(cast<PointerType>(Ty)); 220 case Type::StructTyID: 221 case Type::ArrayTyID: 222 case Type::VectorTyID: 223 return ConstantAggregateZero::get(Ty); 224 case Type::TokenTyID: 225 return ConstantTokenNone::get(Ty->getContext()); 226 default: 227 // Function, Label, or Opaque type? 228 llvm_unreachable("Cannot create a null constant of that type!"); 229 } 230 } 231 232 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 233 Type *ScalarTy = Ty->getScalarType(); 234 235 // Create the base integer constant. 236 Constant *C = ConstantInt::get(Ty->getContext(), V); 237 238 // Convert an integer to a pointer, if necessary. 239 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 240 C = ConstantExpr::getIntToPtr(C, PTy); 241 242 // Broadcast a scalar to a vector, if necessary. 243 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 244 C = ConstantVector::getSplat(VTy->getNumElements(), C); 245 246 return C; 247 } 248 249 Constant *Constant::getAllOnesValue(Type *Ty) { 250 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 251 return ConstantInt::get(Ty->getContext(), 252 APInt::getAllOnesValue(ITy->getBitWidth())); 253 254 if (Ty->isFloatingPointTy()) { 255 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), 256 !Ty->isPPC_FP128Ty()); 257 return ConstantFP::get(Ty->getContext(), FL); 258 } 259 260 VectorType *VTy = cast<VectorType>(Ty); 261 return ConstantVector::getSplat(VTy->getNumElements(), 262 getAllOnesValue(VTy->getElementType())); 263 } 264 265 Constant *Constant::getAggregateElement(unsigned Elt) const { 266 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this)) 267 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 268 269 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this)) 270 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; 271 272 if (const UndefValue *UV = dyn_cast<UndefValue>(this)) 273 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 274 275 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) 276 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 277 : nullptr; 278 return nullptr; 279 } 280 281 Constant *Constant::getAggregateElement(Constant *Elt) const { 282 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 283 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) 284 return getAggregateElement(CI->getZExtValue()); 285 return nullptr; 286 } 287 288 void Constant::destroyConstant() { 289 /// First call destroyConstantImpl on the subclass. This gives the subclass 290 /// a chance to remove the constant from any maps/pools it's contained in. 291 switch (getValueID()) { 292 default: 293 llvm_unreachable("Not a constant!"); 294 #define HANDLE_CONSTANT(Name) \ 295 case Value::Name##Val: \ 296 cast<Name>(this)->destroyConstantImpl(); \ 297 break; 298 #include "llvm/IR/Value.def" 299 } 300 301 // When a Constant is destroyed, there may be lingering 302 // references to the constant by other constants in the constant pool. These 303 // constants are implicitly dependent on the module that is being deleted, 304 // but they don't know that. Because we only find out when the CPV is 305 // deleted, we must now notify all of our users (that should only be 306 // Constants) that they are, in fact, invalid now and should be deleted. 307 // 308 while (!use_empty()) { 309 Value *V = user_back(); 310 #ifndef NDEBUG // Only in -g mode... 311 if (!isa<Constant>(V)) { 312 dbgs() << "While deleting: " << *this 313 << "\n\nUse still stuck around after Def is destroyed: " << *V 314 << "\n\n"; 315 } 316 #endif 317 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 318 cast<Constant>(V)->destroyConstant(); 319 320 // The constant should remove itself from our use list... 321 assert((use_empty() || user_back() != V) && "Constant not removed!"); 322 } 323 324 // Value has no outstanding references it is safe to delete it now... 325 delete this; 326 } 327 328 static bool canTrapImpl(const Constant *C, 329 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 330 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 331 // The only thing that could possibly trap are constant exprs. 332 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 333 if (!CE) 334 return false; 335 336 // ConstantExpr traps if any operands can trap. 337 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 338 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 339 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 340 return true; 341 } 342 } 343 344 // Otherwise, only specific operations can trap. 345 switch (CE->getOpcode()) { 346 default: 347 return false; 348 case Instruction::UDiv: 349 case Instruction::SDiv: 350 case Instruction::FDiv: 351 case Instruction::URem: 352 case Instruction::SRem: 353 case Instruction::FRem: 354 // Div and rem can trap if the RHS is not known to be non-zero. 355 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 356 return true; 357 return false; 358 } 359 } 360 361 bool Constant::canTrap() const { 362 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 363 return canTrapImpl(this, NonTrappingOps); 364 } 365 366 /// Check if C contains a GlobalValue for which Predicate is true. 367 static bool 368 ConstHasGlobalValuePredicate(const Constant *C, 369 bool (*Predicate)(const GlobalValue *)) { 370 SmallPtrSet<const Constant *, 8> Visited; 371 SmallVector<const Constant *, 8> WorkList; 372 WorkList.push_back(C); 373 Visited.insert(C); 374 375 while (!WorkList.empty()) { 376 const Constant *WorkItem = WorkList.pop_back_val(); 377 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 378 if (Predicate(GV)) 379 return true; 380 for (const Value *Op : WorkItem->operands()) { 381 const Constant *ConstOp = dyn_cast<Constant>(Op); 382 if (!ConstOp) 383 continue; 384 if (Visited.insert(ConstOp).second) 385 WorkList.push_back(ConstOp); 386 } 387 } 388 return false; 389 } 390 391 bool Constant::isThreadDependent() const { 392 auto DLLImportPredicate = [](const GlobalValue *GV) { 393 return GV->isThreadLocal(); 394 }; 395 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 396 } 397 398 bool Constant::isDLLImportDependent() const { 399 auto DLLImportPredicate = [](const GlobalValue *GV) { 400 return GV->hasDLLImportStorageClass(); 401 }; 402 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 403 } 404 405 bool Constant::isConstantUsed() const { 406 for (const User *U : users()) { 407 const Constant *UC = dyn_cast<Constant>(U); 408 if (!UC || isa<GlobalValue>(UC)) 409 return true; 410 411 if (UC->isConstantUsed()) 412 return true; 413 } 414 return false; 415 } 416 417 bool Constant::needsRelocation() const { 418 if (isa<GlobalValue>(this)) 419 return true; // Global reference. 420 421 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 422 return BA->getFunction()->needsRelocation(); 423 424 // While raw uses of blockaddress need to be relocated, differences between 425 // two of them don't when they are for labels in the same function. This is a 426 // common idiom when creating a table for the indirect goto extension, so we 427 // handle it efficiently here. 428 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) 429 if (CE->getOpcode() == Instruction::Sub) { 430 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 431 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 432 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 433 RHS->getOpcode() == Instruction::PtrToInt && 434 isa<BlockAddress>(LHS->getOperand(0)) && 435 isa<BlockAddress>(RHS->getOperand(0)) && 436 cast<BlockAddress>(LHS->getOperand(0))->getFunction() == 437 cast<BlockAddress>(RHS->getOperand(0))->getFunction()) 438 return false; 439 } 440 441 bool Result = false; 442 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 443 Result |= cast<Constant>(getOperand(i))->needsRelocation(); 444 445 return Result; 446 } 447 448 /// If the specified constantexpr is dead, remove it. This involves recursively 449 /// eliminating any dead users of the constantexpr. 450 static bool removeDeadUsersOfConstant(const Constant *C) { 451 if (isa<GlobalValue>(C)) return false; // Cannot remove this 452 453 while (!C->use_empty()) { 454 const Constant *User = dyn_cast<Constant>(C->user_back()); 455 if (!User) return false; // Non-constant usage; 456 if (!removeDeadUsersOfConstant(User)) 457 return false; // Constant wasn't dead 458 } 459 460 const_cast<Constant*>(C)->destroyConstant(); 461 return true; 462 } 463 464 465 void Constant::removeDeadConstantUsers() const { 466 Value::const_user_iterator I = user_begin(), E = user_end(); 467 Value::const_user_iterator LastNonDeadUser = E; 468 while (I != E) { 469 const Constant *User = dyn_cast<Constant>(*I); 470 if (!User) { 471 LastNonDeadUser = I; 472 ++I; 473 continue; 474 } 475 476 if (!removeDeadUsersOfConstant(User)) { 477 // If the constant wasn't dead, remember that this was the last live use 478 // and move on to the next constant. 479 LastNonDeadUser = I; 480 ++I; 481 continue; 482 } 483 484 // If the constant was dead, then the iterator is invalidated. 485 if (LastNonDeadUser == E) { 486 I = user_begin(); 487 if (I == E) break; 488 } else { 489 I = LastNonDeadUser; 490 ++I; 491 } 492 } 493 } 494 495 496 497 //===----------------------------------------------------------------------===// 498 // ConstantInt 499 //===----------------------------------------------------------------------===// 500 501 void ConstantInt::anchor() { } 502 503 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 504 : ConstantData(Ty, ConstantIntVal), Val(V) { 505 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 506 } 507 508 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 509 LLVMContextImpl *pImpl = Context.pImpl; 510 if (!pImpl->TheTrueVal) 511 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 512 return pImpl->TheTrueVal; 513 } 514 515 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 516 LLVMContextImpl *pImpl = Context.pImpl; 517 if (!pImpl->TheFalseVal) 518 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 519 return pImpl->TheFalseVal; 520 } 521 522 Constant *ConstantInt::getTrue(Type *Ty) { 523 VectorType *VTy = dyn_cast<VectorType>(Ty); 524 if (!VTy) { 525 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); 526 return ConstantInt::getTrue(Ty->getContext()); 527 } 528 assert(VTy->getElementType()->isIntegerTy(1) && 529 "True must be vector of i1 or i1."); 530 return ConstantVector::getSplat(VTy->getNumElements(), 531 ConstantInt::getTrue(Ty->getContext())); 532 } 533 534 Constant *ConstantInt::getFalse(Type *Ty) { 535 VectorType *VTy = dyn_cast<VectorType>(Ty); 536 if (!VTy) { 537 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); 538 return ConstantInt::getFalse(Ty->getContext()); 539 } 540 assert(VTy->getElementType()->isIntegerTy(1) && 541 "False must be vector of i1 or i1."); 542 return ConstantVector::getSplat(VTy->getNumElements(), 543 ConstantInt::getFalse(Ty->getContext())); 544 } 545 546 // Get a ConstantInt from an APInt. 547 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 548 // get an existing value or the insertion position 549 LLVMContextImpl *pImpl = Context.pImpl; 550 ConstantInt *&Slot = pImpl->IntConstants[V]; 551 if (!Slot) { 552 // Get the corresponding integer type for the bit width of the value. 553 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 554 Slot = new ConstantInt(ITy, V); 555 } 556 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 557 return Slot; 558 } 559 560 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 561 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 562 563 // For vectors, broadcast the value. 564 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 565 return ConstantVector::getSplat(VTy->getNumElements(), C); 566 567 return C; 568 } 569 570 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 571 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 572 } 573 574 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 575 return get(Ty, V, true); 576 } 577 578 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 579 return get(Ty, V, true); 580 } 581 582 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 583 ConstantInt *C = get(Ty->getContext(), V); 584 assert(C->getType() == Ty->getScalarType() && 585 "ConstantInt type doesn't match the type implied by its value!"); 586 587 // For vectors, broadcast the value. 