1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/CodeGen/RegAllocRegistry.h" 25 #include "llvm/CodeGen/SchedulerRegistry.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSummaryIndex.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/MC/SubtargetFeature.h" 33 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/PrettyStackTrace.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/Timer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Transforms/IPO.h" 43 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 44 #include "llvm/Transforms/Instrumentation.h" 45 #include "llvm/Transforms/ObjCARC.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Utils/SymbolRewriter.h" 49 #include <memory> 50 using namespace clang; 51 using namespace llvm; 52 53 namespace { 54 55 class EmitAssemblyHelper { 56 DiagnosticsEngine &Diags; 57 const CodeGenOptions &CodeGenOpts; 58 const clang::TargetOptions &TargetOpts; 59 const LangOptions &LangOpts; 60 Module *TheModule; 61 62 Timer CodeGenerationTime; 63 64 mutable legacy::PassManager *CodeGenPasses; 65 mutable legacy::PassManager *PerModulePasses; 66 mutable legacy::FunctionPassManager *PerFunctionPasses; 67 68 private: 69 TargetIRAnalysis getTargetIRAnalysis() const { 70 if (TM) 71 return TM->getTargetIRAnalysis(); 72 73 return TargetIRAnalysis(); 74 } 75 76 legacy::PassManager *getCodeGenPasses() const { 77 if (!CodeGenPasses) { 78 CodeGenPasses = new legacy::PassManager(); 79 CodeGenPasses->add( 80 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 81 } 82 return CodeGenPasses; 83 } 84 85 legacy::PassManager *getPerModulePasses() const { 86 if (!PerModulePasses) { 87 PerModulePasses = new legacy::PassManager(); 88 PerModulePasses->add( 89 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 90 } 91 return PerModulePasses; 92 } 93 94 legacy::FunctionPassManager *getPerFunctionPasses() const { 95 if (!PerFunctionPasses) { 96 PerFunctionPasses = new legacy::FunctionPassManager(TheModule); 97 PerFunctionPasses->add( 98 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 99 } 100 return PerFunctionPasses; 101 } 102 103 /// Set LLVM command line options passed through -backend-option. 104 void setCommandLineOpts(); 105 106 void CreatePasses(ModuleSummaryIndex *ModuleSummary); 107 108 /// Generates the TargetMachine. 109 /// Returns Null if it is unable to create the target machine. 110 /// Some of our clang tests specify triples which are not built 111 /// into clang. This is okay because these tests check the generated 112 /// IR, and they require DataLayout which depends on the triple. 113 /// In this case, we allow this method to fail and not report an error. 114 /// When MustCreateTM is used, we print an error if we are unable to load 115 /// the requested target. 116 TargetMachine *CreateTargetMachine(bool MustCreateTM); 117 118 /// Add passes necessary to emit assembly or LLVM IR. 119 /// 120 /// \return True on success. 121 bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS); 122 123 public: 124 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 125 const clang::TargetOptions &TOpts, 126 const LangOptions &LOpts, Module *M) 127 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 128 TheModule(M), CodeGenerationTime("Code Generation Time"), 129 CodeGenPasses(nullptr), PerModulePasses(nullptr), 130 PerFunctionPasses(nullptr) {} 131 132 ~EmitAssemblyHelper() { 133 delete CodeGenPasses; 134 delete PerModulePasses; 135 delete PerFunctionPasses; 136 if (CodeGenOpts.DisableFree) 137 BuryPointer(std::move(TM)); 138 } 139 140 std::unique_ptr<TargetMachine> TM; 141 142 void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS); 143 }; 144 145 // We need this wrapper to access LangOpts and CGOpts from extension functions 146 // that we add to the PassManagerBuilder. 147 class PassManagerBuilderWrapper : public PassManagerBuilder { 148 public: 149 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 152 const CodeGenOptions &getCGOpts() const { return CGOpts; } 153 const LangOptions &getLangOpts() const { return LangOpts; } 154 private: 155 const CodeGenOptions &CGOpts; 156 const LangOptions &LangOpts; 157 }; 158 159 } 160 161 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCAPElimPass()); 164 } 165 166 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 167 if (Builder.OptLevel > 0) 168 PM.add(createObjCARCExpandPass()); 169 } 170 171 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 172 if (Builder.OptLevel > 0) 173 PM.add(createObjCARCOptPass()); 174 } 175 176 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 PM.add(createAddDiscriminatorsPass()); 179 } 180 181 static void addCleanupPassesForSampleProfiler( 182 const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { 183 // instcombine is needed before sample profile annotation because it converts 184 // certain function calls to be inlinable. simplifycfg and sroa are needed 185 // before instcombine for necessary preparation. E.g. load store is eliminated 186 // properly so that instcombine will not introduce unecessary liverange. 