/external/eigen/Eigen/src/Eigenvalues/ |
ComplexSchur.h | 40 * Call the function compute() to compute the Schur decomposition of 88 * intends to perform decompositions via compute(). The \p size 92 * \sa compute() for an example. 108 * This constructor calls compute() to compute the Schur decomposition. 121 compute(matrix.derived(), computeU); 130 * member function compute(const MatrixType& matrix, bool computeU) 131 * has been called before to compute the Schur decomposition of a 151 * member function compute(const MatrixType& matrix, bool computeU 319 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) function in class:Eigen::ComplexSchur [all...] |
EigenSolver.h | 46 * Call the function compute() to compute the eigenvalues and eigenvectors of 109 * perform decompositions via EigenSolver::compute(const MatrixType&, bool). 111 * \sa compute() for an example. 138 * This constructor calls compute() to compute the eigenvalues 144 * \sa compute() 156 compute(matrix.derived(), computeEigenvectors); 165 * compute(const MatrixType&, bool) has been called before, and 187 * compute(const MatrixType&, bool) has been called before, an 379 EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors) function in class:Eigen::EigenSolver [all...] |
GeneralizedEigenSolver.h | 45 * Call the function compute() to compute the generalized eigenvalues and eigenvectors of 114 * perform decompositions via EigenSolver::compute(const MatrixType&, bool). 116 * \sa compute() for an example. 150 * This constructor calls compute() to compute the generalized eigenvalues 153 * \sa compute() 164 compute(A, B, computeEigenvectors); 174 * compute(const MatrixType&, const MatrixType& bool) has been called before, and 194 * compute(const MatrixType&,const MatrixType&,bool) has been called before 287 GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors) function in class:Eigen::GeneralizedEigenSolver [all...] |
RealSchur.h | 36 * A, and thus the real Schur decomposition is used in EigenSolver to compute 39 * Call the function compute() to compute the real Schur decomposition of a 77 * perform decompositions via compute(). The \p size parameter is only 81 * \sa compute() for an example. 98 * This constructor calls compute() to compute the Schur decomposition. 113 compute(matrix.derived(), computeU); 121 * member function compute(const MatrixType&, bool) has been called before 122 * to compute the Schur decomposition of a matrix, and \p computeU was se 249 RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) function in class:Eigen::RealSchur [all...] |
Tridiagonalization.h | 48 * decomposition. This class is used in SelfAdjointEigenSolver to compute the 51 * Call the function compute() to compute the tridiagonal decomposition of a 107 * perform decompositions via compute(). The \p size parameter is only 111 * \sa compute() for an example. 124 * This constructor calls compute() to compute the tridiagonal decomposition. 157 Tridiagonalization& compute(const EigenBase<InputType>& matrix) function in class:Eigen::Tridiagonalization 171 * the member function compute(const MatrixType&) has been called before 172 * to compute the tridiagonal decomposition of a matrix [all...] |
/external/eigen/Eigen/src/IterativeLinearSolvers/ |
IncompleteCholesky.h | 75 * You must call compute() or the pair analyzePattern()/factorize() to make it valid. 86 compute(matrix); 99 * or a call to compute() or analyzePattern(). 132 * The method analyzePattern() or compute() must have been called beforehand 135 * \sa compute(), analyzePattern() 147 void compute(const MatrixType& mat) function in class:Eigen::IncompleteCholesky 251 // Scale and compute the shift for the matrix
|
IncompleteLUT.h | 20 * Compute a quick-sort split of a vector 130 compute(mat); 155 * Compute an incomplete LU factorization with dual threshold on the matrix mat 160 IncompleteLUT& compute(const MatrixType& amat) function in class:Eigen::IncompleteLUT 213 * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row. 225 // Compute the Fill-reducing permutation
|
IterativeSolverBase.h | 174 * by a call to compute(). 178 * this class becomes invalid. Call compute() to update it with the new 186 compute(matrix()); 213 * this class becomes invalid. Call compute() to update it with the new 234 * this class becomes invalid. Call compute() to update it with the new 238 Derived& compute(const EigenBase<MatrixDerived>& A) function in class:Eigen::IterativeSolverBase 241 m_preconditioner.compute(matrix()); 314 * \sa solve(), compute()