588 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 589 return ConstantVector::getSplat(VTy->getNumElements(), C); 590 591 return C; 592 } 593 594 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 595 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 596 } 597 598 /// Remove the constant from the constant table. 599 void ConstantInt::destroyConstantImpl() { 600 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 601 } 602 603 //===----------------------------------------------------------------------===// 604 // ConstantFP 605 //===----------------------------------------------------------------------===// 606 607 static const fltSemantics *TypeToFloatSemantics(Type *Ty) { 608 if (Ty->isHalfTy()) 609 return &APFloat::IEEEhalf; 610 if (Ty->isFloatTy()) 611 return &APFloat::IEEEsingle; 612 if (Ty->isDoubleTy()) 613 return &APFloat::IEEEdouble; 614 if (Ty->isX86_FP80Ty()) 615 return &APFloat::x87DoubleExtended; 616 else if (Ty->isFP128Ty()) 617 return &APFloat::IEEEquad; 618 619 assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); 620 return &APFloat::PPCDoubleDouble; 621 } 622 623 void ConstantFP::anchor() { } 624 625 Constant *ConstantFP::get(Type *Ty, double V) { 626 LLVMContext &Context = Ty->getContext(); 627 628 APFloat FV(V); 629 bool ignored; 630 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), 631 APFloat::rmNearestTiesToEven, &ignored); 632 Constant *C = get(Context, FV); 633 634 // For vectors, broadcast the value. 635 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 636 return ConstantVector::getSplat(VTy->getNumElements(), C); 637 638 return C; 639 } 640 641 642 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 643 LLVMContext &Context = Ty->getContext(); 644 645 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); 646 Constant *C = get(Context, FV); 647 648 // For vectors, broadcast the value. 649 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 650 return ConstantVector::getSplat(VTy->getNumElements(), C); 651 652 return C; 653 } 654 655 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) { 656 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 657 APFloat NaN = APFloat::getNaN(Semantics, Negative, Type); 658 Constant *C = get(Ty->getContext(), NaN); 659 660 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 661 return ConstantVector::getSplat(VTy->getNumElements(), C); 662 663 return C; 664 } 665 666 Constant *ConstantFP::getNegativeZero(Type *Ty) { 667 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 668 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 669 Constant *C = get(Ty->getContext(), NegZero); 670 671 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 672 return ConstantVector::getSplat(VTy->getNumElements(), C); 673 674 return C; 675 } 676 677 678 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 679 if (Ty->isFPOrFPVectorTy()) 680 return getNegativeZero(Ty); 681 682 return Constant::getNullValue(Ty); 683 } 684 685 686 // ConstantFP accessors. 687 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 688 LLVMContextImpl* pImpl = Context.pImpl; 689 690 ConstantFP *&Slot = pImpl->FPConstants[V]; 691 692 if (!Slot) { 693 Type *Ty; 694 if (&V.getSemantics() == &APFloat::IEEEhalf) 695 Ty = Type::getHalfTy(Context); 696 else if (&V.getSemantics() == &APFloat::IEEEsingle) 697 Ty = Type::getFloatTy(Context); 698 else if (&V.getSemantics() == &APFloat::IEEEdouble) 699 Ty = Type::getDoubleTy(Context); 700 else if (&V.getSemantics() == &APFloat::x87DoubleExtended) 701 Ty = Type::getX86_FP80Ty(Context); 702 else if (&V.getSemantics() == &APFloat::IEEEquad) 703 Ty = Type::getFP128Ty(Context); 704 else { 705 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 706 "Unknown FP format"); 707 Ty = Type::getPPC_FP128Ty(Context); 708 } 709 Slot = new ConstantFP(Ty, V); 710 } 711 712 return Slot; 713 } 714 715 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 716 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 717 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 718 719 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 720 return ConstantVector::getSplat(VTy->getNumElements(), C); 721 722 return C; 723 } 724 725 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 726 : ConstantData(Ty, ConstantFPVal), Val(V) { 727 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && 728 "FP type Mismatch"); 729 } 730 731 bool ConstantFP::isExactlyValue(const APFloat &V) const { 732 return Val.bitwiseIsEqual(V); 733 } 734 735 /// Remove the constant from the constant table. 736 void ConstantFP::destroyConstantImpl() { 737 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 738 } 739 740 //===----------------------------------------------------------------------===// 741 // ConstantAggregateZero Implementation 742 //===----------------------------------------------------------------------===// 743 744 Constant *ConstantAggregateZero::getSequentialElement() const { 745 return Constant::getNullValue(getType()->getSequentialElementType()); 746 } 747 748 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 749 return Constant::getNullValue(getType()->getStructElementType(Elt)); 750 } 751 752 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 753 if (isa<SequentialType>(getType())) 754 return getSequentialElement(); 755 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 756 } 757 758 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 759 if (isa<SequentialType>(getType())) 760 return getSequentialElement(); 761 return getStructElement(Idx); 762 } 763 764 unsigned ConstantAggregateZero::getNumElements() const { 765 Type *Ty = getType(); 766 if (auto *AT = dyn_cast<ArrayType>(Ty)) 767 return AT->getNumElements(); 768 if (auto *VT = dyn_cast<VectorType>(Ty)) 769 return VT->getNumElements(); 770 return Ty->getStructNumElements(); 771 } 772 773 //===----------------------------------------------------------------------===// 774 // UndefValue Implementation 775 //===----------------------------------------------------------------------===// 776 777 UndefValue *UndefValue::getSequentialElement() const { 778 return UndefValue::get(getType()->getSequentialElementType()); 779 } 780 781 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 782 return UndefValue::get(getType()->getStructElementType(Elt)); 783 } 784 785 UndefValue *UndefValue::getElementValue(Constant *C) const { 786 if (isa<SequentialType>(getType())) 787 return getSequentialElement(); 788 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 789 } 790 791 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 792 if (isa<SequentialType>(getType())) 793 return getSequentialElement(); 794 return getStructElement(Idx); 795 } 796 797 unsigned UndefValue::getNumElements() const { 798 Type *Ty = getType(); 799 if (auto *AT = dyn_cast<ArrayType>(Ty)) 800 return AT->getNumElements(); 801 if (auto *VT = dyn_cast<VectorType>(Ty)) 802 return VT->getNumElements(); 803 return Ty->getStructNumElements(); 804 } 805 806 //===----------------------------------------------------------------------===// 807 // ConstantXXX Classes 808 //===----------------------------------------------------------------------===// 809 810 template <typename ItTy, typename EltTy> 811 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 812 for (; Start != End; ++Start) 813 if (*Start != Elt) 814 return false; 815 return true; 816 } 817 818 template <typename SequentialTy, typename ElementTy> 819 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 820 assert(!V.empty() && "Cannot get empty int sequence."); 821 822 SmallVector<ElementTy, 16> Elts; 823 for (Constant *C : V) 824 if (auto *CI = dyn_cast<ConstantInt>(C)) 825 Elts.push_back(CI->getZExtValue()); 826 else 827 return nullptr; 828 return SequentialTy::get(V[0]->getContext(), Elts); 829 } 830 831 template <typename SequentialTy, typename ElementTy> 832 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 833 assert(!V.empty() && "Cannot get empty FP sequence."); 834 835 SmallVector<ElementTy, 16> Elts; 836 for (Constant *C : V) 837 if (auto *CFP = dyn_cast<ConstantFP>(C)) 838 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 839 else 840 return nullptr; 841 return SequentialTy::getFP(V[0]->getContext(), Elts); 842 } 843 844 template <typename SequenceTy> 845 static Constant *getSequenceIfElementsMatch(Constant *C, 846 ArrayRef<Constant *> V) { 847 // We speculatively build the elements here even if it turns out that there is 848 // a constantexpr or something else weird, since it is so uncommon for that to 849 // happen. 850 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 851 if (CI->getType()->isIntegerTy(8)) 852 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 853 else if (CI->getType()->isIntegerTy(16)) 854 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 855 else if (CI->getType()->isIntegerTy(32)) 856 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 857 else if (CI->getType()->isIntegerTy(64)) 858 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 859 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 860 if (CFP->getType()->isHalfTy()) 861 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 862 else if (CFP->getType()->isFloatTy()) 863 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 864 else if (CFP->getType()->isDoubleTy()) 865 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 866 } 867 868 return nullptr; 869 } 870 871 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT, 872 ArrayRef<Constant *> V) 873 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 874 V.size()) { 875 std::copy(V.begin(), V.end(), op_begin()); 876 877 // Check that types match, unless this is an opaque struct. 878 if (auto *ST = dyn_cast<StructType>(T)) 879 if (ST->isOpaque()) 880 return; 881 for (unsigned I = 0, E = V.size(); I != E; ++I) 882 assert(V[I]->getType() == T->getTypeAtIndex(I) && 883 "Initializer for composite element doesn't match!"); 884 } 885 886 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 887 : ConstantAggregate(T, ConstantArrayVal, V) { 888 assert(V.size() == T->getNumElements() && 889 "Invalid initializer for constant array"); 890 } 891 892 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 893 if (Constant *C = getImpl(Ty, V)) 894 return C; 895 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 896 } 897 898 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 899 // Empty arrays are canonicalized to ConstantAggregateZero. 900 if (V.empty()) 901 return ConstantAggregateZero::get(Ty); 902 903 for (unsigned i = 0, e = V.size(); i != e; ++i) { 904 assert(V[i]->getType() == Ty->getElementType() && 905 "Wrong type in array element initializer"); 906 } 907 908 // If this is an all-zero array, return a ConstantAggregateZero object. If 909 // all undef, return an UndefValue, if "all simple", then return a 910 // ConstantDataArray. 911 Constant *C = V[0]; 912 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 913 return UndefValue::get(Ty); 914 915 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 916 return ConstantAggregateZero::get(Ty); 917 918 // Check to see if all of the elements are ConstantFP or ConstantInt and if 919 // the element type is compatible with ConstantDataVector. If so, use it. 920 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 921 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 922 923 // Otherwise, we really do want to create a ConstantArray. 