1 /* 2 * Copyright 2016 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkSLIRGenerator.h" 9 10 #include "limits.h" 11 #include <unordered_set> 12 13 #include "SkSLCompiler.h" 14 #include "ast/SkSLASTBoolLiteral.h" 15 #include "ast/SkSLASTFieldSuffix.h" 16 #include "ast/SkSLASTFloatLiteral.h" 17 #include "ast/SkSLASTIndexSuffix.h" 18 #include "ast/SkSLASTIntLiteral.h" 19 #include "ir/SkSLBinaryExpression.h" 20 #include "ir/SkSLBoolLiteral.h" 21 #include "ir/SkSLBreakStatement.h" 22 #include "ir/SkSLConstructor.h" 23 #include "ir/SkSLContinueStatement.h" 24 #include "ir/SkSLDiscardStatement.h" 25 #include "ir/SkSLDoStatement.h" 26 #include "ir/SkSLExpressionStatement.h" 27 #include "ir/SkSLField.h" 28 #include "ir/SkSLFieldAccess.h" 29 #include "ir/SkSLFloatLiteral.h" 30 #include "ir/SkSLForStatement.h" 31 #include "ir/SkSLFunctionCall.h" 32 #include "ir/SkSLFunctionDeclaration.h" 33 #include "ir/SkSLFunctionDefinition.h" 34 #include "ir/SkSLFunctionReference.h" 35 #include "ir/SkSLIfStatement.h" 36 #include "ir/SkSLIndexExpression.h" 37 #include "ir/SkSLInterfaceBlock.h" 38 #include "ir/SkSLIntLiteral.h" 39 #include "ir/SkSLLayout.h" 40 #include "ir/SkSLPostfixExpression.h" 41 #include "ir/SkSLPrefixExpression.h" 42 #include "ir/SkSLReturnStatement.h" 43 #include "ir/SkSLSwitchCase.h" 44 #include "ir/SkSLSwitchStatement.h" 45 #include "ir/SkSLSwizzle.h" 46 #include "ir/SkSLTernaryExpression.h" 47 #include "ir/SkSLUnresolvedFunction.h" 48 #include "ir/SkSLVariable.h" 49 #include "ir/SkSLVarDeclarations.h" 50 #include "ir/SkSLVarDeclarationsStatement.h" 51 #include "ir/SkSLVariableReference.h" 52 #include "ir/SkSLWhileStatement.h" 53 54 namespace SkSL { 55 56 class AutoSymbolTable { 57 public: 58 AutoSymbolTable(IRGenerator* ir) 59 : fIR(ir) 60 , fPrevious(fIR->fSymbolTable) { 61 fIR->pushSymbolTable(); 62 } 63 64 ~AutoSymbolTable() { 65 fIR->popSymbolTable(); 66 ASSERT(fPrevious == fIR->fSymbolTable); 67 } 68 69 IRGenerator* fIR; 70 std::shared_ptr<SymbolTable> fPrevious; 71 }; 72 73 class AutoLoopLevel { 74 public: 75 AutoLoopLevel(IRGenerator* ir) 76 : fIR(ir) { 77 fIR->fLoopLevel++; 78 } 79 80 ~AutoLoopLevel() { 81 fIR->fLoopLevel--; 82 } 83 84 IRGenerator* fIR; 85 }; 86 87 class AutoSwitchLevel { 88 public: 89 AutoSwitchLevel(IRGenerator* ir) 90 : fIR(ir) { 91 fIR->fSwitchLevel++; 92 } 93 94 ~AutoSwitchLevel() { 95 fIR->fSwitchLevel--; 96 } 97 98 IRGenerator* fIR; 99 }; 100 101 IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable, 102 ErrorReporter& errorReporter) 103 : fContext(*context) 104 , fCurrentFunction(nullptr) 105 , fSymbolTable(std::move(symbolTable)) 106 , fLoopLevel(0) 107 , fSwitchLevel(0) 108 , fErrors(errorReporter) {} 109 110 void IRGenerator::pushSymbolTable() { 111 fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), fErrors)); 112 } 113 114 void IRGenerator::popSymbolTable() { 115 fSymbolTable = fSymbolTable->fParent; 116 } 117 118 static void fill_caps(const GrShaderCaps& caps, std::unordered_map<SkString, CapValue>* capsMap) { 119 #define CAP(name) capsMap->insert(std::make_pair(SkString(#name), CapValue(caps.name()))); 120 CAP(fbFetchSupport); 121 CAP(fbFetchNeedsCustomOutput); 122 CAP(bindlessTextureSupport); 123 CAP(dropsTileOnZeroDivide); 124 CAP(flatInterpolationSupport); 125 CAP(noperspectiveInterpolationSupport); 126 CAP(multisampleInterpolationSupport); 127 CAP(sampleVariablesSupport); 128 CAP(sampleMaskOverrideCoverageSupport); 129 CAP(externalTextureSupport); 130 CAP(texelFetchSupport); 131 CAP(imageLoadStoreSupport); 132 CAP(mustEnableAdvBlendEqs); 133 CAP(mustEnableSpecificAdvBlendEqs); 134 CAP(mustDeclareFragmentShaderOutput); 135 CAP(canUseAnyFunctionInShader); 136 #undef CAP 137 } 138 139 void IRGenerator::start(const Program::Settings* settings) { 140 fSettings = settings; 141 fCapsMap.clear(); 142 if (settings->fCaps) { 143 fill_caps(*settings->fCaps, &fCapsMap); 144 } 145 this->pushSymbolTable(); 146 fInputs.reset(); 147 } 148 149 void IRGenerator::finish() { 150 this->popSymbolTable(); 151 fSettings = nullptr; 152 } 153 154 std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& extension) { 155 return std::unique_ptr<Extension>(new Extension(extension.fPosition, extension.fName)); 156 } 157 158 std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& statement) { 159 switch (statement.fKind) { 160 case ASTStatement::kBlock_Kind: 161 return this->convertBlock((ASTBlock&) statement); 162 case ASTStatement::kVarDeclaration_Kind: 163 return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement); 164 case ASTStatement::kExpression_Kind: 165 return this->convertExpressionStatement((ASTExpressionStatement&) statement); 166 case ASTStatement::kIf_Kind: 167 return this->convertIf((ASTIfStatement&) statement); 168 case ASTStatement::kFor_Kind: 169 return this->convertFor((ASTForStatement&) statement); 170 case ASTStatement::kWhile_Kind: 171 return this->convertWhile((ASTWhileStatement&) statement); 172 case ASTStatement::kDo_Kind: 173 return this->convertDo((ASTDoStatement&) statement); 174 case ASTStatement::kSwitch_Kind: 175 return this->convertSwitch((ASTSwitchStatement&) statement); 176 case ASTStatement::kReturn_Kind: 177 return this->convertReturn((ASTReturnStatement&) statement); 178 case ASTStatement::kBreak_Kind: 179 return this->convertBreak((ASTBreakStatement&) statement); 180 case ASTStatement::kContinue_Kind: 181 return this->convertContinue((ASTContinueStatement&) statement); 182 case ASTStatement::kDiscard_Kind: 183 return this->convertDiscard((ASTDiscardStatement&) statement); 184 default: 185 ABORT("unsupported statement type: %d\n", statement.fKind); 186 } 187 } 188 189 std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) { 190 AutoSymbolTable table(this); 191 std::vector<std::unique_ptr<Statement>> statements; 192 for (size_t i = 0; i < block.fStatements.size(); i++) { 193 std::unique_ptr<Statement> statement = this->convertStatement(*block.fStatements[i]); 194 if (!statement) { 195 return nullptr; 196 } 197 statements.push_back(std::move(statement)); 198 } 199 return std::unique_ptr<Block>(new Block(block.fPosition, std::move(statements), fSymbolTable)); 200 } 201 202 std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement( 203 const ASTVarDeclarationStatement& s) { 204 auto decl = this->convertVarDeclarations(*s.fDeclarations, Variable::kLocal_Storage); 205 if (!decl) { 206 return nullptr; 207 } 208 return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl))); 209 } 210 211 std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTVarDeclarations& decl, 212 Variable::Storage storage) { 213 std::vector<VarDeclaration> variables; 214 const Type* baseType = this->convertType(*decl.fType); 215 if (!baseType) { 216 return nullptr; 217 } 218 for (const auto& varDecl : decl.fVars) { 219 const Type* type = baseType; 220 std::vector<std::unique_ptr<Expression>> sizes; 221 for (const auto& rawSize : varDecl.fSizes) { 222 if (rawSize) { 223 auto size = this->coerce(this->convertExpression(*rawSize), *fContext.fInt_Type); 224 if (!size) { 225 return nullptr; 226 } 227 SkString name = type->fName; 228 int64_t count; 229 if (size->fKind == Expression::kIntLiteral_Kind) { 230 count = ((IntLiteral&) *size).fValue; 231 if (count <= 0) { 232 fErrors.error(size->fPosition, "array