Home | History | Annotate | Download | only in Sema
      1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements name lookup for C, C++, Objective-C, and
     11 //  Objective-C++.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/Decl.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/DeclLookups.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/LangOptions.h"
     28 #include "clang/Lex/HeaderSearch.h"
     29 #include "clang/Lex/ModuleLoader.h"
     30 #include "clang/Lex/Preprocessor.h"
     31 #include "clang/Sema/DeclSpec.h"
     32 #include "clang/Sema/Overload.h"
     33 #include "clang/Sema/Scope.h"
     34 #include "clang/Sema/ScopeInfo.h"
     35 #include "clang/Sema/Sema.h"
     36 #include "clang/Sema/SemaInternal.h"
     37 #include "clang/Sema/TemplateDeduction.h"
     38 #include "clang/Sema/TypoCorrection.h"
     39 #include "llvm/ADT/STLExtras.h"
     40 #include "llvm/ADT/SetVector.h"
     41 #include "llvm/ADT/SmallPtrSet.h"
     42 #include "llvm/ADT/StringMap.h"
     43 #include "llvm/ADT/TinyPtrVector.h"
     44 #include "llvm/ADT/edit_distance.h"
     45 #include "llvm/Support/ErrorHandling.h"
     46 #include <algorithm>
     47 #include <iterator>
     48 #include <limits>
     49 #include <list>
     50 #include <map>
     51 #include <set>
     52 #include <utility>
     53 #include <vector>
     54 
     55 using namespace clang;
     56 using namespace sema;
     57 
     58 namespace {
     59   class UnqualUsingEntry {
     60     const DeclContext *Nominated;
     61     const DeclContext *CommonAncestor;
     62 
     63   public:
     64     UnqualUsingEntry(const DeclContext *Nominated,
     65                      const DeclContext *CommonAncestor)
     66       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
     67     }
     68 
     69     const DeclContext *getCommonAncestor() const {
     70       return CommonAncestor;
     71     }
     72 
     73     const DeclContext *getNominatedNamespace() const {
     74       return Nominated;
     75     }
     76 
     77     // Sort by the pointer value of the common ancestor.
     78     struct Comparator {
     79       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
     80         return L.getCommonAncestor() < R.getCommonAncestor();
     81       }
     82 
     83       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
     84         return E.getCommonAncestor() < DC;
     85       }
     86 
     87       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
     88         return DC < E.getCommonAncestor();
     89       }
     90     };
     91   };
     92 
     93   /// A collection of using directives, as used by C++ unqualified
     94   /// lookup.
     95   class UnqualUsingDirectiveSet {
     96     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
     97 
     98     ListTy list;
     99     llvm::SmallPtrSet<DeclContext*, 8> visited;
    100 
    101   public:
    102     UnqualUsingDirectiveSet() {}
    103 
    104     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
    105       // C++ [namespace.udir]p1:
    106       //   During unqualified name lookup, the names appear as if they
    107       //   were declared in the nearest enclosing namespace which contains
    108       //   both the using-directive and the nominated namespace.
    109       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
    110       assert(InnermostFileDC && InnermostFileDC->isFileContext());
    111 
    112       for (; S; S = S->getParent()) {
    113         // C++ [namespace.udir]p1:
    114         //   A using-directive shall not appear in class scope, but may
    115         //   appear in namespace scope or in block scope.
    116         DeclContext *Ctx = S->getEntity();
    117         if (Ctx && Ctx->isFileContext()) {
    118           visit(Ctx, Ctx);
    119         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
    120           for (auto *I : S->using_directives())
    121             visit(I, InnermostFileDC);
    122         }
    123       }
    124     }
    125 
    126     // Visits a context and collect all of its using directives
    127     // recursively.  Treats all using directives as if they were
    128     // declared in the context.
    129     //
    130     // A given context is only every visited once, so it is important
    131     // that contexts be visited from the inside out in order to get
    132     // the effective DCs right.
    133     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
    134       if (!visited.insert(DC).second)
    135         return;
    136 
    137       addUsingDirectives(DC, EffectiveDC);
    138     }
    139 
    140     // Visits a using directive and collects all of its using
    141     // directives recursively.  Treats all using directives as if they
    142     // were declared in the effective DC.
