Home | History | Annotate | Download | only in gradients
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "Sk4fLinearGradient.h"
      9 #include "SkColorSpace_XYZ.h"
     10 #include "SkGradientShaderPriv.h"
     11 #include "SkHalf.h"
     12 #include "SkLinearGradient.h"
     13 #include "SkRadialGradient.h"
     14 #include "SkTwoPointConicalGradient.h"
     15 #include "SkSweepGradient.h"
     16 
     17 enum GradientSerializationFlags {
     18     // Bits 29:31 used for various boolean flags
     19     kHasPosition_GSF    = 0x80000000,
     20     kHasLocalMatrix_GSF = 0x40000000,
     21     kHasColorSpace_GSF  = 0x20000000,
     22 
     23     // Bits 12:28 unused
     24 
     25     // Bits 8:11 for fTileMode
     26     kTileModeShift_GSF  = 8,
     27     kTileModeMask_GSF   = 0xF,
     28 
     29     // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80)
     30     kGradFlagsShift_GSF = 0,
     31     kGradFlagsMask_GSF  = 0xFF,
     32 };
     33 
     34 void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const {
     35     uint32_t flags = 0;
     36     if (fPos) {
     37         flags |= kHasPosition_GSF;
     38     }
     39     if (fLocalMatrix) {
     40         flags |= kHasLocalMatrix_GSF;
     41     }
     42     sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr;
     43     if (colorSpaceData) {
     44         flags |= kHasColorSpace_GSF;
     45     }
     46     SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF);
     47     flags |= (fTileMode << kTileModeShift_GSF);
     48     SkASSERT(fGradFlags <= kGradFlagsMask_GSF);
     49     flags |= (fGradFlags << kGradFlagsShift_GSF);
     50 
     51     buffer.writeUInt(flags);
     52 
     53     buffer.writeColor4fArray(fColors, fCount);
     54     if (colorSpaceData) {
     55         buffer.writeDataAsByteArray(colorSpaceData.get());
     56     }
     57     if (fPos) {
     58         buffer.writeScalarArray(fPos, fCount);
     59     }
     60     if (fLocalMatrix) {
     61         buffer.writeMatrix(*fLocalMatrix);
     62     }
     63 }
     64 
     65 bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) {
     66     if (buffer.isVersionLT(SkReadBuffer::kGradientShaderFloatColor_Version)) {
     67         fCount = buffer.getArrayCount();
     68         if (fCount > kStorageCount) {
     69             size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount;
     70             fDynamicStorage.reset(allocSize);
     71             fColors = (SkColor4f*)fDynamicStorage.get();
     72             fPos = (SkScalar*)(fColors + fCount);
     73         } else {
     74             fColors = fColorStorage;
     75             fPos = fPosStorage;
     76         }
     77 
     78         // Old gradients serialized SkColor. Read that to a temporary location, then convert.
     79         SkSTArray<2, SkColor, true> colors;
     80         colors.resize_back(fCount);
     81         if (!buffer.readColorArray(colors.begin(), fCount)) {
     82             return false;
     83         }
     84         for (int i = 0; i < fCount; ++i) {
     85             mutableColors()[i] = SkColor4f::FromColor(colors[i]);
     86         }
     87 
     88         if (buffer.readBool()) {
     89             if (!buffer.readScalarArray(const_cast<SkScalar*>(fPos), fCount)) {
     90                 return false;
     91             }
     92         } else {
     93             fPos = nullptr;
     94         }
     95 
     96         fColorSpace = nullptr;
     97         fTileMode = (SkShader::TileMode)buffer.read32();
     98         fGradFlags = buffer.read32();
     99 
    100         if (buffer.readBool()) {
    101             fLocalMatrix = &fLocalMatrixStorage;
    102             buffer.readMatrix(&fLocalMatrixStorage);
    103         } else {
    104             fLocalMatrix = nullptr;
    105         }
    106     } else {
    107         // New gradient format. Includes floating point color, color space, densely packed flags
    108         uint32_t flags = buffer.readUInt();
    109 
    110         fTileMode = (SkShader::TileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF);
    111         fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF;
    112 
    113         fCount = buffer.getArrayCount();
    114         if (fCount > kStorageCount) {
    115             size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount;
    116             fDynamicStorage.reset(allocSize);
    117             fColors = (SkColor4f*)fDynamicStorage.get();
    118             fPos = (SkScalar*)(fColors + fCount);
    119         } else {
    120             fColors = fColorStorage;
    121             fPos = fPosStorage;
    122         }
    123         if (!buffer.readColor4fArray(mutableColors(), fCount)) {
    124             return false;
    125         }
    126         if (SkToBool(flags & kHasColorSpace_GSF)) {
    127             sk_sp<SkData> data = buffer.readByteArrayAsData();
    128             fColorSpace = SkColorSpace::Deserialize(data->data(), data->size());
    129         } else {
    130             fColorSpace = nullptr;
    131         }
    132         if (SkToBool(flags & kHasPosition_GSF)) {
    133             if (!buffer.readScalarArray(mutablePos(), fCount)) {
    134                 return false;
    135             }
    136         } else {
    137             fPos = nullptr;
    138         }
    139         if (SkToBool(flags & kHasLocalMatrix_GSF)) {
    140             fLocalMatrix = &fLocalMatrixStorage;
    141             buffer.readMatrix(&fLocalMatrixStorage);
    142         } else {
    143             fLocalMatrix = nullptr;
    144         }
    145     }
    146     return buffer.isValid();
    147 }
    148 
    149 ////////////////////////////////////////////////////////////////////////////////////////////
    150 
    151 SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit)
    152     : INHERITED(desc.fLocalMatrix)
    153     , fPtsToUnit(ptsToUnit)
    154 {
    155     fPtsToUnit.getType();  // Precache so reads are threadsafe.
    156     SkASSERT(desc.fCount > 1);
    157 
    158     fGradFlags = static_cast<uint8_t>(desc.fGradFlags);
    159 
    160     SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
    161     SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
    162     fTileMode = desc.fTileMode;
    163     fTileProc = gTileProcs[desc.fTileMode];
    164 
    165     /*  Note: we let the caller skip the first and/or last position.
    166         i.e. pos[0] = 0.3, pos[1] = 0.7
    167         In these cases, we insert dummy entries to ensure that the final data
    168         will be bracketed by [0, 1].
    169         i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
    170 
    171         Thus colorCount (the caller's value, and fColorCount (our value) may
    172         differ by up to 2. In the above example:
    173             colorCount = 2
    174             fColorCount = 4
    175      */
    176     fColorCount = desc.fCount;
    177     // check if we need to add in dummy start and/or end position/colors
    178     bool dummyFirst = false;
    179     bool dummyLast = false;
    180     if (desc.fPos) {
    181         dummyFirst = desc.fPos[0] != 0;
    182         dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
    183         fColorCount += dummyFirst + dummyLast;
    184     }
    185 
    186     if (fColorCount > kColorStorageCount) {
    187         size_t size = sizeof(SkColor) + sizeof(SkColor4f) + sizeof(Rec);
    188         if (desc.fPos) {
    189             size += sizeof(SkScalar);
    190         }
    191         fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(size * fColorCount));
    192     }
    193     else {
    194         fOrigColors = fStorage;
    195     }
    196 
    197     fOrigColors4f = (SkColor4f*)(fOrigColors + fColorCount);
    198 
    199     // Now copy over the colors, adding the dummies as needed
    200     SkColor4f* origColors = fOrigColors4f;
    201     if (dummyFirst) {
    202         *origColors++ = desc.fColors[0];
    203     }
    204     memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor4f));
    205     if (dummyLast) {
    206         origColors += desc.fCount;
    207         *origColors = desc.fColors[desc.fCount - 1];
    208     }
    209 
    210     // Convert our SkColor4f colors to SkColor as well. Note that this is incorrect if the
    211     // source colors are not in sRGB gamut. We would need to do a gamut transformation, but
    212     // SkColorSpaceXform can't do that (yet). GrColorSpaceXform can, but we may not have GPU
    213     // support compiled in here. For the common case (sRGB colors), this does the right thing.
    214     for (int i = 0; i < fColorCount; ++i) {
    215         fOrigColors[i] = fOrigColors4f[i].toSkColor();
    216     }
    217 
    218     if (!desc.fColorSpace) {
    219         // This happens if we were constructed from SkColors, so our colors are really sRGB
    220         fColorSpace = SkColorSpace::MakeSRGBLinear();
    221     } else {
    222         // The color space refers to the float colors, so it must be linear gamma
    223         SkASSERT(desc.fColorSpace->gammaIsLinear());
    224         fColorSpace = desc.fColorSpace;
    225     }
    226 
    227     if (desc.fPos && fColorCount) {
    228         fOrigPos = (SkScalar*)(fOrigColors4f + fColorCount);
    229         fRecs = (Rec*)(fOrigPos + fColorCount);
    230     } else {
    231         fOrigPos = nullptr;
    232         fRecs = (Rec*)(fOrigColors4f + fColorCount);
    233     }
    234 
    235     if (fColorCount > 2) {
    236         Rec* recs = fRecs;
    237         recs->fPos = 0;
    238         //  recs->fScale = 0; // unused;
    239         recs += 1;
    240         if (desc.fPos) {
    241             SkScalar* origPosPtr = fOrigPos;
    242             *origPosPtr++ = 0;
    243 
    244             /*  We need to convert the user's array of relative positions into
    245                 fixed-point positions and scale factors. We need these results
    246                 to be strictly monotonic (no two values equal or out of order).
