1 /* 2 * Copyright (c) 2014, ARM Limited and Contributors. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * 7 * Redistributions of source code must retain the above copyright notice, this 8 * list of conditions and the following disclaimer. 9 * 10 * Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 14 * Neither the name of ARM nor the names of its contributors may be used 15 * to endorse or promote products derived from this software without specific 16 * prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <arch.h> 32 #include <arch_helpers.h> 33 #include <arm_gic.h> 34 #include <assert.h> 35 #include <bl_common.h> 36 #include <debug.h> 37 #include <gic_v2.h> 38 #include <gic_v3.h> 39 #include <interrupt_mgmt.h> 40 #include <platform.h> 41 #include <stdint.h> 42 43 /* Value used to initialize Non-Secure IRQ priorities four at a time */ 44 #define GICD_IPRIORITYR_DEF_VAL \ 45 (GIC_HIGHEST_NS_PRIORITY | \ 46 (GIC_HIGHEST_NS_PRIORITY << 8) | \ 47 (GIC_HIGHEST_NS_PRIORITY << 16) | \ 48 (GIC_HIGHEST_NS_PRIORITY << 24)) 49 50 static unsigned int g_gicc_base; 51 static unsigned int g_gicd_base; 52 static unsigned long g_gicr_base; 53 static const unsigned int *g_irq_sec_ptr; 54 static unsigned int g_num_irqs; 55 56 57 /******************************************************************************* 58 * This function does some minimal GICv3 configuration. The Firmware itself does 59 * not fully support GICv3 at this time and relies on GICv2 emulation as 60 * provided by GICv3. This function allows software (like Linux) in later stages 61 * to use full GICv3 features. 62 ******************************************************************************/ 63 static void gicv3_cpuif_setup(void) 64 { 65 unsigned int scr_val, val; 66 uintptr_t base; 67 68 /* 69 * When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep 70 * bit set. In order to allow interrupts to get routed to the CPU we 71 * need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep 72 * to clear (GICv3 Architecture specification 5.4.23). 73 * GICR_WAKER is NOT banked per CPU, compute the correct base address 74 * per CPU. 75 */ 76 assert(g_gicr_base); 77 base = gicv3_get_rdist(g_gicr_base, read_mpidr()); 78 if (base == (uintptr_t)NULL) { 79 /* No re-distributor base address. This interface cannot be 80 * configured. 81 */ 82 panic(); 83 } 84 85 val = gicr_read_waker(base); 86 87 val &= ~WAKER_PS; 88 gicr_write_waker(base, val); 89 dsb(); 90 91 /* We need to wait for ChildrenAsleep to clear. */ 92 val = gicr_read_waker(base); 93 while (val & WAKER_CA) 94 val = gicr_read_waker(base); 95 96 /* 97 * We need to set SCR_EL3.NS in order to see GICv3 non-secure state. 98 * Restore SCR_EL3.NS again before exit. 99 */ 100 scr_val = read_scr(); 101 write_scr(scr_val | SCR_NS_BIT); 102 isb(); /* ensure NS=1 takes effect before accessing ICC_SRE_EL2 */ 103 104 /* 105 * By default EL2 and NS-EL1 software should be able to enable GICv3 106 * System register access without any configuration at EL3. But it turns 107 * out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So 108 * we need to set it here again. In order to do that we need to enable 109 * register access. We leave it enabled as it should be fine and might 110 * prevent problems with later software trying to access GIC System 111 * Registers. 112 */ 113 val = read_icc_sre_el3(); 114 write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE); 115 116 val = read_icc_sre_el2(); 117 write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE); 118 119 write_icc_pmr_el1(GIC_PRI_MASK); 120 isb(); /* commit ICC_* changes before setting NS=0 */ 121 122 /* Restore SCR_EL3 */ 123 write_scr(scr_val); 124 isb(); /* ensure NS=0 takes effect immediately */ 125 } 126 127 /******************************************************************************* 128 * This function does some minimal GICv3 configuration when cores go 129 * down. 130 ******************************************************************************/ 131 static void gicv3_cpuif_deactivate(void) 132 { 133 unsigned int val; 134 uintptr_t base; 135 136 /* 137 * When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and 138 * wait for GICR_WAKER.ChildrenAsleep to get set. 139 * (GICv3 Architecture specification 5.4.23). 