1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/IR/Instructions.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/Analysis/ValueTracking.h" 13 #include "llvm/IR/BasicBlock.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/DerivedTypes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/LLVMContext.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/Operator.h" 23 #include "gtest/gtest.h" 24 #include <memory> 25 26 namespace llvm { 27 namespace { 28 29 TEST(InstructionsTest, ReturnInst) { 30 LLVMContext C; 31 32 // test for PR6589 33 const ReturnInst* r0 = ReturnInst::Create(C); 34 EXPECT_EQ(r0->getNumOperands(), 0U); 35 EXPECT_EQ(r0->op_begin(), r0->op_end()); 36 37 IntegerType* Int1 = IntegerType::get(C, 1); 38 Constant* One = ConstantInt::get(Int1, 1, true); 39 const ReturnInst* r1 = ReturnInst::Create(C, One); 40 EXPECT_EQ(1U, r1->getNumOperands()); 41 User::const_op_iterator b(r1->op_begin()); 42 EXPECT_NE(r1->op_end(), b); 43 EXPECT_EQ(One, *b); 44 EXPECT_EQ(One, r1->getOperand(0)); 45 ++b; 46 EXPECT_EQ(r1->op_end(), b); 47 48 // clean up 49 delete r0; 50 delete r1; 51 } 52 53 // Test fixture that provides a module and a single function within it. Useful 54 // for tests that need to refer to the function in some way. 55 class ModuleWithFunctionTest : public testing::Test { 56 protected: 57 ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) { 58 FArgTypes.push_back(Type::getInt8Ty(Ctx)); 59 FArgTypes.push_back(Type::getInt32Ty(Ctx)); 60 FArgTypes.push_back(Type::getInt64Ty(Ctx)); 61 FunctionType *FTy = 62 FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false); 63 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); 64 } 65 66 LLVMContext Ctx; 67 std::unique_ptr<Module> M; 68 SmallVector<Type *, 3> FArgTypes; 69 Function *F; 70 }; 71 72 TEST_F(ModuleWithFunctionTest, CallInst) { 73 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), 74 ConstantInt::get(Type::getInt32Ty(Ctx), 9999), 75 ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; 76 std::unique_ptr<CallInst> Call(CallInst::Create(F, Args)); 77 78 // Make sure iteration over a call's arguments works as expected. 79 unsigned Idx = 0; 80 for (Value *Arg : Call->arg_operands()) { 81 EXPECT_EQ(FArgTypes[Idx], Arg->getType()); 82 EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType()); 83 Idx++; 84 } 85 } 86 87 TEST_F(ModuleWithFunctionTest, InvokeInst) { 88 BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F); 89 BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F); 90 91 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), 92 ConstantInt::get(Type::getInt32Ty(Ctx), 9999), 93 ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; 94 std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args)); 95 96 // Make sure iteration over invoke's arguments works as expected. 97 unsigned Idx = 0; 98 for (Value *Arg : Invoke->arg_operands()) { 99 EXPECT_EQ(FArgTypes[Idx], Arg->getType()); 100 EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType()); 101 Idx++; 102 } 103 } 104 105 TEST(InstructionsTest, BranchInst) { 106 LLVMContext C; 107 108 // Make a BasicBlocks 109 BasicBlock* bb0 = BasicBlock::Create(C); 110 BasicBlock* bb1 = BasicBlock::Create(C); 111 112 // Mandatory BranchInst 113 const BranchInst* b0 = BranchInst::Create(bb0); 114 115 EXPECT_TRUE(b0->isUnconditional()); 116 EXPECT_FALSE(b0->isConditional()); 117 EXPECT_EQ(1U, b0->getNumSuccessors()); 118 119 // check num operands 120 EXPECT_EQ(1U, b0->getNumOperands()); 121 122 EXPECT_NE(b0->op_begin(), b0->op_end()); 123 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); 124 125 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); 126 127 IntegerType* Int1 = IntegerType::get(C, 1); 128 Constant* One = ConstantInt::get(Int1, 1, true); 129 130 // Conditional BranchInst 131 BranchInst* b1 = BranchInst::Create(bb0, bb1, One); 132 133 EXPECT_FALSE(b1->isUnconditional()); 134 EXPECT_TRUE(b1->isConditional()); 135 EXPECT_EQ(2U, b1->getNumSuccessors()); 136 137 // check num operands 138 EXPECT_EQ(3U, b1->getNumOperands()); 139 140 User::const_op_iterator b(b1->op_begin()); 141 142 // check COND 143 EXPECT_NE(b, b1->op_end()); 144 EXPECT_EQ(One, *b); 145 EXPECT_EQ(One, b1->getOperand(0)); 146 EXPECT_EQ(One, b1->getCondition()); 147 ++b; 148 149 // check ELSE 150 EXPECT_EQ(bb1, *b); 151 EXPECT_EQ(bb1, b1->getOperand(1)); 152 EXPECT_EQ(bb1, b1->getSuccessor(1)); 153 ++b; 154 155 // check THEN 156 EXPECT_EQ(bb0, *b); 157 EXPECT_EQ(bb0, b1->getOperand(2)); 158 EXPECT_EQ(bb0, b1->getSuccessor(0)); 159 ++b; 160 161 EXPECT_EQ(b1->op_end(), b); 162 163 // clean up 164 delete b0; 165 delete b1; 166 167 delete bb0; 168 delete bb1; 169 } 170 171 TEST(InstructionsTest, CastInst) { 172 LLVMContext C; 173 174 Type *Int8Ty = Type::getInt8Ty(C); 175 Type *Int16Ty = Type::getInt16Ty(C); 176 Type *Int32Ty = Type::getInt32Ty(C); 177 Type *Int64Ty = Type::getInt64Ty(C); 178 Type *V8x8Ty = VectorType::get(Int8Ty, 8); 179 Type *V8x64Ty = VectorType::get(Int64Ty, 8); 180 Type *X86MMXTy = Type::getX86_MMXTy(C); 181 182 Type *HalfTy = Type::getHalfTy(C); 183 Type *FloatTy = Type::getFloatTy(C); 184 Type *DoubleTy = Type::getDoubleTy(C); 185 186 Type *V2Int32Ty = VectorType::get(Int32Ty, 2); 187 Type *V2Int64Ty = VectorType::get(Int64Ty, 