924 return nullptr; 925 } 926 927 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 928 ArrayRef<Constant*> V, 929 bool Packed) { 930 unsigned VecSize = V.size(); 931 SmallVector<Type*, 16> EltTypes(VecSize); 932 for (unsigned i = 0; i != VecSize; ++i) 933 EltTypes[i] = V[i]->getType(); 934 935 return StructType::get(Context, EltTypes, Packed); 936 } 937 938 939 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 940 bool Packed) { 941 assert(!V.empty() && 942 "ConstantStruct::getTypeForElements cannot be called on empty list"); 943 return getTypeForElements(V[0]->getContext(), V, Packed); 944 } 945 946 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 947 : ConstantAggregate(T, ConstantStructVal, V) { 948 assert((T->isOpaque() || V.size() == T->getNumElements()) && 949 "Invalid initializer for constant struct"); 950 } 951 952 // ConstantStruct accessors. 953 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 954 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 955 "Incorrect # elements specified to ConstantStruct::get"); 956 957 // Create a ConstantAggregateZero value if all elements are zeros. 958 bool isZero = true; 959 bool isUndef = false; 960 961 if (!V.empty()) { 962 isUndef = isa<UndefValue>(V[0]); 963 isZero = V[0]->isNullValue(); 964 if (isUndef || isZero) { 965 for (unsigned i = 0, e = V.size(); i != e; ++i) { 966 if (!V[i]->isNullValue()) 967 isZero = false; 968 if (!isa<UndefValue>(V[i])) 969 isUndef = false; 970 } 971 } 972 } 973 if (isZero) 974 return ConstantAggregateZero::get(ST); 975 if (isUndef) 976 return UndefValue::get(ST); 977 978 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 979 } 980 981 Constant *ConstantStruct::get(StructType *T, ...) { 982 va_list ap; 983 SmallVector<Constant*, 8> Values; 984 va_start(ap, T); 985 while (Constant *Val = va_arg(ap, llvm::Constant*)) 986 Values.push_back(Val); 987 va_end(ap); 988 return get(T, Values); 989 } 990 991 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 992 : ConstantAggregate(T, ConstantVectorVal, V) { 993 assert(V.size() == T->getNumElements() && 994 "Invalid initializer for constant vector"); 995 } 996 997 // ConstantVector accessors. 998 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 999 if (Constant *C = getImpl(V)) 1000 return C; 1001 VectorType *Ty = VectorType::get(V.front()->getType(), V.size()); 1002 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1003 } 1004 1005 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1006 assert(!V.empty() && "Vectors can't be empty"); 1007 VectorType *T = VectorType::get(V.front()->getType(), V.size()); 1008 1009 // If this is an all-undef or all-zero vector, return a 1010 // ConstantAggregateZero or UndefValue. 1011 Constant *C = V[0]; 1012 bool isZero = C->isNullValue(); 1013 bool isUndef = isa<UndefValue>(C); 1014 1015 if (isZero || isUndef) { 1016 for (unsigned i = 1, e = V.size(); i != e; ++i) 1017 if (V[i] != C) { 1018 isZero = isUndef = false; 1019 break; 1020 } 1021 } 1022 1023 if (isZero) 1024 return ConstantAggregateZero::get(T); 1025 if (isUndef) 1026 return UndefValue::get(T); 1027 1028 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1029 // the element type is compatible with ConstantDataVector. If so, use it. 1030 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1031 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1032 1033 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1034 // the operand list constants a ConstantExpr or something else strange. 1035 return nullptr; 1036 } 1037 1038 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { 1039 // If this splat is compatible with ConstantDataVector, use it instead of 1040 // ConstantVector. 1041 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1042 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1043 return ConstantDataVector::getSplat(NumElts, V); 1044 1045 SmallVector<Constant*, 32> Elts(NumElts, V); 1046 return get(Elts); 1047 } 1048 1049 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1050 LLVMContextImpl *pImpl = Context.pImpl; 1051 if (!pImpl->TheNoneToken) 1052 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1053 return pImpl->TheNoneToken.get(); 1054 } 1055 1056 /// Remove the constant from the constant table. 1057 void ConstantTokenNone::destroyConstantImpl() { 1058 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1059 } 1060 1061 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1062 // can't be inline because we don't want to #include Instruction.h into 1063 // Constant.h 1064 bool ConstantExpr::isCast() const { 1065 return Instruction::isCast(getOpcode()); 1066 } 1067 1068 bool ConstantExpr::isCompare() const { 1069 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1070 } 1071 1072 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 1073 if (getOpcode() != Instruction::GetElementPtr) return false; 1074 1075 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 1076 User::const_op_iterator OI = std::next(this->op_begin()); 1077 1078 // Skip the first index, as it has no static limit. 1079 ++GEPI; 1080 ++OI; 1081 1082 // The remaining indices must be compile-time known integers within the 1083 // bounds of the corresponding notional static array types. 1084 for (; GEPI != E; ++GEPI, ++OI) { 1085 ConstantInt *CI = dyn_cast<ConstantInt>(*OI); 1086 if (!CI) return false; 1087 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) 1088 if (CI->getValue().getActiveBits() > 64 || 1089 CI->getZExtValue() >= ATy->getNumElements()) 1090 return false; 1091 } 1092 1093 // All the indices checked out. 1094 return true; 1095 } 1096 1097 bool ConstantExpr::hasIndices() const { 1098 return getOpcode() == Instruction::ExtractValue || 1099 getOpcode() == Instruction::InsertValue; 1100 } 1101 1102 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1103 if (const ExtractValueConstantExpr *EVCE = 1104 dyn_cast<ExtractValueConstantExpr>(this)) 1105 return EVCE->Indices; 1106 1107 return cast<InsertValueConstantExpr>(this)->Indices; 1108 } 1109 1110 unsigned ConstantExpr::getPredicate() const { 1111 return cast<CompareConstantExpr>(this)->predicate; 1112 } 1113 1114 Constant * 1115 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { 1116 assert(Op->getType() == getOperand(OpNo)->getType() && 1117 "Replacing operand with value of different type!"); 1118 if (getOperand(OpNo) == Op) 1119 return const_cast<ConstantExpr*>(this); 1120 1121 SmallVector<Constant*, 8> NewOps; 1122 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1123 NewOps.push_back(i == OpNo ? Op : getOperand(i)); 1124 1125 return getWithOperands(NewOps); 1126 } 1127 1128 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1129 bool OnlyIfReduced, Type *SrcTy) const { 1130 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1131 1132 // If no operands changed return self. 1133 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1134 return const_cast<ConstantExpr*>(this); 1135 1136 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1137 switch (getOpcode()) { 1138 case Instruction::Trunc: 1139 case Instruction::ZExt: 1140 case Instruction::SExt: 1141 case Instruction::FPTrunc: 1142 case Instruction::FPExt: 1143 case Instruction::UIToFP: 1144 case Instruction::SIToFP: 1145 case Instruction::FPToUI: 1146 case Instruction::FPToSI: 1147 case Instruction::PtrToInt: 1148 case Instruction::IntToPtr: 1149 case Instruction::BitCast: 1150 case Instruction::AddrSpaceCast: 1151 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1152 case Instruction::Select: 1153 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1154 case Instruction::InsertElement: 1155 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1156 OnlyIfReducedTy); 1157 case Instruction::ExtractElement: 1158 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1159 case Instruction::InsertValue: 1160 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1161 OnlyIfReducedTy); 1162 case Instruction::ExtractValue: 1163 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1164 case Instruction::ShuffleVector: 1165 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2], 1166 OnlyIfReducedTy); 1167 case Instruction::GetElementPtr: { 1168 auto *GEPO = cast<GEPOperator>(this); 1169 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1170 return ConstantExpr::getGetElementPtr( 1171 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1172 GEPO->isInBounds(), OnlyIfReducedTy); 1173 } 1174 case Instruction::ICmp: 1175 case Instruction::FCmp: 1176 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1177 OnlyIfReducedTy); 1178 default: 1179 assert(getNumOperands() == 2 && "Must be binary operator?"); 1180 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1181 OnlyIfReducedTy); 1182 } 1183 } 1184 1185 1186 //===----------------------------------------------------------------------===// 1187 // isValueValidForType implementations 1188 1189 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1190 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1191 if (Ty->isIntegerTy(1)) 1192 return Val == 0 || Val == 1; 1193 if (NumBits >= 64) 1194 return true; // always true, has to fit in largest type 1195 uint64_t Max = (1ll << NumBits) - 1; 1196 return Val <= Max; 1197 } 1198 1199 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1200 unsigned NumBits = Ty->getIntegerBitWidth(); 1201 if (Ty->isIntegerTy(1)) 1202 return Val == 0 || Val == 1 || Val == -1; 1203 if (NumBits >= 64) 1204 return true; // always true, has to fit in largest type 1205 int64_t Min = -(1ll << (NumBits-1)); 1206 int64_t Max = (1ll << (NumBits-1)) - 1; 1207 return (Val >= Min && Val <= Max); 1208 } 1209 1210 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1211 // convert modifies in place, so make a copy. 1212 APFloat Val2 = APFloat(Val); 1213 bool losesInfo; 1214 switch (Ty->getTypeID()) { 1215 default: 1216 return false; // These can't be represented as floating point! 1217 1218 // FIXME rounding mode needs to be more flexible 1219 case Type::HalfTyID: { 1220 if (&Val2.getSemantics() == &APFloat::IEEEhalf) 1221 return true; 1222 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); 1223 return !losesInfo; 1224 } 1225 case Type::FloatTyID: { 1226 if (&Val2.getSemantics() == &APFloat::IEEEsingle) 1227 return true; 1228 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); 1229 return !losesInfo; 1230 } 1231 case Type::DoubleTyID: { 1232 if (&Val2.getSemantics() == &APFloat::IEEEhalf || 1233 &Val2.getSemantics() == &APFloat::IEEEsingle || 1234 &Val2.getSemantics() == &APFloat::IEEEdouble) 1235 return true; 1236 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); 1237 return !losesInfo; 1238 } 1239 case Type::X86_FP80TyID: 1240 return &Val2.getSemantics() == &APFloat::IEEEhalf || 1241 &Val2.getSemantics() == &APFloat::IEEEsingle || 1242 &Val2.getSemantics() == &APFloat::IEEEdouble || 1243 &Val2.getSemantics() == &APFloat::x87DoubleExtended; 1244 case Type::FP128TyID: 1245 return &Val2.getSemantics() == &APFloat::IEEEhalf || 1246 &Val2.getSemantics() == &APFloat::IEEEsingle || 1247 &Val2.getSemantics() == &APFloat::IEEEdouble || 1248 &Val2.getSemantics() == &APFloat::IEEEquad; 1249 case Type::PPC_FP128TyID: 1250 return &Val2.getSemantics() == &APFloat::IEEEhalf || 1251 &Val2.getSemantics() == &APFloat::IEEEsingle || 1252 &Val2.getSemantics() == &APFloat::IEEEdouble || 1253 &Val2.getSemantics() == &APFloat::PPCDoubleDouble; 1254 } 1255 } 1256 1257 1258 //===----------------------------------------------------------------------===// 1259 // Factory Function Implementation 1260 1261 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1262 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1263 "Cannot create an aggregate zero of non-aggregate type!"); 1264 1265 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; 1266 if (!Entry) 1267 Entry = new ConstantAggregateZero(Ty); 1268 1269 return Entry; 1270 } 1271 1272 /// Remove the constant from the constant table. 1273 void ConstantAggregateZero::destroyConstantImpl() { 1274 getContext().pImpl->CAZConstants.erase(getType()); 1275 } 1276 1277 /// Remove the constant from the constant table. 