140 * GICR_WAKER is NOT banked per CPU, compute the correct base address 141 * per CPU. 142 */ 143 assert(g_gicr_base); 144 base = gicv3_get_rdist(g_gicr_base, read_mpidr()); 145 if (base == (uintptr_t)NULL) { 146 /* No re-distributor base address. This interface cannot be 147 * configured. 148 */ 149 panic(); 150 } 151 152 val = gicr_read_waker(base); 153 val |= WAKER_PS; 154 gicr_write_waker(base, val); 155 dsb(); 156 157 /* We need to wait for ChildrenAsleep to set. */ 158 val = gicr_read_waker(base); 159 while ((val & WAKER_CA) == 0) 160 val = gicr_read_waker(base); 161 } 162 163 164 /******************************************************************************* 165 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass 166 * and set the priority mask register to allow all interrupts to trickle in. 167 ******************************************************************************/ 168 void arm_gic_cpuif_setup(void) 169 { 170 unsigned int val; 171 172 assert(g_gicc_base); 173 val = gicc_read_iidr(g_gicc_base); 174 175 /* 176 * If GICv3 we need to do a bit of additional setup. We want to 177 * allow default GICv2 behaviour but allow the next stage to 178 * enable full gicv3 features. 179 */ 180 if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) 181 gicv3_cpuif_setup(); 182 183 val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0; 184 val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; 185 186 gicc_write_pmr(g_gicc_base, GIC_PRI_MASK); 187 gicc_write_ctlr(g_gicc_base, val); 188 } 189 190 /******************************************************************************* 191 * Place the cpu interface in a state where it can never make a cpu exit wfi as 192 * as result of an asserted interrupt. This is critical for powering down a cpu 193 ******************************************************************************/ 194 void arm_gic_cpuif_deactivate(void) 195 { 196 unsigned int val; 197 198 /* Disable secure, non-secure interrupts and disable their bypass */ 199 assert(g_gicc_base); 200 val = gicc_read_ctlr(g_gicc_base); 201 val &= ~(ENABLE_GRP0 | ENABLE_GRP1); 202 val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; 203 val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; 204 gicc_write_ctlr(g_gicc_base, val); 205 206 val = gicc_read_iidr(g_gicc_base); 207 208 /* 209 * If GICv3 we need to do a bit of additional setup. Make sure the 210 * RDIST is put to sleep. 211 */ 212 if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) 213 gicv3_cpuif_deactivate(); 214 } 215 216 /******************************************************************************* 217 * Per cpu gic distributor setup which will be done by all cpus after a cold 218 * boot/hotplug. This marks out the secure interrupts & enables them. 219 ******************************************************************************/ 220 void arm_gic_pcpu_distif_setup(void) 221 { 222 unsigned int index, irq_num; 223 224 assert(g_gicd_base); 225 226 /* Mark all 32 SGI+PPI interrupts as Group 1 (non-secure) */ 227 gicd_write_igroupr(g_gicd_base, 0, ~0); 228 229 /* Setup PPI priorities doing four at a time */ 230 for (index = 0; index < 32; index += 4) { 231 gicd_write_ipriorityr(g_gicd_base, index, 232 GICD_IPRIORITYR_DEF_VAL); 233 } 234 235 assert(g_irq_sec_ptr); 236 for (index = 0; index < g_num_irqs; index++) { 237 irq_num = g_irq_sec_ptr[index]; 238 if (irq_num < MIN_SPI_ID) { 239 /* We have an SGI or a PPI */ 240 gicd_clr_igroupr(g_gicd_base, irq_num); 241 gicd_set_ipriorityr(g_gicd_base, irq_num, 242 GIC_HIGHEST_SEC_PRIORITY); 243 gicd_set_isenabler(g_gicd_base, irq_num); 244 } 245 } 246 } 247 248 /******************************************************************************* 249 * Get the current CPU bit mask from GICD_ITARGETSR0 250 ******************************************************************************/ 251 static unsigned int arm_gic_get_cpuif_id(void) 252 { 253 unsigned int val; 254 255 val = gicd_read_itargetsr(g_gicd_base, 0); 256 return val & GIC_TARGET_CPU_MASK; 257 } 258 259 /******************************************************************************* 260 * Global gic distributor setup which will be done by the primary cpu after a 261 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It 262 * then enables the secure GIC distributor interface. 