2); 188 Type *V4Int16Ty = VectorType::get(Int16Ty, 4); 189 190 Type *Int32PtrTy = PointerType::get(Int32Ty, 0); 191 Type *Int64PtrTy = PointerType::get(Int64Ty, 0); 192 193 Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1); 194 Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1); 195 196 Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2); 197 Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2); 198 Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4); 199 Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4); 200 201 Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2); 202 Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2); 203 Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4); 204 205 const Constant* c8 = Constant::getNullValue(V8x8Ty); 206 const Constant* c64 = Constant::getNullValue(V8x64Ty); 207 208 const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy); 209 210 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy)); 211 EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty)); 212 EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy)); 213 EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty)); 214 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty)); 215 EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true)); 216 EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true)); 217 218 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy)); 219 EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty)); 220 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy)); 221 EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty)); 222 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty)); 223 224 // Check address space casts are rejected since we don't know the sizes here 225 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty)); 226 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy)); 227 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty)); 228 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); 229 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty)); 230 EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); 231 EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true, 232 V2Int32PtrAS1Ty, 233 true)); 234 235 // Test mismatched number of elements for pointers 236 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty)); 237 EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty)); 238 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty)); 239 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy)); 240 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy)); 241 242 EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy)); 243 EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy)); 244 EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy)); 245 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); 246 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); 247 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty)); 248 EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy)); 249 EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy)); 250 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty)); 251 252 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty)); 253 EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty)); 254 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty)); 255 256 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty)); 257 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy)); 258 EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy)); 259 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy)); 260 EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty)); 261 EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty)); 262 263 264 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, 265 Constant::getNullValue(V4Int32PtrTy), 266 V2Int32PtrTy)); 267 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, 268 Constant::getNullValue(V2Int32PtrTy), 269 V4Int32PtrTy)); 270 271 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, 272 Constant::getNullValue(V4Int32PtrAS1Ty), 273 V2Int32PtrTy)); 274 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, 275 Constant::getNullValue(V2Int32PtrTy), 276 V4Int32PtrAS1Ty)); 277 278 279 // Check that assertion is not hit when creating a cast with a vector of 280 // pointers 281 // First form 282 BasicBlock *BB = BasicBlock::Create(C); 283 Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy); 284 auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB); 285 286 // Second form 287 auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty); 288 289 delete Inst2; 290 Inst1->eraseFromParent(); 291 delete BB; 292 } 293 294 TEST(InstructionsTest, VectorGep) { 295 LLVMContext C; 296 297 // Type Definitions 298 Type *I8Ty = IntegerType::get(C, 8); 299 Type *I32Ty = IntegerType::get(C, 32); 300 PointerType *Ptri8Ty = PointerType::get(I8Ty, 0); 301 PointerType *Ptri32Ty = PointerType::get(I32Ty, 0); 302 303 VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2); 304 VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2); 305 306 // Test different aspects of the vector-of-pointers type 307 // and GEPs which use this type. 308 ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492)); 309 ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948)); 310 std::vector<Constant*> ConstVa(2, Ci32a); 311 std::vector<Constant*> ConstVb(2, Ci32b); 312 Constant *C2xi32a = ConstantVector::get(ConstVa); 313 Constant *C2xi32b = ConstantVector::get(ConstVb); 314 315 CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy); 316 CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy); 317 318 ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB); 319 ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB); 320 EXPECT_NE(ICmp0, ICmp1); // suppress warning. 