    143     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    144       DeclContext *NS = UD->getNominatedNamespace();
    145       if (!visited.insert(NS).second)
    146         return;
    147 
    148       addUsingDirective(UD, EffectiveDC);
    149       addUsingDirectives(NS, EffectiveDC);
    150     }
    151 
    152     // Adds all the using directives in a context (and those nominated
    153     // by its using directives, transitively) as if they appeared in
    154     // the given effective context.
    155     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
    156       SmallVector<DeclContext*, 4> queue;
    157       while (true) {
    158         for (auto UD : DC->using_directives()) {
    159           DeclContext *NS = UD->getNominatedNamespace();
    160           if (visited.insert(NS).second) {
    161             addUsingDirective(UD, EffectiveDC);
    162             queue.push_back(NS);
    163           }
    164         }
    165 
    166         if (queue.empty())
    167           return;
    168 
    169         DC = queue.pop_back_val();
    170       }
    171     }
    172 
    173     // Add a using directive as if it had been declared in the given
    174     // context.  This helps implement C++ [namespace.udir]p3:
    175     //   The using-directive is transitive: if a scope contains a
    176     //   using-directive that nominates a second namespace that itself
    177     //   contains using-directives, the effect is as if the
    178     //   using-directives from the second namespace also appeared in
    179     //   the first.
    180     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    181       // Find the common ancestor between the effective context and
    182       // the nominated namespace.
    183       DeclContext *Common = UD->getNominatedNamespace();
    184       while (!Common->Encloses(EffectiveDC))
    185         Common = Common->getParent();
    186       Common = Common->getPrimaryContext();
    187 
    188       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
    189     }
    190 
    191     void done() {
    192       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
    193     }
    194 
    195     typedef ListTy::const_iterator const_iterator;
    196 
    197     const_iterator begin() const { return list.begin(); }
    198     const_iterator end() const { return list.end(); }
    199 
    200     llvm::iterator_range<const_iterator>
    201     getNamespacesFor(DeclContext *DC) const {
    202       return llvm::make_range(std::equal_range(begin(), end(),
    203                                                DC->getPrimaryContext(),
    204                                                UnqualUsingEntry::Comparator()));
    205     }
    206   };
    207 } // end anonymous namespace
    208 
    209 // Retrieve the set of identifier namespaces that correspond to a
    210 // specific kind of name lookup.
    211 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
    212                                bool CPlusPlus,
    213                                bool Redeclaration) {
    214   unsigned IDNS = 0;
    215   switch (NameKind) {
    216   case Sema::LookupObjCImplicitSelfParam:
    217   case Sema::LookupOrdinaryName:
    218   case Sema::LookupRedeclarationWithLinkage:
    219   case Sema::LookupLocalFriendName:
    220     IDNS = Decl::IDNS_Ordinary;
    221     if (CPlusPlus) {
    222       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
    223       if (Redeclaration)
    224         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
    225     }
    226     if (Redeclaration)
    227       IDNS |= Decl::IDNS_LocalExtern;
    228     break;
    229 
    230   case Sema::LookupOperatorName:
    231     // Operator lookup is its own crazy thing;  it is not the same
    232     // as (e.g.) looking up an operator name for redeclaration.
    233     assert(!Redeclaration && "cannot do redeclaration operator lookup");
    234     IDNS = Decl::IDNS_NonMemberOperator;
    235     break;
    236 
    237   case Sema::LookupTagName:
    238     if (CPlusPlus) {
    239       IDNS = Decl::IDNS_Type;
    240 
    241       // When looking for a redeclaration of a tag name, we add:
    242       // 1) TagFriend to find undeclared friend decls
    243       // 2) Namespace because they can't "overload" with tag decls.
    244       // 3) Tag because it includes class templates, which can't
    245       //    "overload" with tag decls.
