Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/strtod.h"
      6 
      7 #include <stdarg.h>
      8 #include <cmath>
      9 
     10 #include "src/bignum.h"
     11 #include "src/cached-powers.h"
     12 #include "src/double.h"
     13 #include "src/globals.h"
     14 #include "src/utils.h"
     15 
     16 namespace v8 {
     17 namespace internal {
     18 
     19 // 2^53 = 9007199254740992.
     20 // Any integer with at most 15 decimal digits will hence fit into a double
     21 // (which has a 53bit significand) without loss of precision.
     22 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
     23 // 2^64 = 18446744073709551616 > 10^19
     24 static const int kMaxUint64DecimalDigits = 19;
     25 
     26 // Max double: 1.7976931348623157 x 10^308
     27 // Min non-zero double: 4.9406564584124654 x 10^-324
     28 // Any x >= 10^309 is interpreted as +infinity.
     29 // Any x <= 10^-324 is interpreted as 0.
     30 // Note that 2.5e-324 (despite being smaller than the min double) will be read
     31 // as non-zero (equal to the min non-zero double).
     32 static const int kMaxDecimalPower = 309;
     33 static const int kMinDecimalPower = -324;
     34 
     35 // 2^64 = 18446744073709551616
     36 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
     37 
     38 
     39 static const double exact_powers_of_ten[] = {
     40   1.0,  // 10^0
     41   10.0,
     42   100.0,
     43   1000.0,
     44   10000.0,
     45   100000.0,
     46   1000000.0,
     47   10000000.0,
     48   100000000.0,
     49   1000000000.0,
     50   10000000000.0,  // 10^10
     51   100000000000.0,
     52   1000000000000.0,
     53   10000000000000.0,
     54   100000000000000.0,
     55   1000000000000000.0,
     56   10000000000000000.0,
     57   100000000000000000.0,
     58   1000000000000000000.0,
     59   10000000000000000000.0,
     60   100000000000000000000.0,  // 10^20
     61   1000000000000000000000.0,
     62   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
     63   10000000000000000000000.0
     64 };
     65 static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
     66 
     67 // Maximum number of significant digits in the decimal representation.
     68 // In fact the value is 772 (see conversions.cc), but to give us some margin
     69 // we round up to 780.
     70 static const int kMaxSignificantDecimalDigits = 780;
     71 
     72 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
     73   for (int i = 0; i < buffer.length(); i++) {
     74     if (buffer[i] != '0') {
     75       return buffer.SubVector(i, buffer.length());
     76     }
     77   }
     78   return Vector<const char>(buffer.start(), 0);
     79 }
     80 
     81 
     82 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
     83   for (int i = buffer.length() - 1; i >= 0; --i) {
     84     if (buffer[i] != '0') {
     85       return buffer.SubVector(0, i + 1);
     86     }
     87   }
     88   return Vector<const char>(buffer.start(), 0);
     89 }
     90 
     91 
     92 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
     93                                        int exponent,
     94                                        char* significant_buffer,
     95                                        int* significant_exponent) {
     96   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
     97     significant_buffer[i] = buffer[i];
     98   }
     99   // The input buffer has been trimmed. Therefore the last digit must be
    100   // different from '0'.
    101   DCHECK(buffer[buffer.length() - 1] != '0');
    102   // Set the last digit to be non-zero. This is sufficient to guarantee
    103   // correct rounding.
    104   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
    105   *significant_exponent =
    106       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
    107 }
    108 
    109 
    110 // Reads digits from the buffer and converts them to a uint64.
    111 // Reads in as many digits as fit into a uint64.
    112 // When the string starts with "1844674407370955161" no further digit is read.
    113 // Since 2^64 = 18446744073709551616 it would still be possible read another
    114 // digit if it was less or equal than 6, but this would complicate the code.