|
/external/eigen/Eigen/src/PaStiXSupport/ |
PaStiXSupport.h | 223 // Compute the ordering and the symbolic factorization 226 // Compute the numerical factorization 239 void compute(ColSpMatrix& mat); 295 void PastixBase<Derived>::compute(ColSpMatrix& mat) function in class:Eigen::PastixBase 429 compute(matrix); 431 /** Compute the LU supernodal factorization of \p matrix. 436 void compute (const MatrixType& matrix) function in class:Eigen::PastixLU 441 Base::compute(temp); 443 /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. 456 /** Compute the LU supernodal factorization of \p matri 547 void compute (const MatrixType& matrix) function in class:Eigen::PastixLLT 631 void compute (const MatrixType& matrix) function in class:Eigen::PastixLDLT [all...] |
/external/eigen/Eigen/src/QR/ |
CompleteOrthogonalDecomposition.h | 83 * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&). 100 * matrix \a matrix by calling the method compute(). The default 107 * cod.compute(matrix); 110 * \sa compute() 118 compute(matrix.derived()); 184 CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) { function in class:Eigen::CompleteOrthogonalDecomposition 185 // Compute the column pivoted QR factorization A P = Q R. 186 m_cpqr.compute(matrix); 273 * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems. 300 * Most be called before calling compute() [all...] |
HouseholderQR.h | 68 * perform decompositions via HouseholderQR::compute(const MatrixType&). 87 * the method compute(). It is a short cut for: 91 * qr.compute(matrix); 94 * \sa compute() 103 compute(matrix.derived()); 170 HouseholderQR& compute(const EigenBase<InputType>& matrix) { function in class:Eigen::HouseholderQR
|
/external/eigen/Eigen/src/SVD/ |
JacobiSVD.h | 90 m_qr.compute(matrix); 138 m_qr.compute(m_adjoint); 174 m_qr.compute(matrix); 230 m_qr.compute(m_adjoint); 273 m_qr.compute(matrix); 326 m_qr.compute(m_adjoint); 519 * perform decompositions via JacobiSVD::compute(const MatrixType&). 548 compute(matrix, computationOptions); 561 JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); 567 * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int) 569 JacobiSVD& compute(const MatrixType& matrix) function in class:Eigen::JacobiSVD 663 JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) function in class:Eigen::JacobiSVD [all...] |
UpperBidiagonalization.h | 52 * perform decompositions via Bidiagonalization::compute(const MatrixType&). 61 compute(matrix); 64 UpperBidiagonalization& compute(const MatrixType& matrix); 199 // 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k ) 228 // 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k ) 379 UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix) function in class:Eigen::internal::UpperBidiagonalization
|
/external/eigen/unsupported/Eigen/src/Eigenvalues/ |
ArpackSelfAdjointEigenSolver.h | 67 * perform decompositions via compute(). 85 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. 96 * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar) 97 * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if 111 compute(A, B, nbrEigenvalues, eigs_sigma, options, tol); 119 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. 130 * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar) 131 * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if 146 compute(A, nbrEigenvalues, eigs_sigma, options, tol); 154 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute 335 ::compute(const MatrixType& A, Index nbrEigenvalues, function in class:Eigen::ArpackGeneralizedSelfAdjointEigenSolver 348 ::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues, function in class:Eigen::ArpackGeneralizedSelfAdjointEigenSolver [all...] |
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixLogarithm.h | 35 /** \brief Compute logarithm of 2x2 triangular matrix. */ 130 /* \brief Compute Pade approximation to matrix logarithm */ 221 /** \brief Compute logarithm of triangular matrices with size > 2. 272 /** \brief Compute matrix logarithm of atomic matrix 276 MatrixType compute(const MatrixType& A); 280 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A) function in class:Eigen::internal::MatrixLogarithmAtomic 325 /** \brief Compute the matrix logarithm.