1278 void ConstantArray::destroyConstantImpl() { 1279 getType()->getContext().pImpl->ArrayConstants.remove(this); 1280 } 1281 1282 1283 //---- ConstantStruct::get() implementation... 1284 // 1285 1286 /// Remove the constant from the constant table. 1287 void ConstantStruct::destroyConstantImpl() { 1288 getType()->getContext().pImpl->StructConstants.remove(this); 1289 } 1290 1291 /// Remove the constant from the constant table. 1292 void ConstantVector::destroyConstantImpl() { 1293 getType()->getContext().pImpl->VectorConstants.remove(this); 1294 } 1295 1296 Constant *Constant::getSplatValue() const { 1297 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1298 if (isa<ConstantAggregateZero>(this)) 1299 return getNullValue(this->getType()->getVectorElementType()); 1300 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1301 return CV->getSplatValue(); 1302 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1303 return CV->getSplatValue(); 1304 return nullptr; 1305 } 1306 1307 Constant *ConstantVector::getSplatValue() const { 1308 // Check out first element. 1309 Constant *Elt = getOperand(0); 1310 // Then make sure all remaining elements point to the same value. 1311 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) 1312 if (getOperand(I) != Elt) 1313 return nullptr; 1314 return Elt; 1315 } 1316 1317 const APInt &Constant::getUniqueInteger() const { 1318 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1319 return CI->getValue(); 1320 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1321 const Constant *C = this->getAggregateElement(0U); 1322 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1323 return cast<ConstantInt>(C)->getValue(); 1324 } 1325 1326 //---- ConstantPointerNull::get() implementation. 1327 // 1328 1329 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1330 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; 1331 if (!Entry) 1332 Entry = new ConstantPointerNull(Ty); 1333 1334 return Entry; 1335 } 1336 1337 /// Remove the constant from the constant table. 1338 void ConstantPointerNull::destroyConstantImpl() { 1339 getContext().pImpl->CPNConstants.erase(getType()); 1340 } 1341 1342 UndefValue *UndefValue::get(Type *Ty) { 1343 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1344 if (!Entry) 1345 Entry = new UndefValue(Ty); 1346 1347 return Entry; 1348 } 1349 1350 /// Remove the constant from the constant table. 1351 void UndefValue::destroyConstantImpl() { 1352 // Free the constant and any dangling references to it. 1353 getContext().pImpl->UVConstants.erase(getType()); 1354 } 1355 1356 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1357 assert(BB->getParent() && "Block must have a parent"); 1358 return get(BB->getParent(), BB); 1359 } 1360 1361 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1362 BlockAddress *&BA = 1363 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1364 if (!BA) 1365 BA = new BlockAddress(F, BB); 1366 1367 assert(BA->getFunction() == F && "Basic block moved between functions"); 1368 return BA; 1369 } 1370 1371 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1372 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, 1373 &Op<0>(), 2) { 1374 setOperand(0, F); 1375 setOperand(1, BB); 1376 BB->AdjustBlockAddressRefCount(1); 1377 } 1378 1379 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1380 if (!BB->hasAddressTaken()) 1381 return nullptr; 1382 1383 const Function *F = BB->getParent(); 1384 assert(F && "Block must have a parent"); 1385 BlockAddress *BA = 1386 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1387 assert(BA && "Refcount and block address map disagree!"); 1388 return BA; 1389 } 1390 1391 /// Remove the constant from the constant table. 1392 void BlockAddress::destroyConstantImpl() { 1393 getFunction()->getType()->getContext().pImpl 1394 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1395 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1396 } 1397 1398 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1399 // This could be replacing either the Basic Block or the Function. In either 1400 // case, we have to remove the map entry. 1401 Function *NewF = getFunction(); 1402 BasicBlock *NewBB = getBasicBlock(); 1403 1404 if (From == NewF) 1405 NewF = cast<Function>(To->stripPointerCasts()); 1406 else { 1407 assert(From == NewBB && "From does not match any operand"); 1408 NewBB = cast<BasicBlock>(To); 1409 } 1410 1411 // See if the 'new' entry already exists, if not, just update this in place 1412 // and return early. 1413 BlockAddress *&NewBA = 1414 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1415 if (NewBA) 1416 return NewBA; 1417 1418 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1419 1420 // Remove the old entry, this can't cause the map to rehash (just a 1421 // tombstone will get added). 1422 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1423 getBasicBlock())); 1424 NewBA = this; 1425 setOperand(0, NewF); 1426 setOperand(1, NewBB); 1427 getBasicBlock()->AdjustBlockAddressRefCount(1); 1428 1429 // If we just want to keep the existing value, then return null. 1430 // Callers know that this means we shouldn't delete this value. 1431 return nullptr; 1432 } 1433 1434 //---- ConstantExpr::get() implementations. 1435 // 1436 1437 /// This is a utility function to handle folding of casts and lookup of the 1438 /// cast in the ExprConstants map. It is used by the various get* methods below. 1439 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1440 bool OnlyIfReduced = false) { 1441 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1442 // Fold a few common cases 1443 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1444 return FC; 1445 1446 if (OnlyIfReduced) 1447 return nullptr; 1448 1449 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1450 1451 // Look up the constant in the table first to ensure uniqueness. 1452 ConstantExprKeyType Key(opc, C); 1453 1454 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1455 } 1456 1457 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1458 bool OnlyIfReduced) { 1459 Instruction::CastOps opc = Instruction::CastOps(oc); 1460 assert(Instruction::isCast(opc) && "opcode out of range"); 1461 assert(C && Ty && "Null arguments to getCast"); 1462 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1463 1464 switch (opc) { 1465 default: 1466 llvm_unreachable("Invalid cast opcode"); 1467 case Instruction::Trunc: 1468 return getTrunc(C, Ty, OnlyIfReduced); 1469 case Instruction::ZExt: 1470 return getZExt(C, Ty, OnlyIfReduced); 1471 case Instruction::SExt: 1472 return getSExt(C, Ty, OnlyIfReduced); 1473 case Instruction::FPTrunc: 1474 return getFPTrunc(C, Ty, OnlyIfReduced); 1475 case Instruction::FPExt: 1476 return getFPExtend(C, Ty, OnlyIfReduced); 1477 case Instruction::UIToFP: 1478 return getUIToFP(C, Ty, OnlyIfReduced); 1479 case Instruction::SIToFP: 1480 return getSIToFP(C, Ty, OnlyIfReduced); 1481 case Instruction::FPToUI: 1482 return getFPToUI(C, Ty, OnlyIfReduced); 1483 case Instruction::FPToSI: 1484 return getFPToSI(C, Ty, OnlyIfReduced); 1485 case Instruction::PtrToInt: 1486 return getPtrToInt(C, Ty, OnlyIfReduced); 1487 case Instruction::IntToPtr: 1488 return getIntToPtr(C, Ty, OnlyIfReduced); 1489 case Instruction::BitCast: 1490 return getBitCast(C, Ty, OnlyIfReduced); 1491 case Instruction::AddrSpaceCast: 1492 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1493 } 1494 } 1495 1496 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1497 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1498 return getBitCast(C, Ty); 1499 return getZExt(C, Ty); 1500 } 1501 1502 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1503 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1504 return getBitCast(C, Ty); 1505 return getSExt(C, Ty); 1506 } 1507 1508 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1509 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1510 return getBitCast(C, Ty); 1511 return getTrunc(C, Ty); 1512 } 1513 1514 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1515 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1516 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 1517 "Invalid cast"); 1518 1519 if (Ty->isIntOrIntVectorTy()) 1520 return getPtrToInt(S, Ty); 1521 1522 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 1523 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 1524 return getAddrSpaceCast(S, Ty); 1525 1526 return getBitCast(S, Ty); 1527 } 1528 1529 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 1530 Type *Ty) { 1531 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1532 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 1533 1534 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 1535 return getAddrSpaceCast(S, Ty); 1536 1537 return getBitCast(S, Ty); 1538 } 1539 1540 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 1541 assert(C->getType()->isIntOrIntVectorTy() && 1542 Ty->isIntOrIntVectorTy() && "Invalid cast"); 1543 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1544 unsigned DstBits = Ty->getScalarSizeInBits(); 1545 Instruction::CastOps opcode = 1546 (SrcBits == DstBits ? Instruction::BitCast : 1547 (SrcBits > DstBits ? Instruction::Trunc : 1548 (isSigned ? Instruction::SExt : Instruction::ZExt))); 1549 return getCast(opcode, C, Ty); 1550 } 1551 1552 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 1553 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1554 "Invalid cast"); 1555 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1556 unsigned DstBits = Ty->getScalarSizeInBits(); 1557 if (SrcBits == DstBits) 1558 return C; // Avoid a useless cast 1559 Instruction::CastOps opcode = 1560 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 1561 return getCast(opcode, C, Ty); 1562 } 1563 1564 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1565 #ifndef NDEBUG 1566 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1567 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1568 #endif 1569 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1570 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 1571 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 1572 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1573 "SrcTy must be larger than DestTy for Trunc!"); 1574 1575 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 1576 } 1577 1578 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1579 #ifndef NDEBUG 1580 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1581 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1582 #endif 1583 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1584 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 1585 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 1586 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1587 "SrcTy must be smaller than DestTy for SExt!"); 1588 1589 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 1590 } 1591 1592 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1593 #ifndef NDEBUG 1594 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1595 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1596 #endif 1597 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1598 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 1599 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 1600 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1601 "SrcTy must be smaller than DestTy for ZExt!"); 1602 1603 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 1604 } 1605 1606 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1607 #ifndef NDEBUG 1608 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1609 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1610 #endif 1611 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1612 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1613 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1614 "This is an illegal floating point truncation!"); 1615 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 1616 } 1617 1618 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 1619 #ifndef NDEBUG 