    115 static uint64_t ReadUint64(Vector<const char> buffer,
    116                            int* number_of_read_digits) {
    117   uint64_t result = 0;
    118   int i = 0;
    119   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
    120     int digit = buffer[i++] - '0';
    121     DCHECK(0 <= digit && digit <= 9);
    122     result = 10 * result + digit;
    123   }
    124   *number_of_read_digits = i;
    125   return result;
    126 }
    127 
    128 
    129 // Reads a DiyFp from the buffer.
    130 // The returned DiyFp is not necessarily normalized.
    131 // If remaining_decimals is zero then the returned DiyFp is accurate.
    132 // Otherwise it has been rounded and has error of at most 1/2 ulp.
    133 static void ReadDiyFp(Vector<const char> buffer,
    134                       DiyFp* result,
    135                       int* remaining_decimals) {
    136   int read_digits;
    137   uint64_t significand = ReadUint64(buffer, &read_digits);
    138   if (buffer.length() == read_digits) {
    139     *result = DiyFp(significand, 0);
    140     *remaining_decimals = 0;
    141   } else {
    142     // Round the significand.
    143     if (buffer[read_digits] >= '5') {
    144       significand++;
    145     }
    146     // Compute the binary exponent.
    147     int exponent = 0;
    148     *result = DiyFp(significand, exponent);
    149     *remaining_decimals = buffer.length() - read_digits;
    150   }
    151 }
    152 
    153 
    154 static bool DoubleStrtod(Vector<const char> trimmed,
    155                          int exponent,
    156                          double* result) {
    157 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 || defined(USE_SIMULATOR)) && \
    158     !defined(_MSC_VER)
    159   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
    160   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
    161   // result is not accurate.
    162   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
    163   // therefore accurate.
    164   // Note that the ARM and MIPS simulators are compiled for 32bits. They
    165   // therefore exhibit the same problem.
    166   return false;
    167 #endif
    168   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
    169     int read_digits;
    170     // The trimmed input fits into a double.
    171     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
    172     // can compute the result-double simply by multiplying (resp. dividing) the
    173     // two numbers.
    174     // This is possible because IEEE guarantees that floating-point operations
    175     // return the best possible approximation.
    176     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
    177       // 10^-exponent fits into a double.
    178       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    179       DCHECK(read_digits == trimmed.length());
    180       *result /= exact_powers_of_ten[-exponent];
    181       return true;
    182     }
    183     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
    184       // 10^exponent fits into a double.
    185       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    186       DCHECK(read_digits == trimmed.length());
    187       *result *= exact_powers_of_ten[exponent];
    188       return true;
    189     }
    190     int remaining_digits =
    191         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
    192     if ((0 <= exponent) &&
    193         (exponent - remaining_digits < kExactPowersOfTenSize)) {
    194       // The trimmed string was short and we can multiply it with
    195       // 10^remaining_digits. As a result the remaining exponent now fits
    196       // into a double too.
    197       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    198       DCHECK(read_digits == trimmed.length());
    199       *result *= exact_powers_of_ten[remaining_digits];
    200       *result *= exact_powers_of_ten[exponent - remaining_digits];
    201       return true;
    202     }
    203   }
    204   return false;
    205 }
    206 
    207 
    208 // Returns 10^exponent as an exact DiyFp.
    209 // The given exponent must be in the range [1; kDecimalExponentDistance[.
    210 static DiyFp AdjustmentPowerOfTen(int exponent) {
    211   DCHECK(0 < exponent);
    212   DCHECK(exponent < PowersOfTenCache::kDecimalExponentDistance);
    213   // Simply hardcode the remaining powers for the given decimal exponent
    214   // distance.
    215   DCHECK(PowersOfTenCache::kDecimalExponentDistance == 8);
    216   switch (exponent) {
    217     case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
    218     case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
    219     case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
    220     case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
    221     case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
    222     case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
    223     case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
    224     default:
    225       UNREACHABLE();
    226       return DiyFp(0, 0);
    227   }
    228 }
    229 
    230 
    231 // If the function returns true then the result is the correct double.
