1 //===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief Defines facilities for reading and writing on-disk hash tables. 12 /// 13 //===----------------------------------------------------------------------===// 14 #ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H 15 #define LLVM_SUPPORT_ONDISKHASHTABLE_H 16 17 #include "llvm/Support/AlignOf.h" 18 #include "llvm/Support/Allocator.h" 19 #include "llvm/Support/DataTypes.h" 20 #include "llvm/Support/EndianStream.h" 21 #include "llvm/Support/Host.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cassert> 25 #include <cstdlib> 26 27 namespace llvm { 28 29 /// \brief Generates an on disk hash table. 30 /// 31 /// This needs an \c Info that handles storing values into the hash table's 32 /// payload and computes the hash for a given key. This should provide the 33 /// following interface: 34 /// 35 /// \code 36 /// class ExampleInfo { 37 /// public: 38 /// typedef ExampleKey key_type; // Must be copy constructible 39 /// typedef ExampleKey &key_type_ref; 40 /// typedef ExampleData data_type; // Must be copy constructible 41 /// typedef ExampleData &data_type_ref; 42 /// typedef uint32_t hash_value_type; // The type the hash function returns. 43 /// typedef uint32_t offset_type; // The type for offsets into the table. 44 /// 45 /// /// Calculate the hash for Key 46 /// static hash_value_type ComputeHash(key_type_ref Key); 47 /// /// Return the lengths, in bytes, of the given Key/Data pair. 48 /// static std::pair<offset_type, offset_type> 49 /// EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data); 50 /// /// Write Key to Out. KeyLen is the length from EmitKeyDataLength. 51 /// static void EmitKey(raw_ostream &Out, key_type_ref Key, 52 /// offset_type KeyLen); 53 /// /// Write Data to Out. DataLen is the length from EmitKeyDataLength. 54 /// static void EmitData(raw_ostream &Out, key_type_ref Key, 55 /// data_type_ref Data, offset_type DataLen); 56 /// /// Determine if two keys are equal. Optional, only needed by contains. 57 /// static bool EqualKey(key_type_ref Key1, key_type_ref Key2); 58 /// }; 59 /// \endcode 60 template <typename Info> class OnDiskChainedHashTableGenerator { 61 /// \brief A single item in the hash table. 62 class Item { 63 public: 64 typename Info::key_type Key; 65 typename Info::data_type Data; 66 Item *Next; 67 const typename Info::hash_value_type Hash; 68 69 Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data, 70 Info &InfoObj) 71 : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {} 72 }; 73 74 typedef typename Info::offset_type offset_type; 75 offset_type NumBuckets; 76 offset_type NumEntries; 77 llvm::SpecificBumpPtrAllocator<Item> BA; 78 79 /// \brief A linked list of values in a particular hash bucket. 80 struct Bucket { 81 offset_type Off; 82 unsigned Length; 83 Item *Head; 84 }; 85 86 Bucket *Buckets; 87 88 private: 89 /// \brief Insert an item into the appropriate hash bucket. 90 void insert(Bucket *Buckets, size_t Size, Item *E) { 91 Bucket &B = Buckets[E->Hash & (Size - 1)]; 92 E->Next = B.Head; 93 ++B.Length; 94 B.Head = E; 95 } 96 97 /// \brief Resize the hash table, moving the old entries into the new buckets. 98 void resize(size_t NewSize) { 99 Bucket *NewBuckets = (Bucket *)std::calloc(NewSize, sizeof(Bucket)); 100 // Populate NewBuckets with the old entries. 101 for (size_t I = 0; I < NumBuckets; ++I) 102 for (Item *E = Buckets[I].Head; E;) { 103 Item *N = E->Next; 104 E->Next = nullptr; 105 insert(NewBuckets, NewSize, E); 106 E = N; 107 } 108 109 free(Buckets); 110 NumBuckets = NewSize; 111 Buckets = NewBuckets; 112 } 113 114 public: 115 /// \brief Insert an entry into the table. 116 void insert(typename Info::key_type_ref Key, 117 typename Info::data_type_ref Data) { 118 Info InfoObj; 119 insert(Key, Data, InfoObj); 120 } 121 122 /// \brief Insert an entry into the table. 123 /// 124 /// Uses the provided Info instead of a stack allocated one. 125 void insert(typename Info::key_type_ref Key, 126 typename Info::data_type_ref Data, Info &InfoObj) { 127 ++NumEntries; 128 if (4 * NumEntries >= 3 * NumBuckets) 129 resize(NumBuckets * 2); 130 insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj)); 131 } 132 133 /// \brief Determine whether an entry has been inserted. 