1 /* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 9 #include "SkBlurMask.h" 10 #include "SkMath.h" 11 #include "SkTemplates.h" 12 #include "SkEndian.h" 13 14 15 // This constant approximates the scaling done in the software path's 16 // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). 17 // IMHO, it actually should be 1: we blur "less" than we should do 18 // according to the CSS and canvas specs, simply because Safari does the same. 19 // Firefox used to do the same too, until 4.0 where they fixed it. So at some 20 // point we should probably get rid of these scaling constants and rebaseline 21 // all the blur tests. 22 static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f; 23 24 SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) { 25 return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f; 26 } 27 28 SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) { 29 return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f; 30 } 31 32 #define UNROLL_SEPARABLE_LOOPS 33 34 /** 35 * This function performs a box blur in X, of the given radius. If the 36 * "transpose" parameter is true, it will transpose the pixels on write, 37 * such that X and Y are swapped. Reads are always performed from contiguous 38 * memory in X, for speed. The destination buffer (dst) must be at least 39 * (width + leftRadius + rightRadius) * height bytes in size. 40 * 41 * This is what the inner loop looks like before unrolling, and with the two 42 * cases broken out separately (width < diameter, width >= diameter): 43 * 44 * if (width < diameter) { 45 * for (int x = 0; x < width; ++x) { 46 * sum += *right++; 47 * *dptr = (sum * scale + half) >> 24; 48 * dptr += dst_x_stride; 49 * } 50 * for (int x = width; x < diameter; ++x) { 51 * *dptr = (sum * scale + half) >> 24; 52 * dptr += dst_x_stride; 53 * } 54 * for (int x = 0; x < width; ++x) { 55 * *dptr = (sum * scale + half) >> 24; 56 * sum -= *left++; 57 * dptr += dst_x_stride; 58 * } 59 * } else { 60 * for (int x = 0; x < diameter; ++x) { 61 * sum += *right++; 62 * *dptr = (sum * scale + half) >> 24; 63 * dptr += dst_x_stride; 64 * } 65 * for (int x = diameter; x < width; ++x) { 66 * sum += *right++; 67 * *dptr = (sum * scale + half) >> 24; 68 * sum -= *left++; 69 * dptr += dst_x_stride; 70 * } 71 * for (int x = 0; x < diameter; ++x) { 72 * *dptr = (sum * scale + half) >> 24; 73 * sum -= *left++; 74 * dptr += dst_x_stride; 75 * } 76 * } 77 */ 78 static int boxBlur(const uint8_t* src, int src_y_stride, uint8_t* dst, 79 int leftRadius, int rightRadius, int width, int height, 80 bool transpose) 81 { 82 int diameter = leftRadius + rightRadius; 83 int kernelSize = diameter + 1; 84 int border = SkMin32(width, diameter); 85 uint32_t scale = (1 << 24) / kernelSize; 86 int new_width = width + SkMax32(leftRadius, rightRadius) * 2; 87 int dst_x_stride = transpose ? height : 1; 88 int dst_y_stride = transpose ? 1 : new_width; 89 uint32_t half = 1 << 23; 90 for (int y = 0; y < height; ++y) { 91 uint32_t sum = 0; 92 uint8_t* dptr = dst + y * dst_y_stride; 93 const uint8_t* right = src + y * src_y_stride; 94 const uint8_t* left = right; 95 for (int x = 0; x < rightRadius - leftRadius; x++) { 96 *dptr = 0; 97 dptr += dst_x_stride; 98 } 99 #define LEFT_BORDER_ITER \ 100 sum += *right++; \ 101 *dptr = (sum * scale + half) >> 24; \ 102 dptr += dst_x_stride; 103 104 int x = 0; 105 #ifdef UNROLL_SEPARABLE_LOOPS 106 for (; x < border - 16; x += 16) { 107 LEFT_BORDER_ITER 108 LEFT_BORDER_ITER 109 LEFT_BORDER_ITER 110 LEFT_BORDER_ITER 111 LEFT_BORDER_ITER 112 LEFT_BORDER_ITER 113 LEFT_BORDER_ITER 114 LEFT_BORDER_ITER 115 LEFT_BORDER_ITER 116 LEFT_BORDER_ITER 117 LEFT_BORDER_ITER 118 LEFT_BORDER_ITER 119 LEFT_BORDER_ITER 