size must be positive"); 233 } 234 name += "[" + to_string(count) + "]"; 235 } else { 236 count = -1; 237 name += "[]"; 238 } 239 type = new Type(name, Type::kArray_Kind, *type, (int) count); 240 fSymbolTable->takeOwnership((Type*) type); 241 sizes.push_back(std::move(size)); 242 } else { 243 type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1); 244 fSymbolTable->takeOwnership((Type*) type); 245 sizes.push_back(nullptr); 246 } 247 } 248 auto var = std::unique_ptr<Variable>(new Variable(decl.fPosition, decl.fModifiers, 249 varDecl.fName, *type, storage)); 250 std::unique_ptr<Expression> value; 251 if (varDecl.fValue) { 252 value = this->convertExpression(*varDecl.fValue); 253 if (!value) { 254 return nullptr; 255 } 256 value = this->coerce(std::move(value), *type); 257 } 258 if (storage == Variable::kGlobal_Storage && varDecl.fName == SkString("sk_FragColor") && 259 (*fSymbolTable)[varDecl.fName]) { 260 // already defined, ignore 261 } else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[varDecl.fName] && 262 (*fSymbolTable)[varDecl.fName]->fKind == Symbol::kVariable_Kind && 263 ((Variable*) (*fSymbolTable)[varDecl.fName])->fModifiers.fLayout.fBuiltin >= 0) { 264 // already defined, just update the modifiers 265 Variable* old = (Variable*) (*fSymbolTable)[varDecl.fName]; 266 old->fModifiers = var->fModifiers; 267 } else { 268 variables.emplace_back(var.get(), std::move(sizes), std::move(value)); 269 fSymbolTable->add(varDecl.fName, std::move(var)); 270 } 271 } 272 return std::unique_ptr<VarDeclarations>(new VarDeclarations(decl.fPosition, 273 baseType, 274 std::move(variables))); 275 } 276 277 std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration( 278 const ASTModifiersDeclaration& m) { 279 return std::unique_ptr<ModifiersDeclaration>(new ModifiersDeclaration(m.fModifiers)); 280 } 281 282 std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) { 283 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.fTest), 284 *fContext.fBool_Type); 285 if (!test) { 286 return nullptr; 287 } 288 std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue); 289 if (!ifTrue) { 290 return nullptr; 291 } 292 std::unique_ptr<Statement> ifFalse; 293 if (s.fIfFalse) { 294 ifFalse = this->convertStatement(*s.fIfFalse); 295 if (!ifFalse) { 296 return nullptr; 297 } 298 } 299 if (test->fKind == Expression::kBoolLiteral_Kind) { 300 // static boolean value, fold down to a single branch 301 if (((BoolLiteral&) *test).fValue) { 302 return ifTrue; 303 } else if (s.fIfFalse) { 304 return ifFalse; 305 } else { 306 // False & no else clause. Not an error, so don't return null! 307 std::vector<std::unique_ptr<Statement>> empty; 308 return std::unique_ptr<Statement>(new Block(s.fPosition, std::move(empty), 309 fSymbolTable)); 310 } 311 } 312 return std::unique_ptr<Statement>(new IfStatement(s.fPosition, std::move(test), 313 std::move(ifTrue), std::move(ifFalse))); 314 } 315 316 std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) { 317 AutoLoopLevel level(this); 318 AutoSymbolTable table(this); 319 std::unique_ptr<Statement> initializer; 320 if (f.fInitializer) { 321 initializer = this->convertStatement(*f.fInitializer); 322 if (!initializer) { 323 return nullptr; 324 } 325 } 326 std::unique_ptr<Expression> test; 327 if (f.fTest) { 328 test = this->coerce(this->convertExpression(*f.fTest), *fContext.fBool_Type); 329 if (!test) { 330 return nullptr; 331 } 332 } 333 std::unique_ptr<Expression> next; 334 if (f.fNext) { 335 next = this->convertExpression(*f.fNext); 336 if (!next) { 337 return nullptr; 338 } 339 this->checkValid(*next); 340 } 341 std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement); 342 if (!statement) { 343 return nullptr; 344 } 345 return std::unique_ptr<Statement>(new ForStatement(f.fPosition, std::move(initializer), 346 std::move(test), std::move(next), 347 std::move(statement), fSymbolTable)); 348 } 349 350 std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) { 351 AutoLoopLevel level(this); 352 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.fTest), 353 *fContext.fBool_Type); 354 if (!test) { 355 return nullptr; 356 } 357 std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement); 358 if (!statement) { 359 return nullptr; 360 } 361 return std::unique_ptr<Statement>(new WhileStatement(w.fPosition, std::move(test), 362 std::move(statement))); 363 } 364 365 std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) { 366 AutoLoopLevel level(this); 367 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.fTest), 368 *fContext.fBool_Type); 369 if (!test) { 370 return nullptr; 371 } 372 std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement); 373 if (!statement) { 374 return nullptr; 375 } 376 return std::unique_ptr<Statement>(new DoStatement(d.fPosition, std::move(statement), 377 std::move(test))); 378 } 379 380 std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTSwitchStatement& s) { 381 AutoSwitchLevel level(this); 382 std::unique_ptr<Expression> value = this->convertExpression(*s.fValue); 383 if (!value) { 384 return nullptr; 385 } 386 if (value->fType != *fContext.fUInt_Type) { 387 value = this->coerce(std::move(value), *fContext.fInt_Type); 388 if (!value) { 389 return nullptr; 390 } 391 } 392 AutoSymbolTable table(this); 393 std::unordered_set<int> caseValues; 394 std::vector<std::unique_ptr<SwitchCase>> cases; 395 for (const auto& c : s.fCases) { 396 std::unique_ptr<Expression> caseValue; 397 if (c->fValue) { 398 caseValue = this->convertExpression(*c->fValue); 399 if (!caseValue) { 400 return nullptr; 401 } 402 if (caseValue->fType != *fContext.fUInt_Type) { 403 caseValue = this->coerce(std::move(caseValue), *fContext.fInt_Type); 404 if (!caseValue) { 405 return nullptr; 406 } 407 } 408 if (!caseValue->isConstant()) { 409 fErrors.error(caseValue->fPosition, "case value must be a constant"); 410 return nullptr; 411 } 412 ASSERT(caseValue->fKind == Expression::kIntLiteral_Kind); 413 int64_t v = ((IntLiteral&) *caseValue).fValue; 414 if (caseValues.find(v) != caseValues.end()) { 415 fErrors.error(caseValue->fPosition, "duplicate case value"); 416 } 417 caseValues.insert(v); 418 } 419 std::vector<std::unique_ptr<Statement>> statements; 420 for (const auto& s : c->fStatements) { 421 std::unique_ptr<Statement> converted = this->convertStatement(*s); 422 if (!converted) { 423 return nullptr; 424 } 425 statements.push_back(std::move(converted)); 426 } 427 cases.emplace_back(new SwitchCase(c->fPosition, std::move(caseValue), 428 std::move(statements))); 429 } 430 return std::unique_ptr<Statement>(new SwitchStatement(s.fPosition, std::move(value), 431 std::move(cases))); 432 } 433 434 std::unique_ptr<Statement> IRGenerator::convertExpressionStatement( 435 const ASTExpressionStatement& s) { 436 std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression); 437 if (!e) { 438 return nullptr; 439 } 440 this->checkValid(*e); 441 return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e))); 442 } 443 444 std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) { 445 ASSERT(fCurrentFunction); 446 if (r.fExpression) { 447 std::unique_ptr<Expression> result = this->convertExpression(*r.fExpression); 448 if (!result) { 449 return nullptr; 450 } 451 if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) { 