263 ******************************************************************************/ 264 static void arm_gic_distif_setup(void) 265 { 266 unsigned int num_ints, ctlr, index, irq_num; 267 uint8_t target_cpu; 268 269 /* Disable the distributor before going further */ 270 assert(g_gicd_base); 271 ctlr = gicd_read_ctlr(g_gicd_base); 272 ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1); 273 gicd_write_ctlr(g_gicd_base, ctlr); 274 275 /* 276 * Mark out non-secure SPI interrupts. The number of interrupts is 277 * calculated as 32 * (IT_LINES + 1). We do 32 at a time. 278 */ 279 num_ints = gicd_read_typer(g_gicd_base) & IT_LINES_NO_MASK; 280 num_ints = (num_ints + 1) << 5; 281 for (index = MIN_SPI_ID; index < num_ints; index += 32) 282 gicd_write_igroupr(g_gicd_base, index, ~0); 283 284 /* Setup SPI priorities doing four at a time */ 285 for (index = MIN_SPI_ID; index < num_ints; index += 4) { 286 gicd_write_ipriorityr(g_gicd_base, index, 287 GICD_IPRIORITYR_DEF_VAL); 288 } 289 290 /* Read the target CPU mask */ 291 target_cpu = arm_gic_get_cpuif_id(); 292 293 /* Configure SPI secure interrupts now */ 294 assert(g_irq_sec_ptr); 295 for (index = 0; index < g_num_irqs; index++) { 296 irq_num = g_irq_sec_ptr[index]; 297 if (irq_num >= MIN_SPI_ID) { 298 /* We have an SPI */ 299 gicd_clr_igroupr(g_gicd_base, irq_num); 300 gicd_set_ipriorityr(g_gicd_base, irq_num, 301 GIC_HIGHEST_SEC_PRIORITY); 302 gicd_set_itargetsr(g_gicd_base, irq_num, target_cpu); 303 gicd_set_isenabler(g_gicd_base, irq_num); 304 } 305 } 306 307 /* 308 * Configure the SGI and PPI. This is done in a separated function 309 * because each CPU is responsible for initializing its own private 310 * interrupts. 311 */ 312 arm_gic_pcpu_distif_setup(); 313 314 gicd_write_ctlr(g_gicd_base, ctlr | ENABLE_GRP0); 315 } 316 317 /******************************************************************************* 318 * Initialize the ARM GIC driver with the provided platform inputs 319 ******************************************************************************/ 320 void arm_gic_init(unsigned int gicc_base, 321 unsigned int gicd_base, 322 unsigned long gicr_base, 323 const unsigned int *irq_sec_ptr, 324 unsigned int num_irqs 325 ) 326 { 327 unsigned int val; 328 329 assert(gicc_base); 330 assert(gicd_base); 331 assert(irq_sec_ptr); 332 333 g_gicc_base = gicc_base; 334 g_gicd_base = gicd_base; 335 336 val = gicc_read_iidr(g_gicc_base); 337 338 if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) { 339 assert(gicr_base); 340 g_gicr_base = gicr_base; 341 } 342 343 g_irq_sec_ptr = irq_sec_ptr; 344 g_num_irqs = num_irqs; 345 } 346 347 /******************************************************************************* 348 * Setup the ARM GIC CPU and distributor interfaces. 349 ******************************************************************************/ 350 void arm_gic_setup(void) 351 { 352 arm_gic_cpuif_setup(); 353 arm_gic_distif_setup(); 354 } 355 356 /******************************************************************************* 357 * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins. 358 * The interrupt controller knows which pin/line it uses to signal a type of 359 * interrupt. This function provides a common implementation of 360 * plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use 361 * across platforms. It lets the interrupt management framework determine 362 * for a type of interrupt and security state, which line should be used in the 363 * SCR_EL3 to control its routing to EL3. The interrupt line is represented as 364 * the bit position of the IRQ or FIQ bit in the SCR_EL3. 