Home | History | Annotate | Download | only in classes
      1 # Complex numbers

      2 # ---------------

      3 
      4 # [Now that Python has a complex data type built-in, this is not very

      5 # useful, but it's still a nice example class]

      6 
      7 # This module represents complex numbers as instances of the class Complex.

      8 # A Complex instance z has two data attribues, z.re (the real part) and z.im

      9 # (the imaginary part).  In fact, z.re and z.im can have any value -- all

     10 # arithmetic operators work regardless of the type of z.re and z.im (as long

     11 # as they support numerical operations).

     12 #

     13 # The following functions exist (Complex is actually a class):

     14 # Complex([re [,im]) -> creates a complex number from a real and an imaginary part

     15 # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)

     16 # ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true

     17 #                 if z is a tuple(re, im) it will also be converted

     18 # PolarToComplex([r [,phi [,fullcircle]]]) ->

     19 #       the complex number z for which r == z.radius() and phi == z.angle(fullcircle)

     20 #       (r and phi default to 0)

     21 # exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).

     22 #

     23 # Complex numbers have the following methods:

     24 # z.abs() -> absolute value of z

     25 # z.radius() == z.abs()

     26 # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units

     27 # z.phi([fullcircle]) == z.angle(fullcircle)

     28 #

     29 # These standard functions and unary operators accept complex arguments:

     30 # abs(z)

     31 # -z

     32 # +z

     33 # not z

     34 # repr(z) == `z`

     35 # str(z)

     36 # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero

     37 #            the result equals hash(z.re)

     38 # Note that hex(z) and oct(z) are not defined.

     39 #

     40 # These conversions accept complex arguments only if their imaginary part is zero:

     41 # int(z)

     42 # long(z)

     43 # float(z)

     44 #

     45 # The following operators accept two complex numbers, or one complex number

     46 # and one real number (int, long or float):

     47 # z1 + z2

     48 # z1 - z2

     49 # z1 * z2

     50 # z1 / z2

     51 # pow(z1, z2)

     52 # cmp(z1, z2)

     53 # Note that z1 % z2 and divmod(z1, z2) are not defined,

     54 # nor are shift and mask operations.

     55 #

     56 # The standard module math does not support complex numbers.

     57 # The cmath modules should be used instead.

     58 #

     59 # Idea:

     60 # add a class Polar(r, phi) and mixed-mode arithmetic which

     61 # chooses the most appropriate type for the result:

     62 # Complex for +,-,cmp

     63 # Polar   for *,/,pow

     64 
     65 import math
     66 import sys
     67 
     68 twopi = math.pi*2.0
     69 halfpi = math.pi/2.0
     70 
     71 def IsComplex(obj):
     72     return hasattr(obj, 're') and hasattr(obj, 'im')
     73 
     74 def ToComplex(obj):
     75     if IsComplex(obj):
     76         return obj
     77     elif isinstance(obj, tuple):
     78         return Complex(*obj)
     79     else:
     80         return Complex(obj)
     81 
     82 def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
     83     phi = phi * (twopi / fullcircle)
     84     return Complex(math.cos(phi)*r, math.sin(phi)*r)
     85 
     86 def Re(obj):
     87     if IsComplex(obj):
     88         return obj.re
     89     return obj
     90 
     91 def Im(obj):
     92     if IsComplex(obj):
     93         return obj.im
     94     return 0
     95 
     96 class Complex:
     97 
     98     def __init__(self, re=0, im=0):
     99         _re = 0
    100         _im = 0
    101         if IsComplex(re):
    102             _re = re.re
    103             _im = re.im
    104         else:
    105             _re = re
    106         if IsComplex(im):
    107             _re = _re - im.im
    108             _im = _im + im.re
    109         else:
    110             _im = _im + im
    111         # this class is immutable, so setting self.re directly is

    112         # not possible.