134 bool contains(typename Info::key_type_ref Key, Info &InfoObj) { 135 unsigned Hash = InfoObj.ComputeHash(Key); 136 for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next) 137 if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key)) 138 return true; 139 return false; 140 } 141 142 /// \brief Emit the table to Out, which must not be at offset 0. 143 offset_type Emit(raw_ostream &Out) { 144 Info InfoObj; 145 return Emit(Out, InfoObj); 146 } 147 148 /// \brief Emit the table to Out, which must not be at offset 0. 149 /// 150 /// Uses the provided Info instead of a stack allocated one. 151 offset_type Emit(raw_ostream &Out, Info &InfoObj) { 152 using namespace llvm::support; 153 endian::Writer<little> LE(Out); 154 155 // Now we're done adding entries, resize the bucket list if it's 156 // significantly too large. (This only happens if the number of 157 // entries is small and we're within our initial allocation of 158 // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4). 159 // 160 // As a special case, if there are two or fewer entries, just 161 // form a single bucket. A linear scan is fine in that case, and 162 // this is very common in C++ class lookup tables. This also 163 // guarantees we produce at least one bucket for an empty table. 164 // 165 // FIXME: Try computing a perfect hash function at this point. 166 unsigned TargetNumBuckets = 167 NumEntries <= 2 ? 1 : NextPowerOf2(NumEntries * 4 / 3); 168 if (TargetNumBuckets != NumBuckets) 169 resize(TargetNumBuckets); 170 171 // Emit the payload of the table. 172 for (offset_type I = 0; I < NumBuckets; ++I) { 173 Bucket &B = Buckets[I]; 174 if (!B.Head) 175 continue; 176 177 // Store the offset for the data of this bucket. 178 B.Off = Out.tell(); 179 assert(B.Off && "Cannot write a bucket at offset 0. Please add padding."); 180 181 // Write out the number of items in the bucket. 182 LE.write<uint16_t>(B.Length); 183 assert(B.Length != 0 && "Bucket has a head but zero length?"); 184 185 // Write out the entries in the bucket. 186 for (Item *I = B.Head; I; I = I->Next) { 187 LE.write<typename Info::hash_value_type>(I->Hash); 188 const std::pair<offset_type, offset_type> &Len = 189 InfoObj.EmitKeyDataLength(Out, I->Key, I->Data); 190 #ifdef NDEBUG 191 InfoObj.EmitKey(Out, I->Key, Len.first); 192 InfoObj.EmitData(Out, I->Key, I->Data, Len.second); 193 #else 194 // In asserts mode, check that the users length matches the data they 195 // wrote. 196 uint64_t KeyStart = Out.tell(); 197 InfoObj.EmitKey(Out, I->Key, Len.first); 198 uint64_t DataStart = Out.tell(); 199 InfoObj.EmitData(Out, I->Key, I->Data, Len.second); 200 uint64_t End = Out.tell(); 201 assert(offset_type(DataStart - KeyStart) == Len.first && 202 "key length does not match bytes written"); 203 assert(offset_type(End - DataStart) == Len.second && 204 "data length does not match bytes written"); 205 #endif 206 } 207 } 208 209 // Pad with zeros so that we can start the hashtable at an aligned address. 210 offset_type TableOff = Out.tell(); 211 uint64_t N = llvm::OffsetToAlignment(TableOff, alignOf<offset_type>()); 212 TableOff += N; 213 while (N--) 214 LE.write<uint8_t>(0); 215 216 // Emit the hashtable itself. 217 LE.write<offset_type>(NumBuckets); 218 LE.write<offset_type>(NumEntries); 219 for (offset_type I = 0; I < NumBuckets; ++I) 220 LE.write<offset_type>(Buckets[I].Off); 221 222 return TableOff; 223 } 224 225 OnDiskChainedHashTableGenerator() { 226 NumEntries = 0; 227 NumBuckets = 64; 228 // Note that we do not need to run the constructors of the individual 229 // Bucket objects since 'calloc' returns bytes that are all 0. 230 Buckets = (Bucket *)std::calloc(NumBuckets, sizeof(Bucket)); 231 } 232 233 ~OnDiskChainedHashTableGenerator() { std::free(Buckets); } 234 }; 235 236 /// \brief Provides lookup on an on disk hash table. 237 /// 238 /// This needs an \c Info that handles reading values from the hash table's 239 /// payload and computes the hash for a given key. This should provide the 240 /// following interface: 241 /// 242 /// \code 243 /// class ExampleLookupInfo { 244 /// public: 245 /// typedef ExampleData data_type; 246 /// typedef ExampleInternalKey internal_key_type; // The stored key type. 247 /// typedef ExampleKey external_key_type; // The type to pass to find(). 248 /// typedef uint32_t hash_value_type; // The type the hash function returns. 249 /// typedef uint32_t offset_type; // The type for offsets into the table. 