120 LEFT_BORDER_ITER 121 LEFT_BORDER_ITER 122 LEFT_BORDER_ITER 123 } 124 #endif 125 for (; x < border; ++x) { 126 LEFT_BORDER_ITER 127 } 128 #undef LEFT_BORDER_ITER 129 #define TRIVIAL_ITER \ 130 *dptr = (sum * scale + half) >> 24; \ 131 dptr += dst_x_stride; 132 x = width; 133 #ifdef UNROLL_SEPARABLE_LOOPS 134 for (; x < diameter - 16; x += 16) { 135 TRIVIAL_ITER 136 TRIVIAL_ITER 137 TRIVIAL_ITER 138 TRIVIAL_ITER 139 TRIVIAL_ITER 140 TRIVIAL_ITER 141 TRIVIAL_ITER 142 TRIVIAL_ITER 143 TRIVIAL_ITER 144 TRIVIAL_ITER 145 TRIVIAL_ITER 146 TRIVIAL_ITER 147 TRIVIAL_ITER 148 TRIVIAL_ITER 149 TRIVIAL_ITER 150 TRIVIAL_ITER 151 } 152 #endif 153 for (; x < diameter; ++x) { 154 TRIVIAL_ITER 155 } 156 #undef TRIVIAL_ITER 157 #define CENTER_ITER \ 158 sum += *right++; \ 159 *dptr = (sum * scale + half) >> 24; \ 160 sum -= *left++; \ 161 dptr += dst_x_stride; 162 163 x = diameter; 164 #ifdef UNROLL_SEPARABLE_LOOPS 165 for (; x < width - 16; x += 16) { 166 CENTER_ITER 167 CENTER_ITER 168 CENTER_ITER 169 CENTER_ITER 170 CENTER_ITER 171 CENTER_ITER 172 CENTER_ITER 173 CENTER_ITER 174 CENTER_ITER 175 CENTER_ITER 176 CENTER_ITER 177 CENTER_ITER 178 CENTER_ITER 179 CENTER_ITER 180 CENTER_ITER 181 CENTER_ITER 182 } 183 #endif 184 for (; x < width; ++x) { 185 CENTER_ITER 186 } 187 #undef CENTER_ITER 188 #define RIGHT_BORDER_ITER \ 189 *dptr = (sum * scale + half) >> 24; \ 190 sum -= *left++; \ 191 dptr += dst_x_stride; 192 193 x = 0; 194 #ifdef UNROLL_SEPARABLE_LOOPS 195 for (; x < border - 16; x += 16) { 196 RIGHT_BORDER_ITER 197 RIGHT_BORDER_ITER 198 RIGHT_BORDER_ITER 199 RIGHT_BORDER_ITER 200 RIGHT_BORDER_ITER 201 RIGHT_BORDER_ITER 202 RIGHT_BORDER_ITER 203 RIGHT_BORDER_ITER 204 RIGHT_BORDER_ITER 205 RIGHT_BORDER_ITER 206 RIGHT_BORDER_ITER 207 RIGHT_BORDER_ITER 208 RIGHT_BORDER_ITER 209 RIGHT_BORDER_ITER 210 RIGHT_BORDER_ITER 211 RIGHT_BORDER_ITER 212 } 213 #endif 214 for (; x < border; ++x) { 215 RIGHT_BORDER_ITER 216 } 217 #undef RIGHT_BORDER_ITER 218 for (int x = 0; x < leftRadius - rightRadius; ++x) { 219 *dptr = 0; 220 dptr += dst_x_stride; 221 } 222 SkASSERT(sum == 0); 223 } 224 return new_width; 225 } 226 227 /** 228 * This variant of the box blur handles blurring of non-integer radii. It 229 * keeps two running sums: an outer sum for the rounded-up kernel radius, and 230 * an inner sum for the rounded-down kernel radius. For each pixel, it linearly 231 * interpolates between them. In float this would be: 232 * outer_weight * outer_sum / kernelSize + 233 * (1.0 - outer_weight) * innerSum / (kernelSize - 2) 234 * 235 * This is what the inner loop looks like before unrolling, and with the two 236 * cases broken out separately (width < diameter, width >= diameter): 237 * 238 * if (width < diameter) { 239 * for (int x = 0; x < width; x++) { 240 * inner_sum = outer_sum; 241 * outer_sum += *right++; 242 * *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; 243 * dptr += dst_x_stride; 244 * } 245 * for (int x = width; x < diameter; ++x) { 246 * *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; 247 * dptr += dst_x_stride; 248 * } 249 * for (int x = 0; x < width; x++) { 250 * inner_sum = outer_sum - *left++; 251 * *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; 252 * dptr += dst_x_stride; 253 * outer_sum = inner_sum; 254 * } 255 * } else { 256 * for (int x = 0; x < diameter; x++) { 257 * inner_sum = outer_sum; 258 * outer_sum += *right++; 259 * *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; 260 * dptr += dst_x_stride; 261 * } 262 * for (int x = diameter; x < width; ++x) { 263 * inner_sum = outer_sum - *left; 264 * outer_sum += *right++; 265 * *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; 266 * dptr += dst_x_stride; 267 * outer_sum -= *left++; 268 * } 269 * for (int x = 0; x < diameter; x++) { 270 * inner_sum = outer_sum - *left++; 271 * *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; 272 * dptr += dst_x_stride; 273 * outer_sum = inner_sum; 274 * } 275 * } 276 * } 277 * return new_width; 278 */ 279 280 static int boxBlurInterp(const uint8_t* src, int src_y_stride, uint8_t* dst, 281 int radius, int width, int height, 282 bool transpose, uint8_t outer_weight) 283 { 284 int diameter = radius * 2; 285 int kernelSize = diameter + 1; 286 int border = SkMin32(width, diameter); 287 int inner_weight = 255 - outer_weight; 288 outer_weight += outer_weight >> 7; 289 inner_weight += inner_weight >> 7; 290 uint32_t outer_scale = (outer_weight << 16) / kernelSize; 291 uint32_t inner_scale = (inner_weight << 16) / (kernelSize - 2); 292 uint32_t half = 1 << 23; 293 int new_width = width + diameter; 294 int dst_x_stride = transpose ? height : 1; 295 int dst_y_stride = transpose ? 1 : new_width; 296 for (int y = 0; y < height; ++y) { 297 uint32_t outer_sum = 0, inner_sum = 0; 298 uint8_t* dptr = dst + y * dst_y_stride; 299 const uint8_t* right = src + y * src_y_stride; 300 const uint8_t* left = right; 301 int x = 0; 302 303 #define LEFT_BORDER_ITER \ 304 inner_sum = outer_sum; \ 305 outer_sum += *right++; \ 306 *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \ 307 dptr += dst_x_stride; 308 309 #ifdef UNROLL_SEPARABLE_LOOPS 310 for (;x < border - 16; x += 16) { 311 LEFT_BORDER_ITER 312 LEFT_BORDER_ITER 313 LEFT_BORDER_ITER 314 LEFT_BORDER_ITER 315 LEFT_BORDER_ITER 316 LEFT_BORDER_ITER 317 LEFT_BORDER_ITER 318 LEFT_BORDER_ITER 319 LEFT_BORDER_ITER 320 LEFT_BORDER_ITER 321 LEFT_BORDER_ITER 322 LEFT_BORDER_ITER 323 LEFT_BORDER_ITER 324 LEFT_BORDER_ITER 325 LEFT_BORDER_ITER 326 LEFT_BORDER_ITER 327 } 328 #endif 329 330 for (;x < border; ++x) { 331 LEFT_BORDER_ITER 332 } 333 #undef LEFT_BORDER_ITER 334 for (int x = width; x < diameter; ++x) { 335 *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; 336 dptr += dst_x_stride; 337 } 338 x = diameter; 339 340 #define CENTER_ITER \ 341 inner_sum = outer_sum - *left; \ 342 outer_sum += *right++; \ 343 *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \ 344 dptr += dst_x_stride; \ 345 outer_sum -= *left++; 346 347 #ifdef UNROLL_SEPARABLE_LOOPS 348 for (; x < width - 16; x += 16) { 349 CENTER_ITER 350 CENTER_ITER 351 CENTER_ITER 352 CENTER_ITER 353 CENTER_ITER 354 CENTER_ITER 355 CENTER_ITER 356 CENTER_ITER 357 CENTER_ITER 358 CENTER_ITER 359 CENTER_ITER 360 CENTER_ITER 361 CENTER_ITER 362 CENTER_ITER 363 CENTER_ITER 364 CENTER_ITER 365 } 366 #endif 367 for (; x < width; ++x) { 368 CENTER_ITER 369 } 370 #undef CENTER_ITER 371 372 #define RIGHT_BORDER_ITER \ 373 inner_sum = outer_sum - *left++; \ 374 *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \ 375 dptr += dst_x_stride; \ 376 outer_sum = inner_sum; 377 378 x = 0; 379 #ifdef UNROLL_SEPARABLE_LOOPS 380 for (; x < border - 16; x += 16) { 381 RIGHT_BORDER_ITER 382 RIGHT_BORDER_ITER 383 RIGHT_BORDER_ITER 384 RIGHT_BORDER_ITER 385 RIGHT_BORDER_ITER 386 RIGHT_BORDER_ITER 387 RIGHT_BORDER_ITER 388 RIGHT_BORDER_ITER 389 RIGHT_BORDER_ITER 390 RIGHT_BORDER_ITER 391 RIGHT_BORDER_ITER 392 RIGHT_BORDER_ITER 393 RIGHT_BORDER_ITER 394 RIGHT_BORDER_ITER 395 RIGHT_BORDER_ITER 396 RIGHT_BORDER_ITER 397 } 398 #endif 399 for (; x < border; ++x) { 400 RIGHT_BORDER_ITER 401 } 402 #undef RIGHT_BORDER_ITER 403 SkASSERT(outer_sum == 0 && inner_sum == 0); 404 } 405 return new_width; 406 } 407 408 static void get_adjusted_radii(SkScalar passRadius, int *loRadius, int *hiRadius) 409 { 410 *loRadius = *hiRadius = SkScalarCeilToInt(passRadius); 411 if (SkIntToScalar(*hiRadius) - passRadius > 0.5f) { 412 *loRadius = *hiRadius - 1; 413 } 414 } 415 416 #include "SkColorPriv.h" 417 418 static void merge_src_with_blur(uint8_t dst[], int dstRB, 419 const uint8_t src[], int srcRB, 420 const uint8_t blur[], int blurRB, 421 int sw, int sh) { 422 dstRB -= sw; 423 srcRB -= sw; 424 blurRB -= sw; 425 while (--sh >= 0) { 426 for (int x = sw - 1; x >= 0; --x) { 427 *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*src))); 428 dst += 1; 429 src += 1; 430 blur += 1; 431 } 432 dst += dstRB; 433 src += srcRB; 434 blur += blurRB; 435 } 436 } 437 438 static void clamp_with_orig(uint8_t dst[], int dstRowBytes, 439 const uint8_t src[], int srcRowBytes, 440 int sw, int sh, 441 SkBlurStyle style) { 442 int x; 443 while (--sh >= 0) { 444 switch (style) { 445 case kSolid_SkBlurStyle: 446 for (x = sw - 1; x >= 0; --x) { 447 int s = *src; 448 int d = *dst; 449 *dst = SkToU8(s + d - SkMulDiv255Round(s, d)); 450 dst += 1; 451 src += 1; 452 } 453 break; 454 case kOuter_SkBlurStyle: 455 for (x = sw - 1; x >= 0; --x) { 456 if (*src) { 457 *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - *src))); 458 } 459 dst += 1; 460 src += 1; 461 } 462 break; 463 default: 464 SkDEBUGFAIL("Unexpected blur style here"); 465 break; 466 } 467 dst += dstRowBytes - sw; 468 src += srcRowBytes - sw; 469 } 470 } 471 472 /////////////////////////////////////////////////////////////////////////////// 473 474 // we use a local function to wrap the class static method to work around 475 // a bug in gcc98 476 void SkMask_FreeImage(uint8_t* image); 477 void SkMask_FreeImage(uint8_t* image) { 478 SkMask::FreeImage(image); 479 } 480 481 bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src, 482 SkScalar sigma, SkBlurStyle style, SkBlurQuality quality, 483 SkIPoint* margin, bool force_quality) { 484 485 if (src.fFormat != SkMask::kA8_Format) { 486 return false; 487 } 488 489 // Force high quality off for small radii (performance) 490 if (!force_quality && sigma <= SkIntToScalar(2)) { 491 quality = kLow_SkBlurQuality; 492 } 493 494 SkScalar passRadius; 495 if (kHigh_SkBlurQuality == quality) { 496 // For the high quality path the 3 pass box blur kernel width is 497 // 6*rad+1 while the full Gaussian width is 6*sigma. 498 passRadius = sigma - (1/6.0f); 499 } else { 500 // For the low quality path we only attempt to cover 3*sigma of the 501 // Gaussian blur area (1.5*sigma on each side). The single pass box 502 // blur's kernel size is 2*rad+1. 503 passRadius = 1.5f*sigma - 0.5f; 504 } 505 506 // highQuality: use three box blur passes as a cheap way 507 // to approximate a Gaussian blur 508 int passCount = (kHigh_SkBlurQuality == quality) ? 3 : 1; 509 510 int rx = SkScalarCeilToInt(passRadius); 511 int outerWeight = 255 - SkScalarRoundToInt((SkIntToScalar(rx) - passRadius) * 255); 512 513 SkASSERT(rx >= 0); 514 SkASSERT((unsigned)outerWeight <= 255); 515 if (rx <= 0) { 516 return false; 517 } 518 519 int ry = rx; // only do square blur for now 520 521 int padx = passCount * rx; 522 int pady = passCount * ry; 523 524 if (margin) { 525 margin->set(padx, pady); 526 } 527 dst->fBounds.set(src.fBounds.fLeft - padx, src.fBounds.fTop - pady, 528 src.fBounds.fRight + padx, src.fBounds.fBottom + pady); 529 530 dst->fRowBytes = dst->fBounds.width(); 531 dst->fFormat = SkMask::kA8_Format; 532 dst->fImage = nullptr; 533 534 if (src.fImage) { 535 size_t dstSize = dst->computeImageSize(); 536 if (0 == dstSize) { 537 return false; // too big to allocate, abort 538 } 539 540 int sw = src.fBounds.width(); 541 int sh = src.fBounds.height(); 542 const uint8_t* sp = src.fImage; 543 uint8_t* dp = SkMask::AllocImage(dstSize); 544 SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dp); 545 546 // build the blurry destination 547 SkAutoTMalloc<uint8_t> tmpBuffer(dstSize); 548 uint8_t* tp = tmpBuffer.get(); 549 int w = sw, h = sh; 550 551 if (outerWeight == 255) { 552 int loRadius, hiRadius; 553 get_adjusted_radii(passRadius, &loRadius, &hiRadius); 554 if (kHigh_SkBlurQuality == quality) { 555 // Do three X blurs, with a transpose on the final one. 556 w = boxBlur(sp, src.fRowBytes, tp, loRadius, hiRadius, w, h, false); 557 w = boxBlur(tp, w, dp, hiRadius, loRadius, w, h, false); 558 w = boxBlur(dp, w, tp, hiRadius, hiRadius, w, h, true); 559 // Do three Y blurs, with a transpose on the final one. 560 h = boxBlur(tp, h, dp, loRadius, hiRadius, h, w, false); 561 h = boxBlur(dp, h, tp, hiRadius, loRadius, h, w, false); 562 h = boxBlur(tp, h, dp, hiRadius, hiRadius, h, w, true); 563 } else { 564 w = boxBlur(sp, src.fRowBytes, tp, rx, rx, w, h, true); 565 h = boxBlur(tp, h, dp, ry, ry, h, w, true); 566 } 567 } else { 568 if (kHigh_SkBlurQuality == quality) { 569 // Do three X blurs, with a transpose on the final one. 570 w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, false, outerWeight); 571 w = boxBlurInterp(tp, w, dp, rx, w, h, false, outerWeight); 572 w = boxBlurInterp(dp, w, tp, rx, w, h, true, outerWeight); 573 // Do three Y blurs, with a transpose on the final one. 574 h = boxBlurInterp(tp, h, dp, ry, h, w, false, outerWeight); 575 h = boxBlurInterp(dp, h, tp, ry, h, w, false, outerWeight); 576 h = boxBlurInterp(tp, h, dp, ry, h, w, true, outerWeight); 577 } else { 578 w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, true, outerWeight); 579 h = boxBlurInterp(tp, h, dp, ry, h, w, true, outerWeight); 580 } 581 } 582 583 dst->fImage = dp; 584 // if need be, alloc the "real" dst (same size as src) and copy/merge 585 // the blur into it (applying the src) 586 if (style == kInner_SkBlurStyle) { 587 // now we allocate the "real" dst, mirror the size of src 588 size_t srcSize = src.computeImageSize(); 589 if (0 == srcSize) { 590 return false; // too big to allocate, abort 591 } 592 dst->fImage = SkMask::AllocImage(srcSize); 593 merge_src_with_blur(dst->fImage, src.fRowBytes, 594 sp, src.fRowBytes, 595 dp + passCount * (rx + ry * dst->fRowBytes), 596 dst->fRowBytes, sw, sh); 597 SkMask::FreeImage(dp); 598 } else if (style != kNormal_SkBlurStyle) { 599 clamp_with_orig(dp + passCount * (rx + ry * dst->fRowBytes), 600 dst->fRowBytes, sp, src.fRowBytes, sw, sh, style); 601 } 602 (void)autoCall.release(); 603 } 604 605 if (style == kInner_SkBlurStyle) { 606 dst->fBounds = src.fBounds; // restore trimmed bounds 607 dst->fRowBytes = src.fRowBytes; 608 } 609 610 return true; 611 } 612 613 /* Convolving a box with itself three times results in a piecewise 614 quadratic function: 615 616 0 x <= -1.5 617 9/8 + 3/2 x + 1/2 x^2 -1.5 < x <= -.5 618 3/4 - x^2 -.5 < x <= .5 619 9/8 - 3/2 x + 1/2 x^2 0.5 < x <= 1.5 620 0 1.5 < x 621 622 Mathematica: 623 624 g[x_] := Piecewise [ { 625 {9/8 + 3/2 x + 1/2 x^2 , -1.5 < x <= -.5}, 626 {3/4 - x^2 , -.5 < x <= .5}, 627 {9/8 - 3/2 x + 1/2 x^2 , 0.5 < x <= 1.5} 628 }, 0] 629 630 To get the profile curve of the blurred step function at the rectangle 631 edge, we evaluate the indefinite integral, which is piecewise cubic: 632 633 0 x <= -1.5 634 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3 -1.5 < x <= -0.5 635 1/2 + 3/4 x - 1/3 x^3 -.5 < x <= .5 636 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3 .5 < x <= 1.5 637 1 1.5 < x 638 639 in Mathematica code: 640 641 gi[x_] := Piecewise[ { 642 { 0 , x <= -1.5 }, 643 { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 }, 644 { 1/2 + 3/4 x - 1/3 x^3 , -.5 < x <= .5}, 645 { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3, .5 < x <= 