452 fErrors.error(result->fPosition, "may not return a value from a void function"); 453 } else { 454 result = this->coerce(std::move(result), fCurrentFunction->fReturnType); 455 if (!result) { 456 return nullptr; 457 } 458 } 459 return std::unique_ptr<Statement>(new ReturnStatement(std::move(result))); 460 } else { 461 if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) { 462 fErrors.error(r.fPosition, "expected function to return '" + 463 fCurrentFunction->fReturnType.description() + "'"); 464 } 465 return std::unique_ptr<Statement>(new ReturnStatement(r.fPosition)); 466 } 467 } 468 469 std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) { 470 if (fLoopLevel > 0 || fSwitchLevel > 0) { 471 return std::unique_ptr<Statement>(new BreakStatement(b.fPosition)); 472 } else { 473 fErrors.error(b.fPosition, "break statement must be inside a loop or switch"); 474 return nullptr; 475 } 476 } 477 478 std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStatement& c) { 479 if (fLoopLevel > 0) { 480 return std::unique_ptr<Statement>(new ContinueStatement(c.fPosition)); 481 } else { 482 fErrors.error(c.fPosition, "continue statement must be inside a loop"); 483 return nullptr; 484 } 485 } 486 487 std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement& d) { 488 return std::unique_ptr<Statement>(new DiscardStatement(d.fPosition)); 489 } 490 491 std::unique_ptr<FunctionDefinition> IRGenerator::convertFunction(const ASTFunction& f) { 492 const Type* returnType = this->convertType(*f.fReturnType); 493 if (!returnType) { 494 return nullptr; 495 } 496 std::vector<const Variable*> parameters; 497 for (const auto& param : f.fParameters) { 498 const Type* type = this->convertType(*param->fType); 499 if (!type) { 500 return nullptr; 501 } 502 for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) { 503 int size = param->fSizes[j]; 504 SkString name = type->name() + "[" + to_string(size) + "]"; 505 Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size); 506 fSymbolTable->takeOwnership(newType); 507 type = newType; 508 } 509 SkString name = param->fName; 510 Position pos = param->fPosition; 511 Variable* var = new Variable(pos, param->fModifiers, std::move(name), *type, 512 Variable::kParameter_Storage); 513 fSymbolTable->takeOwnership(var); 514 parameters.push_back(var); 515 } 516 517 // find existing declaration 518 const FunctionDeclaration* decl = nullptr; 519 auto entry = (*fSymbolTable)[f.fName]; 520 if (entry) { 521 std::vector<const FunctionDeclaration*> functions; 522 switch (entry->fKind) { 523 case Symbol::kUnresolvedFunction_Kind: 524 functions = ((UnresolvedFunction*) entry)->fFunctions; 525 break; 526 case Symbol::kFunctionDeclaration_Kind: 527 functions.push_back((FunctionDeclaration*) entry); 528 break; 529 default: 530 fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined"); 531 return nullptr; 532 } 533 for (const auto& other : functions) { 534 ASSERT(other->fName == f.fName); 535 if (parameters.size() == other->fParameters.size()) { 536 bool match = true; 537 for (size_t i = 0; i < parameters.size(); i++) { 538 if (parameters[i]->fType != other->fParameters[i]->fType) { 539 match = false; 540 break; 541 } 542 } 543 if (match) { 544 if (*returnType != other->fReturnType) { 545 FunctionDeclaration newDecl(f.fPosition, f.fName, parameters, *returnType); 546 fErrors.error(f.fPosition, "functions '" + newDecl.description() + 547 "' and '" + other->description() + 548 "' differ only in return type"); 549 return nullptr; 550 } 551 decl = other; 552 for (size_t i = 0; i < parameters.size(); i++) { 553 if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) { 554 fErrors.error(f.fPosition, "modifiers on parameter " + 555 to_string((uint64_t) i + 1) + 556 " differ between declaration and " 557 "definition"); 558 return nullptr; 559 } 560 } 561 if (other->fDefined) { 562 fErrors.error(f.fPosition, "duplicate definition of " + 563 other->description()); 564 } 565 break; 566 } 567 } 568 } 569 } 570 if (!decl) { 571 // couldn't find an existing declaration 572 auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDeclaration(f.fPosition, 573 f.fName, 574 parameters, 575 *returnType)); 576 decl = newDecl.get(); 577 fSymbolTable->add(decl->fName, std::move(newDecl)); 578 } 579 if (f.fBody) { 580 ASSERT(!fCurrentFunction); 581 fCurrentFunction = decl; 582 decl->fDefined = true; 583 std::shared_ptr<SymbolTable> old = fSymbolTable; 584 AutoSymbolTable table(this); 585 for (size_t i = 0; i < parameters.size(); i++) { 586 fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]); 587 } 588 std::unique_ptr<Block> body = this->convertBlock(*f.fBody); 589 fCurrentFunction = nullptr; 590 if (!body) { 591 return nullptr; 592 } 593 return std::unique_ptr<FunctionDefinition>(new FunctionDefinition(f.fPosition, *decl, 594 std::move(body))); 595 } 596 return nullptr; 597 } 598 599 std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) { 600 std::shared_ptr<SymbolTable> old = fSymbolTable; 601 AutoSymbolTable table(this); 602 std::vector<Type::Field> fields; 603 for (size_t i = 0; i < intf.fDeclarations.size(); i++) { 604 std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations( 605 *intf.fDeclarations[i], 606 Variable::kGlobal_Storage); 607 if (!decl) { 608 return nullptr; 609 } 610 for (const auto& var : decl->fVars) { 611 fields.push_back(Type::Field(var.fVar->fModifiers, var.fVar->fName, 612 &var.fVar->fType)); 613 if (var.fValue) { 614 fErrors.error(decl->fPosition, 615 "initializers are not permitted on interface block fields"); 616 } 617 if (var.fVar->fModifiers.fFlags & (Modifiers::kIn_Flag | 618 Modifiers::kOut_Flag | 619 Modifiers::kUniform_Flag | 620 Modifiers::kConst_Flag)) { 621 fErrors.error(decl->fPosition, 622 "interface block fields may not have storage qualifiers"); 623 } 624 } 625 } 626 Type* type = new Type(intf.fPosition, intf.fTypeName, fields); 627 old->takeOwnership(type); 628 std::vector<std::unique_ptr<Expression>> sizes; 629 for (const auto& size : intf.fSizes) { 630 if (size) { 631 std::unique_ptr<Expression> converted = this->convertExpression(*size); 632 if (!converted) { 633 return nullptr; 634 } 635 SkString name = type->fName; 636 int64_t count; 637 if (converted->fKind == Expression::kIntLiteral_Kind) { 638 count = ((IntLiteral&) *converted).fValue; 639 if (count <= 0) { 640 fErrors.error(converted->fPosition, "array size must be positive"); 641 } 642 name += "[" + to_string(count) + "]"; 643 } else { 644 count = -1; 645 name += "[]"; 646 } 647 type = new Type(name, Type::kArray_Kind, *type, (int) count); 648 fSymbolTable->takeOwnership((Type*) type); 649 sizes.push_back(std::move(converted)); 650 } else { 651 type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1); 652 fSymbolTable->takeOwnership((Type*) type); 653 sizes.push_back(nullptr); 654 } 655 } 656 Variable* var = new Variable(intf.fPosition, intf.fModifiers, 657 intf.fInstanceName.size() ? intf.fInstanceName : intf.fTypeName, 658 *type, Variable::kGlobal_Storage); 659 old->takeOwnership(var); 660 if (intf.fInstanceName.size()) { 661 old->addWithoutOwnership(intf.fInstanceName, var); 662 } else { 663 for (size_t i = 0; i < fields.size(); i++) { 664 old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fPosition, *var, 665 (int) i))); 666 } 667 } 