    247                 Hence this complex loop that just jams a zero for the scale
    248                 value if it sees a segment out of order, and it assures that
    249                 we start at 0 and end at 1.0
    250             */
    251             SkScalar prev = 0;
    252             int startIndex = dummyFirst ? 0 : 1;
    253             int count = desc.fCount + dummyLast;
    254             for (int i = startIndex; i < count; i++) {
    255                 // force the last value to be 1.0
    256                 SkScalar curr;
    257                 if (i == desc.fCount) {  // we're really at the dummyLast
    258                     curr = 1;
    259                 } else {
    260                     curr = SkScalarPin(desc.fPos[i], 0, 1);
    261                 }
    262                 *origPosPtr++ = curr;
    263 
    264                 recs->fPos = SkScalarToFixed(curr);
    265                 SkFixed diff = SkScalarToFixed(curr - prev);
    266                 if (diff > 0) {
    267                     recs->fScale = (1 << 24) / diff;
    268                 } else {
    269                     recs->fScale = 0; // ignore this segment
    270                 }
    271                 // get ready for the next value
    272                 prev = curr;
    273                 recs += 1;
    274             }
    275         } else {    // assume even distribution
    276             fOrigPos = nullptr;
    277 
    278             SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
    279             SkFixed p = dp;
    280             SkFixed scale = (desc.fCount - 1) << 8;  // (1 << 24) / dp
    281             for (int i = 1; i < desc.fCount - 1; i++) {
    282                 recs->fPos   = p;
    283                 recs->fScale = scale;
    284                 recs += 1;
    285                 p += dp;
    286             }
    287             recs->fPos = SK_Fixed1;
    288             recs->fScale = scale;
    289         }
    290     } else if (desc.fPos) {
    291         SkASSERT(2 == fColorCount);
    292         fOrigPos[0] = SkScalarPin(desc.fPos[0], 0, 1);
    293         fOrigPos[1] = SkScalarPin(desc.fPos[1], fOrigPos[0], 1);
    294         if (0 == fOrigPos[0] && 1 == fOrigPos[1]) {
    295             fOrigPos = nullptr;
    296         }
    297     }
    298     this->initCommon();
    299 }
    300 
    301 SkGradientShaderBase::~SkGradientShaderBase() {
    302     if (fOrigColors != fStorage) {
    303         sk_free(fOrigColors);
    304     }
    305 }
    306 
    307 void SkGradientShaderBase::initCommon() {
    308     unsigned colorAlpha = 0xFF;
    309     for (int i = 0; i < fColorCount; i++) {
    310         colorAlpha &= SkColorGetA(fOrigColors[i]);
    311     }
    312     fColorsAreOpaque = colorAlpha == 0xFF;
    313 }
    314 
    315 void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
    316     Descriptor desc;
    317     desc.fColors = fOrigColors4f;
    318     desc.fColorSpace = fColorSpace;
    319     desc.fPos = fOrigPos;
    320     desc.fCount = fColorCount;
    321     desc.fTileMode = fTileMode;
    322     desc.fGradFlags = fGradFlags;
    323 
    324     const SkMatrix& m = this->getLocalMatrix();
    325     desc.fLocalMatrix = m.isIdentity() ? nullptr : &m;
    326     desc.flatten(buffer);
    327 }
    328 
    329 void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst,
    330                                               SkColor* colorSrc, Rec* recSrc,
    331                                               int count) {
    332     SkAutoSTArray<8, SkColor> colorsTemp(count);
    333     for (int i = 0; i < count; ++i) {
    334         int offset = count - i - 1;
    335         colorsTemp[i] = colorSrc[offset];
    336     }
    337     if (count > 2) {
    338         SkAutoSTArray<8, Rec> recsTemp(count);
    339         for (int i = 0; i < count; ++i) {
    340             int offset = count - i - 1;
    341             recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos;
    342             recsTemp[i].fScale = recSrc[offset].fScale;
    343         }
    344         memcpy(recDst, recsTemp.get(), count * sizeof(Rec));
    345     }
    346     memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor));
    347 }
    348 
    349 bool SkGradientShaderBase::isOpaque() const {
    350     return fColorsAreOpaque;
    351 }
    352 
    353 static unsigned rounded_divide(unsigned numer, unsigned denom) {
    354     return (numer + (denom >> 1)) / denom;
    355 }
    356 
    357 bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const {
    358     // we just compute an average color.
    359     // possibly we could weight this based on the proportional width for each color
    360     //   assuming they are not evenly distributed in the fPos array.
    361     int r = 0;
    362     int g = 0;
    363     int b = 0;
    364     const int n = fColorCount;
    365     for (int i = 0; i < n; ++i) {
    366         SkColor c = fOrigColors[i];
    367         r += SkColorGetR(c);
    368         g += SkColorGetG(c);
    369         b += SkColorGetB(c);
    370     }
    371     *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n));
    372     return true;
    373 }
    374 
    375 SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext(
    376         const SkGradientShaderBase& shader, const ContextRec& rec)
    377     : INHERITED(shader, rec)
    378 #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
    379     , fDither(true)
    380 #else
    381     , fDither(rec.fPaint->isDither())
    382 #endif
    383     , fCache(shader.refCache(getPaintAlpha(), fDither))
    384 {
    385     const SkMatrix& inverse = this->getTotalInverse();
    386 
    387     fDstToIndex.setConcat(shader.fPtsToUnit, inverse);
    388 
    389     fDstToIndexProc = fDstToIndex.getMapXYProc();
    390     fDstToIndexClass = (uint8_t)SkShader::Context::ComputeMatrixClass(fDstToIndex);
    391 
    392     // now convert our colors in to PMColors
    393     unsigned paintAlpha = this->getPaintAlpha();
    394 
    395     fFlags = this->INHERITED::getFlags();
    396     if (shader.fColorsAreOpaque && paintAlpha == 0xFF) {
    397         fFlags |= kOpaqueAlpha_Flag;
    398     }
    399 }
    400 
    401 bool SkGradientShaderBase::GradientShaderBaseContext::isValid() const {
    402     return fDstToIndex.isFinite();
    403 }
    404 
    405 SkGradientShaderBase::GradientShaderCache::GradientShaderCache(
    406         U8CPU alpha, bool dither, const SkGradientShaderBase& shader)
    407     : fCacheAlpha(alpha)
    408     , fCacheDither(dither)
    409     , fShader(shader)
    410 {
    411     // Only initialize the cache in getCache32.
    412     fCache32 = nullptr;
    413     fCache32PixelRef = nullptr;
    414 }
    415 
    416 SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {
    417     SkSafeUnref(fCache32PixelRef);
    418 }
    419 
    420 /*
    421  *  r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
    422  *  release builds, we saw a compiler error where the 0xFF parameter in
    423  *  SkPackARGB32() was being totally ignored whenever it was called with
    424  *  a non-zero add (e.g. 0x8000).
    425  *
    426  *  We found two work-arounds:
    427  *      1. change r,g,b to unsigned (or just one of them)
    428  *      2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
    429  *         of using |
    430  *
    431  *  We chose #1 just because it was more localized.
    432  *  See http://code.google.com/p/skia/issues/detail?id=1113
    433  *
    434  *  The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
    435  */
    436 typedef uint32_t SkUFixed;
    437 
    438 void SkGradientShaderBase::GradientShaderCache::Build32bitCache(
    439         SkPMColor cache[], SkColor c0, SkColor c1,
    440         int count, U8CPU paintAlpha, uint32_t gradFlags, bool dither) {
    441     SkASSERT(count > 1);
    442 
    443     // need to apply paintAlpha to our two endpoints
    444     uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
    445     uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
    446 
    447 
    448     const bool interpInPremul = SkToBool(gradFlags &
    449                            SkGradientShader::kInterpolateColorsInPremul_Flag);
    450 
    451     uint32_t r0 = SkColorGetR(c0);
    452     uint32_t g0 = SkColorGetG(c0);
    453     uint32_t b0 = SkColorGetB(c0);
    454 
    455     uint32_t r1 = SkColorGetR(c1);
    456     uint32_t g1 = SkColorGetG(c1);
    457     uint32_t b1 = SkColorGetB(c1);
    458 
    459     if (interpInPremul) {
    460         r0 = SkMulDiv255Round(r0, a0);
    461         g0 = SkMulDiv255Round(g0, a0);
    462         b0 = SkMulDiv255Round(b0, a0);
    463 
    464         r1 = SkMulDiv255Round(r1, a1);
    465         g1 = SkMulDiv255Round(g1, a1);
    466         b1 = SkMulDiv255Round(b1, a1);
    467     }
    468 
    469     SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
    470     SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
    471     SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
    472     SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
    473 
    474     /*  We pre-add 1/8 to avoid having to add this to our [0] value each time
    475         in the loop. Without this, the bias for each would be
    476             0x2000  0xA000  0xE000  0x6000
    477         With this trick, we can add 0 for the first (no-op) and just adjust the
    478         others.