1.5} 646 },1] 647 */ 648 649 static float gaussianIntegral(float x) { 650 if (x > 1.5f) { 651 return 0.0f; 652 } 653 if (x < -1.5f) { 654 return 1.0f; 655 } 656 657 float x2 = x*x; 658 float x3 = x2*x; 659 660 if ( x > 0.5f ) { 661 return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x); 662 } 663 if ( x > -0.5f ) { 664 return 0.5f - (0.75f * x - x3 / 3.0f); 665 } 666 return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x); 667 } 668 669 /* ComputeBlurProfile allocates and fills in an array of floating 670 point values between 0 and 255 for the profile signature of 671 a blurred half-plane with the given blur radius. Since we're 672 going to be doing screened multiplications (i.e., 1 - (1-x)(1-y)) 673 all the time, we actually fill in the profile pre-inverted 674 (already done 255-x). 675 676 It's the responsibility of the caller to delete the 677 memory returned in profile_out. 678 */ 679 680 uint8_t* SkBlurMask::ComputeBlurProfile(SkScalar sigma) { 681 int size = SkScalarCeilToInt(6*sigma); 682 683 int center = size >> 1; 684 uint8_t* profile = new uint8_t[size]; 685 686 float invr = 1.f/(2*sigma); 687 688 profile[0] = 255; 689 for (int x = 1 ; x < size ; ++x) { 690 float scaled_x = (center - x - .5f) * invr; 691 float gi = gaussianIntegral(scaled_x); 692 profile[x] = 255 - (uint8_t) (255.f * gi); 693 } 694 695 return profile; 696 } 697 698 // TODO MAYBE: Maintain a profile cache to avoid recomputing this for 699 // commonly used radii. Consider baking some of the most common blur radii 700 // directly in as static data? 701 702 // Implementation adapted from Michael Herf's approach: 703 // http://stereopsis.com/shadowrect/ 704 705 uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc, int blurred_width, int sharp_width) { 706 int dx = SkAbs32(((loc << 1) + 1) - blurred_width) - sharp_width; // how far are we from the original edge? 707 int ox = dx >> 1; 708 if (ox < 0) { 709 ox = 0; 710 } 711 712 return profile[ox]; 713 } 714 715 void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile, 716 unsigned int width, SkScalar sigma) { 717 718 unsigned int profile_size = SkScalarCeilToInt(6*sigma); 719 SkAutoTMalloc<uint8_t> horizontalScanline(width); 720 721 unsigned int sw = width - profile_size; 722 // nearest odd number less than the profile size represents the center 723 // of the (2x scaled) profile 724 int center = ( profile_size & ~1 ) - 1; 725 726 int w = sw - center; 727 728 for (unsigned int x = 0 ; x < width ; ++x) { 729 if (profile_size <= sw) { 730 pixels[x] = ProfileLookup(profile, x, width, w); 731 } else { 732 float span = float(sw)/(2*sigma); 733 float giX = 1.5f - (x+.5f)/(2*sigma); 734 pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span))); 735 } 736 } 737 } 738 739 bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst, 740 const SkRect &src, SkBlurStyle style, 741 SkIPoint *margin, SkMask::CreateMode createMode) { 742 int profile_size = SkScalarCeilToInt(6*sigma); 743 744 int pad = profile_size/2; 745 if (margin) { 746 margin->set( pad, pad ); 747 } 748 749 dst->fBounds.set(SkScalarRoundToInt(src.fLeft - pad), 750 SkScalarRoundToInt(src.fTop - pad), 751 SkScalarRoundToInt(src.fRight + pad), 752 SkScalarRoundToInt(src.fBottom + pad)); 753 754 dst->fRowBytes = dst->fBounds.width(); 755 dst->fFormat = SkMask::kA8_Format; 756 dst->fImage = nullptr; 757 758 int sw = SkScalarFloorToInt(src.width()); 759 int sh = SkScalarFloorToInt(src.height()); 760 761 if (createMode == SkMask::kJustComputeBounds_CreateMode) { 762 if (style == kInner_SkBlurStyle) { 763 dst->fBounds.set(SkScalarRoundToInt(src.fLeft), 764 SkScalarRoundToInt(src.fTop), 765 SkScalarRoundToInt(src.fRight), 766 SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds 767 dst->fRowBytes = sw; 768 } 769 return true; 770 } 771 772 std::unique_ptr<uint8_t[]> profile(ComputeBlurProfile(sigma)); 773 774 size_t dstSize = dst->computeImageSize(); 775 if (0 == dstSize) { 776 return false; // too big to allocate, abort 777 } 778 779 uint8_t* dp = SkMask::AllocImage(dstSize); 780 781 dst->fImage = dp; 782 783 int dstHeight = dst->fBounds.height(); 784 int dstWidth = dst->fBounds.width(); 785 786 uint8_t *outptr = dp; 787 788 SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth); 789 SkAutoTMalloc<uint8_t> verticalScanline(dstHeight); 790 791 ComputeBlurredScanline(horizontalScanline, profile.get(), dstWidth, sigma); 792 ComputeBlurredScanline(verticalScanline, profile.get(), dstHeight, sigma); 793 794 for (int y = 0 ; y < dstHeight ; ++y) { 795 for (int x = 0 ; x < dstWidth ; x++) { 796 unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]); 797 *(outptr++) = maskval; 798 } 799 } 800 801 if (style == kInner_SkBlurStyle) { 802 // now we allocate the "real" dst, mirror the size of src 803 size_t srcSize = (size_t)(src.width() * src.height()); 804 if (0 == srcSize) { 805 return false; // too big to allocate, abort 806 } 807 dst->fImage = SkMask::AllocImage(srcSize); 808 for (int y = 0 ; y < sh ; y++) { 809 uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad; 810 uint8_t *inner_scanline = dst->fImage + y*sw; 811 memcpy(inner_scanline, blur_scanline, sw); 812 } 813 SkMask::FreeImage(dp); 814 815 dst->fBounds.set(SkScalarRoundToInt(src.fLeft), 816 SkScalarRoundToInt(src.fTop), 817 SkScalarRoundToInt(src.fRight), 818 SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds 819 dst->fRowBytes = sw; 820 821 } else if (style == kOuter_SkBlurStyle) { 822 for (int y = pad ; y < dstHeight-pad ; y++) { 823 uint8_t *dst_scanline = dp + y*dstWidth + pad; 824 memset(dst_scanline, 0, sw); 825 } 826 } else if (style == kSolid_SkBlurStyle) { 827 for (int y = pad ; y < dstHeight-pad ; y++) { 828 uint8_t *dst_scanline = dp + y*dstWidth + pad; 829 memset(dst_scanline, 0xff, sw); 830 } 831 } 832 // normal and solid styles are the same for analytic rect blurs, so don't 833 // need to handle solid specially. 834 835 return true; 836 } 837 838 bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst, 839 const SkRRect &src, SkBlurStyle style, 840 SkIPoint *margin, SkMask::CreateMode createMode) { 841 // Temporary for now -- always fail, should cause caller to fall back 842 // to old path. Plumbing just to land API and parallelize effort. 843 844 return false; 845 } 846 847 // The "simple" blur is a direct implementation of separable convolution with a discrete 848 // gaussian kernel. It's "ground truth" in a sense; too slow to be used, but very 849 // useful for correctness comparisons. 850 851 bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src, 852 SkBlurStyle style, SkIPoint* margin) { 853 854 if (src.fFormat != SkMask::kA8_Format) { 855 return false; 856 } 857 858 float variance = sigma * sigma; 859 860 int windowSize = SkScalarCeilToInt(sigma*6); 861 // round window size up to nearest odd number 862 windowSize |= 1; 863 864 SkAutoTMalloc<float> gaussWindow(windowSize); 865 866 int halfWindow = windowSize >> 1; 867 868 gaussWindow[halfWindow] = 1; 869 870 float windowSum = 1; 871 for (int x = 1 ; x <= halfWindow ; ++x) { 872 float gaussian = expf(-x*x / (2*variance)); 873 gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian; 874 windowSum += 2*gaussian; 875 } 876 877 // leave the filter un-normalized for now; we will divide by the normalization 878 // sum later; 879 880 int pad = halfWindow; 881 if (margin) { 882 margin->set( pad, pad ); 883 } 884 885 dst->fBounds = src.fBounds; 886 