    246       if (Redeclaration)
    247         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
    248     } else {
    249       IDNS = Decl::IDNS_Tag;
    250     }
    251     break;
    252 
    253   case Sema::LookupLabel:
    254     IDNS = Decl::IDNS_Label;
    255     break;
    256 
    257   case Sema::LookupMemberName:
    258     IDNS = Decl::IDNS_Member;
    259     if (CPlusPlus)
    260       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
    261     break;
    262 
    263   case Sema::LookupNestedNameSpecifierName:
    264     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
    265     break;
    266 
    267   case Sema::LookupNamespaceName:
    268     IDNS = Decl::IDNS_Namespace;
    269     break;
    270 
    271   case Sema::LookupUsingDeclName:
    272     assert(Redeclaration && "should only be used for redecl lookup");
    273     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
    274            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
    275            Decl::IDNS_LocalExtern;
    276     break;
    277 
    278   case Sema::LookupObjCProtocolName:
    279     IDNS = Decl::IDNS_ObjCProtocol;
    280     break;
    281 
    282   case Sema::LookupOMPReductionName:
    283     IDNS = Decl::IDNS_OMPReduction;
    284     break;
    285 
    286   case Sema::LookupAnyName:
    287     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
    288       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
    289       | Decl::IDNS_Type;
    290     break;
    291   }
    292   return IDNS;
    293 }
    294 
    295 void LookupResult::configure() {
    296   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
    297                  isForRedeclaration());
    298 
    299   // If we're looking for one of the allocation or deallocation
    300   // operators, make sure that the implicitly-declared new and delete
    301   // operators can be found.
    302   switch (NameInfo.getName().getCXXOverloadedOperator()) {
    303   case OO_New:
    304   case OO_Delete:
    305   case OO_Array_New:
    306   case OO_Array_Delete:
    307     getSema().DeclareGlobalNewDelete();
    308     break;
    309 
    310   default:
    311     break;
    312   }
    313 
    314   // Compiler builtins are always visible, regardless of where they end
    315   // up being declared.
    316   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
    317     if (unsigned BuiltinID = Id->getBuiltinID()) {
    318       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    319         AllowHidden = true;
    320     }
    321   }
    322 }
    323 
    324 bool LookupResult::sanity() const {
    325   // This function is never called by NDEBUG builds.
    326   assert(ResultKind != NotFound || Decls.size() == 0);
    327   assert(ResultKind != Found || Decls.size() == 1);
    328   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
    329          (Decls.size() == 1 &&
    330           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
    331   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
    332   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
    333          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
    334                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
    335   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
    336                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
    337                                  Ambiguity == AmbiguousBaseSubobjects)));
    338   return true;
    339 }
    340 
    341 // Necessary because CXXBasePaths is not complete in Sema.h
    342 void LookupResult::deletePaths(CXXBasePaths *Paths) {
    343   delete Paths;
    344 }
    345 
    346 /// Get a representative context for a declaration such that two declarations
    347 /// will have the same context if they were found within the same scope.
    348 static DeclContext *getContextForScopeMatching(Decl *D) {
    349   // For function-local declarations, use that function as the context. This
    350   // doesn't account for scopes within the function; the caller must deal with
    351   // those.
    352   DeclContext *DC = D->getLexicalDeclContext();
    353   if (DC->isFunctionOrMethod())
    354     return DC;
    355 
    356   // Otherwise, look at the semantic context of the declaration. The
    357   // declaration must have been found there.
    358   return D->getDeclContext()->getRedeclContext();
    359 }
    360 
    361 /// \brief Determine whether \p D is a better lookup result than \p Existing,
    362 /// given that they declare the same entity.
    363 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
    364                                     NamedDecl *D, NamedDecl *Existing) {
    365   // When looking up redeclarations of a using declaration, prefer a using
    366   // shadow declaration over any other declaration of the same entity.
    367   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
    368       !isa<UsingShadowDecl>(Existing))
    369     return true;
    370 
    371   auto *DUnderlying = D->getUnderlyingDecl();
    372   auto *EUnderlying = Existing->getUnderlyingDecl();
    373 
    374   // If they have different underlying declarations, prefer a typedef over the
    375   // original type (this happens when two type declarations denote the same
    376   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
    377   // might carry additional semantic information, such as an alignment override.
    378   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
    379   // declaration over a typedef.