668 return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fPosition, *var, 669 intf.fTypeName, 670 intf.fInstanceName, 671 std::move(sizes), 672 fSymbolTable)); 673 } 674 675 const Type* IRGenerator::convertType(const ASTType& type) { 676 const Symbol* result = (*fSymbolTable)[type.fName]; 677 if (result && result->fKind == Symbol::kType_Kind) { 678 for (int size : type.fSizes) { 679 SkString name = result->fName + "["; 680 if (size != -1) { 681 name += to_string(size); 682 } 683 name += "]"; 684 result = new Type(name, Type::kArray_Kind, (const Type&) *result, size); 685 fSymbolTable->takeOwnership((Type*) result); 686 } 687 return (const Type*) result; 688 } 689 fErrors.error(type.fPosition, "unknown type '" + type.fName + "'"); 690 return nullptr; 691 } 692 693 std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) { 694 switch (expr.fKind) { 695 case ASTExpression::kIdentifier_Kind: 696 return this->convertIdentifier((ASTIdentifier&) expr); 697 case ASTExpression::kBool_Kind: 698 return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fPosition, 699 ((ASTBoolLiteral&) expr).fValue)); 700 case ASTExpression::kInt_Kind: 701 return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fPosition, 702 ((ASTIntLiteral&) expr).fValue)); 703 case ASTExpression::kFloat_Kind: 704 return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fPosition, 705 ((ASTFloatLiteral&) expr).fValue)); 706 case ASTExpression::kBinary_Kind: 707 return this->convertBinaryExpression((ASTBinaryExpression&) expr); 708 case ASTExpression::kPrefix_Kind: 709 return this->convertPrefixExpression((ASTPrefixExpression&) expr); 710 case ASTExpression::kSuffix_Kind: 711 return this->convertSuffixExpression((ASTSuffixExpression&) expr); 712 case ASTExpression::kTernary_Kind: 713 return this->convertTernaryExpression((ASTTernaryExpression&) expr); 714 default: 715 ABORT("unsupported expression type: %d\n", expr.fKind); 716 } 717 } 718 719 std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) { 720 const Symbol* result = (*fSymbolTable)[identifier.fText]; 721 if (!result) { 722 fErrors.error(identifier.fPosition, "unknown identifier '" + identifier.fText + "'"); 723 return nullptr; 724 } 725 switch (result->fKind) { 726 case Symbol::kFunctionDeclaration_Kind: { 727 std::vector<const FunctionDeclaration*> f = { 728 (const FunctionDeclaration*) result 729 }; 730 return std::unique_ptr<FunctionReference>(new FunctionReference(fContext, 731 identifier.fPosition, 732 f)); 733 } 734 case Symbol::kUnresolvedFunction_Kind: { 735 const UnresolvedFunction* f = (const UnresolvedFunction*) result; 736 return std::unique_ptr<FunctionReference>(new FunctionReference(fContext, 737 identifier.fPosition, 738 f->fFunctions)); 739 } 740 case Symbol::kVariable_Kind: { 741 const Variable* var = (const Variable*) result; 742 if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { 743 fInputs.fFlipY = true; 744 if (fSettings->fFlipY && 745 (!fSettings->fCaps || 746 !fSettings->fCaps->fragCoordConventionsExtensionString())) { 747 fInputs.fRTHeight = true; 748 } 749 } 750 // default to kRead_RefKind; this will be corrected later if the variable is written to 751 return std::unique_ptr<VariableReference>(new VariableReference( 752 identifier.fPosition, 753 *var, 754 VariableReference::kRead_RefKind)); 755 } 756 case Symbol::kField_Kind: { 757 const Field* field = (const Field*) result; 758 VariableReference* base = new VariableReference(identifier.fPosition, field->fOwner, 759 VariableReference::kRead_RefKind); 760 return std::unique_ptr<Expression>(new FieldAccess( 761 std::unique_ptr<Expression>(base), 762 field->fFieldIndex, 763 FieldAccess::kAnonymousInterfaceBlock_OwnerKind)); 764 } 765 case Symbol::kType_Kind: { 766 const Type* t = (const Type*) result; 767 return std::unique_ptr<TypeReference>(new TypeReference(fContext, identifier.fPosition, 768 *t)); 769 } 770 default: 771 ABORT("unsupported symbol type %d\n", result->fKind); 772 } 773 774 } 775 776 std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr, 777 const Type& type) { 778 if (!expr) { 779 return nullptr; 780 } 781 if (expr->fType == type) { 782 return expr; 783 } 784 this->checkValid(*expr); 785 if (expr->fType == *fContext.fInvalid_Type) { 786 return nullptr; 787 } 788 if (!expr->fType.canCoerceTo(type)) { 789 fErrors.error(expr->fPosition, "expected '" + type.description() + "', but found '" + 790 expr->fType.description() + "'"); 791 return nullptr; 792 } 793 if (type.kind() == Type::kScalar_Kind) { 794 std::vector<std::unique_ptr<Expression>> args; 795 args.push_back(std::move(expr)); 796 ASTIdentifier id(Position(), type.description()); 797 std::unique_ptr<Expression> ctor = this->convertIdentifier(id); 798 ASSERT(ctor); 799 return this->call(Position(), std::move(ctor), std::move(args)); 800 } 801 std::vector<std::unique_ptr<Expression>> args; 802 args.push_back(std::move(expr)); 803 return std::unique_ptr<Expression>(new Constructor(Position(), type, std::move(args))); 804 } 805 806 static bool is_matrix_multiply(const Type& left, const Type& right) { 807 if (left.kind() == Type::kMatrix_Kind) { 808 return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind; 809 } 810 return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind; 811 } 812 813 /** 814 * Determines the operand and result types of a binary expression. Returns true if the expression is 815 * legal, false otherwise. If false, the values of the out parameters are undefined. 816 */ 817 static bool determine_binary_type(const Context& context, 818 Token::Kind op, 819 const Type& left, 820 const Type& right, 821 const Type** outLeftType, 822 const Type** outRightType, 823 const Type** outResultType, 824 bool tryFlipped) { 825 bool isLogical; 826 bool validMatrixOrVectorOp; 827 switch (op) { 828 case Token::EQ: 829 *outLeftType = &left; 830 *outRightType = &left; 831 *outResultType = &left; 832 return right.canCoerceTo(left); 833 case Token::EQEQ: // fall through 834 case Token::NEQ: 835 isLogical = true; 836 validMatrixOrVectorOp = true; 837 break; 838 case Token::LT: // fall through 839 case Token::GT: // fall through 840 case Token::LTEQ: // fall through 841 case Token::GTEQ: 842 isLogical = true; 843 validMatrixOrVectorOp = false; 844 break; 845 case Token::LOGICALOR: // fall through 846 case Token::LOGICALAND: // fall through 847 case Token::LOGICALXOR: // fall through 848 case Token::LOGICALOREQ: // fall through 849 case Token::LOGICALANDEQ: // fall through 850 case Token::LOGICALXOREQ: 851 *outLeftType = context.fBool_Type.get(); 852 *outRightType = context.fBool_Type.get(); 853 *outResultType = context.fBool_Type.get(); 854 return left.canCoerceTo(*context.fBool_Type) && 855 right.canCoerceTo(*context.fBool_Type); 856 case Token::STAR: // fall through 857 case Token::STAREQ: 858 if (is_matrix_multiply(left, right)) { 859 // determine final component type 860 if (determine_binary_type(context, Token::STAR, left.componentType(), 861 right.componentType(), outLeftType, outRightType, 862 outResultType, false)) { 863 *outLeftType = &(*outResultType)->toCompound(context, left.columns(), 864 left.rows());; 865 *outRightType = &(*outResultType)->toCompound(context, right.columns(), 866 right.rows());; 867 int leftColumns = left.columns(); 868 int leftRows = left.rows(); 869 int rightColumns; 870 int rightRows; 871 if (right.kind() == Type::kVector_Kind) { 872 // matrix * vector treats the vector as a column vector, so we need to 873 // transpose it 874 rightColumns = right.rows(); 875 rightRows = right.columns(); 876 ASSERT(rightColumns == 1); 877 } else { 878 rightColumns = right.columns(); 879 rightRows = right.rows(); 880 } 881 if (rightColumns > 1) { 882 *outResultType = &(*outResultType)->toCompound(context, rightColumns, 883 leftRows); 884 } else { 885 // result was a column vector, transpose it back to a row 886 *outResultType = &(*outResultType)->toCompound(context, leftRows, 887 rightColumns); 888 } 889 return leftColumns == rightRows; 890 } else { 891 return false; 892 } 893 } 894 isLogical = false; 895 validMatrixOrVectorOp = true; 896 break; 897 case Token::PLUS: // fall through 898 case Token::PLUSEQ: // fall through 899 case Token::MINUS: // fall through 900 case Token::MINUSEQ: // fall through 901 case Token::SLASH: // fall through 902 case Token::SLASHEQ: 903 isLogical = false; 904 validMatrixOrVectorOp = true; 905 break; 906 default: 907 isLogical = false; 908 validMatrixOrVectorOp = false; 909 } 910 bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind; 911 // FIXME: incorrect for shift 912 if (right.canCoerceTo(left) && (left.kind() == Type::kScalar_Kind || 913 (isVectorOrMatrix && validMatrixOrVectorOp))) { 914 *outLeftType = &left; 915 *outRightType = &left; 916 if (isLogical) { 917 *outResultType = context.fBool_Type.get(); 918 } else { 919 *outResultType = &left; 920 } 921 return true; 922 } 923 if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) && 924 (right.kind() == Type::kScalar_Kind)) { 925 if (determine_binary_type(context, op, left.componentType(), right, outLeftType, 926 outRightType, outResultType, false)) { 927 *outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows()); 928 if (!isLogical) { 929 *outResultType = &(*outResultType)->toCompound(context, left.columns(), 930 left.rows()); 931 } 932 return true; 933 } 934 return false; 935 } 936 if (tryFlipped) { 937 return determine_binary_type(context, op, right, left, outRightType, outLeftType, 938 outResultType, false); 939 } 940 return false; 941 } 942 943 std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left, 944 Token::Kind op, 945 const Expression& right) const { 946 // Note that we expressly do not worry about precision and overflow here -- we use the maximum 947 // precision to calculate the results and hope the result makes sense. The plan is to move the 948 // Skia caps into SkSL, so we have access to all of them including the precisions of the various 949 // types, which will let us be more intelligent about this. 950 if (left.fKind == Expression::kBoolLiteral_Kind && 951 right.fKind == Expression::kBoolLiteral_Kind) { 952 bool leftVal = ((BoolLiteral&) left).fValue; 953 bool rightVal = ((BoolLiteral&) right).fValue; 954 bool result; 955 switch (op) { 956 case Token::LOGICALAND: result = leftVal && rightVal; break; 957 case Token::LOGICALOR: result = leftVal || rightVal; break; 958 case Token::LOGICALXOR: result = leftVal ^ rightVal; break; 959 default: return nullptr; 960 } 961 return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fPosition, result)); 962 } 963 #define RESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fPosition, \ 964 leftVal op rightVal)) 965 if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) { 966 int64_t leftVal = ((IntLiteral&) left).fValue; 967 int64_t rightVal = ((IntLiteral&) right).fValue; 968 switch (op) { 969 case Token::PLUS: return RESULT(Int, +); 970 case Token::MINUS: return RESULT(Int, -); 971 case Token::STAR: return RESULT(Int, *); 972 case Token::SLASH: 973 if (rightVal) { 974 return RESULT(Int, /); 975 } 976 fErrors.error(right.fPosition, "division by zero"); 977 return nullptr; 978 case Token::PERCENT: 979 if (rightVal) { 980 return RESULT(Int, %); 981 } 982 fErrors.error(right.fPosition, "division by zero"); 983 return nullptr; 984 case Token::BITWISEAND: return RESULT(Int, &); 985 case Token::BITWISEOR: return RESULT(Int, |); 986 case Token::BITWISEXOR: return RESULT(Int, ^); 987 case Token::SHL: return RESULT(Int, <<); 988 case Token::SHR: return RESULT(Int, >>); 989 case Token::EQEQ: return RESULT(Bool, ==); 990 case Token::NEQ: return RESULT(Bool, !=); 991 case Token::GT: return RESULT(Bool, >); 992 case Token::GTEQ: return RESULT(Bool, >=); 993 case Token::LT: return RESULT(Bool, <); 994 case Token::LTEQ: return RESULT(Bool, <=); 995 default: return nullptr; 996 } 997 } 998 if (left.fKind == Expression::kFloatLiteral_Kind && 999 right.fKind == Expression::kFloatLiteral_Kind) { 1000 double leftVal = ((FloatLiteral&) left).fValue; 1001 double rightVal = ((FloatLiteral&) right).fValue; 1002 switch (op) { 1003 case Token::PLUS: return RESULT(Float, +); 1004 case Token::MINUS: return RESULT(Float, -); 1005 case Token::STAR: return RESULT(Float, *); 1006 case Token::SLASH: 1007 if (rightVal) { 1008 return RESULT(Float, /); 1009 } 1010 fErrors.error(right.fPosition, "division by zero"); 1011 return nullptr; 1012 case Token::EQEQ: return RESULT(Bool, ==); 1013 case Token::NEQ: return RESULT(Bool, !=); 1014 case Token::GT: return RESULT(Bool, >); 1015 case Token::GTEQ: return RESULT(Bool, >=); 1016 case Token::LT: return RESULT(Bool, <); 1017 case Token::LTEQ: return RESULT(Bool, <=); 1018 default: return nullptr; 1019 } 1020 } 1021 #undef RESULT 1022 return nullptr; 1023 } 1024 1025 std::unique_ptr<Expression> IRGenerator::convertBinaryExpression( 1026 const ASTBinaryExpression& expression) { 1027 std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft); 1028 if (!left) { 1029 return nullptr; 1030 } 1031 std::unique_ptr<Expression> right = this->convertExpression(*expression.fRight); 1032 if (!right) { 1033 return nullptr; 1034 } 1035 const Type* leftType; 1036 const Type* rightType; 1037 const Type* resultType; 1038 if (!determine_binary_type(fContext, expression.fOperator, left->fType, right->fType, &leftType, 1039 &rightType, &resultType, 1040 !Token::IsAssignment(expression.fOperator))) { 1041 fErrors.error(expression.fPosition, "type mismatch: '" + 1042 Token::OperatorName(expression.fOperator) + 1043 "' cannot operate on '" + left->fType.fName + 1044 "', '" + right->fType.fName + "'"); 1045 return nullptr; 1046 } 1047 if (Token::IsAssignment(expression.fOperator)) { 1048 this->markWrittenTo(*left, expression.fOperator != Token::EQ); 1049 } 1050 left = this->coerce(std::move(left), *leftType); 1051 right = this->coerce(std::move(right), *rightType); 1052 if (!left || !right) { 1053 return nullptr; 1054 } 1055 std::unique_ptr<Expression> result = this->constantFold(*left.get(), expression.fOperator, 1056 *right.get()); 1057 if (!result) { 1058 result = std::unique_ptr<Expression>(new BinaryExpression(expression.fPosition, 1059 std::move(left), 1060 expression.fOperator, 1061 std::move(right), 1062 *resultType)); 1063 } 1064 return result; 1065 } 1066 1067 std::unique_ptr<Expression> IRGenerator::convertTernaryExpression( 1068 const ASTTernaryExpression& expression) { 1069 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*expression.fTest), 1070 *fContext.fBool_Type); 1071 if (!test) { 1072 return nullptr; 1073 } 1074 