    232 // Otherwise it is either the correct double or the double that is just below
    233 // the correct double.
    234 static bool DiyFpStrtod(Vector<const char> buffer,
    235                         int exponent,
    236                         double* result) {
    237   DiyFp input;
    238   int remaining_decimals;
    239   ReadDiyFp(buffer, &input, &remaining_decimals);
    240   // Since we may have dropped some digits the input is not accurate.
    241   // If remaining_decimals is different than 0 than the error is at most
    242   // .5 ulp (unit in the last place).
    243   // We don't want to deal with fractions and therefore keep a common
    244   // denominator.
    245   const int kDenominatorLog = 3;
    246   const int kDenominator = 1 << kDenominatorLog;
    247   // Move the remaining decimals into the exponent.
    248   exponent += remaining_decimals;
    249   int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
    250 
    251   int old_e = input.e();
    252   input.Normalize();
    253   error <<= old_e - input.e();
    254 
    255   DCHECK(exponent <= PowersOfTenCache::kMaxDecimalExponent);
    256   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
    257     *result = 0.0;
    258     return true;
    259   }
    260   DiyFp cached_power;
    261   int cached_decimal_exponent;
    262   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
    263                                                      &cached_power,
    264                                                      &cached_decimal_exponent);
    265 
    266   if (cached_decimal_exponent != exponent) {
    267     int adjustment_exponent = exponent - cached_decimal_exponent;
    268     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
    269     input.Multiply(adjustment_power);
    270     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
    271       // The product of input with the adjustment power fits into a 64 bit
    272       // integer.
    273       DCHECK(DiyFp::kSignificandSize == 64);
    274     } else {
    275       // The adjustment power is exact. There is hence only an error of 0.5.
    276       error += kDenominator / 2;
    277     }
    278   }
    279 
    280   input.Multiply(cached_power);
    281   // The error introduced by a multiplication of a*b equals
    282   //   error_a + error_b + error_a*error_b/2^64 + 0.5
    283   // Substituting a with 'input' and b with 'cached_power' we have
    284   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
    285   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
    286   int error_b = kDenominator / 2;
    287   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
    288   int fixed_error = kDenominator / 2;
    289   error += error_b + error_ab + fixed_error;
    290 
    291   old_e = input.e();
    292   input.Normalize();
    293   error <<= old_e - input.e();
    294 
    295   // See if the double's significand changes if we add/subtract the error.
    296   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
    297   int effective_significand_size =
    298       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
    299   int precision_digits_count =
    300       DiyFp::kSignificandSize - effective_significand_size;
    301   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
    302     // This can only happen for very small denormals. In this case the
    303     // half-way multiplied by the denominator exceeds the range of an uint64.
    304     // Simply shift everything to the right.
    305     int shift_amount = (precision_digits_count + kDenominatorLog) -
    306         DiyFp::kSignificandSize + 1;
    307     input.set_f(input.f() >> shift_amount);
    308     input.set_e(input.e() + shift_amount);
    309     // We add 1 for the lost precision of error, and kDenominator for
    310     // the lost precision of input.f().
    311     error = (error >> shift_amount) + 1 + kDenominator;
    312     precision_digits_count -= shift_amount;
    313   }
    314   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
    315   DCHECK(DiyFp::kSignificandSize == 64);
    316   DCHECK(precision_digits_count < 64);
    317   uint64_t one64 = 1;
    318   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
    319   uint64_t precision_bits = input.f() & precision_bits_mask;
    320   uint64_t half_way = one64 << (precision_digits_count - 1);
    321   precision_bits *= kDenominator;
    322   half_way *= kDenominator;
    323   DiyFp rounded_input(input.f() >> precision_digits_count,
    324                       input.e() + precision_digits_count);
    325   if (precision_bits >= half_way + error) {
    326     rounded_input.set_f(rounded_input.f() + 1);
    327   }
    328   // If the last_bits are too close to the half-way case than we are too
    329   // inaccurate and round down. In this case we return false so that we can
    330   // fall back to a more precise algorithm.