187 PM.add(createCFGSimplificationPass()); 188 PM.add(createSROAPass()); 189 PM.add(createInstructionCombiningPass()); 190 } 191 192 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 193 legacy::PassManagerBase &PM) { 194 PM.add(createBoundsCheckingPass()); 195 } 196 197 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 198 legacy::PassManagerBase &PM) { 199 const PassManagerBuilderWrapper &BuilderWrapper = 200 static_cast<const PassManagerBuilderWrapper&>(Builder); 201 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 202 SanitizerCoverageOptions Opts; 203 Opts.CoverageType = 204 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 205 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 206 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 207 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 208 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 209 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 210 PM.add(createSanitizerCoverageModulePass(Opts)); 211 } 212 213 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 const PassManagerBuilderWrapper &BuilderWrapper = 216 static_cast<const PassManagerBuilderWrapper&>(Builder); 217 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 218 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 219 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 220 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 221 UseAfterScope)); 222 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 223 } 224 225 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 226 legacy::PassManagerBase &PM) { 227 PM.add(createAddressSanitizerFunctionPass( 228 /*CompileKernel*/ true, 229 /*Recover*/ true, /*UseAfterScope*/ false)); 230 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 231 /*Recover*/true)); 232 } 233 234 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 239 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 240 241 // MemorySanitizer inserts complex instrumentation that mostly follows 242 // the logic of the original code, but operates on "shadow" values. 243 // It can benefit from re-running some general purpose optimization passes. 244 if (Builder.OptLevel > 0) { 245 PM.add(createEarlyCSEPass()); 246 PM.add(createReassociatePass()); 247 PM.add(createLICMPass()); 248 PM.add(createGVNPass()); 249 PM.add(createInstructionCombiningPass()); 250 PM.add(createDeadStoreEliminationPass()); 251 } 252 } 253 254 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 255 legacy::PassManagerBase &PM) { 256 PM.add(createThreadSanitizerPass()); 257 } 258 259 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 260 legacy::PassManagerBase &PM) { 261 const PassManagerBuilderWrapper &BuilderWrapper = 262 static_cast<const PassManagerBuilderWrapper&>(Builder); 263 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 264 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 265 } 266 267 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 const PassManagerBuilderWrapper &BuilderWrapper = 270 static_cast<const PassManagerBuilderWrapper&>(Builder); 271 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 272 EfficiencySanitizerOptions Opts; 273 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 274 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 275 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 276 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 277 PM.add(createEfficiencySanitizerPass(Opts)); 278 } 279 280 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 281 const CodeGenOptions &CodeGenOpts) { 282 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 283 if (!CodeGenOpts.SimplifyLibCalls) 284 TLII->disableAllFunctions(); 285 else { 286 // Disable individual libc/libm calls in TargetLibraryInfo. 287 LibFunc::Func F; 288 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 289 if (TLII->getLibFunc(FuncName, F)) 290 TLII->setUnavailable(F); 291 } 292 293 switch (CodeGenOpts.getVecLib()) { 294 case CodeGenOptions::Accelerate: 295 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 296 break; 297 default: 298 break; 299 } 300 return TLII; 301 } 302 303 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 304 legacy::PassManager *MPM) { 305 llvm::SymbolRewriter::RewriteDescriptorList DL; 306 307 llvm::SymbolRewriter::RewriteMapParser MapParser; 308 for (const auto &MapFile : Opts.RewriteMapFiles) 309 MapParser.parse(MapFile, &DL); 310 311 MPM->add(createRewriteSymbolsPass(DL)); 312 } 313 314 void EmitAssemblyHelper::CreatePasses(ModuleSummaryIndex *ModuleSummary) { 315 if (CodeGenOpts.DisableLLVMPasses) 316 return; 317 318 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 319 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 320 321 // Handle disabling of LLVM optimization, where we want to preserve the 322 // internal module before any optimization. 323 if (CodeGenOpts.DisableLLVMOpts) { 324 OptLevel = 0; 325 Inlining = CodeGenOpts.NoInlining; 326 } 327 328 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 329 330 // Figure out TargetLibraryInfo. 