std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIfTrue); 1075 if (!ifTrue) { 1076 return nullptr; 1077 } 1078 std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fIfFalse); 1079 if (!ifFalse) { 1080 return nullptr; 1081 } 1082 const Type* trueType; 1083 const Type* falseType; 1084 const Type* resultType; 1085 if (!determine_binary_type(fContext, Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType, 1086 &falseType, &resultType, true) || trueType != falseType) { 1087 fErrors.error(expression.fPosition, "ternary operator result mismatch: '" + 1088 ifTrue->fType.fName + "', '" + 1089 ifFalse->fType.fName + "'"); 1090 return nullptr; 1091 } 1092 ifTrue = this->coerce(std::move(ifTrue), *trueType); 1093 if (!ifTrue) { 1094 return nullptr; 1095 } 1096 ifFalse = this->coerce(std::move(ifFalse), *falseType); 1097 if (!ifFalse) { 1098 return nullptr; 1099 } 1100 if (test->fKind == Expression::kBoolLiteral_Kind) { 1101 // static boolean test, just return one of the branches 1102 if (((BoolLiteral&) *test).fValue) { 1103 return ifTrue; 1104 } else { 1105 return ifFalse; 1106 } 1107 } 1108 return std::unique_ptr<Expression>(new TernaryExpression(expression.fPosition, 1109 std::move(test), 1110 std::move(ifTrue), 1111 std::move(ifFalse))); 1112 } 1113 1114 std::unique_ptr<Expression> IRGenerator::call(Position position, 1115 const FunctionDeclaration& function, 1116 std::vector<std::unique_ptr<Expression>> arguments) { 1117 if (function.fParameters.size() != arguments.size()) { 1118 SkString msg = "call to '" + function.fName + "' expected " + 1119 to_string((uint64_t) function.fParameters.size()) + 1120 " argument"; 1121 if (function.fParameters.size() != 1) { 1122 msg += "s"; 1123 } 1124 msg += ", but found " + to_string((uint64_t) arguments.size()); 1125 fErrors.error(position, msg); 1126 return nullptr; 1127 } 1128 std::vector<const Type*> types; 1129 const Type* returnType; 1130 if (!function.determineFinalTypes(arguments, &types, &returnType)) { 1131 SkString msg = "no match for " + function.fName + "("; 1132 SkString separator; 1133 for (size_t i = 0; i < arguments.size(); i++) { 1134 msg += separator; 1135 separator = ", "; 1136 msg += arguments[i]->fType.description(); 1137 } 1138 msg += ")"; 1139 fErrors.error(position, msg); 1140 return nullptr; 1141 } 1142 for (size_t i = 0; i < arguments.size(); i++) { 1143 arguments[i] = this->coerce(std::move(arguments[i]), *types[i]); 1144 if (!arguments[i]) { 1145 return nullptr; 1146 } 1147 if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) { 1148 this->markWrittenTo(*arguments[i], true); 1149 } 1150 } 1151 return std::unique_ptr<FunctionCall>(new FunctionCall(position, *returnType, function, 1152 std::move(arguments))); 1153 } 1154 1155 /** 1156 * Determines the cost of coercing the arguments of a function to the required types. Returns true 1157 * if the cost could be computed, false if the call is not valid. Cost has no particular meaning 1158 * other than "lower costs are preferred". 1159 */ 1160 bool IRGenerator::determineCallCost(const FunctionDeclaration& function, 1161 const std::vector<std::unique_ptr<Expression>>& arguments, 1162 int* outCost) { 1163 if (function.fParameters.size() != arguments.size()) { 1164 return false; 1165 } 1166 int total = 0; 1167 std::vector<const Type*> types; 1168 const Type* ignored; 1169 if (!function.determineFinalTypes(arguments, &types, &ignored)) { 1170 return false; 1171 } 1172 for (size_t i = 0; i < arguments.size(); i++) { 1173 int cost; 1174 if (arguments[i]->fType.determineCoercionCost(*types[i], &cost)) { 1175 total += cost; 1176 } else { 1177 return false; 1178 } 1179 } 1180 *outCost = total; 1181 return true; 1182 } 1183 1184 std::unique_ptr<Expression> IRGenerator::call(Position position, 1185 std::unique_ptr<Expression> functionValue, 1186 std::vector<std::unique_ptr<Expression>> arguments) { 1187 if (functionValue->fKind == Expression::kTypeReference_Kind) { 1188 return this->convertConstructor(position, 1189 ((TypeReference&) *functionValue).fValue, 1190 std::move(arguments)); 1191 } 1192 if (functionValue->fKind != Expression::kFunctionReference_Kind) { 1193 fErrors.error(position, "'" + functionValue->description() + "' is not a function"); 1194 return nullptr; 1195 } 1196 FunctionReference* ref = (FunctionReference*) functionValue.get(); 1197 int bestCost = INT_MAX; 1198 const FunctionDeclaration* best = nullptr; 1199 if (ref->fFunctions.size() > 1) { 1200 for (const auto& f : ref->fFunctions) { 1201 int cost; 1202 if (this->determineCallCost(*f, arguments, &cost) && cost < bestCost) { 1203 bestCost = cost; 1204 best = f; 1205 } 1206 } 1207 if (best) { 1208 return this->call(position, *best, std::move(arguments)); 1209 } 1210 SkString msg = "no match for " + ref->fFunctions[0]->fName + "("; 1211 SkString separator; 1212 for (size_t i = 0; i < arguments.size(); i++) { 1213 msg += separator; 1214 separator = ", "; 1215 msg += arguments[i]->fType.description(); 1216 } 1217 msg += ")"; 1218 fErrors.error(position, msg); 1219 return nullptr; 1220 } 1221 return this->call(position, *ref->fFunctions[0], std::move(arguments)); 1222 } 1223 1224 std::unique_ptr<Expression> IRGenerator::convertNumberConstructor( 1225 Position position, 1226 const Type& type, 1227 std::vector<std::unique_ptr<Expression>> args) { 1228 ASSERT(type.isNumber()); 1229 if (args.size() != 1) { 1230 fErrors.error(position, "invalid arguments to '" + type.description() + 1231 "' constructor, (expected exactly 1 argument, but found " + 1232 to_string((uint64_t) args.size()) + ")"); 1233 return nullptr; 1234 } 1235 if (type == *fContext.fFloat_Type && args.size() == 1 && 1236 args[0]->fKind == Expression::kIntLiteral_Kind) { 1237 int64_t value = ((IntLiteral&) *args[0]).fValue; 1238 return std::unique_ptr<Expression>(new FloatLiteral(fContext, position, (double) value)); 1239 } 1240 if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type || 1241 type == *fContext.fUInt_Type)) { 1242 return std::unique_ptr<Expression>(new IntLiteral(fContext, 1243 position, 1244 ((IntLiteral&) *args[0]).fValue, 1245 &type)); 1246 } 1247 if (args[0]->fType == *fContext.fBool_Type) { 1248 std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, position, 0)); 1249 std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, position, 1)); 1250 return std::unique_ptr<Expression>( 1251 new TernaryExpression(position, std::move(args[0]), 1252 this->coerce(std::move(one), type), 1253 this->coerce(std::move(zero), 1254 type))); 1255 } 1256 if (!args[0]->fType.isNumber()) { 1257 fErrors.error(position, "invalid argument to '" + type.description() + 1258 "' constructor (expected a number or bool, but found '" + 1259 args[0]->fType.description() + "')"); 1260 return nullptr; 1261 } 1262 return std::unique_ptr<Expression>(new Constructor(position, std::move(type), std::move(args))); 1263 } 1264 1265 int component_count(const Type& type) { 1266 switch (type.kind()) { 1267 case Type::kVector_Kind: 1268 return type.columns(); 1269 case Type::kMatrix_Kind: 1270 return type.columns() * type.rows(); 1271 default: 1272 return 1; 1273 } 1274 } 1275 1276 std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor( 1277 Position position, 1278 const Type& type, 1279 std::vector<std::unique_ptr<Expression>> args) { 