Home | History | Annotate | Download | only in ops
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrAAHairLinePathRenderer.h"
      9 #include "GrBuffer.h"
     10 #include "GrCaps.h"
     11 #include "GrClip.h"
     12 #include "GrContext.h"
     13 #include "GrDefaultGeoProcFactory.h"
     14 #include "GrDrawOpTest.h"
     15 #include "GrOpFlushState.h"
     16 #include "GrPathUtils.h"
     17 #include "GrPipelineBuilder.h"
     18 #include "GrProcessor.h"
     19 #include "GrResourceProvider.h"
     20 #include "SkGeometry.h"
     21 #include "SkStroke.h"
     22 #include "SkTemplates.h"
     23 #include "effects/GrBezierEffect.h"
     24 #include "ops/GrMeshDrawOp.h"
     25 
     26 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
     27 
     28 // quadratics are rendered as 5-sided polys in order to bound the
     29 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
     30 // bloat_quad. Quadratics and conics share an index buffer
     31 
     32 // lines are rendered as:
     33 //      *______________*
     34 //      |\ -_______   /|
     35 //      | \        \ / |
     36 //      |  *--------*  |
     37 //      | /  ______/ \ |
     38 //      */_-__________\*
     39 // For: 6 vertices and 18 indices (for 6 triangles)
     40 
     41 // Each quadratic is rendered as a five sided polygon. This poly bounds
     42 // the quadratic's bounding triangle but has been expanded so that the
     43 // 1-pixel wide area around the curve is inside the poly.
     44 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
     45 // that is rendered would look like this:
     46 //              b0
     47 //              b
     48 //
     49 //     a0              c0
     50 //      a            c
     51 //       a1       c1
     52 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
     53 // specified by these 9 indices:
     54 static const uint16_t kQuadIdxBufPattern[] = {
     55     0, 1, 2,
     56     2, 4, 3,
     57     1, 4, 2
     58 };
     59 
     60 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
     61 static const int kQuadNumVertices = 5;
     62 static const int kQuadsNumInIdxBuffer = 256;
     63 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
     64 
     65 static const GrBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
     66     GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
     67     return resourceProvider->findOrCreateInstancedIndexBuffer(
     68         kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
     69         gQuadsIndexBufferKey);
     70 }
     71 
     72 
     73 // Each line segment is rendered as two quads and two triangles.
     74 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
     75 // The four external points are offset 1 pixel perpendicular to the
     76 // line and half a pixel parallel to the line.
     77 //
     78 // p4                  p5
     79 //      p0         p1
     80 // p2                  p3
     81 //
     82 // Each is drawn as six triangles specified by these 18 indices:
     83 
     84 static const uint16_t kLineSegIdxBufPattern[] = {
     85     0, 1, 3,
     86     0, 3, 2,
     87     0, 4, 5,
     88     0, 5, 1,
     89     0, 2, 4,
     90     1, 5, 3
     91 };
     92 
     93 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
     94 static const int kLineSegNumVertices = 6;
     95 static const int kLineSegsNumInIdxBuffer = 256;
     96 
     97 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
     98 
     99 static const GrBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
    100     GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
    101     return resourceProvider->findOrCreateInstancedIndexBuffer(
    102         kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
    103         gLinesIndexBufferKey);
    104 }
    105 
    106 // Takes 178th time of logf on Z600 / VC2010
    107 static int get_float_exp(float x) {
    108     GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
    109 #ifdef SK_DEBUG
    110     static bool tested;
    111     if (!tested) {
    112         tested = true;
    113         SkASSERT(get_float_exp(0.25f) == -2);
    114         SkASSERT(get_float_exp(0.3f) == -2);
    115         SkASSERT(get_float_exp(0.5f) == -1);
    116         SkASSERT(get_float_exp(1.f) == 0);
    117         SkASSERT(get_float_exp(2.f) == 1);
    118         SkASSERT(get_float_exp(2.5f) == 1);
    119         SkASSERT(get_float_exp(8.f) == 3);
    120         SkASSERT(get_float_exp(100.f) == 6);
    121         SkASSERT(get_float_exp(1000.f) == 9);
    122         SkASSERT(get_float_exp(1024.f) == 10);
    123         SkASSERT(get_float_exp(3000000.f) == 21);
    124     }
    125 #endif
    126     const int* iptr = (const int*)&x;
    127     return (((*iptr) & 0x7f800000) >> 23) - 127;
    128 }
    129 
    130 // Uses the max curvature function for quads to estimate
    131 // where to chop the conic. If the max curvature is not
    132 // found along the curve segment it will return 1 and
    133 // dst[0] is the original conic. If it returns 2 the dst[0]
    134 // and dst[1] are the two new conics.