331 Triple TargetTriple(TheModule->getTargetTriple()); 332 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 333 334 switch (Inlining) { 335 case CodeGenOptions::NoInlining: 336 break; 337 case CodeGenOptions::NormalInlining: 338 case CodeGenOptions::OnlyHintInlining: { 339 PMBuilder.Inliner = 340 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 341 break; 342 } 343 case CodeGenOptions::OnlyAlwaysInlining: 344 // Respect always_inline. 345 if (OptLevel == 0) 346 // Do not insert lifetime intrinsics at -O0. 347 PMBuilder.Inliner = createAlwaysInlinerPass(false); 348 else 349 PMBuilder.Inliner = createAlwaysInlinerPass(); 350 break; 351 } 352 353 PMBuilder.OptLevel = OptLevel; 354 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 355 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 356 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 357 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 358 359 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 360 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 361 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 362 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 363 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 364 365 legacy::PassManager *MPM = getPerModulePasses(); 366 367 // If we are performing a ThinLTO importing compile, invoke the LTO 368 // pipeline and pass down the in-memory module summary index. 369 if (ModuleSummary) { 370 PMBuilder.ModuleSummary = ModuleSummary; 371 PMBuilder.populateThinLTOPassManager(*MPM); 372 return; 373 } 374 375 // Add target-specific passes that need to run as early as possible. 376 if (TM) 377 PMBuilder.addExtension( 378 PassManagerBuilder::EP_EarlyAsPossible, 379 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 380 TM->addEarlyAsPossiblePasses(PM); 381 }); 382 383 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 384 addAddDiscriminatorsPass); 385 386 // In ObjC ARC mode, add the main ARC optimization passes. 387 if (LangOpts.ObjCAutoRefCount) { 388 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 389 addObjCARCExpandPass); 390 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 391 addObjCARCAPElimPass); 392 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 393 addObjCARCOptPass); 394 } 395 396 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 397 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 398 addBoundsCheckingPass); 399 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 400 addBoundsCheckingPass); 401 } 402 403 if (CodeGenOpts.SanitizeCoverageType || 404 CodeGenOpts.SanitizeCoverageIndirectCalls || 405 CodeGenOpts.SanitizeCoverageTraceCmp) { 406 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 407 addSanitizerCoveragePass); 408 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 409 addSanitizerCoveragePass); 410 } 411 412 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 413 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 414 addAddressSanitizerPasses); 415 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 416 addAddressSanitizerPasses); 417 } 418 419 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 420 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 421 addKernelAddressSanitizerPasses); 422 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 423 addKernelAddressSanitizerPasses); 424 } 425 426 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 427 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 428 addMemorySanitizerPass); 429 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 430 addMemorySanitizerPass); 431 } 432 433 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 434 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 435 addThreadSanitizerPass); 436 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 437 addThreadSanitizerPass); 438 } 439 440 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 441 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 442 addDataFlowSanitizerPass); 443 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 444 addDataFlowSanitizerPass); 445 } 446 447 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 448 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 449 addEfficiencySanitizerPass); 450 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 451 addEfficiencySanitizerPass); 452 } 453 454 // Set up the per-function pass manager. 455 legacy::FunctionPassManager *FPM = getPerFunctionPasses(); 456 if (CodeGenOpts.VerifyModule) 457 FPM->add(createVerifierPass()); 458 459 // Set up the per-module pass manager. 460 if (!CodeGenOpts.RewriteMapFiles.empty()) 461 addSymbolRewriterPass(CodeGenOpts, MPM); 462 463 if (!CodeGenOpts.DisableGCov && 464 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 465 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 466 // LLVM's -default-gcov-version flag is set to something invalid. 