    479      */
    480     const SkUFixed bias0 = dither ? 0x2000 : 0x8000;
    481     const SkUFixed bias1 = dither ? 0x8000 : 0;
    482     const SkUFixed bias2 = dither ? 0xC000 : 0;
    483     const SkUFixed bias3 = dither ? 0x4000 : 0;
    484 
    485     SkUFixed a = SkIntToFixed(a0) + bias0;
    486     SkUFixed r = SkIntToFixed(r0) + bias0;
    487     SkUFixed g = SkIntToFixed(g0) + bias0;
    488     SkUFixed b = SkIntToFixed(b0) + bias0;
    489 
    490     /*
    491      *  Our dither-cell (spatially) is
    492      *      0 2
    493      *      3 1
    494      *  Where
    495      *      [0] -> [-1/8 ... 1/8 ) values near 0
    496      *      [1] -> [ 1/8 ... 3/8 ) values near 1/4
    497      *      [2] -> [ 3/8 ... 5/8 ) values near 1/2
    498      *      [3] -> [ 5/8 ... 7/8 ) values near 3/4
    499      */
    500 
    501     if (0xFF == a0 && 0 == da) {
    502         do {
    503             cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0    ) >> 16,
    504                                                         (g + 0    ) >> 16,
    505                                                         (b + 0    ) >> 16);
    506             cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + bias1) >> 16,
    507                                                         (g + bias1) >> 16,
    508                                                         (b + bias1) >> 16);
    509             cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + bias2) >> 16,
    510                                                         (g + bias2) >> 16,
    511                                                         (b + bias2) >> 16);
    512             cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + bias3) >> 16,
    513                                                         (g + bias3) >> 16,
    514                                                         (b + bias3) >> 16);
    515             cache += 1;
    516             r += dr;
    517             g += dg;
    518             b += db;
    519         } while (--count != 0);
    520     } else if (interpInPremul) {
    521         do {
    522             cache[kCache32Count*0] = SkPackARGB32((a + 0    ) >> 16,
    523                                                   (r + 0    ) >> 16,
    524                                                   (g + 0    ) >> 16,
    525                                                   (b + 0    ) >> 16);
    526             cache[kCache32Count*1] = SkPackARGB32((a + bias1) >> 16,
    527                                                   (r + bias1) >> 16,
    528                                                   (g + bias1) >> 16,
    529                                                   (b + bias1) >> 16);
    530             cache[kCache32Count*2] = SkPackARGB32((a + bias2) >> 16,
    531                                                   (r + bias2) >> 16,
    532                                                   (g + bias2) >> 16,
    533                                                   (b + bias2) >> 16);
    534             cache[kCache32Count*3] = SkPackARGB32((a + bias3) >> 16,
    535                                                   (r + bias3) >> 16,
    536                                                   (g + bias3) >> 16,
    537                                                   (b + bias3) >> 16);
    538             cache += 1;
    539             a += da;
    540             r += dr;
    541             g += dg;
    542             b += db;
    543         } while (--count != 0);
    544     } else {    // interpolate in unpreml space
    545         do {
    546             cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0     ) >> 16,
    547                                                              (r + 0     ) >> 16,
    548                                                              (g + 0     ) >> 16,
    549                                                              (b + 0     ) >> 16);
    550             cache[kCache32Count*1] = SkPremultiplyARGBInline((a + bias1) >> 16,
    551                                                              (r + bias1) >> 16,
    552                                                              (g + bias1) >> 16,
    553                                                              (b + bias1) >> 16);
    554             cache[kCache32Count*2] = SkPremultiplyARGBInline((a + bias2) >> 16,
    555                                                              (r + bias2) >> 16,
    556                                                              (g + bias2) >> 16,
    557                                                              (b + bias2) >> 16);
    558             cache[kCache32Count*3] = SkPremultiplyARGBInline((a + bias3) >> 16,
    559                                                              (r + bias3) >> 16,
    560                                                              (g + bias3) >> 16,
    561                                                              (b + bias3) >> 16);
    562             cache += 1;
    563             a += da;
    564             r += dr;
    565             g += dg;
    566             b += db;
    567         } while (--count != 0);
    568     }
    569 }
    570 
    571 static inline int SkFixedToFFFF(SkFixed x) {
    572     SkASSERT((unsigned)x <= SK_Fixed1);
    573     return x - (x >> 16);
    574 }
    575 
    576 const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() {
    577     fCache32InitOnce(SkGradientShaderBase::GradientShaderCache::initCache32, this);
    578     SkASSERT(fCache32);
    579     return fCache32;
    580 }
    581 
    582 void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) {
    583     const int kNumberOfDitherRows = 4;
    584     const SkImageInfo info = SkImageInfo::MakeN32Premul(kCache32Count, kNumberOfDitherRows);
    585 
    586     SkASSERT(nullptr == cache->fCache32PixelRef);
    587     cache->fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, nullptr);
    588     cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->getAddr();
    589     if (cache->fShader.fColorCount == 2) {
    590         Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0],
    591                         cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha,
    592                         cache->fShader.fGradFlags, cache->fCacheDither);
    593     } else {
    594         Rec* rec = cache->fShader.fRecs;
    595         int prevIndex = 0;
    596         for (int i = 1; i < cache->fShader.fColorCount; i++) {
    597             int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
    598             SkASSERT(nextIndex < kCache32Count);
    599 
    600             if (nextIndex > prevIndex)
    601                 Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1],
    602                                 cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1,
    603                                 cache->fCacheAlpha, cache->fShader.fGradFlags, cache->fCacheDither);
    604             prevIndex = nextIndex;
    605         }
    606     }
    607 }
    608 
    609 void SkGradientShaderBase::initLinearBitmap(SkBitmap* bitmap) const {
    610     const bool interpInPremul = SkToBool(fGradFlags &
    611                                          SkGradientShader::kInterpolateColorsInPremul_Flag);
    612     bitmap->lockPixels();
    613     SkHalf* pixelsF16 = reinterpret_cast<SkHalf*>(bitmap->getPixels());
    614     uint32_t* pixelsS32 = reinterpret_cast<uint32_t*>(bitmap->getPixels());
    615 
    616     typedef std::function<void(const Sk4f&, int)> pixelWriteFn_t;
    617 
    618     pixelWriteFn_t writeF16Pixel = [&](const Sk4f& x, int index) {
    619         Sk4h c = SkFloatToHalf_finite_ftz(x);
    620         pixelsF16[4*index+0] = c[0];
    621         pixelsF16[4*index+1] = c[1];
    622         pixelsF16[4*index+2] = c[2];
    623         pixelsF16[4*index+3] = c[3];
    624     };
    625     pixelWriteFn_t writeS32Pixel = [&](const Sk4f& c, int index) {
    626         pixelsS32[index] = Sk4f_toS32(c);
    627     };
    628 
    629     pixelWriteFn_t writeSizedPixel =
    630         (kRGBA_F16_SkColorType == bitmap->colorType()) ? writeF16Pixel : writeS32Pixel;
    631     pixelWriteFn_t writeUnpremulPixel = [&](const Sk4f& c, int index) {
    632         writeSizedPixel(c * Sk4f(c[3], c[3], c[3], 1.0f), index);
    633     };
    634 
    635     pixelWriteFn_t writePixel = interpInPremul ? writeSizedPixel : writeUnpremulPixel;
    636 
    637     int prevIndex = 0;
    638     for (int i = 1; i < fColorCount; i++) {
    639         int nextIndex = (fColorCount == 2) ? (kCache32Count - 1)
    640             : SkFixedToFFFF(fRecs[i].fPos) >> kCache32Shift;
    641         SkASSERT(nextIndex < kCache32Count);
    642 
    643         if (nextIndex > prevIndex) {
    644             Sk4f c0 = Sk4f::Load(fOrigColors4f[i - 1].vec());
    645             Sk4f c1 = Sk4f::Load(fOrigColors4f[i].vec());
    646             if (interpInPremul) {
    647                 c0 = c0 * Sk4f(c0[3], c0[3], c0[3], 1.0f);
    648                 c1 = c1 * Sk4f(c1[3], c1[3], c1[3], 1.0f);
    649             }
    650 
    651             Sk4f step = Sk4f(1.0f / static_cast<float>(nextIndex - prevIndex));
    652             Sk4f delta = (c1 - c0) * step;
    653 
    654             for (int curIndex = prevIndex; curIndex <= nextIndex; ++curIndex) {
    655                 writePixel(c0, curIndex);
    656                 c0 += delta;
    657             }
    658         }
    659         prevIndex = nextIndex;
    660     }
    661     SkASSERT(prevIndex == kCache32Count - 1);
    662     bitmap->unlockPixels();
    663 }
    664 
    665 /*
    666  *  The gradient holds a cache for the most recent value of alpha. Successive
    667  *  callers with the same alpha value will share the same cache.
    668  */
    669 sk_sp<SkGradientShaderBase::GradientShaderCache> SkGradientShaderBase::refCache(U8CPU alpha,
    670                                                                           bool dither) const {
    671     SkAutoMutexAcquire ama(fCacheMutex);
    672     if (!fCache || fCache->getAlpha() != alpha || fCache->getDither() != dither) {
    673         fCache.reset(new GradientShaderCache(alpha, dither, *this));
    674     }
    675     // Increment the ref counter inside the mutex to ensure the returned pointer is still valid.