    135 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
    136     SkScalar t = SkFindQuadMaxCurvature(src);
    137     if (t == 0) {
    138         if (dst) {
    139             dst[0].set(src, weight);
    140         }
    141         return 1;
    142     } else {
    143         if (dst) {
    144             SkConic conic;
    145             conic.set(src, weight);
    146             if (!conic.chopAt(t, dst)) {
    147                 dst[0].set(src, weight);
    148                 return 1;
    149             }
    150         }
    151         return 2;
    152     }
    153 }
    154 
    155 // Calls split_conic on the entire conic and then once more on each subsection.
    156 // Most cases will result in either 1 conic (chop point is not within t range)
    157 // or 3 points (split once and then one subsection is split again).
    158 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
    159     SkConic dstTemp[2];
    160     int conicCnt = split_conic(src, dstTemp, weight);
    161     if (2 == conicCnt) {
    162         int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
    163         conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
    164     } else {
    165         dst[0] = dstTemp[0];
    166     }
    167     return conicCnt;
    168 }
    169 
    170 // returns 0 if quad/conic is degen or close to it
    171 // in this case approx the path with lines
    172 // otherwise returns 1
    173 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
    174     static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
    175     static const SkScalar gDegenerateToLineTolSqd =
    176         gDegenerateToLineTol * gDegenerateToLineTol;
    177 
    178     if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
    179         p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
    180         return 1;
    181     }
    182 
    183     *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
    184     if (*dsqd < gDegenerateToLineTolSqd) {
    185         return 1;
    186     }
    187 
    188     if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
    189         return 1;
    190     }
    191     return 0;
    192 }
    193 
    194 static int is_degen_quad_or_conic(const SkPoint p[3]) {
    195     SkScalar dsqd;
    196     return is_degen_quad_or_conic(p, &dsqd);
    197 }
    198 
    199 // we subdivide the quads to avoid huge overfill
    200 // if it returns -1 then should be drawn as lines
    201 static int num_quad_subdivs(const SkPoint p[3]) {
    202     SkScalar dsqd;
    203     if (is_degen_quad_or_conic(p, &dsqd)) {
    204         return -1;
    205     }
    206 
    207     // tolerance of triangle height in pixels
    208     // tuned on windows  Quadro FX 380 / Z600
    209     // trade off of fill vs cpu time on verts
    210     // maybe different when do this using gpu (geo or tess shaders)
    211     static const SkScalar gSubdivTol = 175 * SK_Scalar1;
    212 
    213     if (dsqd <= gSubdivTol * gSubdivTol) {
    214         return 0;
    215     } else {
    216         static const int kMaxSub = 4;
    217         // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
    218         // = log4(d*d/tol*tol)/2
    219         // = log2(d*d/tol*tol)
    220 
    221         // +1 since we're ignoring the mantissa contribution.
    222         int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
    223         log = SkTMin(SkTMax(0, log), kMaxSub);
    224         return log;
    225     }
    226 }
    227 
    228 /**
    229  * Generates the lines and quads to be rendered. Lines are always recorded in
    230  * device space. We will do a device space bloat to account for the 1pixel
    231  * thickness.
    232  * Quads are recorded in device space unless m contains
    233  * perspective, then in they are in src space. We do this because we will
    234  * subdivide large quads to reduce over-fill. This subdivision has to be
    235  * performed before applying the perspective matrix.
    236  */
    237 static int gather_lines_and_quads(const SkPath& path,
    238                                   const SkMatrix& m,
    239                                   const SkIRect& devClipBounds,
    240                                   GrAAHairLinePathRenderer::PtArray* lines,
    241                                   GrAAHairLinePathRenderer::PtArray* quads,
    242                                   GrAAHairLinePathRenderer::PtArray* conics,
    243                                   GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
    244                                   GrAAHairLinePathRenderer::FloatArray* conicWeights) {
    245     SkPath::Iter iter(path, false);
    246 
    247     int totalQuadCount = 0;
    248     SkRect bounds;
    249     SkIRect ibounds;
    250 
    251     bool persp = m.hasPerspective();
    252 
    253     for (;;) {
    254         SkPoint pathPts[4];
    255         SkPoint devPts[4];
    256         SkPath::Verb verb = iter.next(pathPts);
    257         switch (verb) {
    258             case SkPath::kConic_Verb: {
    259                 SkConic dst[4];
    260                 // We chop the conics to create tighter clipping to hide error
    261                 // that appears near max curvature of very thin conics. Thin
    262                 // hyperbolas with high weight still show error.