467 GCOVOptions Options; 468 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 469 Options.EmitData = CodeGenOpts.EmitGcovArcs; 470 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 471 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 472 Options.NoRedZone = CodeGenOpts.DisableRedZone; 473 Options.FunctionNamesInData = 474 !CodeGenOpts.CoverageNoFunctionNamesInData; 475 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 476 MPM->add(createGCOVProfilerPass(Options)); 477 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 478 MPM->add(createStripSymbolsPass(true)); 479 } 480 481 if (CodeGenOpts.hasProfileClangInstr()) { 482 InstrProfOptions Options; 483 Options.NoRedZone = CodeGenOpts.DisableRedZone; 484 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 485 MPM->add(createInstrProfilingLegacyPass(Options)); 486 } 487 if (CodeGenOpts.hasProfileIRInstr()) { 488 if (!CodeGenOpts.InstrProfileOutput.empty()) 489 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 490 else 491 PMBuilder.PGOInstrGen = "default.profraw"; 492 } 493 if (CodeGenOpts.hasProfileIRUse()) 494 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 495 496 if (!CodeGenOpts.SampleProfileFile.empty()) { 497 MPM->add(createPruneEHPass()); 498 MPM->add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 499 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 500 addCleanupPassesForSampleProfiler); 501 } 502 503 PMBuilder.populateFunctionPassManager(*FPM); 504 PMBuilder.populateModulePassManager(*MPM); 505 } 506 507 void EmitAssemblyHelper::setCommandLineOpts() { 508 SmallVector<const char *, 16> BackendArgs; 509 BackendArgs.push_back("clang"); // Fake program name. 510 if (!CodeGenOpts.DebugPass.empty()) { 511 BackendArgs.push_back("-debug-pass"); 512 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 513 } 514 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 515 BackendArgs.push_back("-limit-float-precision"); 516 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 517 } 518 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 519 BackendArgs.push_back(BackendOption.c_str()); 520 BackendArgs.push_back(nullptr); 521 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 522 BackendArgs.data()); 523 } 524 525 TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 526 // Create the TargetMachine for generating code. 527 std::string Error; 528 std::string Triple = TheModule->getTargetTriple(); 529 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 530 if (!TheTarget) { 531 if (MustCreateTM) 532 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 533 return nullptr; 534 } 535 536 unsigned CodeModel = 537 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 538 .Case("small", llvm::CodeModel::Small) 539 .Case("kernel", llvm::CodeModel::Kernel) 540 .Case("medium", llvm::CodeModel::Medium) 541 .Case("large", llvm::CodeModel::Large) 542 .Case("default", llvm::CodeModel::Default) 543 .Default(~0u); 544 assert(CodeModel != ~0u && "invalid code model!"); 545 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 546 547 std::string FeaturesStr = 548 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 549 550 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 551 llvm::Optional<llvm::Reloc::Model> RM; 552 if (CodeGenOpts.RelocationModel == "static") { 553 RM = llvm::Reloc::Static; 554 } else if (CodeGenOpts.RelocationModel == "pic") { 555 RM = llvm::Reloc::PIC_; 556 } else { 557 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 558 "Invalid PIC model!"); 559 RM = llvm::Reloc::DynamicNoPIC; 560 } 561 562 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 563 switch (CodeGenOpts.OptimizationLevel) { 564 default: break; 565 case 0: OptLevel = CodeGenOpt::None; break; 566 case 3: OptLevel = CodeGenOpt::Aggressive; break; 567 } 568 569 llvm::TargetOptions Options; 570 571 if (!TargetOpts.Reciprocals.empty()) 572 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 573 574 Options.ThreadModel = 575 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 576 .Case("posix", llvm::ThreadModel::POSIX) 577 .Case("single", llvm::ThreadModel::Single); 578 579 // Set float ABI type. 580 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 581 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 582 "Invalid Floating Point ABI!"); 583 Options.FloatABIType = 584 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 585 .Case("soft", llvm::FloatABI::Soft) 586 .Case("softfp", llvm::FloatABI::Soft) 587 .Case("hard", llvm::FloatABI::Hard) 588 .Default(llvm::FloatABI::Default); 589 590 // Set FP fusion mode. 591 switch (CodeGenOpts.getFPContractMode()) { 592 case CodeGenOptions::FPC_Off: 593 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 594 break; 595 case CodeGenOptions::FPC_On: 596 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 597 break; 598 case CodeGenOptions::FPC_Fast: 599 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 600 break; 601 } 602 603 Options.UseInitArray = CodeGenOpts.UseInitArray; 604 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 605 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 606 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 607 608 // Set EABI version. 