1620 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1621 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1622 #endif 1623 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1624 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1625 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1626 "This is an illegal floating point extension!"); 1627 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 1628 } 1629 1630 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1631 #ifndef NDEBUG 1632 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1633 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1634 #endif 1635 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1636 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1637 "This is an illegal uint to floating point cast!"); 1638 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 1639 } 1640 1641 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1642 #ifndef NDEBUG 1643 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1644 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1645 #endif 1646 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1647 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1648 "This is an illegal sint to floating point cast!"); 1649 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 1650 } 1651 1652 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1653 #ifndef NDEBUG 1654 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1655 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1656 #endif 1657 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1658 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1659 "This is an illegal floating point to uint cast!"); 1660 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 1661 } 1662 1663 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1664 #ifndef NDEBUG 1665 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1666 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1667 #endif 1668 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1669 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1670 "This is an illegal floating point to sint cast!"); 1671 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 1672 } 1673 1674 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 1675 bool OnlyIfReduced) { 1676 assert(C->getType()->getScalarType()->isPointerTy() && 1677 "PtrToInt source must be pointer or pointer vector"); 1678 assert(DstTy->getScalarType()->isIntegerTy() && 1679 "PtrToInt destination must be integer or integer vector"); 1680 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1681 if (isa<VectorType>(C->getType())) 1682 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1683 "Invalid cast between a different number of vector elements"); 1684 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 1685 } 1686 1687 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 1688 bool OnlyIfReduced) { 1689 assert(C->getType()->getScalarType()->isIntegerTy() && 1690 "IntToPtr source must be integer or integer vector"); 1691 assert(DstTy->getScalarType()->isPointerTy() && 1692 "IntToPtr destination must be a pointer or pointer vector"); 1693 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1694 if (isa<VectorType>(C->getType())) 1695 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1696 "Invalid cast between a different number of vector elements"); 1697 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 1698 } 1699 1700 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 1701 bool OnlyIfReduced) { 1702 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 1703 "Invalid constantexpr bitcast!"); 1704 1705 // It is common to ask for a bitcast of a value to its own type, handle this 1706 // speedily. 1707 if (C->getType() == DstTy) return C; 1708 1709 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 1710 } 1711 1712 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 1713 bool OnlyIfReduced) { 1714 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 1715 "Invalid constantexpr addrspacecast!"); 1716 1717 // Canonicalize addrspacecasts between different pointer types by first 1718 // bitcasting the pointer type and then converting the address space. 1719 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 1720 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 1721 Type *DstElemTy = DstScalarTy->getElementType(); 1722 if (SrcScalarTy->getElementType() != DstElemTy) { 1723 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); 1724 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 1725 // Handle vectors of pointers. 1726 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1727 } 1728 C = getBitCast(C, MidTy); 1729 } 1730 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 1731 } 1732 1733 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 1734 unsigned Flags, Type *OnlyIfReducedTy) { 1735 // Check the operands for consistency first. 1736 assert(Opcode >= Instruction::BinaryOpsBegin && 1737 Opcode < Instruction::BinaryOpsEnd && 1738 "Invalid opcode in binary constant expression"); 1739 assert(C1->getType() == C2->getType() && 1740 "Operand types in binary constant expression should match"); 1741 1742 #ifndef NDEBUG 1743 switch (Opcode) { 1744 case Instruction::Add: 1745 case Instruction::Sub: 1746 case Instruction::Mul: 1747 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1748 assert(C1->getType()->isIntOrIntVectorTy() && 1749 "Tried to create an integer operation on a non-integer type!"); 1750 break; 1751 case Instruction::FAdd: 1752 case Instruction::FSub: 1753 case Instruction::FMul: 1754 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1755 assert(C1->getType()->isFPOrFPVectorTy() && 1756 "Tried to create a floating-point operation on a " 1757 "non-floating-point type!"); 1758 break; 1759 case Instruction::UDiv: 1760 case Instruction::SDiv: 1761 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1762 assert(C1->getType()->isIntOrIntVectorTy() && 1763 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1764 break; 1765 case Instruction::FDiv: 1766 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1767 assert(C1->getType()->isFPOrFPVectorTy() && 1768 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1769 break; 1770 case Instruction::URem: 1771 case Instruction::SRem: 1772 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1773 assert(C1->getType()->isIntOrIntVectorTy() && 1774 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1775 break; 1776 case Instruction::FRem: 1777 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1778 assert(C1->getType()->isFPOrFPVectorTy() && 1779 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1780 break; 1781 case Instruction::And: 1782 case Instruction::Or: 1783 case Instruction::Xor: 1784 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1785 assert(C1->getType()->isIntOrIntVectorTy() && 1786 "Tried to create a logical operation on a non-integral type!"); 1787 break; 1788 case Instruction::Shl: 1789 case Instruction::LShr: 1790 case Instruction::AShr: 1791 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1792 assert(C1->getType()->isIntOrIntVectorTy() && 1793 "Tried to create a shift operation on a non-integer type!"); 1794 break; 1795 default: 1796 break; 1797 } 1798 #endif 1799 1800 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 1801 return FC; // Fold a few common cases. 1802 1803 if (OnlyIfReducedTy == C1->getType()) 1804 return nullptr; 1805 1806 Constant *ArgVec[] = { C1, C2 }; 1807 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 1808 1809 LLVMContextImpl *pImpl = C1->getContext().pImpl; 1810 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 1811 } 1812 1813 Constant *ConstantExpr::getSizeOf(Type* Ty) { 1814 // sizeof is implemented as: (i64) gep (Ty*)null, 1 1815 // Note that a non-inbounds gep is used, as null isn't within any object. 1816 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 1817 Constant *GEP = getGetElementPtr( 1818 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 1819 return getPtrToInt(GEP, 1820 Type::getInt64Ty(Ty->getContext())); 1821 } 1822 1823 Constant *ConstantExpr::getAlignOf(Type* Ty) { 1824 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 1825 // Note that a non-inbounds gep is used, as null isn't within any object. 1826 Type *AligningTy = 1827 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr); 1828 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 1829 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 1830 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 1831 Constant *Indices[2] = { Zero, One }; 1832 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 1833 return getPtrToInt(GEP, 1834 Type::getInt64Ty(Ty->getContext())); 1835 } 1836 1837 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 1838 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 1839 FieldNo)); 1840 } 1841 1842 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 1843 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 1844 // Note that a non-inbounds gep is used, as null isn't within any object. 1845 Constant *GEPIdx[] = { 1846 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 1847 FieldNo 1848 }; 1849 Constant *GEP = getGetElementPtr( 1850 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 1851 return getPtrToInt(GEP, 1852 Type::getInt64Ty(Ty->getContext())); 1853 } 1854 1855 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 1856 Constant *C2, bool OnlyIfReduced) { 1857 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1858 1859 switch (Predicate) { 1860 default: llvm_unreachable("Invalid CmpInst predicate"); 1861 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 1862 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 1863 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 1864 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 1865 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 1866 case CmpInst::FCMP_TRUE: 1867 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 1868 1869 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 1870 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 1871 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 1872 case CmpInst::ICMP_SLE: 1873 return getICmp(Predicate, C1, C2, OnlyIfReduced); 1874 } 1875 } 1876 1877 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 1878 Type *OnlyIfReducedTy) { 1879 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 1880 1881 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 1882 return SC; // Fold common cases 1883 1884 if (OnlyIfReducedTy == V1->getType()) 1885 return nullptr; 1886 1887 Constant *ArgVec[] = { C, V1, V2 }; 1888 ConstantExprKeyType Key(Instruction::Select, ArgVec); 1889 1890 LLVMContextImpl *pImpl = C->getContext().pImpl; 1891 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 1892 } 1893 1894 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 1895 ArrayRef<Value *> Idxs, bool InBounds, 1896 Type *OnlyIfReducedTy) { 1897 if (!Ty) 1898 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType(); 1899 else 1900 assert( 1901 Ty == 1902 cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u)); 1903 1904 if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs)) 1905 return FC; // Fold a few common cases. 1906 1907 // Get the result type of the getelementptr! 