    113         self.__dict__['re'] = _re
    114         self.__dict__['im'] = _im
    115 
    116     def __setattr__(self, name, value):
    117         raise TypeError, 'Complex numbers are immutable'
    118 
    119     def __hash__(self):
    120         if not self.im:
    121             return hash(self.re)
    122         return hash((self.re, self.im))
    123 
    124     def __repr__(self):
    125         if not self.im:
    126             return 'Complex(%r)' % (self.re,)
    127         else:
    128             return 'Complex(%r, %r)' % (self.re, self.im)
    129 
    130     def __str__(self):
    131         if not self.im:
    132             return repr(self.re)
    133         else:
    134             return 'Complex(%r, %r)' % (self.re, self.im)
    135 
    136     def __neg__(self):
    137         return Complex(-self.re, -self.im)
    138 
    139     def __pos__(self):
    140         return self
    141 
    142     def __abs__(self):
    143         return math.hypot(self.re, self.im)
    144 
    145     def __int__(self):
    146         if self.im:
    147             raise ValueError, "can't convert Complex with nonzero im to int"
    148         return int(self.re)
    149 
    150     def __long__(self):
    151         if self.im:
    152             raise ValueError, "can't convert Complex with nonzero im to long"
    153         return long(self.re)
    154 
    155     def __float__(self):
    156         if self.im:
    157             raise ValueError, "can't convert Complex with nonzero im to float"
    158         return float(self.re)
    159 
    160     def __cmp__(self, other):
    161         other = ToComplex(other)
    162         return cmp((self.re, self.im), (other.re, other.im))
    163 
    164     def __rcmp__(self, other):
    165         other = ToComplex(other)
    166         return cmp(other, self)
    167 
    168     def __nonzero__(self):
    169         return not (self.re == self.im == 0)
    170 
    171     abs = radius = __abs__
    172 
    173     def angle(self, fullcircle = twopi):
    174         return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
    175 
    176     phi = angle
    177 
    178     def __add__(self, other):
    179         other = ToComplex(other)
    180         return Complex(self.re + other.re, self.im + other.im)
    181 
    182     __radd__ = __add__
    183 
    184     def __sub__(self, other):
    185         other = ToComplex(other)
    186         return Complex(self.re - other.re, self.im - other.im)
    187 
    188     def __rsub__(self, other):
    189         other = ToComplex(other)
    190         return other - self
    191 
    192     def __mul__(self, other):
    193         other = ToComplex(other)
    194         return Complex(self.re*other.re - self.im*other.im,
    195                        self.re*other.im + self.im*other.re)
    196 
    197     __rmul__ = __mul__
    198 
    199     def __div__(self, other):
    200         other = ToComplex(other)
    201         d = float(other.re*other.re + other.im*other.im)
    202         if not d: raise ZeroDivisionError, 'Complex division'
    203         return Complex((self.re*other.re + self.im*other.im) / d,
    204                        (self.im*other.re - self.re*other.im) / d)
    205 
    206     def __rdiv__(self, other):
    207         other = ToComplex(other)
    208         return other / self
    209 
    210     def __pow__(self, n, z=None):
    211         if z is not None:
    212             raise TypeError, 'Complex does not support ternary pow()'
    213         if IsComplex(n):
    214             if n.im:
    215                 if self.im: raise TypeError, 'Complex to the Complex power'
    216                 else: return exp(math.log(self.re)*n)
    217             n = n.re
    218         r = pow(self.abs(), n)
    219         phi = n*self.angle()
    220         return Complex(math.cos(phi)*r, math.sin(phi)*r)
    221 
    222     def __rpow__(self, base):
    223         base = ToComplex(base)
    224         return pow(base, self)
    225 
    226 def exp(z):
    227     r = math.exp(z.re)
    228     return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
    229 
    230 
    231 def checkop(expr, a, b, value, fuzz = 1e-6):
    232     print '       ', a, 'and', b,
    233     try:
    234         result = eval(expr)
    235     except:
    236         result = sys.exc_type
    237     print '->', result
    238     if isinstance(result, str) or isinstance(value, str):
    239         ok = (result == value)
    240     else:
    241         ok = abs(result - value) <= fuzz
    242     if not ok:
    243         print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
    244 
    245 def test():
    246     print 'test constructors'
    247     constructor_test = (
    248         # "expect" is an array [re,im] "got" the Complex.

    249             ( (0,0), Complex() ),
    250             ( (0,0), Complex() ),
    251             ( (1,0), Complex(1) ),
    252             ( (0,1), Complex(0,1) ),
    253             ( (1,2), Complex(Complex(1,2)) ),
    254             ( (1,3), Complex(Complex(1,2),1) ),
    255             ( (0,0), Complex(0,Complex(0,0)) ),
    256             ( (3,4), Complex(3,Complex(4)) ),
    257             ( (-1,3), Complex(1,Complex(3,2)) ),
    258             ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
    259     cnt = [0,0]
    260     for t in constructor_test:
    261         cnt[0] += 1
    262         if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
    263             print "        expected", t[0], "got", t[1]
    264             cnt[1] += 1
    265     print "  ", cnt[1], "of", cnt[0], "tests failed"
    266     # test operators

    267     testsuite = {
    268             'a+b': [
    269                     (1, 10, 11),
    270                     (1, Complex(0,10), Complex(1,10)),
    271                     (Complex(0,10), 1, Complex(1,10)),
    272                     (Complex(0,10), Complex(1), Complex(1,10)),
    273                     (Complex(1), Complex(0,10), Complex(1,10)),
    274             ],
    275             'a-b': [
    276                     (1, 10, -9),
    277                     (1, Complex(0,10), Complex(1,-10)),
    278                     (Complex(0,10), 1, Complex(-1,10)),
    279                     (Complex(0,10), Complex(1), Complex(-1,10)),
    280                     (Complex(1), Complex(0,10), Complex(1,-10)),
    281             ],
    282             'a*b': [
    283                     (1, 10, 10),
    284                     (1, Complex(0,10), Complex(0, 10)),
    285                     (Complex(0,10), 1, Complex(0,10)),
    286                     (Complex(0,10), Complex(1), Complex(0,10)),
    287                     (Complex(1), Complex(0,10), Complex(0,10)),
    288             ],
    289             'a/b': [
    290                     (1., 10, 0.1),
    291                     (1, Complex(0,10), Complex(0, -0.1)),
    292                     (Complex(0, 10), 1, Complex(0, 10)),
    293                     (Complex(0, 10), Complex(1), Complex(0, 10)),
    294                     (Complex(1), Complex(0,10), Complex(0, -0.1)),
    295             ],
    296             'pow(a,b)': [
    297                     (1, 10, 1),
    298                     (1, Complex(0,10), 1),
    299                     (Complex(0,10), 1, Complex(0,10)),
    300                     (Complex(0,10), Complex(1), Complex(0,10)),
    301                     (Complex(1), Complex(0,10), 1),
    302                     (2, Complex(4,0), 16),
    303             ],
    304             'cmp(a,b)': [
    305                     (1, 10, -1),
    306                     (1, Complex(0,10), 1),
    307                     (Complex(0,10), 1, -1),
    308                     (Complex(0,10), Complex(1), -1),
    309                     (Complex(1), Complex(0,10), 1),
    310             ],
    311     }
    312     for expr in sorted(testsuite):
    313         print expr + ':'
    314         t = (expr,)
    315         for item in testsuite[expr]:
    316             checkop(*(t+item))
    317 
    318 
    319 if __name__ == '__main__':
    320     test()
    321