321 322 BasicBlock* BB0 = BasicBlock::Create(C); 323 // Test InsertAtEnd ICmpInst constructor. 324 ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB); 325 EXPECT_NE(ICmp0, ICmp2); // suppress warning. 326 327 GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a); 328 GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b); 329 GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a); 330 GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b); 331 332 CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy); 333 CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy); 334 CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy); 335 CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy); 336 337 Value *S0 = BTC0->stripPointerCasts(); 338 Value *S1 = BTC1->stripPointerCasts(); 339 Value *S2 = BTC2->stripPointerCasts(); 340 Value *S3 = BTC3->stripPointerCasts(); 341 342 EXPECT_NE(S0, Gep0); 343 EXPECT_NE(S1, Gep1); 344 EXPECT_NE(S2, Gep2); 345 EXPECT_NE(S3, Gep3); 346 347 int64_t Offset; 348 DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3" 349 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80" 350 ":128:128-n8:16:32:64-S128"); 351 // Make sure we don't crash 352 GetPointerBaseWithConstantOffset(Gep0, Offset, TD); 353 GetPointerBaseWithConstantOffset(Gep1, Offset, TD); 354 GetPointerBaseWithConstantOffset(Gep2, Offset, TD); 355 GetPointerBaseWithConstantOffset(Gep3, Offset, TD); 356 357 // Gep of Geps 358 GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b); 359 GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a); 360 GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b); 361 GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a); 362 363 EXPECT_EQ(GepII0->getNumIndices(), 1u); 364 EXPECT_EQ(GepII1->getNumIndices(), 1u); 365 EXPECT_EQ(GepII2->getNumIndices(), 1u); 366 EXPECT_EQ(GepII3->getNumIndices(), 1u); 367 368 EXPECT_FALSE(GepII0->hasAllZeroIndices()); 369 EXPECT_FALSE(GepII1->hasAllZeroIndices()); 370 EXPECT_FALSE(GepII2->hasAllZeroIndices()); 371 EXPECT_FALSE(GepII3->hasAllZeroIndices()); 372 373 delete GepII0; 374 delete GepII1; 375 delete GepII2; 376 delete GepII3; 377 378 delete BTC0; 379 delete BTC1; 380 delete BTC2; 381 delete BTC3; 382 383 delete Gep0; 384 delete Gep1; 385 delete Gep2; 386 delete Gep3; 387 388 ICmp2->eraseFromParent(); 389 delete BB0; 390 391 delete ICmp0; 392 delete ICmp1; 393 delete PtrVecA; 394 delete PtrVecB; 395 } 396 397 TEST(InstructionsTest, FPMathOperator) { 398 LLVMContext Context; 399 IRBuilder<> Builder(Context); 400 MDBuilder MDHelper(Context); 401 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); 402 MDNode *MD1 = MDHelper.createFPMath(1.0); 403 Value *V1 = Builder.CreateFAdd(I, I, "", MD1); 404 EXPECT_TRUE(isa<FPMathOperator>(V1)); 405 FPMathOperator *O1 = cast<FPMathOperator>(V1); 406 EXPECT_EQ(O1->getFPAccuracy(), 1.0); 407 delete V1; 408 delete I; 409 } 410 411 412 TEST(InstructionsTest, isEliminableCastPair) { 413 LLVMContext C; 414 415 Type* Int16Ty = Type::getInt16Ty(C); 416 Type* Int32Ty = Type::getInt32Ty(C); 417 Type* Int64Ty = Type::getInt64Ty(C); 418 Type* Int64PtrTy = Type::getInt64PtrTy(C); 419 420 // Source and destination pointers have same size -> bitcast. 421 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 422 CastInst::IntToPtr, 423 Int64PtrTy, Int64Ty, Int64PtrTy, 424 Int32Ty, nullptr, Int32Ty), 425 CastInst::BitCast); 426 427 // Source and destination have unknown sizes, but the same address space and 428 // the intermediate int is the maximum pointer size -> bitcast 429 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 430 CastInst::IntToPtr, 431 Int64PtrTy, Int64Ty, Int64PtrTy, 432 nullptr, nullptr, nullptr), 433 CastInst::BitCast); 434 435 // Source and destination have unknown sizes, but the same address space and 436 // the intermediate int is not the maximum pointer size -> nothing 437 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 438 CastInst::IntToPtr, 439 Int64PtrTy, Int32Ty, Int64PtrTy, 440 nullptr, nullptr, nullptr), 441 0U); 442 443 // Middle pointer big enough -> bitcast. 444 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 445 CastInst::PtrToInt, 446 Int64Ty, Int64PtrTy, Int64Ty, 447 nullptr, Int64Ty, nullptr), 448 CastInst::BitCast); 449 450 // Middle pointer too small -> fail. 451 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 452 CastInst::PtrToInt, 453 Int64Ty, Int64PtrTy, Int64Ty, 454 nullptr, Int32Ty, nullptr), 455 0U); 456 457 // Test that we don't eliminate bitcasts between different address spaces, 458 // or if we don't have available pointer size information. 