609 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 610 .Case("4", llvm::EABI::EABI4) 611 .Case("5", llvm::EABI::EABI5) 612 .Case("gnu", llvm::EABI::GNU) 613 .Default(llvm::EABI::Default); 614 615 if (LangOpts.SjLjExceptions) 616 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 617 618 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 619 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 620 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 621 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 622 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 623 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 624 Options.FunctionSections = CodeGenOpts.FunctionSections; 625 Options.DataSections = CodeGenOpts.DataSections; 626 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 627 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 628 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 629 630 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 631 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 632 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 633 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 634 Options.MCOptions.MCIncrementalLinkerCompatible = 635 CodeGenOpts.IncrementalLinkerCompatible; 636 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 637 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 638 Options.MCOptions.ABIName = TargetOpts.ABI; 639 640 TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, 641 FeaturesStr, Options, 642 RM, CM, OptLevel); 643 644 return TM; 645 } 646 647 bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, 648 raw_pwrite_stream &OS) { 649 650 // Create the code generator passes. 651 legacy::PassManager *PM = getCodeGenPasses(); 652 653 // Add LibraryInfo. 654 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 655 std::unique_ptr<TargetLibraryInfoImpl> TLII( 656 createTLII(TargetTriple, CodeGenOpts)); 657 PM->add(new TargetLibraryInfoWrapperPass(*TLII)); 658 659 // Normal mode, emit a .s or .o file by running the code generator. Note, 660 // this also adds codegenerator level optimization passes. 661 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 662 if (Action == Backend_EmitObj) 663 CGFT = TargetMachine::CGFT_ObjectFile; 664 else if (Action == Backend_EmitMCNull) 665 CGFT = TargetMachine::CGFT_Null; 666 else 667 assert(Action == Backend_EmitAssembly && "Invalid action!"); 668 669 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 670 // "codegen" passes so that it isn't run multiple times when there is 671 // inlining happening. 672 if (CodeGenOpts.OptimizationLevel > 0) 673 PM->add(createObjCARCContractPass()); 674 675 if (TM->addPassesToEmitFile(*PM, OS, CGFT, 676 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 677 Diags.Report(diag::err_fe_unable_to_interface_with_target); 678 return false; 679 } 680 681 return true; 682 } 683 684 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 685 raw_pwrite_stream *OS) { 686 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 687 688 setCommandLineOpts(); 689 690 bool UsesCodeGen = (Action != Backend_EmitNothing && 691 Action != Backend_EmitBC && 692 Action != Backend_EmitLL); 693 if (!TM) 694 TM.reset(CreateTargetMachine(UsesCodeGen)); 695 696 if (UsesCodeGen && !TM) 697 return; 698 if (TM) 699 TheModule->setDataLayout(TM->createDataLayout()); 700 701 // If we are performing a ThinLTO importing compile, load the function 702 // index into memory and pass it into CreatePasses, which will add it 703 // to the PassManagerBuilder and invoke LTO passes. 704 std::unique_ptr<ModuleSummaryIndex> ModuleSummary; 705 if (!CodeGenOpts.ThinLTOIndexFile.empty()) { 706 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 707 llvm::getModuleSummaryIndexForFile( 708 CodeGenOpts.ThinLTOIndexFile, [&](const DiagnosticInfo &DI) { 709 TheModule->getContext().diagnose(DI); 710 }); 711 if (std::error_code EC = IndexOrErr.getError()) { 712 std::string Error = EC.message(); 713 errs() << "Error loading index file '" << CodeGenOpts.ThinLTOIndexFile 714 << "': " << Error << "\n"; 715 return; 716 } 717 ModuleSummary = std::move(IndexOrErr.get()); 718 assert(ModuleSummary && "Expected non-empty module summary index"); 719 } 720 721 CreatePasses(ModuleSummary.get()); 722 723 switch (Action) { 724 case Backend_EmitNothing: 725 break; 726 727 case Backend_EmitBC: 728 getPerModulePasses()->add(createBitcodeWriterPass( 729 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 730 CodeGenOpts.EmitSummaryIndex)); 731 break; 732 733 case Backend_EmitLL: 734 getPerModulePasses()->add( 735 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 736 break; 737 738 default: 739 if (!AddEmitPasses(Action, *OS)) 740 return; 741 } 742 743 // Before executing passes, print the final values of the LLVM options. 744 cl::PrintOptionValues(); 745 746 // Run passes. For now we do all passes at once, but eventually we 747 // would like to have the option of streaming code generation. 748 749 if (PerFunctionPasses) { 750 PrettyStackTraceString CrashInfo("Per-function optimization"); 751 752 PerFunctionPasses->doInitialization(); 753 for (Function &F : *TheModule) 754 if (!F.isDeclaration()) 755 PerFunctionPasses->run(F); 756 PerFunctionPasses->doFinalization(); 757 } 758 759 if (PerModulePasses) { 760 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 761 PerModulePasses->run(*TheModule); 762 } 763 764 if (CodeGenPasses) { 765 PrettyStackTraceString CrashInfo("Code generation"); 766 CodeGenPasses->run(*TheModule); 767 } 768 } 769 770 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 771 const CodeGenOptions &CGOpts, 772 const clang::TargetOptions &TOpts, 773 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 774 Module *M, BackendAction Action, 775 raw_pwrite_stream *OS) { 776 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 777 778 AsmHelper.EmitAssembly(Action, OS); 779 780 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 781 // DataLayout. 