1280 ASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind); 1281 if (type.kind() == Type::kMatrix_Kind && args.size() == 1 && 1282 args[0]->fType.kind() == Type::kMatrix_Kind) { 1283 // matrix from matrix is always legal 1284 return std::unique_ptr<Expression>(new Constructor(position, std::move(type), 1285 std::move(args))); 1286 } 1287 int actual = 0; 1288 int expected = type.rows() * type.columns(); 1289 if (args.size() != 1 || expected != component_count(args[0]->fType) || 1290 type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) { 1291 for (size_t i = 0; i < args.size(); i++) { 1292 if (args[i]->fType.kind() == Type::kVector_Kind) { 1293 if (type.componentType().isNumber() != 1294 args[i]->fType.componentType().isNumber()) { 1295 fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid " 1296 "parameter to '" + type.description() + 1297 "' constructor"); 1298 return nullptr; 1299 } 1300 actual += args[i]->fType.columns(); 1301 } else if (args[i]->fType.kind() == Type::kScalar_Kind) { 1302 actual += 1; 1303 if (type.kind() != Type::kScalar_Kind) { 1304 args[i] = this->coerce(std::move(args[i]), type.componentType()); 1305 if (!args[i]) { 1306 return nullptr; 1307 } 1308 } 1309 } else { 1310 fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid " 1311 "parameter to '" + type.description() + "' constructor"); 1312 return nullptr; 1313 } 1314 } 1315 if (actual != 1 && actual != expected) { 1316 fErrors.error(position, "invalid arguments to '" + type.description() + 1317 "' constructor (expected " + to_string(expected) + 1318 " scalars, but found " + to_string(actual) + ")"); 1319 return nullptr; 1320 } 1321 } 1322 return std::unique_ptr<Expression>(new Constructor(position, std::move(type), std::move(args))); 1323 } 1324 1325 std::unique_ptr<Expression> IRGenerator::convertConstructor( 1326 Position position, 1327 const Type& type, 1328 std::vector<std::unique_ptr<Expression>> args) { 1329 // FIXME: add support for structs 1330 Type::Kind kind = type.kind(); 1331 if (args.size() == 1 && args[0]->fType == type) { 1332 // argument is already the right type, just return it 1333 return std::move(args[0]); 1334 } 1335 if (type.isNumber()) { 1336 return this->convertNumberConstructor(position, type, std::move(args)); 1337 } else if (kind == Type::kArray_Kind) { 1338 const Type& base = type.componentType(); 1339 for (size_t i = 0; i < args.size(); i++) { 1340 args[i] = this->coerce(std::move(args[i]), base); 1341 if (!args[i]) { 1342 return nullptr; 1343 } 1344 } 1345 return std::unique_ptr<Expression>(new Constructor(position, std::move(type), 1346 std::move(args))); 1347 } else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) { 1348 return this->convertCompoundConstructor(position, type, std::move(args)); 1349 } else { 1350 fErrors.error(position, "cannot construct '" + type.description() + "'"); 1351 return nullptr; 1352 } 1353 } 1354 1355 std::unique_ptr<Expression> IRGenerator::convertPrefixExpression( 1356 const ASTPrefixExpression& expression) { 1357 std::unique_ptr<Expression> base = this->convertExpression(*expression.fOperand); 1358 if (!base) { 1359 return nullptr; 1360 } 1361 switch (expression.fOperator) { 1362 case Token::PLUS: 1363 if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) { 1364 fErrors.error(expression.fPosition, 1365 "'+' cannot operate on '" + base->fType.description() + "'"); 1366 return nullptr; 1367 } 1368 return base; 1369 case Token::MINUS: 1370 if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) { 1371 fErrors.error(expression.fPosition, 1372 "'-' cannot operate on '" + base->fType.description() + "'"); 1373 return nullptr; 1374 } 1375 if (base->fKind == Expression::kIntLiteral_Kind) { 1376 return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fPosition, 1377 -((IntLiteral&) *base).fValue)); 1378 } 1379 if (base->fKind == Expression::kFloatLiteral_Kind) { 1380 double value = -((FloatLiteral&) *base).fValue; 1381 return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fPosition, 1382 value)); 1383 } 1384 return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS, std::move(base))); 1385 case Token::PLUSPLUS: 1386 if (!base->fType.isNumber()) { 1387 fErrors.error(expression.fPosition, 1388 "'" + Token::OperatorName(expression.fOperator) + 1389 "' cannot operate on '" + base->fType.description() + "'"); 1390 return nullptr; 1391 } 1392 this->markWrittenTo(*base, true); 1393 break; 1394 case Token::MINUSMINUS: 1395 if (!base->fType.isNumber()) { 1396 fErrors.error(expression.fPosition, 1397 "'" + Token::OperatorName(expression.fOperator) + 1398 "' cannot operate on '" + base->fType.description() + "'"); 1399 return nullptr; 1400 } 1401 this->markWrittenTo(*base, true); 1402 break; 1403 case Token::LOGICALNOT: 1404 if (base->fType != *fContext.fBool_Type) { 1405 fErrors.error(expression.fPosition, 1406 "'" + Token::OperatorName(expression.fOperator) + 1407 "' cannot operate on '" + base->fType.description() + "'"); 1408 return nullptr; 1409 } 1410 if (base->fKind == Expression::kBoolLiteral_Kind) { 1411 return std::unique_ptr<Expression>(new BoolLiteral(fContext, base->fPosition, 1412 !((BoolLiteral&) *base).fValue)); 1413 } 1414 break; 1415 case Token::BITWISENOT: 1416 if (base->fType != *fContext.fInt_Type) { 1417 fErrors.error(expression.fPosition, 1418 "'" + Token::OperatorName(expression.fOperator) + 1419 "' cannot operate on '" + base->fType.description() + "'"); 1420 return nullptr; 1421 } 1422 break; 1423 default: 1424 ABORT("unsupported prefix operator\n"); 1425 } 1426 return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator, 1427 std::move(base))); 1428 } 1429 1430 std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base, 1431 const ASTExpression& index) { 1432 if (base->fKind == Expression::kTypeReference_Kind) { 1433 if (index.fKind == ASTExpression::kInt_Kind) { 1434 const Type& oldType = ((TypeReference&) *base).fValue; 1435 int64_t size = ((const ASTIntLiteral&) index).fValue; 1436 Type* newType = new Type(oldType.name() + "[" + to_string(size) + "]", 1437 Type::kArray_Kind, oldType, size); 1438 fSymbolTable->takeOwnership(newType); 1439 return std::unique_ptr<Expression>(new TypeReference(fContext, base->fPosition, 1440 *newType)); 1441 1442 } else { 1443 fErrors.error(base->fPosition, "array size must be a constant"); 1444 return nullptr; 1445 } 1446 } 1447 if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind && 1448 base->fType.kind() != Type::kVector_Kind) { 1449 fErrors.error(base->fPosition, "expected array, but found '" + base->fType.description() + 1450 "'"); 1451 return nullptr; 1452 } 1453 std::unique_ptr<Expression> converted = this->convertExpression(index); 1454 if (!converted) { 1455 return nullptr; 1456 } 1457 if (converted->fType != *fContext.fUInt_Type) { 1458 converted = this->coerce(std::move(converted), *fContext.fInt_Type); 1459 if (!converted) { 1460 return nullptr; 1461 } 1462 } 1463 return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base), 1464 std::move(converted))); 1465 } 1466 1467 std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base, 1468 const SkString& field) { 1469 auto fields = base->fType.fields(); 1470 for (size_t i = 0; i < fields.size(); i++) { 1471 if (fields[i].fName == field) { 1472 