    676     // Otherwise, the pointer may have been overwritten on a different thread before the object's
    677     // ref count was incremented.
    678     return fCache;
    679 }
    680 
    681 SK_DECLARE_STATIC_MUTEX(gGradientCacheMutex);
    682 /*
    683  *  Because our caller might rebuild the same (logically the same) gradient
    684  *  over and over, we'd like to return exactly the same "bitmap" if possible,
    685  *  allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
    686  *  To do that, we maintain a private cache of built-bitmaps, based on our
    687  *  colors and positions. Note: we don't try to flatten the fMapper, so if one
    688  *  is present, we skip the cache for now.
    689  */
    690 void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap,
    691                                                   GradientBitmapType bitmapType) const {
    692     // our caller assumes no external alpha, so we ensure that our cache is built with 0xFF
    693     sk_sp<GradientShaderCache> cache(this->refCache(0xFF, true));
    694 
    695     // build our key: [numColors + colors[] + {positions[]} + flags + colorType ]
    696     int count = 1 + fColorCount + 1 + 1;
    697     if (fColorCount > 2) {
    698         count += fColorCount - 1;    // fRecs[].fPos
    699     }
    700 
    701     SkAutoSTMalloc<16, int32_t> storage(count);
    702     int32_t* buffer = storage.get();
    703 
    704     *buffer++ = fColorCount;
    705     memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
    706     buffer += fColorCount;
    707     if (fColorCount > 2) {
    708         for (int i = 1; i < fColorCount; i++) {
    709             *buffer++ = fRecs[i].fPos;
    710         }
    711     }
    712     *buffer++ = fGradFlags;
    713     *buffer++ = static_cast<int32_t>(bitmapType);
    714     SkASSERT(buffer - storage.get() == count);
    715 
    716     ///////////////////////////////////
    717 
    718     static SkGradientBitmapCache* gCache;
    719     // each cache cost 1K or 2K of RAM, since each bitmap will be 1x256 at either 32bpp or 64bpp
    720     static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
    721     SkAutoMutexAcquire ama(gGradientCacheMutex);
    722 
    723     if (nullptr == gCache) {
    724         gCache = new SkGradientBitmapCache(MAX_NUM_CACHED_GRADIENT_BITMAPS);
    725     }
    726     size_t size = count * sizeof(int32_t);
    727 
    728     if (!gCache->find(storage.get(), size, bitmap)) {
    729         if (GradientBitmapType::kLegacy == bitmapType) {
    730             // force our cache32pixelref to be built
    731             (void)cache->getCache32();
    732             bitmap->setInfo(SkImageInfo::MakeN32Premul(kCache32Count, 1));
    733             bitmap->setPixelRef(sk_ref_sp(cache->getCache32PixelRef()), 0, 0);
    734         } else {
    735             // For these cases we use the bitmap cache, but not the GradientShaderCache. So just
    736             // allocate and populate the bitmap's data directly.
    737 
    738             SkImageInfo info;
    739             switch (bitmapType) {
    740                 case GradientBitmapType::kSRGB:
    741                     info = SkImageInfo::Make(kCache32Count, 1, kRGBA_8888_SkColorType,
    742                                              kPremul_SkAlphaType,
    743                                              SkColorSpace::MakeSRGB());
    744                     break;
    745                 case GradientBitmapType::kHalfFloat:
    746                     info = SkImageInfo::Make(
    747                         kCache32Count, 1, kRGBA_F16_SkColorType, kPremul_SkAlphaType,
    748                         SkColorSpace::MakeSRGBLinear());
    749                     break;
    750                 default:
    751                     SkFAIL("Unexpected bitmap type");
    752                     return;
    753             }
    754             bitmap->allocPixels(info);
    755             this->initLinearBitmap(bitmap);
    756         }
    757         gCache->add(storage.get(), size, *bitmap);
    758     }
    759 }
    760 
    761 void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const {
    762     if (info) {
    763         if (info->fColorCount >= fColorCount) {
    764             SkColor* colorLoc;
    765             Rec*     recLoc;
    766             SkAutoSTArray<8, SkColor> colorStorage;
    767             SkAutoSTArray<8, Rec> recStorage;
    768             if (flipGrad && (info->fColors || info->fColorOffsets)) {
    769                 colorStorage.reset(fColorCount);
    770                 recStorage.reset(fColorCount);
    771                 colorLoc = colorStorage.get();
    772                 recLoc = recStorage.get();
    773                 FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount);
    774             } else {
    775                 colorLoc = fOrigColors;
    776                 recLoc = fRecs;
    777             }
    778             if (info->fColors) {
    779                 memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor));
    780             }
    781             if (info->fColorOffsets) {
    782                 if (fColorCount == 2) {
    783                     info->fColorOffsets[0] = 0;
    784                     info->fColorOffsets[1] = SK_Scalar1;
    785                 } else if (fColorCount > 2) {
    786                     for (int i = 0; i < fColorCount; ++i) {
    787                         info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos);
    788                     }
    789                 }
    790             }
    791         }
    792         info->fColorCount = fColorCount;
    793         info->fTileMode = fTileMode;
    794         info->fGradientFlags = fGradFlags;
    795     }
    796 }
    797 
    798 #ifndef SK_IGNORE_TO_STRING
    799 void SkGradientShaderBase::toString(SkString* str) const {
    800 
    801     str->appendf("%d colors: ", fColorCount);
    802 
    803     for (int i = 0; i < fColorCount; ++i) {
    804         str->appendHex(fOrigColors[i], 8);
    805         if (i < fColorCount-1) {
    806             str->append(", ");
    807         }
    808     }
    809 
    810     if (fColorCount > 2) {
    811         str->append(" points: (");
    812         for (int i = 0; i < fColorCount; ++i) {
    813             str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
    814             if (i < fColorCount-1) {
    815                 str->append(", ");
    816             }
    817         }
    818         str->append(")");
    819     }
    820 
    821     static const char* gTileModeName[SkShader::kTileModeCount] = {
    822         "clamp", "repeat", "mirror"
    823     };
    824 
    825     str->append(" ");
    826     str->append(gTileModeName[fTileMode]);
    827 
    828     this->INHERITED::toString(str);
    829 }
    830 #endif
    831 
    832 ///////////////////////////////////////////////////////////////////////////////
    833 ///////////////////////////////////////////////////////////////////////////////
    834 
    835 // Return true if these parameters are valid/legal/safe to construct a gradient
    836 //
    837 static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count,
    838                        unsigned tileMode) {
    839     return nullptr != colors && count >= 1 && tileMode < (unsigned)SkShader::kTileModeCount;
    840 }
    841 
    842 static void desc_init(SkGradientShaderBase::Descriptor* desc,
    843                       const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace,
    844                       const SkScalar pos[], int colorCount,
    845                       SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) {
    846     SkASSERT(colorCount > 1);
    847 
    848     desc->fColors       = colors;
    849     desc->fColorSpace   = std::move(colorSpace);
    850     desc->fPos          = pos;
    851     desc->fCount        = colorCount;
    852     desc->fTileMode     = mode;
    853     desc->fGradFlags    = flags;
    854     desc->fLocalMatrix  = localMatrix;
    855 }
    856 
    857 // assumes colors is SkColor4f* and pos is SkScalar*
    858 #define EXPAND_1_COLOR(count)                \
    859      SkColor4f tmp[2];                       \
    860      do {                                    \
    861          if (1 == count) {                   \
    862              tmp[0] = tmp[1] = colors[0];    \
    863              colors = tmp;                   \
    864              pos = nullptr;                  \
    865              count = 2;                      \
    866          }                                   \
    867      } while (0)
    868 
    869 struct ColorStopOptimizer {
    870     ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos,
    871                        int count, SkShader::TileMode mode)
    872         : fColors(colors)
    873         , fPos(pos)
    874         , fCount(count) {
    875 
    876             if (!pos || count != 3) {
    877                 return;
    878             }
    879 
    880             if (SkScalarNearlyEqual(pos[0], 0.0f) &&
    881                 SkScalarNearlyEqual(pos[1], 0.0f) &&
    882                 SkScalarNearlyEqual(pos[2], 1.0f)) {
    883 
    884                 if (SkShader::kRepeat_TileMode == mode ||
    885                     SkShader::kMirror_TileMode == mode ||
    886                     colors[0] == colors[1]) {
    887 
    888                     // Ignore the leftmost color/pos.
    889                     fColors += 1;
    890                     fPos    += 1;
    891                     fCount   = 2;
    892                 }
    893             } else if (SkScalarNearlyEqual(pos[0], 0.0f) &&
    894                        SkScalarNearlyEqual(pos[1], 1.0f) &&
    895                        SkScalarNearlyEqual(pos[2], 1.0f)) {
    896 
    897                 if (SkShader::kRepeat_TileMode == mode ||
    898                     SkShader::kMirror_TileMode == mode ||
    899                     colors[1] == colors[2]) {
    900 
    901                     // Ignore the rightmost color/pos.