    331 
    332   *result = Double(rounded_input).value();
    333   if (half_way - error < precision_bits && precision_bits < half_way + error) {
    334     // Too imprecise. The caller will have to fall back to a slower version.
    335     // However the returned number is guaranteed to be either the correct
    336     // double, or the next-lower double.
    337     return false;
    338   } else {
    339     return true;
    340   }
    341 }
    342 
    343 
    344 // Returns the correct double for the buffer*10^exponent.
    345 // The variable guess should be a close guess that is either the correct double
    346 // or its lower neighbor (the nearest double less than the correct one).
    347 // Preconditions:
    348 //   buffer.length() + exponent <= kMaxDecimalPower + 1
    349 //   buffer.length() + exponent > kMinDecimalPower
    350 //   buffer.length() <= kMaxDecimalSignificantDigits
    351 static double BignumStrtod(Vector<const char> buffer,
    352                            int exponent,
    353                            double guess) {
    354   if (guess == V8_INFINITY) {
    355     return guess;
    356   }
    357 
    358   DiyFp upper_boundary = Double(guess).UpperBoundary();
    359 
    360   DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1);
    361   DCHECK(buffer.length() + exponent > kMinDecimalPower);
    362   DCHECK(buffer.length() <= kMaxSignificantDecimalDigits);
    363   // Make sure that the Bignum will be able to hold all our numbers.
    364   // Our Bignum implementation has a separate field for exponents. Shifts will
    365   // consume at most one bigit (< 64 bits).
    366   // ln(10) == 3.3219...
    367   DCHECK(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
    368   Bignum input;
    369   Bignum boundary;
    370   input.AssignDecimalString(buffer);
    371   boundary.AssignUInt64(upper_boundary.f());
    372   if (exponent >= 0) {
    373     input.MultiplyByPowerOfTen(exponent);
    374   } else {
    375     boundary.MultiplyByPowerOfTen(-exponent);
    376   }
    377   if (upper_boundary.e() > 0) {
    378     boundary.ShiftLeft(upper_boundary.e());
    379   } else {
    380     input.ShiftLeft(-upper_boundary.e());
    381   }
    382   int comparison = Bignum::Compare(input, boundary);
    383   if (comparison < 0) {
    384     return guess;
    385   } else if (comparison > 0) {
    386     return Double(guess).NextDouble();
    387   } else if ((Double(guess).Significand() & 1) == 0) {
    388     // Round towards even.
    389     return guess;
    390   } else {
    391     return Double(guess).NextDouble();
    392   }
    393 }
    394 
    395 
    396 double Strtod(Vector<const char> buffer, int exponent) {
    397   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
    398   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
    399   exponent += left_trimmed.length() - trimmed.length();
    400   if (trimmed.length() == 0) return 0.0;
    401   if (trimmed.length() > kMaxSignificantDecimalDigits) {
    402     char significant_buffer[kMaxSignificantDecimalDigits];
    403     int significant_exponent;
    404     TrimToMaxSignificantDigits(trimmed, exponent,
    405                                significant_buffer, &significant_exponent);
    406     return Strtod(Vector<const char>(significant_buffer,
    407                                      kMaxSignificantDecimalDigits),
    408                   significant_exponent);
    409   }
    410   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
    411   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
    412 
    413   double guess;
    414   if (DoubleStrtod(trimmed, exponent, &guess) ||
    415       DiyFpStrtod(trimmed, exponent, &guess)) {
    416     return guess;
    417   }
    418   return BignumStrtod(trimmed, exponent, guess);
    419 }
    420 
    421 }  // namespace internal
    422 }  // namespace v8
    423