return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i)); 1473 } 1474 } 1475 fErrors.error(base->fPosition, "type '" + base->fType.description() + "' does not have a " 1476 "field named '" + field + ""); 1477 return nullptr; 1478 } 1479 1480 std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base, 1481 const SkString& fields) { 1482 if (base->fType.kind() != Type::kVector_Kind) { 1483 fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType.description() + "'"); 1484 return nullptr; 1485 } 1486 std::vector<int> swizzleComponents; 1487 for (size_t i = 0; i < fields.size(); i++) { 1488 switch (fields[i]) { 1489 case 'x': // fall through 1490 case 'r': // fall through 1491 case 's': 1492 swizzleComponents.push_back(0); 1493 break; 1494 case 'y': // fall through 1495 case 'g': // fall through 1496 case 't': 1497 if (base->fType.columns() >= 2) { 1498 swizzleComponents.push_back(1); 1499 break; 1500 } 1501 // fall through 1502 case 'z': // fall through 1503 case 'b': // fall through 1504 case 'p': 1505 if (base->fType.columns() >= 3) { 1506 swizzleComponents.push_back(2); 1507 break; 1508 } 1509 // fall through 1510 case 'w': // fall through 1511 case 'a': // fall through 1512 case 'q': 1513 if (base->fType.columns() >= 4) { 1514 swizzleComponents.push_back(3); 1515 break; 1516 } 1517 // fall through 1518 default: 1519 fErrors.error(base->fPosition, SkStringPrintf("invalid swizzle component '%c'", 1520 fields[i])); 1521 return nullptr; 1522 } 1523 } 1524 ASSERT(swizzleComponents.size() > 0); 1525 if (swizzleComponents.size() > 4) { 1526 fErrors.error(base->fPosition, "too many components in swizzle mask '" + fields + "'"); 1527 return nullptr; 1528 } 1529 return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents)); 1530 } 1531 1532 std::unique_ptr<Expression> IRGenerator::getCap(Position position, SkString name) { 1533 auto found = fCapsMap.find(name); 1534 if (found == fCapsMap.end()) { 1535 fErrors.error(position, "unknown capability flag '" + name + "'"); 1536 return nullptr; 1537 } 1538 switch (found->second.fKind) { 1539 case CapValue::kBool_Kind: 1540 return std::unique_ptr<Expression>(new BoolLiteral(fContext, position, 1541 (bool) found->second.fValue)); 1542 case CapValue::kInt_Kind: 1543 return std::unique_ptr<Expression>(new IntLiteral(fContext, position, 1544 found->second.fValue)); 1545 } 1546 ASSERT(false); 1547 return nullptr; 1548 } 1549 1550 std::unique_ptr<Expression> IRGenerator::convertSuffixExpression( 1551 const ASTSuffixExpression& expression) { 1552 std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase); 1553 if (!base) { 1554 return nullptr; 1555 } 1556 switch (expression.fSuffix->fKind) { 1557 case ASTSuffix::kIndex_Kind: { 1558 const ASTExpression* expr = ((ASTIndexSuffix&) *expression.fSuffix).fExpression.get(); 1559 if (expr) { 1560 return this->convertIndex(std::move(base), *expr); 1561 } else if (base->fKind == Expression::kTypeReference_Kind) { 1562 const Type& oldType = ((TypeReference&) *base).fValue; 1563 Type* newType = new Type(oldType.name() + "[]", Type::kArray_Kind, oldType, 1564 -1); 1565 fSymbolTable->takeOwnership(newType); 1566 return std::unique_ptr<Expression>(new TypeReference(fContext, base->fPosition, 1567 *newType)); 1568 } else { 1569 fErrors.error(expression.fPosition, "'[]' must follow a type name"); 1570 return nullptr; 1571 } 1572 } 1573 case ASTSuffix::kCall_Kind: { 1574 auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments; 1575 std::vector<std::unique_ptr<Expression>> arguments; 1576 for (size_t i = 0; i < rawArguments->size(); i++) { 1577 std::unique_ptr<Expression> converted = 1578 this->convertExpression(*(*rawArguments)[i]); 1579 if (!converted) { 1580 return nullptr; 1581 } 1582 arguments.push_back(std::move(converted)); 1583 } 1584 return this->call(expression.fPosition, std::move(base), std::move(arguments)); 1585 } 1586 case ASTSuffix::kField_Kind: { 1587 if (base->fType == *fContext.fSkCaps_Type) { 1588 return this->getCap(expression.fPosition, 1589 ((ASTFieldSuffix&) *expression.fSuffix).fField); 1590 } 1591 switch (base->fType.kind()) { 1592 case Type::kVector_Kind: 1593 return this->convertSwizzle(std::move(base), 1594 ((ASTFieldSuffix&) *expression.fSuffix).fField); 1595 case Type::kStruct_Kind: 1596 return this->convertField(std::move(base), 1597 ((ASTFieldSuffix&) *expression.fSuffix).fField); 1598 default: 1599 fErrors.error(base->fPosition, "cannot swizzle value of type '" + 1600 base->fType.description() + "'"); 1601 return nullptr; 1602 } 1603 } 1604 case ASTSuffix::kPostIncrement_Kind: 1605 if (!base->fType.isNumber()) { 1606 fErrors.error(expression.fPosition, 1607 "'++' cannot operate on '" + base->fType.description() + "'"); 1608 return nullptr; 1609 } 1610 this->markWrittenTo(*base, true); 1611 return std::unique_ptr<Expression>(new PostfixExpression(std::move(base), 1612 Token::PLUSPLUS)); 1613 case ASTSuffix::kPostDecrement_Kind: 1614 if (!base->fType.isNumber()) { 1615 fErrors.error(expression.fPosition, 1616 "'--' cannot operate on '" + base->fType.description() + "'"); 1617 return nullptr; 1618 } 1619 this->markWrittenTo(*base, true); 1620 return std::unique_ptr<Expression>(new PostfixExpression(std::move(base), 1621 Token::MINUSMINUS)); 1622 default: 1623 ABORT("unsupported suffix operator"); 1624 } 1625 } 1626 1627 void IRGenerator::checkValid(const Expression& expr) { 1628 switch (expr.fKind) { 1629 case Expression::kFunctionReference_Kind: 1630 fErrors.error(expr.fPosition, "expected '(' to begin function call"); 1631 break; 1632 case Expression::kTypeReference_Kind: 1633 fErrors.error(expr.fPosition, "expected '(' to begin constructor invocation"); 1634 break; 1635 default: 1636 if (expr.fType == *fContext.fInvalid_Type) { 1637 fErrors.error(expr.fPosition, "invalid expression"); 1638 } 1639 } 1640 } 1641 1642 static bool has_duplicates(const Swizzle& swizzle) { 1643 int bits = 0; 1644 for (int idx : swizzle.fComponents) { 1645 ASSERT(idx >= 0 && idx <= 3); 1646 int bit = 1 << idx; 1647 if (bits & bit) { 1648 return true; 1649 } 1650 bits |= bit; 1651 } 1652 return false; 1653 } 1654 1655 void IRGenerator::markWrittenTo(const Expression& expr, bool readWrite) { 1656 switch (expr.fKind) { 1657 case Expression::kVariableReference_Kind: { 1658 const Variable& var = ((VariableReference&) expr).fVariable; 1659 if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) { 1660 fErrors.error(expr.fPosition, 1661 "cannot modify immutable variable '" + var.fName + "'"); 1662 } 1663 ((VariableReference&) expr).setRefKind(readWrite ? VariableReference::kReadWrite_RefKind 1664 : VariableReference::kWrite_RefKind); 1665 break; 1666 } 1667 case Expression::kFieldAccess_Kind: 1668 this->markWrittenTo(*((FieldAccess&) expr).fBase, readWrite); 1669 break; 1670 case Expression::kSwizzle_Kind: 1671 if (has_duplicates((Swizzle&) expr)) { 1672 fErrors.error(expr.fPosition, 1673 "cannot write to the same swizzle field more than once"); 1674 } 1675 this->markWrittenTo(*((Swizzle&) expr).fBase, readWrite); 1676 break; 1677 case Expression::kIndex_Kind: 1678 this->markWrittenTo(*((IndexExpression&) expr).fBase, readWrite); 1679 break; 1680 default: 1681 fErrors.error(expr.fPosition, "cannot assign to '" + expr.description() + "'"); 1682 break; 1683 } 1684 } 1685 1686 } 1687