782 if (AsmHelper.TM) { 783 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 784 if (DLDesc != TDesc.getStringRepresentation()) { 785 unsigned DiagID = Diags.getCustomDiagID( 786 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 787 "expected target description '%1'"); 788 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 789 } 790 } 791 } 792 793 static const char* getSectionNameForBitcode(const Triple &T) { 794 switch (T.getObjectFormat()) { 795 case Triple::MachO: 796 return "__LLVM,__bitcode"; 797 case Triple::COFF: 798 case Triple::ELF: 799 case Triple::UnknownObjectFormat: 800 return ".llvmbc"; 801 } 802 llvm_unreachable("Unimplemented ObjectFormatType"); 803 } 804 805 static const char* getSectionNameForCommandline(const Triple &T) { 806 switch (T.getObjectFormat()) { 807 case Triple::MachO: 808 return "__LLVM,__cmdline"; 809 case Triple::COFF: 810 case Triple::ELF: 811 case Triple::UnknownObjectFormat: 812 return ".llvmcmd"; 813 } 814 llvm_unreachable("Unimplemented ObjectFormatType"); 815 } 816 817 // With -fembed-bitcode, save a copy of the llvm IR as data in the 818 // __LLVM,__bitcode section. 819 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 820 llvm::MemoryBufferRef Buf) { 821 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 822 return; 823 824 // Save llvm.compiler.used and remote it. 825 SmallVector<Constant*, 2> UsedArray; 826 SmallSet<GlobalValue*, 4> UsedGlobals; 827 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 828 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 829 for (auto *GV : UsedGlobals) { 830 if (GV->getName() != "llvm.embedded.module" && 831 GV->getName() != "llvm.cmdline") 832 UsedArray.push_back( 833 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 834 } 835 if (Used) 836 Used->eraseFromParent(); 837 838 // Embed the bitcode for the llvm module. 839 std::string Data; 840 ArrayRef<uint8_t> ModuleData; 841 Triple T(M->getTargetTriple()); 842 // Create a constant that contains the bitcode. 843 // In case of embedding a marker, ignore the input Buf and use the empty 844 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 845 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 846 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 847 (const unsigned char *)Buf.getBufferEnd())) { 848 // If the input is LLVM Assembly, bitcode is produced by serializing 849 // the module. Use-lists order need to be perserved in this case. 850 llvm::raw_string_ostream OS(Data); 851 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 852 ModuleData = 853 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 854 } else 855 // If the input is LLVM bitcode, write the input byte stream directly. 856 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 857 Buf.getBufferSize()); 858 } 859 llvm::Constant *ModuleConstant = 860 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 861 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 862 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 863 ModuleConstant); 864 GV->setSection(getSectionNameForBitcode(T)); 865 UsedArray.push_back( 866 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 867 if (llvm::GlobalVariable *Old = 868 M->getGlobalVariable("llvm.embedded.module", true)) { 869 assert(Old->hasOneUse() && 870 "llvm.embedded.module can only be used once in llvm.compiler.used"); 871 GV->takeName(Old); 872 Old->eraseFromParent(); 873 } else { 874 GV->setName("llvm.embedded.module"); 875 } 876 877 // Skip if only bitcode needs to be embedded. 878 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 879 // Embed command-line options. 880 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 881 CGOpts.CmdArgs.size()); 882 llvm::Constant *CmdConstant = 883 llvm::ConstantDataArray::get(M->getContext(), CmdData); 884 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 885 llvm::GlobalValue::PrivateLinkage, 886 CmdConstant); 887 GV->setSection(getSectionNameForCommandline(T)); 888 UsedArray.push_back( 889 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 890 if (llvm::GlobalVariable *Old = 891 M->getGlobalVariable("llvm.cmdline", true)) { 892 assert(Old->hasOneUse() && 893 "llvm.cmdline can only be used once in llvm.compiler.used"); 894 GV->takeName(Old); 895 Old->eraseFromParent(); 896 } else { 897 GV->setName("llvm.cmdline"); 898 } 899 } 900 901 if (UsedArray.empty()) 902 return; 903 904 // Recreate llvm.compiler.used. 905 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 906 auto *NewUsed = new GlobalVariable( 907 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 908 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 909 NewUsed->setSection("llvm.metadata"); 910 } 911