    263                 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
    264                 for (int i = 0; i < conicCnt; ++i) {
    265                     SkPoint* chopPnts = dst[i].fPts;
    266                     m.mapPoints(devPts, chopPnts, 3);
    267                     bounds.setBounds(devPts, 3);
    268                     bounds.outset(SK_Scalar1, SK_Scalar1);
    269                     bounds.roundOut(&ibounds);
    270                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    271                         if (is_degen_quad_or_conic(devPts)) {
    272                             SkPoint* pts = lines->push_back_n(4);
    273                             pts[0] = devPts[0];
    274                             pts[1] = devPts[1];
    275                             pts[2] = devPts[1];
    276                             pts[3] = devPts[2];
    277                         } else {
    278                             // when in perspective keep conics in src space
    279                             SkPoint* cPts = persp ? chopPnts : devPts;
    280                             SkPoint* pts = conics->push_back_n(3);
    281                             pts[0] = cPts[0];
    282                             pts[1] = cPts[1];
    283                             pts[2] = cPts[2];
    284                             conicWeights->push_back() = dst[i].fW;
    285                         }
    286                     }
    287                 }
    288                 break;
    289             }
    290             case SkPath::kMove_Verb:
    291                 break;
    292             case SkPath::kLine_Verb:
    293                 m.mapPoints(devPts, pathPts, 2);
    294                 bounds.setBounds(devPts, 2);
    295                 bounds.outset(SK_Scalar1, SK_Scalar1);
    296                 bounds.roundOut(&ibounds);
    297                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    298                     SkPoint* pts = lines->push_back_n(2);
    299                     pts[0] = devPts[0];
    300                     pts[1] = devPts[1];
    301                 }
    302                 break;
    303             case SkPath::kQuad_Verb: {
    304                 SkPoint choppedPts[5];
    305                 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
    306                 // When it is degenerate it allows the approximation with lines to work since the
    307                 // chop point (if there is one) will be at the parabola's vertex. In the nearly
    308                 // degenerate the QuadUVMatrix computed for the points is almost singular which
    309                 // can cause rendering artifacts.
    310                 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
    311                 for (int i = 0; i < n; ++i) {
    312                     SkPoint* quadPts = choppedPts + i * 2;
    313                     m.mapPoints(devPts, quadPts, 3);
    314                     bounds.setBounds(devPts, 3);
    315                     bounds.outset(SK_Scalar1, SK_Scalar1);
    316                     bounds.roundOut(&ibounds);
    317 
    318                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    319                         int subdiv = num_quad_subdivs(devPts);
    320                         SkASSERT(subdiv >= -1);
    321                         if (-1 == subdiv) {
    322                             SkPoint* pts = lines->push_back_n(4);
    323                             pts[0] = devPts[0];
    324                             pts[1] = devPts[1];
    325                             pts[2] = devPts[1];
    326                             pts[3] = devPts[2];
    327                         } else {
    328                             // when in perspective keep quads in src space
    329                             SkPoint* qPts = persp ? quadPts : devPts;
    330                             SkPoint* pts = quads->push_back_n(3);
    331                             pts[0] = qPts[0];
    332                             pts[1] = qPts[1];
    333                             pts[2] = qPts[2];
    334                             quadSubdivCnts->push_back() = subdiv;
    335                             totalQuadCount += 1 << subdiv;
    336                         }
    337                     }
    338                 }
    339                 break;
    340             }
    341             case SkPath::kCubic_Verb:
    342                 m.mapPoints(devPts, pathPts, 4);
    343                 bounds.setBounds(devPts, 4);
    344                 bounds.outset(SK_Scalar1, SK_Scalar1);
    345                 bounds.roundOut(&ibounds);
    346                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    347                     PREALLOC_PTARRAY(32) q;
    348                     // We convert cubics to quadratics (for now).
    349                     // In perspective have to do conversion in src space.