    902                     fCount  = 2;
    903                 }
    904             }
    905     }
    906 
    907     const SkColor4f* fColors;
    908     const SkScalar*  fPos;
    909     int              fCount;
    910 };
    911 
    912 struct ColorConverter {
    913     ColorConverter(const SkColor* colors, int count) {
    914         for (int i = 0; i < count; ++i) {
    915             fColors4f.push_back(SkColor4f::FromColor(colors[i]));
    916         }
    917     }
    918 
    919     SkSTArray<2, SkColor4f, true> fColors4f;
    920 };
    921 
    922 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
    923                                              const SkColor colors[],
    924                                              const SkScalar pos[], int colorCount,
    925                                              SkShader::TileMode mode,
    926                                              uint32_t flags,
    927                                              const SkMatrix* localMatrix) {
    928     ColorConverter converter(colors, colorCount);
    929     return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags,
    930                       localMatrix);
    931 }
    932 
    933 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
    934                                              const SkColor4f colors[],
    935                                              sk_sp<SkColorSpace> colorSpace,
    936                                              const SkScalar pos[], int colorCount,
    937                                              SkShader::TileMode mode,
    938                                              uint32_t flags,
    939                                              const SkMatrix* localMatrix) {
    940     if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) {
    941         return nullptr;
    942     }
    943     if (!valid_grad(colors, pos, colorCount, mode)) {
    944         return nullptr;
    945     }
    946     if (1 == colorCount) {
    947         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
    948     }
    949     if (localMatrix && !localMatrix->invert(nullptr)) {
    950         return nullptr;
    951     }
    952 
    953     ColorStopOptimizer opt(colors, pos, colorCount, mode);
    954 
    955     SkGradientShaderBase::Descriptor desc;
    956     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
    957               localMatrix);
    958     return sk_make_sp<SkLinearGradient>(pts, desc);
    959 }
    960 
    961 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
    962                                              const SkColor colors[],
    963                                              const SkScalar pos[], int colorCount,
    964                                              SkShader::TileMode mode,
    965                                              uint32_t flags,
    966                                              const SkMatrix* localMatrix) {
    967     ColorConverter converter(colors, colorCount);
    968     return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode,
    969                       flags, localMatrix);
    970 }
    971 
    972 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
    973                                              const SkColor4f colors[],
    974                                              sk_sp<SkColorSpace> colorSpace,
    975                                              const SkScalar pos[], int colorCount,
    976                                              SkShader::TileMode mode,
    977                                              uint32_t flags,
    978                                              const SkMatrix* localMatrix) {
    979     if (radius <= 0) {
    980         return nullptr;
    981     }
    982     if (!valid_grad(colors, pos, colorCount, mode)) {
    983         return nullptr;
    984     }
    985     if (1 == colorCount) {
    986         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
    987     }
    988     if (localMatrix && !localMatrix->invert(nullptr)) {
    989         return nullptr;
    990     }
    991 
    992     ColorStopOptimizer opt(colors, pos, colorCount, mode);
    993 
    994     SkGradientShaderBase::Descriptor desc;
    995     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
    996               localMatrix);
    997     return sk_make_sp<SkRadialGradient>(center, radius, desc);
    998 }
    999 
   1000 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
   1001                                                       SkScalar startRadius,
   1002                                                       const SkPoint& end,
   1003                                                       SkScalar endRadius,
   1004                                                       const SkColor colors[],
   1005                                                       const SkScalar pos[],
   1006                                                       int colorCount,
   1007                                                       SkShader::TileMode mode,
   1008                                                       uint32_t flags,
   1009                                                       const SkMatrix* localMatrix) {
   1010     ColorConverter converter(colors, colorCount);
   1011     return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(),
   1012                                nullptr, pos, colorCount, mode, flags, localMatrix);
   1013 }
   1014 
   1015 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
   1016                                                       SkScalar startRadius,
   1017                                                       const SkPoint& end,
   1018                                                       SkScalar endRadius,
   1019                                                       const SkColor4f colors[],
   1020                                                       sk_sp<SkColorSpace> colorSpace,
   1021                                                       const SkScalar pos[],
   1022                                                       int colorCount,
   1023                                                       SkShader::TileMode mode,
   1024                                                       uint32_t flags,
   1025                                                       const SkMatrix* localMatrix) {
   1026     if (startRadius < 0 || endRadius < 0) {
   1027         return nullptr;
   1028     }
   1029     if (!valid_grad(colors, pos, colorCount, mode)) {
   1030         return nullptr;
   1031     }
   1032     if (startRadius == endRadius) {
   1033         if (start == end || startRadius == 0) {
   1034             return SkShader::MakeEmptyShader();
   1035         }
   1036     }
   1037     if (localMatrix && !localMatrix->invert(nullptr)) {
   1038         return nullptr;
   1039     }
   1040     EXPAND_1_COLOR(colorCount);
   1041 
   1042     ColorStopOptimizer opt(colors, pos, colorCount, mode);
   1043 
   1044     bool flipGradient = startRadius > endRadius;
   1045 
   1046     SkGradientShaderBase::Descriptor desc;
   1047 
   1048     if (!flipGradient) {
   1049         desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
   1050                   localMatrix);
   1051         return sk_make_sp<SkTwoPointConicalGradient>(start, startRadius, end, endRadius,
   1052                                                      flipGradient, desc);
   1053     } else {
   1054         SkAutoSTArray<8, SkColor4f> colorsNew(opt.fCount);
   1055         SkAutoSTArray<8, SkScalar> posNew(opt.fCount);
   1056         for (int i = 0; i < opt.fCount; ++i) {
   1057             colorsNew[i] = opt.fColors[opt.fCount - i - 1];
   1058         }
   1059 
   1060         if (pos) {
   1061             for (int i = 0; i < opt.fCount; ++i) {
   1062                 posNew[i] = 1 - opt.fPos[opt.fCount - i - 1];
   1063             }
   1064             desc_init(&desc, colorsNew.get(), std::move(colorSpace), posNew.get(), opt.fCount, mode,
   1065                       flags, localMatrix);
   1066         } else {
   1067             desc_init(&desc, colorsNew.get(), std::move(colorSpace), nullptr, opt.fCount, mode,
   1068                       flags, localMatrix);
   1069         }
   1070 
   1071         return sk_make_sp<SkTwoPointConicalGradient>(end, endRadius, start, startRadius,
   1072                                                      flipGradient, desc);
   1073     }
   1074 }
   1075 
   1076 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
   1077                                             const SkColor colors[],
   1078                                             const SkScalar pos[],
   1079                                             int colorCount,
   1080                                             uint32_t flags,
   1081                                             const SkMatrix* localMatrix) {
   1082     ColorConverter converter(colors, colorCount);
   1083     return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, flags,
   1084                      localMatrix);
   1085 }
   1086 
   1087 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
   1088                                             const SkColor4f colors[],
   1089                                             sk_sp<SkColorSpace> colorSpace,
   1090                                             const SkScalar pos[],
   1091                                             int colorCount,
   1092                                             uint32_t flags,
   1093                                             const SkMatrix* localMatrix) {
   1094     if (!valid_grad(colors, pos, colorCount, SkShader::kClamp_TileMode)) {
   1095         return nullptr;
   1096     }
   1097     if (1 == colorCount) {
   1098         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
   1099     }
   1100     if (localMatrix && !localMatrix->invert(nullptr)) {
   1101         return nullptr;
   1102     }
   1103 
   1104     auto mode = SkShader::kClamp_TileMode;
   1105 
   1106     ColorStopOptimizer opt(colors, pos, colorCount, mode);
   1107 
   1108     SkGradientShaderBase::Descriptor desc;
   1109     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
   1110               localMatrix);
   1111     return sk_make_sp<SkSweepGradient>(cx, cy, desc);
   1112 }
   1113 
   1114 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
   1115     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
   1116     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
   1117     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
   1118     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
   1119 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
   1120 
   1121 ///////////////////////////////////////////////////////////////////////////////
   1122 
   1123 #if SK_SUPPORT_GPU
   1124 
   1125 #include "GrContext.h"
   1126 #include "GrShaderCaps.h"
   1127 #include "GrTextureStripAtlas.h"
   1128 #include "gl/GrGLContext.h"
   1129 #include "glsl/GrGLSLColorSpaceXformHelper.h"
   1130 #include "glsl/GrGLSLFragmentShaderBuilder.h"
   1131 #include "glsl/GrGLSLProgramDataManager.h"
   1132 #include "glsl/GrGLSLUniformHandler.h"
   1133 #include "SkGr.h"
   1134 
   1135 static inline bool close_to_one_half(const SkFixed& val) {
   1136     return SkScalarNearlyEqual(SkFixedToScalar(val), SK_ScalarHalf);
   1137 }
   1138 
   1139 static inline int color_type_to_color_count(GrGradientEffect::ColorType colorType) {
   1140     switch (colorType) {
   1141 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1142         case GrGradientEffect::kSingleHardStop_ColorType:
   1143             return 4;
   1144         case GrGradientEffect::kHardStopLeftEdged_ColorType:
   1145         case GrGradientEffect::kHardStopRightEdged_ColorType:
   1146             return 3;
   1147 #endif
   1148         case GrGradientEffect::kTwo_ColorType:
   1149             return 2;
   1150         case GrGradientEffect::kThree_ColorType:
   1151             return 3;