1908 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 1909 assert(DestTy && "GEP indices invalid!"); 1910 unsigned AS = C->getType()->getPointerAddressSpace(); 1911 Type *ReqTy = DestTy->getPointerTo(AS); 1912 1913 unsigned NumVecElts = 0; 1914 if (C->getType()->isVectorTy()) 1915 NumVecElts = C->getType()->getVectorNumElements(); 1916 else for (auto Idx : Idxs) 1917 if (Idx->getType()->isVectorTy()) 1918 NumVecElts = Idx->getType()->getVectorNumElements(); 1919 1920 if (NumVecElts) 1921 ReqTy = VectorType::get(ReqTy, NumVecElts); 1922 1923 if (OnlyIfReducedTy == ReqTy) 1924 return nullptr; 1925 1926 // Look up the constant in the table first to ensure uniqueness 1927 std::vector<Constant*> ArgVec; 1928 ArgVec.reserve(1 + Idxs.size()); 1929 ArgVec.push_back(C); 1930 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 1931 assert((!Idxs[i]->getType()->isVectorTy() || 1932 Idxs[i]->getType()->getVectorNumElements() == NumVecElts) && 1933 "getelementptr index type missmatch"); 1934 1935 Constant *Idx = cast<Constant>(Idxs[i]); 1936 if (NumVecElts && !Idxs[i]->getType()->isVectorTy()) 1937 Idx = ConstantVector::getSplat(NumVecElts, Idx); 1938 ArgVec.push_back(Idx); 1939 } 1940 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 1941 InBounds ? GEPOperator::IsInBounds : 0, None, 1942 Ty); 1943 1944 LLVMContextImpl *pImpl = C->getContext().pImpl; 1945 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 1946 } 1947 1948 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 1949 Constant *RHS, bool OnlyIfReduced) { 1950 assert(LHS->getType() == RHS->getType()); 1951 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 1952 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); 1953 1954 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 1955 return FC; // Fold a few common cases... 1956 1957 if (OnlyIfReduced) 1958 return nullptr; 1959 1960 // Look up the constant in the table first to ensure uniqueness 1961 Constant *ArgVec[] = { LHS, RHS }; 1962 // Get the key type with both the opcode and predicate 1963 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); 1964 1965 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 1966 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 1967 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 1968 1969 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 1970 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 1971 } 1972 1973 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 1974 Constant *RHS, bool OnlyIfReduced) { 1975 assert(LHS->getType() == RHS->getType()); 1976 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); 1977 1978 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 1979 return FC; // Fold a few common cases... 1980 1981 if (OnlyIfReduced) 1982 return nullptr; 1983 1984 // Look up the constant in the table first to ensure uniqueness 1985 Constant *ArgVec[] = { LHS, RHS }; 1986 // Get the key type with both the opcode and predicate 1987 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); 1988 1989 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 1990 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 1991 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 1992 1993 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 1994 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 1995 } 1996 1997 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 1998 Type *OnlyIfReducedTy) { 1999 assert(Val->getType()->isVectorTy() && 2000 "Tried to create extractelement operation on non-vector type!"); 2001 assert(Idx->getType()->isIntegerTy() && 2002 "Extractelement index must be an integer type!"); 2003 2004 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2005 return FC; // Fold a few common cases. 2006 2007 Type *ReqTy = Val->getType()->getVectorElementType(); 2008 if (OnlyIfReducedTy == ReqTy) 2009 return nullptr; 2010 2011 // Look up the constant in the table first to ensure uniqueness 2012 Constant *ArgVec[] = { Val, Idx }; 2013 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2014 2015 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2016 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2017 } 2018 2019 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2020 Constant *Idx, Type *OnlyIfReducedTy) { 2021 assert(Val->getType()->isVectorTy() && 2022 "Tried to create insertelement operation on non-vector type!"); 2023 assert(Elt->getType() == Val->getType()->getVectorElementType() && 2024 "Insertelement types must match!"); 2025 assert(Idx->getType()->isIntegerTy() && 2026 "Insertelement index must be i32 type!"); 2027 2028 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2029 return FC; // Fold a few common cases. 2030 2031 if (OnlyIfReducedTy == Val->getType()) 2032 return nullptr; 2033 2034 // Look up the constant in the table first to ensure uniqueness 2035 Constant *ArgVec[] = { Val, Elt, Idx }; 2036 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2037 2038 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2039 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2040 } 2041 2042 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2043 Constant *Mask, Type *OnlyIfReducedTy) { 2044 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2045 "Invalid shuffle vector constant expr operands!"); 2046 2047 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2048 return FC; // Fold a few common cases. 2049 2050 unsigned NElts = Mask->getType()->getVectorNumElements(); 2051 Type *EltTy = V1->getType()->getVectorElementType(); 2052 Type *ShufTy = VectorType::get(EltTy, NElts); 2053 2054 if (OnlyIfReducedTy == ShufTy) 2055 return nullptr; 2056 2057 // Look up the constant in the table first to ensure uniqueness 2058 Constant *ArgVec[] = { V1, V2, Mask }; 2059 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec); 2060 2061 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2062 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2063 } 2064 2065 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2066 ArrayRef<unsigned> Idxs, 2067 Type *OnlyIfReducedTy) { 2068 assert(Agg->getType()->isFirstClassType() && 2069 "Non-first-class type for constant insertvalue expression"); 2070 2071 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2072 Idxs) == Val->getType() && 2073 "insertvalue indices invalid!"); 2074 Type *ReqTy = Val->getType(); 2075 2076 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2077 return FC; 2078 2079 if (OnlyIfReducedTy == ReqTy) 2080 return nullptr; 2081 2082 Constant *ArgVec[] = { Agg, Val }; 2083 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2084 2085 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2086 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2087 } 2088 2089 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2090 Type *OnlyIfReducedTy) { 2091 assert(Agg->getType()->isFirstClassType() && 2092 "Tried to create extractelement operation on non-first-class type!"); 2093 2094 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2095 (void)ReqTy; 2096 assert(ReqTy && "extractvalue indices invalid!"); 2097 2098 assert(Agg->getType()->isFirstClassType() && 2099 "Non-first-class type for constant extractvalue expression"); 2100 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2101 return FC; 2102 2103 if (OnlyIfReducedTy == ReqTy) 2104 return nullptr; 2105 2106 Constant *ArgVec[] = { Agg }; 2107 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2108 2109 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2110 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2111 } 2112 2113 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2114 assert(C->getType()->isIntOrIntVectorTy() && 2115 "Cannot NEG a nonintegral value!"); 2116 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2117 C, HasNUW, HasNSW); 2118 } 2119 2120 Constant *ConstantExpr::getFNeg(Constant *C) { 2121 assert(C->getType()->isFPOrFPVectorTy() && 2122 "Cannot FNEG a non-floating-point value!"); 2123 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); 2124 } 2125 2126 Constant *ConstantExpr::getNot(Constant *C) { 2127 assert(C->getType()->isIntOrIntVectorTy() && 2128 "Cannot NOT a nonintegral value!"); 2129 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2130 } 2131 2132 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2133 bool HasNUW, bool HasNSW) { 2134 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2135 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2136 return get(Instruction::Add, C1, C2, Flags); 2137 } 2138 2139 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2140 return get(Instruction::FAdd, C1, C2); 2141 } 2142 2143 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2144 bool HasNUW, bool HasNSW) { 2145 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2146 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2147 return get(Instruction::Sub, C1, C2, Flags); 2148 } 2149 2150 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2151 return get(Instruction::FSub, C1, C2); 2152 } 2153 2154 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2155 bool HasNUW, bool HasNSW) { 2156 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2157 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2158 return get(Instruction::Mul, C1, C2, Flags); 2159 } 2160 2161 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2162 return get(Instruction::FMul, C1, C2); 2163 } 2164 2165 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2166 return get(Instruction::UDiv, C1, C2, 2167 isExact ? PossiblyExactOperator::IsExact : 0); 2168 } 2169 2170 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2171 return get(Instruction::SDiv, C1, C2, 2172 isExact ? PossiblyExactOperator::IsExact : 0); 2173 } 2174 2175 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2176 return get(Instruction::FDiv, C1, C2); 2177 } 2178 2179 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2180 return get(Instruction::URem, C1, C2); 2181 } 2182 2183 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2184 return get(Instruction::SRem, C1, C2); 2185 } 2186 2187 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2188 return get(Instruction::FRem, C1, C2); 2189 } 2190 2191 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2192 return get(Instruction::And, C1, C2); 2193 } 2194 2195 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2196 return get(Instruction::Or, C1, C2); 2197 } 2198 2199 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2200 return get(Instruction::Xor, C1, C2); 2201 } 2202 2203 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2204 bool HasNUW, bool HasNSW) { 2205 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2206 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2207 return get(Instruction::Shl, C1, C2, Flags); 2208 } 2209 2210 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2211 return get(Instruction::LShr, C1, C2, 2212 isExact ? PossiblyExactOperator::IsExact : 0); 2213 } 2214 2215 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2216 return get(Instruction::AShr, C1, C2, 2217 isExact ? PossiblyExactOperator::IsExact : 0); 2218 } 2219 2220 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { 2221 switch (Opcode) { 2222 default: 2223 // Doesn't have an identity. 2224 return nullptr; 2225 2226 case Instruction::Add: 2227 case Instruction::Or: 2228 case Instruction::Xor: 2229 return Constant::getNullValue(Ty); 2230 2231 case Instruction::Mul: 2232 return ConstantInt::get(Ty, 1); 2233 2234 case Instruction::And: 2235 return Constant::getAllOnesValue(Ty); 2236 } 2237 } 2238 2239 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2240 switch (Opcode) { 2241 default: 2242 // Doesn't have an absorber. 2243 return nullptr; 2244 2245 case Instruction::Or: 2246 return Constant::getAllOnesValue(Ty); 2247 2248 case Instruction::And: 2249 case Instruction::Mul: 2250 return Constant::getNullValue(Ty); 2251 } 2252 } 2253 2254 /// Remove the constant from the constant table. 