    350                     if (persp) {
    351                         SkScalar tolScale =
    352                             GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
    353                         GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
    354                     } else {
    355                         GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
    356                     }
    357                     for (int i = 0; i < q.count(); i += 3) {
    358                         SkPoint* qInDevSpace;
    359                         // bounds has to be calculated in device space, but q is
    360                         // in src space when there is perspective.
    361                         if (persp) {
    362                             m.mapPoints(devPts, &q[i], 3);
    363                             bounds.setBounds(devPts, 3);
    364                             qInDevSpace = devPts;
    365                         } else {
    366                             bounds.setBounds(&q[i], 3);
    367                             qInDevSpace = &q[i];
    368                         }
    369                         bounds.outset(SK_Scalar1, SK_Scalar1);
    370                         bounds.roundOut(&ibounds);
    371                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
    372                             int subdiv = num_quad_subdivs(qInDevSpace);
    373                             SkASSERT(subdiv >= -1);
    374                             if (-1 == subdiv) {
    375                                 SkPoint* pts = lines->push_back_n(4);
    376                                 // lines should always be in device coords
    377                                 pts[0] = qInDevSpace[0];
    378                                 pts[1] = qInDevSpace[1];
    379                                 pts[2] = qInDevSpace[1];
    380                                 pts[3] = qInDevSpace[2];
    381                             } else {
    382                                 SkPoint* pts = quads->push_back_n(3);
    383                                 // q is already in src space when there is no
    384                                 // perspective and dev coords otherwise.
    385                                 pts[0] = q[0 + i];
    386                                 pts[1] = q[1 + i];
    387                                 pts[2] = q[2 + i];
    388                                 quadSubdivCnts->push_back() = subdiv;
    389                                 totalQuadCount += 1 << subdiv;
    390                             }
    391                         }
    392                     }
    393                 }
    394                 break;
    395             case SkPath::kClose_Verb:
    396                 break;
    397             case SkPath::kDone_Verb:
    398                 return totalQuadCount;
    399         }
    400     }
    401 }
    402 
    403 struct LineVertex {
    404     SkPoint fPos;
    405     float fCoverage;
    406 };
    407 
    408 struct BezierVertex {
    409     SkPoint fPos;
    410     union {
    411         struct {
    412             SkScalar fKLM[3];
    413         } fConic;
    414         SkVector   fQuadCoord;
    415         struct {
    416             SkScalar fBogus[4];
    417         };
    418     };
    419 };
    420 
    421 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
    422 
    423 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
    424                             const SkPoint& ptB, const SkVector& normB,
    425                             SkPoint* result) {
    426 
    427     SkScalar lineAW = -normA.dot(ptA);
    428     SkScalar lineBW = -normB.dot(ptB);
    429 
    430     SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
    431     wInv = SkScalarInvert(wInv);
    432 
    433     result->fX = normA.fY * lineBW - lineAW * normB.fY;
    434     result->fX *= wInv;
    435 
    436     result->fY = lineAW * normB.fX - normA.fX * lineBW;
    437     result->fY *= wInv;
    438 }
    439 
    440 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
    441     // this should be in the src space, not dev coords, when we have perspective
    442     GrPathUtils::QuadUVMatrix DevToUV(qpts);
    443     DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
    444 }
    445 
    446 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
    447                        const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
    448     SkASSERT(!toDevice == !toSrc);
    449     // original quad is specified by tri a,b,c
    450     SkPoint a = qpts[0];
    451     SkPoint b = qpts[1];
    452     SkPoint c = qpts[2];
    453 
    454     if (toDevice) {
    455         toDevice->mapPoints(&a, 1);
    456         toDevice->mapPoints(&b, 1);
    457         toDevice->mapPoints(&c, 1);
    458     }
    459     // make a new poly where we replace a and c by a 1-pixel wide edges orthog
    460     // to edges ab and bc:
    461     //
    462     //   before       |        after
    463     //                |              b0
    464     //         b      |
    465     //                |
    466     //                |     a0            c0
    467     // a         c    |        a1       c1
    468     //
    469     // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
    470     // respectively.