459 DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16" 460 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64" 461 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128"); 462 463 Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1); 464 Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2); 465 466 IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1); 467 IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2); 468 469 // Cannot simplify inttoptr, addrspacecast 470 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 471 CastInst::AddrSpaceCast, 472 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2, 473 nullptr, Int16SizePtr, Int64SizePtr), 474 0U); 475 476 // Cannot simplify addrspacecast, ptrtoint 477 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast, 478 CastInst::PtrToInt, 479 Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty, 480 Int64SizePtr, Int16SizePtr, nullptr), 481 0U); 482 483 // Pass since the bitcast address spaces are the same 484 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 485 CastInst::BitCast, 486 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1, 487 nullptr, nullptr, nullptr), 488 CastInst::IntToPtr); 489 490 } 491 492 TEST(InstructionsTest, CloneCall) { 493 LLVMContext C; 494 Type *Int32Ty = Type::getInt32Ty(C); 495 Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty}; 496 Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false); 497 Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); 498 Value *Args[] = { 499 ConstantInt::get(Int32Ty, 1), 500 ConstantInt::get(Int32Ty, 2), 501 ConstantInt::get(Int32Ty, 3) 502 }; 503 std::unique_ptr<CallInst> Call(CallInst::Create(Callee, Args, "result")); 504 505 // Test cloning the tail call kind. 506 CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail, 507 CallInst::TCK_MustTail}; 508 for (CallInst::TailCallKind TCK : Kinds) { 509 Call->setTailCallKind(TCK); 510 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone())); 511 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); 512 } 513 Call->setTailCallKind(CallInst::TCK_None); 514 515 // Test cloning an attribute. 516 { 517 AttrBuilder AB; 518 AB.addAttribute(Attribute::ReadOnly); 519 Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB)); 520 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone())); 521 EXPECT_TRUE(Clone->onlyReadsMemory()); 522 } 523 } 524 525 TEST(InstructionsTest, AlterCallBundles) { 526 LLVMContext C; 527 Type *Int32Ty = Type::getInt32Ty(C); 528 Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false); 529 Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); 530 Value *Args[] = {ConstantInt::get(Int32Ty, 42)}; 531 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty)); 532 std::unique_ptr<CallInst> Call( 533 CallInst::Create(Callee, Args, OldBundle, "result")); 534 Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail); 535 AttrBuilder AB; 536 AB.addAttribute(Attribute::Cold); 537 Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB)); 538 Call->setDebugLoc(DebugLoc(MDNode::get(C, None))); 539 540 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7)); 541 std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle)); 542 EXPECT_EQ(Call->getNumArgOperands(), Clone->getNumArgOperands()); 543 EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0)); 544 EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv()); 545 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); 546 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold)); 547 EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc()); 548 EXPECT_EQ(Clone->getNumOperandBundles(), 1U); 549 EXPECT_TRUE(Clone->getOperandBundle("after").hasValue()); 550 } 551 552 TEST(InstructionsTest, AlterInvokeBundles) { 553 LLVMContext C; 554 Type *Int32Ty = Type::getInt32Ty(C); 555 Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false); 556 Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); 557 Value *Args[] = {ConstantInt::get(Int32Ty, 42)}; 558 std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C)); 559 std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C)); 560 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty)); 561 std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create( 562 Callee, NormalDest.get(), UnwindDest.get(), Args, OldBundle, "result")); 563 AttrBuilder AB; 564 AB.addAttribute(Attribute::Cold); 565 Invoke->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB)); 566 Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None))); 567 568 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7)); 569 std::unique_ptr<InvokeInst> Clone( 570 InvokeInst::Create(Invoke.get(), NewBundle)); 571 EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest()); 572 EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest()); 573 EXPECT_EQ(Invoke->getNumArgOperands(), Clone->getNumArgOperands()); 574 EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0)); 575 EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv()); 576 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold)); 577 EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc()); 578 EXPECT_EQ(Clone->getNumOperandBundles(), 1U); 579 EXPECT_TRUE(Clone->getOperandBundle("after").hasValue()); 580 } 581 582 } // end anonymous namespace 583 } // end namespace llvm 584