365 ******************************************************************************/ 366 uint32_t arm_gic_interrupt_type_to_line(uint32_t type, 367 uint32_t security_state) 368 { 369 assert(type == INTR_TYPE_S_EL1 || 370 type == INTR_TYPE_EL3 || 371 type == INTR_TYPE_NS); 372 373 assert(sec_state_is_valid(security_state)); 374 375 /* 376 * We ignore the security state parameter under the assumption that 377 * both normal and secure worlds are using ARM GICv2. This parameter 378 * will be used when the secure world starts using GICv3. 379 */ 380 #if ARM_GIC_ARCH == 2 381 return gicv2_interrupt_type_to_line(g_gicc_base, type); 382 #else 383 #error "Invalid ARM GIC architecture version specified for platform port" 384 #endif /* ARM_GIC_ARCH */ 385 } 386 387 #if ARM_GIC_ARCH == 2 388 /******************************************************************************* 389 * This function returns the type of the highest priority pending interrupt at 390 * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no 391 * interrupt pending. 392 ******************************************************************************/ 393 uint32_t arm_gic_get_pending_interrupt_type(void) 394 { 395 uint32_t id; 396 397 assert(g_gicc_base); 398 id = gicc_read_hppir(g_gicc_base); 399 400 /* Assume that all secure interrupts are S-EL1 interrupts */ 401 if (id < 1022) 402 return INTR_TYPE_S_EL1; 403 404 if (id == GIC_SPURIOUS_INTERRUPT) 405 return INTR_TYPE_INVAL; 406 407 return INTR_TYPE_NS; 408 } 409 410 /******************************************************************************* 411 * This function returns the id of the highest priority pending interrupt at 412 * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no 413 * interrupt pending. 414 ******************************************************************************/ 415 uint32_t arm_gic_get_pending_interrupt_id(void) 416 { 417 uint32_t id; 418 419 assert(g_gicc_base); 420 id = gicc_read_hppir(g_gicc_base); 421 422 if (id < 1022) 423 return id; 424 425 if (id == 1023) 426 return INTR_ID_UNAVAILABLE; 427 428 /* 429 * Find out which non-secure interrupt it is under the assumption that 430 * the GICC_CTLR.AckCtl bit is 0. 431 */ 432 return gicc_read_ahppir(g_gicc_base); 433 } 434 435 /******************************************************************************* 436 * This functions reads the GIC cpu interface Interrupt Acknowledge register 437 * to start handling the pending interrupt. It returns the contents of the IAR. 438 ******************************************************************************/ 439 uint32_t arm_gic_acknowledge_interrupt(void) 440 { 441 assert(g_gicc_base); 442 return gicc_read_IAR(g_gicc_base); 443 } 444 445 /******************************************************************************* 446 * This functions writes the GIC cpu interface End Of Interrupt register with 447 * the passed value to finish handling the active interrupt 448 ******************************************************************************/ 449 void arm_gic_end_of_interrupt(uint32_t id) 450 { 451 assert(g_gicc_base); 452 gicc_write_EOIR(g_gicc_base, id); 453 } 454 455 /******************************************************************************* 456 * This function returns the type of the interrupt id depending upon the group 457 * this interrupt has been configured under by the interrupt controller i.e. 458 * group0 or group1. 459 ******************************************************************************/ 460 uint32_t arm_gic_get_interrupt_type(uint32_t id) 461 { 462 uint32_t group; 463 464 assert(g_gicd_base); 465 group = gicd_get_igroupr(g_gicd_base, id); 466 467 /* Assume that all secure interrupts are S-EL1 interrupts */ 468 if (group == GRP0) 469 return INTR_TYPE_S_EL1; 470 else 471 return INTR_TYPE_NS; 472 } 473 474 #else 475 #error "Invalid ARM GIC architecture version specified for platform port" 476 #endif /* ARM_GIC_ARCH */ 477