2255 void ConstantExpr::destroyConstantImpl() { 2256 getType()->getContext().pImpl->ExprConstants.remove(this); 2257 } 2258 2259 const char *ConstantExpr::getOpcodeName() const { 2260 return Instruction::getOpcodeName(getOpcode()); 2261 } 2262 2263 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2264 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2265 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2266 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2267 (IdxList.size() + 1), 2268 IdxList.size() + 1), 2269 SrcElementTy(SrcElementTy), 2270 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2271 Op<0>() = C; 2272 Use *OperandList = getOperandList(); 2273 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2274 OperandList[i+1] = IdxList[i]; 2275 } 2276 2277 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2278 return SrcElementTy; 2279 } 2280 2281 Type *GetElementPtrConstantExpr::getResultElementType() const { 2282 return ResElementTy; 2283 } 2284 2285 //===----------------------------------------------------------------------===// 2286 // ConstantData* implementations 2287 2288 void ConstantDataArray::anchor() {} 2289 void ConstantDataVector::anchor() {} 2290 2291 Type *ConstantDataSequential::getElementType() const { 2292 return getType()->getElementType(); 2293 } 2294 2295 StringRef ConstantDataSequential::getRawDataValues() const { 2296 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2297 } 2298 2299 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2300 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true; 2301 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2302 switch (IT->getBitWidth()) { 2303 case 8: 2304 case 16: 2305 case 32: 2306 case 64: 2307 return true; 2308 default: break; 2309 } 2310 } 2311 return false; 2312 } 2313 2314 unsigned ConstantDataSequential::getNumElements() const { 2315 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2316 return AT->getNumElements(); 2317 return getType()->getVectorNumElements(); 2318 } 2319 2320 2321 uint64_t ConstantDataSequential::getElementByteSize() const { 2322 return getElementType()->getPrimitiveSizeInBits()/8; 2323 } 2324 2325 /// Return the start of the specified element. 2326 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2327 assert(Elt < getNumElements() && "Invalid Elt"); 2328 return DataElements+Elt*getElementByteSize(); 2329 } 2330 2331 2332 /// Return true if the array is empty or all zeros. 2333 static bool isAllZeros(StringRef Arr) { 2334 for (char I : Arr) 2335 if (I != 0) 2336 return false; 2337 return true; 2338 } 2339 2340 /// This is the underlying implementation of all of the 2341 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2342 /// the correct element type. We take the bytes in as a StringRef because 2343 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2344 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2345 assert(isElementTypeCompatible(Ty->getSequentialElementType())); 2346 // If the elements are all zero or there are no elements, return a CAZ, which 2347 // is more dense and canonical. 2348 if (isAllZeros(Elements)) 2349 return ConstantAggregateZero::get(Ty); 2350 2351 // Do a lookup to see if we have already formed one of these. 2352 auto &Slot = 2353 *Ty->getContext() 2354 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2355 .first; 2356 2357 // The bucket can point to a linked list of different CDS's that have the same 2358 // body but different types. For example, 0,0,0,1 could be a 4 element array 2359 // of i8, or a 1-element array of i32. They'll both end up in the same 2360 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2361 ConstantDataSequential **Entry = &Slot.second; 2362 for (ConstantDataSequential *Node = *Entry; Node; 2363 Entry = &Node->Next, Node = *Entry) 2364 if (Node->getType() == Ty) 2365 return Node; 2366 2367 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2368 // and return it. 2369 if (isa<ArrayType>(Ty)) 2370 return *Entry = new ConstantDataArray(Ty, Slot.first().data()); 2371 2372 assert(isa<VectorType>(Ty)); 2373 return *Entry = new ConstantDataVector(Ty, Slot.first().data()); 2374 } 2375 2376 void ConstantDataSequential::destroyConstantImpl() { 2377 // Remove the constant from the StringMap. 2378 StringMap<ConstantDataSequential*> &CDSConstants = 2379 getType()->getContext().pImpl->CDSConstants; 2380 2381 StringMap<ConstantDataSequential*>::iterator Slot = 2382 CDSConstants.find(getRawDataValues()); 2383 2384 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2385 2386 ConstantDataSequential **Entry = &Slot->getValue(); 2387 2388 // Remove the entry from the hash table. 2389 if (!(*Entry)->Next) { 2390 // If there is only one value in the bucket (common case) it must be this 2391 // entry, and removing the entry should remove the bucket completely. 2392 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); 2393 getContext().pImpl->CDSConstants.erase(Slot); 2394 } else { 2395 // Otherwise, there are multiple entries linked off the bucket, unlink the 2396 // node we care about but keep the bucket around. 2397 for (ConstantDataSequential *Node = *Entry; ; 2398 Entry = &Node->Next, Node = *Entry) { 2399 assert(Node && "Didn't find entry in its uniquing hash table!"); 2400 // If we found our entry, unlink it from the list and we're done. 2401 if (Node == this) { 2402 *Entry = Node->Next; 2403 break; 2404 } 2405 } 2406 } 2407 2408 // If we were part of a list, make sure that we don't delete the list that is 2409 // still owned by the uniquing map. 2410 Next = nullptr; 2411 } 2412 2413 /// get() constructors - Return a constant with array type with an element 2414 /// count and element type matching the ArrayRef passed in. Note that this 2415 /// can return a ConstantAggregateZero object. 2416 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { 2417 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); 2418 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2419 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); 2420 } 2421 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2422 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); 2423 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2424 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); 2425 } 2426 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2427 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); 2428 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2429 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); 2430 } 2431 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2432 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); 2433 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2434 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); 2435 } 2436 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { 2437 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); 2438 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2439 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); 2440 } 2441 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { 2442 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); 2443 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2444 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); 2445 } 2446 2447 /// getFP() constructors - Return a constant with array type with an element 2448 /// count and element type of float with precision matching the number of 2449 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 2450 /// double for 64bits) Note that this can return a ConstantAggregateZero 2451 /// object. 2452 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2453 ArrayRef<uint16_t> Elts) { 2454 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size()); 2455 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2456 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty); 2457 } 2458 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2459 ArrayRef<uint32_t> Elts) { 2460 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); 2461 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2462 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty); 2463 } 2464 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2465 ArrayRef<uint64_t> Elts) { 2466 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); 2467 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2468 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); 2469 } 2470 2471 Constant *ConstantDataArray::getString(LLVMContext &Context, 2472 StringRef Str, bool AddNull) { 2473 if (!AddNull) { 2474 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); 2475 return get(Context, makeArrayRef(const_cast<uint8_t *>(Data), 2476 Str.size())); 2477 } 2478 2479 SmallVector<uint8_t, 64> ElementVals; 2480 ElementVals.append(Str.begin(), Str.end()); 2481 ElementVals.push_back(0); 2482 return get(Context, ElementVals); 2483 } 2484 2485 /// get() constructors - Return a constant with vector type with an element 2486 /// count and element type matching the ArrayRef passed in. Note that this 2487 /// can return a ConstantAggregateZero object. 2488 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 2489 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); 2490 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2491 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); 2492 } 2493 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2494 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); 2495 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2496 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); 2497 } 2498 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2499 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); 2500 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2501 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); 2502 } 2503 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2504 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); 2505 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2506 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); 2507 } 2508 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 2509 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2510 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2511 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); 2512 } 2513 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 2514 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2515 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2516 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); 2517 } 2518 2519 /// getFP() constructors - Return a constant with vector type with an element 2520 /// count and element type of float with the precision matching the number of 2521 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 2522 /// double for 64bits) Note that this can return a ConstantAggregateZero 2523 /// object. 2524 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2525 ArrayRef<uint16_t> Elts) { 2526 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size()); 2527 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2528 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty); 2529 } 2530 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2531 ArrayRef<uint32_t> Elts) { 2532 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2533 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2534 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty); 2535 } 2536 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2537 ArrayRef<uint64_t> Elts) { 2538 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2539 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2540 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); 2541 } 2542 2543 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 2544 assert(isElementTypeCompatible(V->getType()) && 2545 "Element type not compatible with ConstantData"); 2546 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2547 if (CI->getType()->isIntegerTy(8)) { 2548 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 2549 return get(V->getContext(), Elts); 2550 } 2551 if (CI->getType()->isIntegerTy(16)) { 2552 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 2553 return get(V->getContext(), Elts); 2554 } 2555 if (CI->getType()->isIntegerTy(32)) { 2556 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 2557 return get(V->getContext(), Elts); 2558 } 2559 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 2560 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 2561 return get(V->getContext(), Elts); 2562 } 2563 2564 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2565 if (CFP->getType()->isHalfTy()) { 2566 SmallVector<uint16_t, 16> Elts( 2567 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2568 return getFP(V->getContext(), Elts); 2569 } 2570 if (CFP->getType()->isFloatTy()) { 2571 SmallVector<uint32_t, 16> Elts( 2572 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2573 return getFP(V->getContext(), Elts); 2574 } 2575 if (CFP->getType()->isDoubleTy()) { 2576 SmallVector<uint64_t, 16> Elts( 2577 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2578 return getFP(V->getContext(), Elts); 2579 } 2580 } 2581 return ConstantVector::getSplat(NumElts, V); 2582 } 2583 2584 2585 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 2586 assert(isa<IntegerType>(getElementType()) && 2587 "Accessor can only be used when element is an integer"); 2588 const char *EltPtr = getElementPointer(Elt); 2589 2590 // The data is stored in host byte order, make sure to cast back to the right 2591 // type to load with the right endianness. 