250 /// 251 /// /// Compare two keys for equality. 252 /// static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2); 253 /// /// Calculate the hash for the given key. 254 /// static hash_value_type ComputeHash(internal_key_type &IKey); 255 /// /// Translate from the semantic type of a key in the hash table to the 256 /// /// type that is actually stored and used for hashing and comparisons. 257 /// /// The internal and external types are often the same, in which case this 258 /// /// can simply return the passed in value. 259 /// static const internal_key_type &GetInternalKey(external_key_type &EKey); 260 /// /// Read the key and data length from Buffer, leaving it pointing at the 261 /// /// following byte. 262 /// static std::pair<offset_type, offset_type> 263 /// ReadKeyDataLength(const unsigned char *&Buffer); 264 /// /// Read the key from Buffer, given the KeyLen as reported from 265 /// /// ReadKeyDataLength. 266 /// const internal_key_type &ReadKey(const unsigned char *Buffer, 267 /// offset_type KeyLen); 268 /// /// Read the data for Key from Buffer, given the DataLen as reported from 269 /// /// ReadKeyDataLength. 270 /// data_type ReadData(StringRef Key, const unsigned char *Buffer, 271 /// offset_type DataLen); 272 /// }; 273 /// \endcode 274 template <typename Info> class OnDiskChainedHashTable { 275 const typename Info::offset_type NumBuckets; 276 const typename Info::offset_type NumEntries; 277 const unsigned char *const Buckets; 278 const unsigned char *const Base; 279 Info InfoObj; 280 281 public: 282 typedef Info InfoType; 283 typedef typename Info::internal_key_type internal_key_type; 284 typedef typename Info::external_key_type external_key_type; 285 typedef typename Info::data_type data_type; 286 typedef typename Info::hash_value_type hash_value_type; 287 typedef typename Info::offset_type offset_type; 288 289 OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries, 290 const unsigned char *Buckets, 291 const unsigned char *Base, 292 const Info &InfoObj = Info()) 293 : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets), 294 Base(Base), InfoObj(InfoObj) { 295 assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 && 296 "'buckets' must have a 4-byte alignment"); 297 } 298 299 /// Read the number of buckets and the number of entries from a hash table 300 /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets 301 /// pointer past them. 302 static std::pair<offset_type, offset_type> 303 readNumBucketsAndEntries(const unsigned char *&Buckets) { 304 assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 && 305 "buckets should be 4-byte aligned."); 306 using namespace llvm::support; 307 offset_type NumBuckets = 308 endian::readNext<offset_type, little, aligned>(Buckets); 309 offset_type NumEntries = 310 endian::readNext<offset_type, little, aligned>(Buckets); 311 return std::make_pair(NumBuckets, NumEntries); 312 } 313 314 offset_type getNumBuckets() const { return NumBuckets; } 315 offset_type getNumEntries() const { return NumEntries; } 316 const unsigned char *getBase() const { return Base; } 317 const unsigned char *getBuckets() const { return Buckets; } 318 319 bool isEmpty() const { return NumEntries == 0; } 320 321 class iterator { 322 internal_key_type Key; 323 const unsigned char *const Data; 324 const offset_type Len; 325 Info *InfoObj; 326 327 public: 328 iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {} 329 iterator(const internal_key_type K, const unsigned char *D, offset_type L, 330 Info *InfoObj) 331 : Key(K), Data(D), Len(L), InfoObj(InfoObj) {} 332 333 data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); } 334 335 const unsigned char *getDataPtr() const { return Data; } 336 offset_type getDataLen() const { return Len; } 337 338 bool operator==(const iterator &X) const { return X.Data == Data; } 339 bool operator!=(const iterator &X) const { return X.Data != Data; } 340 }; 341 342 /// \brief Look up the stored data for a particular key. 343 iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) { 344 const internal_key_type &IKey = InfoObj.GetInternalKey(EKey); 345 hash_value_type KeyHash = InfoObj.ComputeHash(IKey); 346 return find_hashed(IKey, KeyHash, InfoPtr); 347 } 348 349 /// \brief Look up the stored data for a particular key with a known hash. 350 iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash, 351 Info *InfoPtr = nullptr) { 352 using namespace llvm::support; 353 354 if (!InfoPtr) 355 InfoPtr = &InfoObj; 356 357 // Each bucket is just an offset into the hash table file. 358 offset_type Idx = KeyHash & (NumBuckets - 1); 359 const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx; 360 361 offset_type Offset = endian::readNext<offset_type, little, aligned>(Bucket); 362 if (Offset == 0) 363 return iterator(); // Empty bucket. 