    471     BezierVertex& a0 = verts[0];
    472     BezierVertex& a1 = verts[1];
    473     BezierVertex& b0 = verts[2];
    474     BezierVertex& c0 = verts[3];
    475     BezierVertex& c1 = verts[4];
    476 
    477     SkVector ab = b;
    478     ab -= a;
    479     SkVector ac = c;
    480     ac -= a;
    481     SkVector cb = b;
    482     cb -= c;
    483 
    484     // We should have already handled degenerates
    485     SkASSERT(ab.length() > 0 && cb.length() > 0);
    486 
    487     ab.normalize();
    488     SkVector abN;
    489     abN.setOrthog(ab, SkVector::kLeft_Side);
    490     if (abN.dot(ac) > 0) {
    491         abN.negate();
    492     }
    493 
    494     cb.normalize();
    495     SkVector cbN;
    496     cbN.setOrthog(cb, SkVector::kLeft_Side);
    497     if (cbN.dot(ac) < 0) {
    498         cbN.negate();
    499     }
    500 
    501     a0.fPos = a;
    502     a0.fPos += abN;
    503     a1.fPos = a;
    504     a1.fPos -= abN;
    505 
    506     c0.fPos = c;
    507     c0.fPos += cbN;
    508     c1.fPos = c;
    509     c1.fPos -= cbN;
    510 
    511     intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
    512 
    513     if (toSrc) {
    514         toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
    515     }
    516 }
    517 
    518 // Equations based off of Loop-Blinn Quadratic GPU Rendering
    519 // Input Parametric:
    520 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
    521 // Output Implicit:
    522 // f(x, y, w) = f(P) = K^2 - LM
    523 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
    524 // k, l, m are calculated in function GrPathUtils::getConicKLM
    525 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
    526                              const SkScalar weight) {
    527     SkMatrix klm;
    528 
    529     GrPathUtils::getConicKLM(p, weight, &klm);
    530 
    531     for (int i = 0; i < kQuadNumVertices; ++i) {
    532         const SkScalar pt3[3] = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
    533         klm.mapHomogeneousPoints(verts[i].fConic.fKLM, pt3, 1);
    534     }
    535 }
    536 
    537 static void add_conics(const SkPoint p[3],
    538                        const SkScalar weight,
    539                        const SkMatrix* toDevice,
    540                        const SkMatrix* toSrc,
    541                        BezierVertex** vert) {
    542     bloat_quad(p, toDevice, toSrc, *vert);
    543     set_conic_coeffs(p, *vert, weight);
    544     *vert += kQuadNumVertices;
    545 }
    546 
    547 static void add_quads(const SkPoint p[3],
    548                       int subdiv,
    549                       const SkMatrix* toDevice,
    550                       const SkMatrix* toSrc,
    551                       BezierVertex** vert) {
    552     SkASSERT(subdiv >= 0);
    553     if (subdiv) {
    554         SkPoint newP[5];
    555         SkChopQuadAtHalf(p, newP);
    556         add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
    557         add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
    558     } else {
    559         bloat_quad(p, toDevice, toSrc, *vert);
    560         set_uv_quad(p, *vert);
    561         *vert += kQuadNumVertices;
    562     }
    563 }
    564 
    565 static void add_line(const SkPoint p[2],
    566                      const SkMatrix* toSrc,
    567                      uint8_t coverage,
    568                      LineVertex** vert) {
    569     const SkPoint& a = p[0];
    570     const SkPoint& b = p[1];
    571 
    572     SkVector ortho, vec = b;
    573     vec -= a;
    574 
    575     if (vec.setLength(SK_ScalarHalf)) {
    576         // Create a vector orthogonal to 'vec' and of unit length
    577         ortho.fX = 2.0f * vec.fY;
    578         ortho.fY = -2.0f * vec.fX;
    579 
    580         float floatCoverage = GrNormalizeByteToFloat(coverage);
    581 
    582         (*vert)[0].fPos = a;
    583         (*vert)[0].fCoverage = floatCoverage;
    584         (*vert)[1].fPos = b;
    585         (*vert)[1].fCoverage = floatCoverage;
    586         (*vert)[2].fPos = a - vec + ortho;
    587         (*vert)[2].fCoverage = 0;
    588         (*vert)[3].fPos = b + vec + ortho;
    589         (*vert)[3].fCoverage = 0;
    590         (*vert)[4].fPos = a - vec - ortho;
    591         (*vert)[4].fCoverage = 0;
    592         (*vert)[5].fPos = b + vec - ortho;
    593         (*vert)[5].fCoverage = 0;
    594 
    595         if (toSrc) {
    596             toSrc->mapPointsWithStride(&(*vert)->fPos,
    597                                        sizeof(LineVertex),
    598                                        kLineSegNumVertices);
    599         }
    600     } else {
    601         // just make it degenerate and likely offscreen
    602         for (int i = 0; i < kLineSegNumVertices; ++i) {
    603             (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
    604         }
    605     }
    606 
    607     *vert += kLineSegNumVertices;
    608 }
    609 
    610 ///////////////////////////////////////////////////////////////////////////////
    611 
    612 bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    613     if (GrAAType::kCoverage != args.fAAType) {
    614         return false;
    615     }
    616 
    617     if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
    618         return false;
    619     }
    620 
    621     // We don't currently handle dashing in this class though perhaps we should.