   1152         case GrGradientEffect::kTexture_ColorType:
   1153             return 0;
   1154     }
   1155 
   1156     SkDEBUGFAIL("Unhandled ColorType in color_type_to_color_count()");
   1157     return -1;
   1158 }
   1159 
   1160 GrGradientEffect::ColorType GrGradientEffect::determineColorType(
   1161         const SkGradientShaderBase& shader) {
   1162 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1163     if (shader.fOrigPos) {
   1164         if (4 == shader.fColorCount) {
   1165             if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
   1166                 SkScalarNearlyEqual(shader.fOrigPos[1], shader.fOrigPos[2]) &&
   1167                 SkScalarNearlyEqual(shader.fOrigPos[3], 1.0f)) {
   1168 
   1169                 return kSingleHardStop_ColorType;
   1170             }
   1171         } else if (3 == shader.fColorCount) {
   1172             if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
   1173                 SkScalarNearlyEqual(shader.fOrigPos[1], 0.0f) &&
   1174                 SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) {
   1175 
   1176                 return kHardStopLeftEdged_ColorType;
   1177             } else if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
   1178                        SkScalarNearlyEqual(shader.fOrigPos[1], 1.0f) &&
   1179                        SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) {
   1180 
   1181                 return kHardStopRightEdged_ColorType;
   1182             }
   1183         }
   1184     }
   1185 #endif
   1186 
   1187     if (SkShader::kClamp_TileMode == shader.getTileMode()) {
   1188         if (2 == shader.fColorCount) {
   1189             return kTwo_ColorType;
   1190         } else if (3 == shader.fColorCount &&
   1191                    close_to_one_half(shader.getRecs()[1].fPos)) {
   1192             return kThree_ColorType;
   1193         }
   1194     }
   1195 
   1196     return kTexture_ColorType;
   1197 }
   1198 
   1199 void GrGradientEffect::GLSLProcessor::emitUniforms(GrGLSLUniformHandler* uniformHandler,
   1200                                                    const GrGradientEffect& ge) {
   1201     if (int colorCount = color_type_to_color_count(ge.getColorType())) {
   1202         fColorsUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag,
   1203                                                      kVec4f_GrSLType,
   1204                                                      kDefault_GrSLPrecision,
   1205                                                      "Colors",
   1206                                                      colorCount);
   1207         if (ge.fColorType == kSingleHardStop_ColorType) {
   1208             fHardStopT = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType,
   1209                                                     kDefault_GrSLPrecision, "HardStopT");
   1210         }
   1211     } else {
   1212         fFSYUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
   1213                                              kFloat_GrSLType, kDefault_GrSLPrecision,
   1214                                              "GradientYCoordFS");
   1215     }
   1216 }
   1217 
   1218 static inline void set_after_interp_color_uni_array(
   1219                                                   const GrGLSLProgramDataManager& pdman,
   1220                                                   const GrGLSLProgramDataManager::UniformHandle uni,
   1221                                                   const SkTDArray<SkColor4f>& colors,
   1222                                                   const GrColorSpaceXform* colorSpaceXform) {
   1223     int count = colors.count();
   1224     if (colorSpaceXform) {
   1225         constexpr int kSmallCount = 10;
   1226         SkAutoSTArray<4 * kSmallCount, float> vals(4 * count);
   1227 
   1228         for (int i = 0; i < count; i++) {
   1229             colorSpaceXform->srcToDst().mapScalars(colors[i].vec(), &vals[4 * i]);
   1230         }
   1231 
   1232         pdman.set4fv(uni, count, vals.get());
   1233     } else {
   1234         pdman.set4fv(uni, count, (float*)&colors[0]);
   1235     }
   1236 }
   1237 
   1238 static inline void set_before_interp_color_uni_array(
   1239                                                   const GrGLSLProgramDataManager& pdman,
   1240                                                   const GrGLSLProgramDataManager::UniformHandle uni,
   1241                                                   const SkTDArray<SkColor4f>& colors,
   1242                                                   const GrColorSpaceXform* colorSpaceXform) {
   1243     int count = colors.count();
   1244     constexpr int kSmallCount = 10;
   1245     SkAutoSTArray<4 * kSmallCount, float> vals(4 * count);
   1246 
   1247     for (int i = 0; i < count; i++) {
   1248         float a = colors[i].fA;
   1249         vals[4 * i + 0] = colors[i].fR * a;
   1250         vals[4 * i + 1] = colors[i].fG * a;
   1251         vals[4 * i + 2] = colors[i].fB * a;
   1252         vals[4 * i + 3] = a;
   1253     }
   1254 
   1255     if (colorSpaceXform) {
   1256         for (int i = 0; i < count; i++) {
   1257             colorSpaceXform->srcToDst().mapScalars(&vals[4 * i]);
   1258         }
   1259     }
   1260 
   1261     pdman.set4fv(uni, count, vals.get());
   1262 }
   1263 
   1264 static inline void set_after_interp_color_uni_array(const GrGLSLProgramDataManager& pdman,
   1265                                        const GrGLSLProgramDataManager::UniformHandle uni,
   1266                                        const SkTDArray<SkColor>& colors) {
   1267     int count = colors.count();
   1268     constexpr int kSmallCount = 10;
   1269 
   1270     SkAutoSTArray<4*kSmallCount, float> vals(4*count);
   1271 
   1272     for (int i = 0; i < colors.count(); i++) {
   1273         // RGBA
   1274         vals[4*i + 0] = SkColorGetR(colors[i]) / 255.f;
   1275         vals[4*i + 1] = SkColorGetG(colors[i]) / 255.f;
   1276         vals[4*i + 2] = SkColorGetB(colors[i]) / 255.f;
   1277         vals[4*i + 3] = SkColorGetA(colors[i]) / 255.f;
   1278     }
   1279 
   1280     pdman.set4fv(uni, colors.count(), vals.get());
   1281 }
   1282 
   1283 static inline void set_before_interp_color_uni_array(const GrGLSLProgramDataManager& pdman,
   1284                                               const GrGLSLProgramDataManager::UniformHandle uni,
   1285                                               const SkTDArray<SkColor>& colors) {
   1286     int count = colors.count();
   1287     constexpr int kSmallCount = 10;
   1288 
   1289     SkAutoSTArray<4*kSmallCount, float> vals(4*count);
   1290 
   1291     for (int i = 0; i < count; i++) {
   1292         float a = SkColorGetA(colors[i]) / 255.f;
   1293         float aDiv255 = a / 255.f;
   1294 
   1295         // RGBA
   1296         vals[4*i + 0] = SkColorGetR(colors[i]) * aDiv255;
   1297         vals[4*i + 1] = SkColorGetG(colors[i]) * aDiv255;
   1298         vals[4*i + 2] = SkColorGetB(colors[i]) * aDiv255;
   1299         vals[4*i + 3] = a;
   1300     }
   1301 
   1302     pdman.set4fv(uni, count, vals.get());
   1303 }
   1304 
   1305 void GrGradientEffect::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
   1306                                                 const GrProcessor& processor) {
   1307     const GrGradientEffect& e = processor.cast<GrGradientEffect>();
   1308 
   1309     switch (e.getColorType()) {
   1310 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1311         case GrGradientEffect::kSingleHardStop_ColorType:
   1312             pdman.set1f(fHardStopT, e.fPositions[1]);
   1313             // fall through
   1314         case GrGradientEffect::kHardStopLeftEdged_ColorType:
   1315         case GrGradientEffect::kHardStopRightEdged_ColorType:
   1316 #endif
   1317         case GrGradientEffect::kTwo_ColorType:
   1318         case GrGradientEffect::kThree_ColorType: {
   1319             if (e.fColors4f.count() > 0) {
   1320                 // Gamma-correct / color-space aware
   1321                 if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
   1322                     set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors4f,
   1323                                                       e.fColorSpaceXform.get());
   1324                 } else {
   1325                     set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors4f,
   1326                                                      e.fColorSpaceXform.get());
   1327                 }
   1328             } else {
   1329                 // Legacy mode. Would be nice if we had converted the 8-bit colors to float earlier
   1330                 if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
   1331                     set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors);
   1332                 } else {
   1333                     set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors);
   1334                 }
   1335             }
   1336 
   1337             break;
   1338         }
   1339 
   1340         case GrGradientEffect::kTexture_ColorType: {
   1341             SkScalar yCoord = e.getYCoord();
   1342             if (yCoord != fCachedYCoord) {
   1343                 pdman.set1f(fFSYUni, yCoord);
   1344                 fCachedYCoord = yCoord;
   1345             }
   1346             if (SkToBool(e.fColorSpaceXform)) {
   1347                 fColorSpaceHelper.setData(pdman, e.fColorSpaceXform.get());
   1348             }
   1349             break;
   1350         }
   1351     }
   1352 }
   1353 
   1354 uint32_t GrGradientEffect::GLSLProcessor::GenBaseGradientKey(const GrProcessor& processor) {
   1355     const GrGradientEffect& e = processor.cast<GrGradientEffect>();
   1356 
   1357     uint32_t key = 0;
   1358 
   1359     if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
   1360         key |= kPremulBeforeInterpKey;
   1361     }
   1362 
   1363     if (GrGradientEffect::kTwo_ColorType == e.getColorType()) {
   1364         key |= kTwoColorKey;
   1365     } else if (GrGradientEffect::kThree_ColorType == e.getColorType()) {
   1366         key |= kThreeColorKey;
   1367     }
   1368 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1369     else if (GrGradientEffect::kSingleHardStop_ColorType == e.getColorType()) {
   1370         key |= kHardStopCenteredKey;
   1371     } else if (GrGradientEffect::kHardStopLeftEdged_ColorType == e.getColorType()) {
   1372         key |= kHardStopZeroZeroOneKey;
   1373     } else if (GrGradientEffect::kHardStopRightEdged_ColorType == e.getColorType()) {
   1374         key |= kHardStopZeroOneOneKey;
   1375     }
   1376 
   1377     if (SkShader::TileMode::kClamp_TileMode == e.fTileMode) {
   1378         key |= kClampTileMode;
   1379     } else if (SkShader::TileMode::kRepeat_TileMode == e.fTileMode) {
   1380         key |= kRepeatTileMode;
   1381     } else {
   1382         key |= kMirrorTileMode;
   1383     }
   1384 #endif
   1385 
   1386     key |= GrColorSpaceXform::XformKey(e.fColorSpaceXform.get()) << kReservedBits;
   1387 
   1388     return key;
   1389 }
   1390 
   1391 void GrGradientEffect::GLSLProcessor::emitColor(GrGLSLFPFragmentBuilder* fragBuilder,
   1392                                                 GrGLSLUniformHandler* uniformHandler,
   1393                                                 const GrShaderCaps* shaderCaps,
   1394                                                 const GrGradientEffect& ge,
   1395                                                 const char* gradientTValue,
   1396                                                 const char* outputColor,
   1397                                                 const char* inputColor,
   1398                                                 const TextureSamplers& texSamplers) {
   1399     switch (ge.getColorType()) {
   1400 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1401         case kSingleHardStop_ColorType: {
   1402             const char* t      = gradientTValue;