|
MatrixPower.h | 55 * \brief Compute the matrix power. 61 { m_pow.compute(res, m_p); } 127 * \brief Compute the matrix power. 132 void compute(ResultType& res) const; 144 void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const function in class:Eigen::MatrixPowerAtomic 329 * Therefore, if you want to compute multiple (>= 2) matrix powers 372 * \brief Compute the matrix power. 379 void compute(ResultType& res, RealScalar p); 450 void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) function in class:Eigen::MatrixPower 559 MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp) [all...] |
/external/guava/guava/src/com/google/common/collect/ |
ComputingConcurrentHashMap.java | 151 return compute(key, hash, e, computingValueReference); 171 V compute(K key, int hash, ReferenceEntry<K, V> e, method in class:ComputingConcurrentHashMap.ComputingSegment 182 value = computingValueReference.compute(key, hash); 353 V compute(K key, int hash) throws ExecutionException { method in class:ComputingConcurrentHashMap.ComputingValueReference
|
/frameworks/rs/ |
rsElement.cpp | 172 void Element::compute() { function in class:android::renderscript::Element 260 e->compute(); 341 e->compute();
|
rsType.cpp | 74 void Type::compute() { function in class:android::renderscript::Type 287 nt->compute();
|
/hardware/qcom/display/msm8084/liboverlay/ |
overlayUtils.cpp | 303 static inline int compute(const uint32_t& x, const uint32_t& y, function in namespace:overlay::utils 310 srcCrop.x = compute(whf.w, srcCrop.x, srcCrop.w); 313 srcCrop.y = compute(whf.h, srcCrop.y, srcCrop.h); 317 srcCrop.x = compute(whf.h,
|
/hardware/qcom/display/msm8960/liboverlay/ |
overlayUtils.cpp | 223 static inline int compute(const uint32_t& x, const uint32_t& y, function in namespace:overlay::utils 233 srcCrop.x = compute(whf.w, srcCrop.x, srcCrop.w); 236 srcCrop.y = compute(whf.h, srcCrop.y, srcCrop.h); 240 srcCrop.x = compute(whf.h,
|
/libcore/ojluni/src/main/java/java/util/ |
ArrayPrefixHelpers.java | 74 * main phase bit. When false, segments compute only their sum. 87 * To better exploit locality and reduce overhead, the compute 136 public final void compute() { method in class:ArrayPrefixHelpers.CumulateTask 288 public final void compute() { method in class:ArrayPrefixHelpers.LongCumulateTask 438 public final void compute() { method in class:ArrayPrefixHelpers.DoubleCumulateTask 588 public final void compute() { method in class:ArrayPrefixHelpers.IntCumulateTask [all...] |
/libcore/ojluni/src/main/java/java/util/concurrent/ |
CountedCompleter.java | 71 * #compute}, that should in most cases (as illustrated below), invoke 99 * exceptional completion of method {@code compute}. Upon any 150 * public void compute() { // version 1 173 * public void compute() { // version 2 178 * new ForEach(this, array, op, lo, mid).compute(); // direct invoke 197 * public void compute() { // version 3 237 * public void compute() { // similar to ForEach version 3 295 * public void compute() { 304 * left.compute(); // directly execute left 367 * public void compute() { 454 public abstract void compute(); method in class:CountedCompleter 732 compute(); method [all...] |
/libcore/ojluni/src/main/java/java/util/stream/ |
AbstractTask.java | 48 * <p>Splitting and setting up the child task links is done by {@code compute()} 49 * for internal nodes. At {@code compute()} time for leaf nodes, it is 172 * {@code compute()} and the result passed to @{code setLocalResult()} 248 * {@link #compute} has been called on this node). If the node is not a 278 * Decides whether or not to split a task further or compute it 291 public void compute() { method in class:AbstractTask
|
ForEachOps.java | 279 public void compute() { method in class:ForEachOps.ForEachTask 399 public final void compute() { method in class:ForEachOps.ForEachOrderedTask
|