    622     if (args.fShape->style().pathEffect()) {
    623         return false;
    624     }
    625 
    626     if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
    627         args.fShaderCaps->shaderDerivativeSupport()) {
    628         return true;
    629     }
    630 
    631     return false;
    632 }
    633 
    634 template <class VertexType>
    635 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
    636 {
    637     SkRect tolDevBounds = devBounds;
    638     // The bounds ought to be tight, but in perspective the below code runs the verts
    639     // through the view matrix to get back to dev coords, which can introduce imprecision.
    640     if (viewMatrix.hasPerspective()) {
    641         tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
    642     } else {
    643         // Non-persp matrices cause this path renderer to draw in device space.
    644         SkASSERT(viewMatrix.isIdentity());
    645     }
    646     SkRect actualBounds;
    647 
    648     VertexType* verts = reinterpret_cast<VertexType*>(vertices);
    649     bool first = true;
    650     for (int i = 0; i < vCount; ++i) {
    651         SkPoint pos = verts[i].fPos;
    652         // This is a hack to workaround the fact that we move some degenerate segments offscreen.
    653         if (SK_ScalarMax == pos.fX) {
    654             continue;
    655         }
    656         viewMatrix.mapPoints(&pos, 1);
    657         if (first) {
    658             actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
    659             first = false;
    660         } else {
    661             actualBounds.growToInclude(pos.fX, pos.fY);
    662         }
    663     }
    664     if (!first) {
    665         return tolDevBounds.contains(actualBounds);
    666     }
    667 
    668     return true;
    669 }
    670 
    671 class AAHairlineOp final : public GrMeshDrawOp {
    672 public:
    673     DEFINE_OP_CLASS_ID
    674 
    675     static std::unique_ptr<GrMeshDrawOp> Make(GrColor color,
    676                                               const SkMatrix& viewMatrix,
    677                                               const SkPath& path,
    678                                               const GrStyle& style,
    679                                               const SkIRect& devClipBounds) {
    680         SkScalar hairlineCoverage;
    681         uint8_t newCoverage = 0xff;
    682         if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
    683             newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
    684         }
    685 
    686         return std::unique_ptr<GrMeshDrawOp>(
    687                 new AAHairlineOp(color, newCoverage, viewMatrix, path, devClipBounds));
    688     }
    689 
    690     const char* name() const override { return "AAHairlineOp"; }
    691 
    692     SkString dumpInfo() const override {
    693         SkString string;
    694         string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
    695                        fPaths.count());
    696         string.append(INHERITED::dumpInfo());
    697         return string;
    698     }
    699 
    700 private:
    701     AAHairlineOp(GrColor color,
    702                  uint8_t coverage,
    703                  const SkMatrix& viewMatrix,
    704                  const SkPath& path,
    705                  SkIRect devClipBounds)
    706             : INHERITED(ClassID()), fColor(color), fCoverage(coverage) {
    707         fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds});
    708 
    709         this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
    710                                    IsZeroArea::kYes);
    711     }
    712 
    713     void getFragmentProcessorAnalysisInputs(GrPipelineAnalysisColor* color,
    714                                             GrPipelineAnalysisCoverage* coverage) const override {
    715         color->setToConstant(fColor);
    716         *coverage = GrPipelineAnalysisCoverage::kSingleChannel;
    717     }
    718 
    719     void applyPipelineOptimizations(const GrPipelineOptimizations& optimizations) override {
    720         optimizations.getOverrideColorIfSet(&fColor);
    721         fUsesLocalCoords = optimizations.readsLocalCoords();
    722     }
    723 
    724     void onPrepareDraws(Target*) const override;
    725 
    726     typedef SkTArray<SkPoint, true> PtArray;
    727     typedef SkTArray<int, true> IntArray;
    728     typedef SkTArray<float, true> FloatArray;
    729 
    730     bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
    731         AAHairlineOp* that = t->cast<AAHairlineOp>();
    732 
    733         if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
    734                                     that->bounds(), caps)) {
    735             return false;
    736         }
    737 
    738         if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
    739             return false;
    740         }
    741 
    742         // We go to identity if we don't have perspective
    743         if (this->viewMatrix().hasPerspective() &&
    744             !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
    745             return false;
    746         }
    747 
    748         // TODO we can actually combine hairlines if they are the same color in a kind of bulk
    749         // method but we haven't implemented this yet
    750         // TODO investigate going to vertex color and coverage?