364 const unsigned char *Items = Base + Offset; 365 366 // 'Items' starts with a 16-bit unsigned integer representing the 367 // number of items in this bucket. 368 unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items); 369 370 for (unsigned i = 0; i < Len; ++i) { 371 // Read the hash. 372 hash_value_type ItemHash = 373 endian::readNext<hash_value_type, little, unaligned>(Items); 374 375 // Determine the length of the key and the data. 376 const std::pair<offset_type, offset_type> &L = 377 Info::ReadKeyDataLength(Items); 378 offset_type ItemLen = L.first + L.second; 379 380 // Compare the hashes. If they are not the same, skip the entry entirely. 381 if (ItemHash != KeyHash) { 382 Items += ItemLen; 383 continue; 384 } 385 386 // Read the key. 387 const internal_key_type &X = 388 InfoPtr->ReadKey((const unsigned char *const)Items, L.first); 389 390 // If the key doesn't match just skip reading the value. 391 if (!InfoPtr->EqualKey(X, IKey)) { 392 Items += ItemLen; 393 continue; 394 } 395 396 // The key matches! 397 return iterator(X, Items + L.first, L.second, InfoPtr); 398 } 399 400 return iterator(); 401 } 402 403 iterator end() const { return iterator(); } 404 405 Info &getInfoObj() { return InfoObj; } 406 407 /// \brief Create the hash table. 408 /// 409 /// \param Buckets is the beginning of the hash table itself, which follows 410 /// the payload of entire structure. This is the value returned by 411 /// OnDiskHashTableGenerator::Emit. 412 /// 413 /// \param Base is the point from which all offsets into the structure are 414 /// based. This is offset 0 in the stream that was used when Emitting the 415 /// table. 416 static OnDiskChainedHashTable *Create(const unsigned char *Buckets, 417 const unsigned char *const Base, 418 const Info &InfoObj = Info()) { 419 assert(Buckets > Base); 420 auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets); 421 return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first, 422 NumBucketsAndEntries.second, 423 Buckets, Base, InfoObj); 424 } 425 }; 426 427 /// \brief Provides lookup and iteration over an on disk hash table. 428 /// 429 /// \copydetails llvm::OnDiskChainedHashTable 430 template <typename Info> 431 class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> { 432 const unsigned char *Payload; 433 434 public: 435 typedef OnDiskChainedHashTable<Info> base_type; 436 typedef typename base_type::internal_key_type internal_key_type; 437 typedef typename base_type::external_key_type external_key_type; 438 typedef typename base_type::data_type data_type; 439 typedef typename base_type::hash_value_type hash_value_type; 440 typedef typename base_type::offset_type offset_type; 441 442 private: 443 /// \brief Iterates over all of the keys in the table. 444 class iterator_base { 445 const unsigned char *Ptr; 446 offset_type NumItemsInBucketLeft; 447 offset_type NumEntriesLeft; 448 449 public: 450 typedef external_key_type value_type; 451 452 iterator_base(const unsigned char *const Ptr, offset_type NumEntries) 453 : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {} 454 iterator_base() 455 : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {} 456 457 friend bool operator==(const iterator_base &X, const iterator_base &Y) { 458 return X.NumEntriesLeft == Y.NumEntriesLeft; 459 } 460 friend bool operator!=(const iterator_base &X, const iterator_base &Y) { 461 return X.NumEntriesLeft != Y.NumEntriesLeft; 462 } 463 464 /// Move to the next item. 465 void advance() { 466 using namespace llvm::support; 467 if (!NumItemsInBucketLeft) { 468 // 'Items' starts with a 16-bit unsigned integer representing the 469 // number of items in this bucket. 470 NumItemsInBucketLeft = 471 endian::readNext<uint16_t, little, unaligned>(Ptr); 472 } 473 Ptr += sizeof(hash_value_type); // Skip the hash. 474 // Determine the length of the key and the data. 475 const std::pair<offset_type, offset_type> &L = 476 Info::ReadKeyDataLength(Ptr); 477 Ptr += L.first + L.second; 478 assert(NumItemsInBucketLeft); 479 --NumItemsInBucketLeft; 480 assert(NumEntriesLeft); 481 --NumEntriesLeft; 482 } 483 484 /// Get the start of the item as written by the trait (after the hash and 485 /// immediately before the key and value length). 