   1403             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1404             const char* stopT = uniformHandler->getUniformCStr(fHardStopT);
   1405 
   1406             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
   1407 
   1408             // Account for tile mode
   1409             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
   1410                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
   1411             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
   1412                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
   1413                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
   1414                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
   1415                 fragBuilder->codeAppendf("    } else {");
   1416                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
   1417                 fragBuilder->codeAppendf("    }");
   1418                 fragBuilder->codeAppendf("}");
   1419             }
   1420 
   1421             // Calculate color
   1422             fragBuilder->codeAppend ("vec4 start, end;");
   1423             fragBuilder->codeAppend ("float relative_t;");
   1424             fragBuilder->codeAppendf("if (clamp_t < %s) {", stopT);
   1425             fragBuilder->codeAppendf("    start = %s[0];", colors);
   1426             fragBuilder->codeAppendf("    end   = %s[1];", colors);
   1427             fragBuilder->codeAppendf("    relative_t = clamp_t / %s;", stopT);
   1428             fragBuilder->codeAppend ("} else {");
   1429             fragBuilder->codeAppendf("    start = %s[2];", colors);
   1430             fragBuilder->codeAppendf("    end   = %s[3];", colors);
   1431             fragBuilder->codeAppendf("    relative_t = (clamp_t - %s) / (1 - %s);", stopT, stopT);
   1432             fragBuilder->codeAppend ("}");
   1433             fragBuilder->codeAppend ("vec4 colorTemp = mix(start, end, relative_t);");
   1434 
   1435             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1436                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1437             }
   1438             if (ge.fColorSpaceXform) {
   1439                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1440             }
   1441             fragBuilder->codeAppendf("%s = %s;", outputColor,
   1442                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
   1443 
   1444             break;
   1445         }
   1446 
   1447         case kHardStopLeftEdged_ColorType: {
   1448             const char* t      = gradientTValue;
   1449             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1450 
   1451             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
   1452 
   1453             // Account for tile mode
   1454             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
   1455                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
   1456             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
   1457                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
   1458                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
   1459                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
   1460                 fragBuilder->codeAppendf("    } else {");
   1461                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
   1462                 fragBuilder->codeAppendf("    }");
   1463                 fragBuilder->codeAppendf("}");
   1464             }
   1465 
   1466             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[1], %s[2], clamp_t);", colors,
   1467                                      colors);
   1468             if (SkShader::kClamp_TileMode == ge.fTileMode) {
   1469                 fragBuilder->codeAppendf("if (%s < 0.0) {", t);
   1470                 fragBuilder->codeAppendf("    colorTemp = %s[0];", colors);
   1471                 fragBuilder->codeAppendf("}");
   1472             }
   1473 
   1474             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1475                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1476             }
   1477             if (ge.fColorSpaceXform) {
   1478                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1479             }
   1480             fragBuilder->codeAppendf("%s = %s;", outputColor,
   1481                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
   1482 
   1483             break;
   1484         }
   1485 
   1486         case kHardStopRightEdged_ColorType: {
   1487             const char* t      = gradientTValue;
   1488             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1489 
   1490             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
   1491 
   1492             // Account for tile mode
   1493             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
   1494                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
   1495             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
   1496                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
   1497                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
   1498                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
   1499                 fragBuilder->codeAppendf("    } else {");
   1500                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
   1501                 fragBuilder->codeAppendf("    }");
   1502                 fragBuilder->codeAppendf("}");
   1503             }
   1504 
   1505             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp_t);", colors,
   1506                                      colors);
   1507             if (SkShader::kClamp_TileMode == ge.fTileMode) {
   1508                 fragBuilder->codeAppendf("if (%s > 1.0) {", t);
   1509                 fragBuilder->codeAppendf("    colorTemp = %s[2];", colors);
   1510                 fragBuilder->codeAppendf("}");
   1511             }
   1512 
   1513             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1514                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1515             }
   1516             if (ge.fColorSpaceXform) {
   1517                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1518             }
   1519             fragBuilder->codeAppendf("%s = %s;", outputColor,
   1520                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
   1521 
   1522             break;
   1523         }
   1524 #endif
   1525 
   1526         case kTwo_ColorType: {
   1527             const char* t      = gradientTValue;
   1528             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1529 
   1530             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp(%s, 0.0, 1.0));",
   1531                                      colors, colors, t);
   1532 
   1533             // We could skip this step if both colors are known to be opaque. Two
   1534             // considerations:
   1535             // The gradient SkShader reporting opaque is more restrictive than necessary in the two
   1536             // pt case. Make sure the key reflects this optimization (and note that it can use the
   1537             // same shader as thekBeforeIterp case). This same optimization applies to the 3 color
   1538             // case below.
   1539             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1540                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1541             }
   1542             if (ge.fColorSpaceXform) {
   1543                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1544             }
   1545 
   1546             fragBuilder->codeAppendf("%s = %s;", outputColor,
   1547                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
   1548 
   1549             break;
   1550         }
   1551 
   1552         case kThree_ColorType: {
   1553             const char* t      = gradientTValue;
   1554             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
   1555 
   1556             fragBuilder->codeAppendf("float oneMinus2t = 1.0 - (2.0 * %s);", t);
   1557             fragBuilder->codeAppendf("vec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s[0];",
   1558                                      colors);
   1559             if (!shaderCaps->canUseMinAndAbsTogether()) {
   1560                 // The Tegra3 compiler will sometimes never return if we have
   1561                 // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
   1562                 fragBuilder->codeAppendf("float minAbs = abs(oneMinus2t);");
   1563                 fragBuilder->codeAppendf("minAbs = minAbs > 1.0 ? 1.0 : minAbs;");
   1564                 fragBuilder->codeAppendf("colorTemp += (1.0 - minAbs) * %s[1];", colors);
   1565             } else {
   1566                 fragBuilder->codeAppendf("colorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s[1];",
   1567                                          colors);
   1568             }
   1569             fragBuilder->codeAppendf("colorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s[2];", colors);
   1570 
   1571             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
   1572                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
   1573             }
   1574             if (ge.fColorSpaceXform) {
   1575                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
   1576             }
   1577 
   1578             fragBuilder->codeAppendf("%s = %s;", outputColor,
   1579                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
   1580 
   1581             break;
   1582         }
   1583 
   1584         case kTexture_ColorType: {
   1585             fColorSpaceHelper.emitCode(uniformHandler, ge.fColorSpaceXform.get());
   1586 
   1587             const char* fsyuni = uniformHandler->getUniformCStr(fFSYUni);
   1588 
   1589             fragBuilder->codeAppendf("vec2 coord = vec2(%s, %s);", gradientTValue, fsyuni);
   1590             fragBuilder->codeAppendf("%s = ", outputColor);
   1591             fragBuilder->appendTextureLookupAndModulate(inputColor, texSamplers[0], "coord",
   1592                                                         kVec2f_GrSLType, &fColorSpaceHelper);
   1593             fragBuilder->codeAppend(";");
   1594 
   1595             break;
   1596         }
   1597     }
   1598 }
   1599 
   1600 /////////////////////////////////////////////////////////////////////
   1601 
   1602 inline GrFragmentProcessor::OptimizationFlags GrGradientEffect::OptFlags(bool isOpaque) {
   1603     return isOpaque
   1604                    ? kPreservesOpaqueInput_OptimizationFlag |
   1605                              kCompatibleWithCoverageAsAlpha_OptimizationFlag
   1606                    : kCompatibleWithCoverageAsAlpha_OptimizationFlag;
   1607 }
   1608 
   1609 GrGradientEffect::GrGradientEffect(const CreateArgs& args, bool isOpaque)
   1610         : INHERITED(OptFlags(isOpaque)) {
   1611     const SkGradientShaderBase& shader(*args.fShader);
   1612 
   1613     fIsOpaque = shader.isOpaque();
   1614 
   1615     fColorType = this->determineColorType(shader);
   1616     fColorSpaceXform = std::move(args.fColorSpaceXform);
   1617 
   1618     if (kTexture_ColorType != fColorType) {
   1619         SkASSERT(shader.fOrigColors && shader.fOrigColors4f);
   1620         if (args.fGammaCorrect) {
   1621             fColors4f = SkTDArray<SkColor4f>(shader.fOrigColors4f, shader.fColorCount);
   1622         } else {
   1623             fColors = SkTDArray<SkColor>(shader.fOrigColors, shader.fColorCount);
   1624         }
   1625 
   1626 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1627         if (shader.fOrigPos) {
   1628             fPositions = SkTDArray<SkScalar>(shader.fOrigPos, shader.fColorCount);
   1629         }
   1630 #endif
   1631     }
   1632 
   1633 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1634     fTileMode = args.fTileMode;
   1635 #endif
   1636 
   1637     switch (fColorType) {
   1638         // The two and three color specializations do not currently support tiling.