    751         if (this->coverage() != that->coverage()) {
    752             return false;
    753         }
    754 
    755         if (this->color() != that->color()) {
    756             return false;
    757         }
    758 
    759         SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
    760         if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
    761             return false;
    762         }
    763 
    764         fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
    765         this->joinBounds(*that);
    766         return true;
    767     }
    768 
    769     GrColor color() const { return fColor; }
    770     uint8_t coverage() const { return fCoverage; }
    771     bool usesLocalCoords() const { return fUsesLocalCoords; }
    772     const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
    773 
    774     struct PathData {
    775         SkMatrix fViewMatrix;
    776         SkPath fPath;
    777         SkIRect fDevClipBounds;
    778     };
    779 
    780     GrColor fColor;
    781     uint8_t fCoverage;
    782     bool fUsesLocalCoords;
    783 
    784     SkSTArray<1, PathData, true> fPaths;
    785 
    786     typedef GrMeshDrawOp INHERITED;
    787 };
    788 
    789 void AAHairlineOp::onPrepareDraws(Target* target) const {
    790     // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
    791     SkMatrix invert;
    792     if (!this->viewMatrix().invert(&invert)) {
    793         return;
    794     }
    795 
    796     // we will transform to identity space if the viewmatrix does not have perspective
    797     bool hasPerspective = this->viewMatrix().hasPerspective();
    798     const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
    799     const SkMatrix* geometryProcessorLocalM = &invert;
    800     const SkMatrix* toDevice = nullptr;
    801     const SkMatrix* toSrc = nullptr;
    802     if (hasPerspective) {
    803         geometryProcessorViewM = &this->viewMatrix();
    804         geometryProcessorLocalM = &SkMatrix::I();
    805         toDevice = &this->viewMatrix();
    806         toSrc = &invert;
    807     }
    808 
    809     // This is hand inlined for maximum performance.
    810     PREALLOC_PTARRAY(128) lines;
    811     PREALLOC_PTARRAY(128) quads;
    812     PREALLOC_PTARRAY(128) conics;
    813     IntArray qSubdivs;
    814     FloatArray cWeights;
    815     int quadCount = 0;
    816 
    817     int instanceCount = fPaths.count();
    818     for (int i = 0; i < instanceCount; i++) {
    819         const PathData& args = fPaths[i];
    820         quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
    821                                             &lines, &quads, &conics, &qSubdivs, &cWeights);
    822     }
    823 
    824     int lineCount = lines.count() / 2;
    825     int conicCount = conics.count() / 3;
    826 
    827     // do lines first
    828     if (lineCount) {
    829         sk_sp<GrGeometryProcessor> lineGP;
    830         {
    831             using namespace GrDefaultGeoProcFactory;
    832 
    833             Color color(this->color());
    834             LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
    835                                     LocalCoords::kUnused_Type);
    836             localCoords.fMatrix = geometryProcessorLocalM;
    837             lineGP = GrDefaultGeoProcFactory::Make(color, Coverage::kAttribute_Type, localCoords,
    838                                                    *geometryProcessorViewM);
    839         }
    840 
    841         sk_sp<const GrBuffer> linesIndexBuffer(
    842             ref_lines_index_buffer(target->resourceProvider()));
    843 
    844         const GrBuffer* vertexBuffer;
    845         int firstVertex;
    846 
    847         size_t vertexStride = lineGP->getVertexStride();
    848         int vertexCount = kLineSegNumVertices * lineCount;
    849         LineVertex* verts = reinterpret_cast<LineVertex*>(
    850             target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
    851 
    852         if (!verts|| !linesIndexBuffer) {
    853             SkDebugf("Could not allocate vertices\n");
    854             return;
    855         }
    856 
    857         SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
    858 
    859         for (int i = 0; i < lineCount; ++i) {
    860             add_line(&lines[2*i], toSrc, this->coverage(), &verts);
    861         }
    862 
    863         GrMesh mesh;
    864         mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer.get(),
    865                            firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
    866                            kLineSegsNumInIdxBuffer);
    867         target->draw(lineGP.get(), mesh);
    868     }