2592 switch (getElementType()->getIntegerBitWidth()) { 2593 default: llvm_unreachable("Invalid bitwidth for CDS"); 2594 case 8: 2595 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); 2596 case 16: 2597 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); 2598 case 32: 2599 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); 2600 case 64: 2601 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); 2602 } 2603 } 2604 2605 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 2606 const char *EltPtr = getElementPointer(Elt); 2607 2608 switch (getElementType()->getTypeID()) { 2609 default: 2610 llvm_unreachable("Accessor can only be used when element is float/double!"); 2611 case Type::HalfTyID: { 2612 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2613 return APFloat(APFloat::IEEEhalf, APInt(16, EltVal)); 2614 } 2615 case Type::FloatTyID: { 2616 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2617 return APFloat(APFloat::IEEEsingle, APInt(32, EltVal)); 2618 } 2619 case Type::DoubleTyID: { 2620 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2621 return APFloat(APFloat::IEEEdouble, APInt(64, EltVal)); 2622 } 2623 } 2624 } 2625 2626 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 2627 assert(getElementType()->isFloatTy() && 2628 "Accessor can only be used when element is a 'float'"); 2629 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); 2630 return *const_cast<float *>(EltPtr); 2631 } 2632 2633 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 2634 assert(getElementType()->isDoubleTy() && 2635 "Accessor can only be used when element is a 'float'"); 2636 const double *EltPtr = 2637 reinterpret_cast<const double *>(getElementPointer(Elt)); 2638 return *const_cast<double *>(EltPtr); 2639 } 2640 2641 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 2642 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() || 2643 getElementType()->isDoubleTy()) 2644 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 2645 2646 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 2647 } 2648 2649 bool ConstantDataSequential::isString() const { 2650 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); 2651 } 2652 2653 bool ConstantDataSequential::isCString() const { 2654 if (!isString()) 2655 return false; 2656 2657 StringRef Str = getAsString(); 2658 2659 // The last value must be nul. 2660 if (Str.back() != 0) return false; 2661 2662 // Other elements must be non-nul. 2663 return Str.drop_back().find(0) == StringRef::npos; 2664 } 2665 2666 Constant *ConstantDataVector::getSplatValue() const { 2667 const char *Base = getRawDataValues().data(); 2668 2669 // Compare elements 1+ to the 0'th element. 2670 unsigned EltSize = getElementByteSize(); 2671 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 2672 if (memcmp(Base, Base+i*EltSize, EltSize)) 2673 return nullptr; 2674 2675 // If they're all the same, return the 0th one as a representative. 2676 return getElementAsConstant(0); 2677 } 2678 2679 //===----------------------------------------------------------------------===// 2680 // handleOperandChange implementations 2681 2682 /// Update this constant array to change uses of 2683 /// 'From' to be uses of 'To'. This must update the uniquing data structures 2684 /// etc. 2685 /// 2686 /// Note that we intentionally replace all uses of From with To here. Consider 2687 /// a large array that uses 'From' 1000 times. By handling this case all here, 2688 /// ConstantArray::handleOperandChange is only invoked once, and that 2689 /// single invocation handles all 1000 uses. Handling them one at a time would 2690 /// work, but would be really slow because it would have to unique each updated 2691 /// array instance. 2692 /// 2693 void Constant::handleOperandChange(Value *From, Value *To) { 2694 Value *Replacement = nullptr; 2695 switch (getValueID()) { 2696 default: 2697 llvm_unreachable("Not a constant!"); 2698 #define HANDLE_CONSTANT(Name) \ 2699 case Value::Name##Val: \ 2700 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 2701 break; 2702 #include "llvm/IR/Value.def" 2703 } 2704 2705 // If handleOperandChangeImpl returned nullptr, then it handled 2706 // replacing itself and we don't want to delete or replace anything else here. 2707 if (!Replacement) 2708 return; 2709 2710 // I do need to replace this with an existing value. 2711 assert(Replacement != this && "I didn't contain From!"); 2712 2713 // Everyone using this now uses the replacement. 2714 replaceAllUsesWith(Replacement); 2715 2716 // Delete the old constant! 2717 destroyConstant(); 2718 } 2719 2720 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 2721 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2722 Constant *ToC = cast<Constant>(To); 2723 2724 SmallVector<Constant*, 8> Values; 2725 Values.reserve(getNumOperands()); // Build replacement array. 2726 2727 // Fill values with the modified operands of the constant array. Also, 2728 // compute whether this turns into an all-zeros array. 2729 unsigned NumUpdated = 0; 2730 2731 // Keep track of whether all the values in the array are "ToC". 2732 bool AllSame = true; 2733 Use *OperandList = getOperandList(); 2734 unsigned OperandNo = 0; 2735 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 2736 Constant *Val = cast<Constant>(O->get()); 2737 if (Val == From) { 2738 OperandNo = (O - OperandList); 2739 Val = ToC; 2740 ++NumUpdated; 2741 } 2742 Values.push_back(Val); 2743 AllSame &= Val == ToC; 2744 } 2745 2746 if (AllSame && ToC->isNullValue()) 2747 return ConstantAggregateZero::get(getType()); 2748 2749 if (AllSame && isa<UndefValue>(ToC)) 2750 return UndefValue::get(getType()); 2751 2752 // Check for any other type of constant-folding. 2753 if (Constant *C = getImpl(getType(), Values)) 2754 return C; 2755 2756 // Update to the new value. 2757 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 2758 Values, this, From, ToC, NumUpdated, OperandNo); 2759 } 2760 2761 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 2762 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2763 Constant *ToC = cast<Constant>(To); 2764 2765 Use *OperandList = getOperandList(); 2766 2767 SmallVector<Constant*, 8> Values; 2768 Values.reserve(getNumOperands()); // Build replacement struct. 2769 2770 // Fill values with the modified operands of the constant struct. Also, 2771 // compute whether this turns into an all-zeros struct. 2772 unsigned NumUpdated = 0; 2773 bool AllSame = true; 2774 unsigned OperandNo = 0; 2775 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 2776 Constant *Val = cast<Constant>(O->get()); 2777 if (Val == From) { 2778 OperandNo = (O - OperandList); 2779 Val = ToC; 2780 ++NumUpdated; 2781 } 2782 Values.push_back(Val); 2783 AllSame &= Val == ToC; 2784 } 2785 2786 if (AllSame && ToC->isNullValue()) 2787 return ConstantAggregateZero::get(getType()); 2788 2789 if (AllSame && isa<UndefValue>(ToC)) 2790 return UndefValue::get(getType()); 2791 2792 // Update to the new value. 2793 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 2794 Values, this, From, ToC, NumUpdated, OperandNo); 2795 } 2796 2797 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 2798 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2799 Constant *ToC = cast<Constant>(To); 2800 2801 SmallVector<Constant*, 8> Values; 2802 Values.reserve(getNumOperands()); // Build replacement array... 2803 unsigned NumUpdated = 0; 2804 unsigned OperandNo = 0; 2805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2806 Constant *Val = getOperand(i); 2807 if (Val == From) { 2808 OperandNo = i; 2809 ++NumUpdated; 2810 Val = ToC; 2811 } 2812 Values.push_back(Val); 2813 } 2814 2815 if (Constant *C = getImpl(Values)) 2816 return C; 2817 2818 // Update to the new value. 2819 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 2820 Values, this, From, ToC, NumUpdated, OperandNo); 2821 } 2822 2823 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 2824 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 2825 Constant *To = cast<Constant>(ToV); 2826 2827 SmallVector<Constant*, 8> NewOps; 2828 unsigned NumUpdated = 0; 2829 unsigned OperandNo = 0; 2830 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2831 Constant *Op = getOperand(i); 2832 if (Op == From) { 2833 OperandNo = i; 2834 ++NumUpdated; 2835 Op = To; 2836 } 2837 NewOps.push_back(Op); 2838 } 2839 assert(NumUpdated && "I didn't contain From!"); 2840 2841 if (Constant *C = getWithOperands(NewOps, getType(), true)) 2842 return C; 2843 2844 // Update to the new value. 2845 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 2846 NewOps, this, From, To, NumUpdated, OperandNo); 2847 } 2848 2849 Instruction *ConstantExpr::getAsInstruction() { 2850 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end()); 2851 ArrayRef<Value*> Ops(ValueOperands); 2852 2853 switch (getOpcode()) { 2854 case Instruction::Trunc: 2855 case Instruction::ZExt: 2856 case Instruction::SExt: 2857 case Instruction::FPTrunc: 2858 case Instruction::FPExt: 2859 case Instruction::UIToFP: 2860 case Instruction::SIToFP: 2861 case Instruction::FPToUI: 2862 case Instruction::FPToSI: 2863 case Instruction::PtrToInt: 2864 case Instruction::IntToPtr: 2865 case Instruction::BitCast: 2866 case Instruction::AddrSpaceCast: 2867 return CastInst::Create((Instruction::CastOps)getOpcode(), 2868 Ops[0], getType()); 2869 case Instruction::Select: 2870 return SelectInst::Create(Ops[0], Ops[1], Ops[2]); 2871 case Instruction::InsertElement: 2872 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); 2873 case Instruction::ExtractElement: 2874 return ExtractElementInst::Create(Ops[0], Ops[1]); 2875 case Instruction::InsertValue: 2876 return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); 2877 case Instruction::ExtractValue: 2878 return ExtractValueInst::Create(Ops[0], getIndices()); 2879 case Instruction::ShuffleVector: 2880 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); 2881 2882 case Instruction::GetElementPtr: { 2883 const auto *GO = cast<GEPOperator>(this); 2884 if (GO->isInBounds()) 2885 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), 2886 Ops[0], Ops.slice(1)); 2887 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 2888 Ops.slice(1)); 2889 } 2890 case Instruction::ICmp: 2891 case Instruction::FCmp: 2892 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 2893 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); 2894 2895 default: 2896 assert(getNumOperands() == 2 && "Must be binary operator?"); 2897 BinaryOperator *BO = 2898 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), 2899 Ops[0], Ops[1]); 2900 if (isa<OverflowingBinaryOperator>(BO)) { 2901 BO->setHasNoUnsignedWrap(SubclassOptionalData & 2902 OverflowingBinaryOperator::NoUnsignedWrap); 2903 BO->setHasNoSignedWrap(SubclassOptionalData & 2904 OverflowingBinaryOperator::NoSignedWrap); 2905 } 2906 if (isa<PossiblyExactOperator>(BO)) 2907 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 2908 return BO; 2909 } 2910 } 2911