486 const unsigned char *getItem() const { 487 return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type); 488 } 489 }; 490 491 public: 492 OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries, 493 const unsigned char *Buckets, 494 const unsigned char *Payload, 495 const unsigned char *Base, 496 const Info &InfoObj = Info()) 497 : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj), 498 Payload(Payload) {} 499 500 /// \brief Iterates over all of the keys in the table. 501 class key_iterator : public iterator_base { 502 Info *InfoObj; 503 504 public: 505 typedef external_key_type value_type; 506 507 key_iterator(const unsigned char *const Ptr, offset_type NumEntries, 508 Info *InfoObj) 509 : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {} 510 key_iterator() : iterator_base(), InfoObj() {} 511 512 key_iterator &operator++() { 513 this->advance(); 514 return *this; 515 } 516 key_iterator operator++(int) { // Postincrement 517 key_iterator tmp = *this; 518 ++*this; 519 return tmp; 520 } 521 522 internal_key_type getInternalKey() const { 523 auto *LocalPtr = this->getItem(); 524 525 // Determine the length of the key and the data. 526 auto L = Info::ReadKeyDataLength(LocalPtr); 527 528 // Read the key. 529 return InfoObj->ReadKey(LocalPtr, L.first); 530 } 531 532 value_type operator*() const { 533 return InfoObj->GetExternalKey(getInternalKey()); 534 } 535 }; 536 537 key_iterator key_begin() { 538 return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj()); 539 } 540 key_iterator key_end() { return key_iterator(); } 541 542 iterator_range<key_iterator> keys() { 543 return make_range(key_begin(), key_end()); 544 } 545 546 /// \brief Iterates over all the entries in the table, returning the data. 547 class data_iterator : public iterator_base { 548 Info *InfoObj; 549 550 public: 551 typedef data_type value_type; 552 553 data_iterator(const unsigned char *const Ptr, offset_type NumEntries, 554 Info *InfoObj) 555 : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {} 556 data_iterator() : iterator_base(), InfoObj() {} 557 558 data_iterator &operator++() { // Preincrement 559 this->advance(); 560 return *this; 561 } 562 data_iterator operator++(int) { // Postincrement 563 data_iterator tmp = *this; 564 ++*this; 565 return tmp; 566 } 567 568 value_type operator*() const { 569 auto *LocalPtr = this->getItem(); 570 571 // Determine the length of the key and the data. 572 auto L = Info::ReadKeyDataLength(LocalPtr); 573 574 // Read the key. 575 const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first); 576 return InfoObj->ReadData(Key, LocalPtr + L.first, L.second); 577 } 578 }; 579 580 data_iterator data_begin() { 581 return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj()); 582 } 583 data_iterator data_end() { return data_iterator(); } 584 585 iterator_range<data_iterator> data() { 586 return make_range(data_begin(), data_end()); 587 } 588 589 /// \brief Create the hash table. 590 /// 591 /// \param Buckets is the beginning of the hash table itself, which follows 592 /// the payload of entire structure. This is the value returned by 593 /// OnDiskHashTableGenerator::Emit. 594 /// 595 /// \param Payload is the beginning of the data contained in the table. This 596 /// is Base plus any padding or header data that was stored, ie, the offset 597 /// that the stream was at when calling Emit. 598 /// 599 /// \param Base is the point from which all offsets into the structure are 600 /// based. This is offset 0 in the stream that was used when Emitting the 601 /// table. 602 static OnDiskIterableChainedHashTable * 603 Create(const unsigned char *Buckets, const unsigned char *const Payload, 604 const unsigned char *const Base, const Info &InfoObj = Info()) { 605 assert(Buckets > Base); 606 auto NumBucketsAndEntries = 607 OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets); 608 return new OnDiskIterableChainedHashTable<Info>( 609 NumBucketsAndEntries.first, NumBucketsAndEntries.second, 610 Buckets, Payload, Base, InfoObj); 611 } 612 }; 613 614 } // end namespace llvm 615 616 #endif 617