    869 
    870     if (quadCount || conicCount) {
    871         sk_sp<GrGeometryProcessor> quadGP(
    872             GrQuadEffect::Make(this->color(),
    873                                *geometryProcessorViewM,
    874                                kHairlineAA_GrProcessorEdgeType,
    875                                target->caps(),
    876                                *geometryProcessorLocalM,
    877                                this->usesLocalCoords(),
    878                                this->coverage()));
    879 
    880         sk_sp<GrGeometryProcessor> conicGP(
    881             GrConicEffect::Make(this->color(),
    882                                 *geometryProcessorViewM,
    883                                 kHairlineAA_GrProcessorEdgeType,
    884                                 target->caps(),
    885                                 *geometryProcessorLocalM,
    886                                 this->usesLocalCoords(),
    887                                 this->coverage()));
    888 
    889         const GrBuffer* vertexBuffer;
    890         int firstVertex;
    891 
    892         sk_sp<const GrBuffer> quadsIndexBuffer(
    893             ref_quads_index_buffer(target->resourceProvider()));
    894 
    895         size_t vertexStride = sizeof(BezierVertex);
    896         int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
    897         void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
    898                                                  &vertexBuffer, &firstVertex);
    899 
    900         if (!vertices || !quadsIndexBuffer) {
    901             SkDebugf("Could not allocate vertices\n");
    902             return;
    903         }
    904 
    905         // Setup vertices
    906         BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
    907 
    908         int unsubdivQuadCnt = quads.count() / 3;
    909         for (int i = 0; i < unsubdivQuadCnt; ++i) {
    910             SkASSERT(qSubdivs[i] >= 0);
    911             add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
    912         }
    913 
    914         // Start Conics
    915         for (int i = 0; i < conicCount; ++i) {
    916             add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
    917         }
    918 
    919         if (quadCount > 0) {
    920             GrMesh mesh;
    921             mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
    922                                firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
    923                                kQuadsNumInIdxBuffer);
    924             target->draw(quadGP.get(), mesh);
    925             firstVertex += quadCount * kQuadNumVertices;
    926         }
    927 
    928         if (conicCount > 0) {
    929             GrMesh mesh;
    930             mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
    931                                firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
    932                                kQuadsNumInIdxBuffer);
    933             target->draw(conicGP.get(), mesh);
    934         }
    935     }
    936 }
    937 
    938 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
    939     GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
    940                               "GrAAHairlinePathRenderer::onDrawPath");
    941     SkASSERT(!args.fRenderTargetContext->isUnifiedMultisampled());
    942 
    943     SkIRect devClipBounds;
    944     args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
    945                                       args.fRenderTargetContext->height(),
    946                                       &devClipBounds);
    947     SkPath path;
    948     args.fShape->asPath(&path);
    949     std::unique_ptr<GrMeshDrawOp> op = AAHairlineOp::Make(
    950             args.fPaint.getColor(), *args.fViewMatrix, path, args.fShape->style(), devClipBounds);
    951     GrPipelineBuilder pipelineBuilder(std::move(args.fPaint), args.fAAType);
    952     pipelineBuilder.setUserStencil(args.fUserStencilSettings);
    953     args.fRenderTargetContext->addMeshDrawOp(pipelineBuilder, *args.fClip, std::move(op));
    954     return true;
    955 }
    956 
    957 ///////////////////////////////////////////////////////////////////////////////////////////////////
    958 
    959 #if GR_TEST_UTILS
    960 
    961 DRAW_OP_TEST_DEFINE(AAHairlineOp) {
    962     GrColor color = GrRandomColor(random);
    963     SkMatrix viewMatrix = GrTest::TestMatrix(random);
    964     SkPath path = GrTest::TestPath(random);
    965     SkIRect devClipBounds;
    966     devClipBounds.setEmpty();
    967     return AAHairlineOp::Make(color, viewMatrix, path, GrStyle::SimpleHairline(), devClipBounds);
    968 }
    969 
    970 #endif
    971