   1639         case kTwo_ColorType:
   1640         case kThree_ColorType:
   1641 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
   1642         case kHardStopLeftEdged_ColorType:
   1643         case kHardStopRightEdged_ColorType:
   1644         case kSingleHardStop_ColorType:
   1645 #endif
   1646             fRow = -1;
   1647 
   1648             if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) {
   1649                 fPremulType = kBeforeInterp_PremulType;
   1650             } else {
   1651                 fPremulType = kAfterInterp_PremulType;
   1652             }
   1653 
   1654             fCoordTransform.reset(*args.fMatrix);
   1655 
   1656             break;
   1657         case kTexture_ColorType:
   1658             // doesn't matter how this is set, just be consistent because it is part of the
   1659             // effect key.
   1660             fPremulType = kBeforeInterp_PremulType;
   1661 
   1662             SkGradientShaderBase::GradientBitmapType bitmapType =
   1663                 SkGradientShaderBase::GradientBitmapType::kLegacy;
   1664             if (args.fGammaCorrect) {
   1665                 // Try to use F16 if we can
   1666                 if (args.fContext->caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) {
   1667                     bitmapType = SkGradientShaderBase::GradientBitmapType::kHalfFloat;
   1668                 } else if (args.fContext->caps()->isConfigTexturable(kSRGBA_8888_GrPixelConfig)) {
   1669                     bitmapType = SkGradientShaderBase::GradientBitmapType::kSRGB;
   1670                 } else {
   1671                     // This can happen, but only if someone explicitly creates an unsupported
   1672                     // (eg sRGB) surface. Just fall back to legacy behavior.
   1673                 }
   1674             }
   1675 
   1676             SkBitmap bitmap;
   1677             shader.getGradientTableBitmap(&bitmap, bitmapType);
   1678             SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width()));
   1679 
   1680 
   1681             GrTextureStripAtlas::Desc desc;
   1682             desc.fWidth  = bitmap.width();
   1683             desc.fHeight = 32;
   1684             desc.fRowHeight = bitmap.height();
   1685             desc.fContext = args.fContext;
   1686             desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *args.fContext->caps());
   1687             fAtlas = GrTextureStripAtlas::GetAtlas(desc);
   1688             SkASSERT(fAtlas);
   1689 
   1690             // We always filter the gradient table. Each table is one row of a texture, always
   1691             // y-clamp.
   1692             GrSamplerParams params;
   1693             params.setFilterMode(GrSamplerParams::kBilerp_FilterMode);
   1694             params.setTileModeX(args.fTileMode);
   1695 
   1696             fRow = fAtlas->lockRow(bitmap);
   1697             if (-1 != fRow) {
   1698                 fYCoord = fAtlas->getYOffset(fRow)+SK_ScalarHalf*fAtlas->getNormalizedTexelHeight();
   1699                 // This is 1/2 places where auto-normalization is disabled
   1700                 fCoordTransform.reset(args.fContext->resourceProvider(), *args.fMatrix,
   1701                                       fAtlas->asTextureProxyRef().get(),
   1702                                       params.filterMode(), false);
   1703                 fTextureSampler.reset(args.fContext->resourceProvider(),
   1704                                       fAtlas->asTextureProxyRef(), params);
   1705             } else {
   1706                 // In this instance we know the params are:
   1707                 //   clampY, bilerp
   1708                 // and the proxy is:
   1709                 //   exact fit, power of two in both dimensions
   1710                 // Only the x-tileMode is unknown. However, given all the other knowns we know
   1711                 // that GrMakeCachedBitmapProxy is sufficient (i.e., it won't need to be
   1712                 // extracted to a subset or mipmapped).
   1713                 sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy(
   1714                                                                 args.fContext->resourceProvider(),
   1715                                                                 bitmap);
   1716                 if (!proxy) {
   1717                     return;
   1718                 }
   1719                 // This is 2/2 places where auto-normalization is disabled
   1720                 fCoordTransform.reset(args.fContext->resourceProvider(), *args.fMatrix,
   1721                                       proxy.get(), params.filterMode(), false);
   1722                 fTextureSampler.reset(args.fContext->resourceProvider(),
   1723                                       std::move(proxy), params);
   1724                 fYCoord = SK_ScalarHalf;
   1725             }
   1726 
   1727             this->addTextureSampler(&fTextureSampler);
   1728 
   1729             break;
   1730     }
   1731 
   1732     this->addCoordTransform(&fCoordTransform);
   1733 }
   1734 
   1735 GrGradientEffect::~GrGradientEffect() {
   1736     if (this->useAtlas()) {
   1737         fAtlas->unlockRow(fRow);
   1738     }
   1739 }
   1740 
   1741 bool GrGradientEffect::onIsEqual(const GrFragmentProcessor& processor) const {
   1742     const GrGradientEffect& ge = processor.cast<GrGradientEffect>();
   1743 
   1744     if (this->fColorType != ge.getColorType()) {
   1745         return false;
   1746     }
   1747     SkASSERT(this->useAtlas() == ge.useAtlas());
   1748     if (kTexture_ColorType == fColorType) {
   1749         if (fYCoord != ge.getYCoord()) {
   1750             return false;
   1751         }
   1752     } else {
   1753         if (kSingleHardStop_ColorType == fColorType) {
   1754             if (!SkScalarNearlyEqual(ge.fPositions[1], fPositions[1])) {
   1755                 return false;
   1756             }
   1757         }
   1758         if (this->getPremulType() != ge.getPremulType() ||
   1759             this->fColors.count() != ge.fColors.count() ||
   1760             this->fColors4f.count() != ge.fColors4f.count()) {
   1761             return false;
   1762         }
   1763 
   1764         for (int i = 0; i < this->fColors.count(); i++) {
   1765             if (*this->getColors(i) != *ge.getColors(i)) {
   1766                 return false;
   1767             }
   1768         }
   1769         for (int i = 0; i < this->fColors4f.count(); i++) {
   1770             if (*this->getColors4f(i) != *ge.getColors4f(i)) {
   1771                 return false;
   1772             }
   1773         }
   1774     }
   1775     return GrColorSpaceXform::Equals(this->fColorSpaceXform.get(), ge.fColorSpaceXform.get());
   1776 }
   1777 
   1778 #if GR_TEST_UTILS
   1779 GrGradientEffect::RandomGradientParams::RandomGradientParams(SkRandom* random) {
   1780     // Set color count to min of 2 so that we don't trigger the const color optimization and make
   1781     // a non-gradient processor.
   1782     fColorCount = random->nextRangeU(2, kMaxRandomGradientColors);
   1783     fUseColors4f = random->nextBool();
   1784 
   1785     // if one color, omit stops, otherwise randomly decide whether or not to
   1786     if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) {
   1787         fStops = nullptr;
   1788     } else {
   1789         fStops = fStopStorage;
   1790     }
   1791 
   1792     // if using SkColor4f, attach a random (possibly null) color space (with linear gamma)
   1793     if (fUseColors4f) {
   1794         fColorSpace = GrTest::TestColorSpace(random);
   1795         if (fColorSpace) {
   1796             SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(fColorSpace)->type());
   1797             fColorSpace = static_cast<SkColorSpace_XYZ*>(fColorSpace.get())->makeLinearGamma();
   1798         }
   1799     }
   1800 
   1801     SkScalar stop = 0.f;
   1802     for (int i = 0; i < fColorCount; ++i) {
   1803         if (fUseColors4f) {
   1804             fColors4f[i].fR = random->nextUScalar1();
   1805             fColors4f[i].fG = random->nextUScalar1();
   1806             fColors4f[i].fB = random->nextUScalar1();
   1807             fColors4f[i].fA = random->nextUScalar1();
   1808         } else {
   1809             fColors[i] = random->nextU();
   1810         }
   1811         if (fStops) {
   1812             fStops[i] = stop;
   1813             stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
   1814         }
   1815     }
   1816     fTileMode = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
   1817 }
   1818 #endif
   1819 
   1820 #endif
   1821