dst->fBounds.outset(pad, pad); 887 888 dst->fRowBytes = dst->fBounds.width(); 889 dst->fFormat = SkMask::kA8_Format; 890 dst->fImage = nullptr; 891 892 if (src.fImage) { 893 894 size_t dstSize = dst->computeImageSize(); 895 if (0 == dstSize) { 896 return false; // too big to allocate, abort 897 } 898 899 int srcWidth = src.fBounds.width(); 900 int srcHeight = src.fBounds.height(); 901 int dstWidth = dst->fBounds.width(); 902 903 const uint8_t* srcPixels = src.fImage; 904 uint8_t* dstPixels = SkMask::AllocImage(dstSize); 905 SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dstPixels); 906 907 // do the actual blur. First, make a padded copy of the source. 908 // use double pad so we never have to check if we're outside anything 909 910 int padWidth = srcWidth + 4*pad; 911 int padHeight = srcHeight; 912 int padSize = padWidth * padHeight; 913 914 SkAutoTMalloc<uint8_t> padPixels(padSize); 915 memset(padPixels, 0, padSize); 916 917 for (int y = 0 ; y < srcHeight; ++y) { 918 uint8_t* padptr = padPixels + y * padWidth + 2*pad; 919 const uint8_t* srcptr = srcPixels + y * srcWidth; 920 memcpy(padptr, srcptr, srcWidth); 921 } 922 923 // blur in X, transposing the result into a temporary floating point buffer. 924 // also double-pad the intermediate result so that the second blur doesn't 925 // have to do extra conditionals. 926 927 int tmpWidth = padHeight + 4*pad; 928 int tmpHeight = padWidth - 2*pad; 929 int tmpSize = tmpWidth * tmpHeight; 930 931 SkAutoTMalloc<float> tmpImage(tmpSize); 932 memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0])); 933 934 for (int y = 0 ; y < padHeight ; ++y) { 935 uint8_t *srcScanline = padPixels + y*padWidth; 936 for (int x = pad ; x < padWidth - pad ; ++x) { 937 float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output 938 uint8_t *windowCenter = srcScanline + x; 939 for (int i = -pad ; i <= pad ; ++i) { 940 *outPixel += gaussWindow[pad+i]*windowCenter[i]; 941 } 942 *outPixel /= windowSum; 943 } 944 } 945 946 // blur in Y; now filling in the actual desired destination. We have to do 947 // the transpose again; these transposes guarantee that we read memory in 948 // linear order. 949 950 for (int y = 0 ; y < tmpHeight ; ++y) { 951 float *srcScanline = tmpImage + y*tmpWidth; 952 for (int x = pad ; x < tmpWidth - pad ; ++x) { 953 float *windowCenter = srcScanline + x; 954 float finalValue = 0; 955 for (int i = -pad ; i <= pad ; ++i) { 956 finalValue += gaussWindow[pad+i]*windowCenter[i]; 957 } 958 finalValue /= windowSum; 959 uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output 960 int integerPixel = int(finalValue + 0.5f); 961 *outPixel = SkClampMax( SkClampPos(integerPixel), 255 ); 962 } 963 } 964 965 dst->fImage = dstPixels; 966 // if need be, alloc the "real" dst (same size as src) and copy/merge 967 // the blur into it (applying the src) 968 if (style == kInner_SkBlurStyle) { 969 // now we allocate the "real" dst, mirror the size of src 970 size_t srcSize = src.computeImageSize(); 971 if (0 == srcSize) { 972 return false; // too big to allocate, abort 973 } 974 dst->fImage = SkMask::AllocImage(srcSize); 975 merge_src_with_blur(dst->fImage, src.fRowBytes, 976 srcPixels, src.fRowBytes, 977 dstPixels + pad*dst->fRowBytes + pad, 978 dst->fRowBytes, srcWidth, srcHeight); 979 SkMask::FreeImage(dstPixels); 980 } else if (style != kNormal_SkBlurStyle) { 981 clamp_with_orig(dstPixels + pad*dst->fRowBytes + pad, 982 dst->fRowBytes, srcPixels, src.fRowBytes, srcWidth, srcHeight, style); 983 } 984 (void)autoCall.release(); 985 } 986 987 if (style == kInner_SkBlurStyle) { 988 dst->fBounds = src.fBounds; // restore trimmed bounds 989 dst->fRowBytes = src.fRowBytes; 990 } 991 992 return true; 993 } 994