    380   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
    381     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
    382     bool HaveTag = isa<TagDecl>(EUnderlying);
    383     bool WantTag = Kind == Sema::LookupTagName;
    384     return HaveTag != WantTag;
    385   }
    386 
    387   // Pick the function with more default arguments.
    388   // FIXME: In the presence of ambiguous default arguments, we should keep both,
    389   //        so we can diagnose the ambiguity if the default argument is needed.
    390   //        See C++ [over.match.best]p3.
    391   if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
    392     auto *EFD = cast<FunctionDecl>(EUnderlying);
    393     unsigned DMin = DFD->getMinRequiredArguments();
    394     unsigned EMin = EFD->getMinRequiredArguments();
    395     // If D has more default arguments, it is preferred.
    396     if (DMin != EMin)
    397       return DMin < EMin;
    398     // FIXME: When we track visibility for default function arguments, check
    399     // that we pick the declaration with more visible default arguments.
    400   }
    401 
    402   // Pick the template with more default template arguments.
    403   if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
    404     auto *ETD = cast<TemplateDecl>(EUnderlying);
    405     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
    406     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
    407     // If D has more default arguments, it is preferred. Note that default
    408     // arguments (and their visibility) is monotonically increasing across the
    409     // redeclaration chain, so this is a quick proxy for "is more recent".
    410     if (DMin != EMin)
    411       return DMin < EMin;
    412     // If D has more *visible* default arguments, it is preferred. Note, an
    413     // earlier default argument being visible does not imply that a later
    414     // default argument is visible, so we can't just check the first one.
    415     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
    416         I != N; ++I) {
    417       if (!S.hasVisibleDefaultArgument(
    418               ETD->getTemplateParameters()->getParam(I)) &&
    419           S.hasVisibleDefaultArgument(
    420               DTD->getTemplateParameters()->getParam(I)))
    421         return true;
    422     }
    423   }
    424 
    425   // VarDecl can have incomplete array types, prefer the one with more complete
    426   // array type.
    427   if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
    428     VarDecl *EVD = cast<VarDecl>(EUnderlying);
    429     if (EVD->getType()->isIncompleteType() &&
    430         !DVD->getType()->isIncompleteType()) {
    431       // Prefer the decl with a more complete type if visible.
    432       return S.isVisible(DVD);
    433     }
    434     return false; // Avoid picking up a newer decl, just because it was newer.
    435   }
    436 
    437   // For most kinds of declaration, it doesn't really matter which one we pick.
    438   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
    439     // If the existing declaration is hidden, prefer the new one. Otherwise,
    440     // keep what we've got.
    441     return !S.isVisible(Existing);
    442   }
    443 
    444   // Pick the newer declaration; it might have a more precise type.
    445   for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
    446        Prev = Prev->getPreviousDecl())
    447     if (Prev == EUnderlying)
    448       return true;
    449   return false;
    450 }
    451 
    452 /// Determine whether \p D can hide a tag declaration.
    453 static bool canHideTag(NamedDecl *D) {
    454   // C++ [basic.scope.declarative]p4:
    455   //   Given a set of declarations in a single declarative region [...]
    456   //   exactly one declaration shall declare a class name or enumeration name
    457   //   that is not a typedef name and the other declarations shall all refer to
    458   //   the same variable or enumerator, or all refer to functions and function
    459   //   templates; in this case the class name or enumeration name is hidden.
    460   // C++ [basic.scope.hiding]p2:
    461   //   A class name or enumeration name can be hidden by the name of a
    462   //   variable, data member, function, or enumerator declared in the same
    463   //   scope.
    464   D = D->getUnderlyingDecl();
    465   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
    466          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D);
    467 }
    468 
    469 /// Resolves the result kind of this lookup.
    470 void LookupResult::resolveKind() {
    471   unsigned N = Decls.size();
    472 
    473   // Fast case: no possible ambiguity.
    474   if (N == 0) {
    475     assert(ResultKind == NotFound ||
    476            ResultKind == NotFoundInCurrentInstantiation);
    477     return;
    478   }
    479 
    480   // If there's a single decl, we need to examine it to decide what
    481   // kind of lookup this is.
    482   if (N == 1) {
    483     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
    484     if (isa<FunctionTemplateDecl>(D))
    485       ResultKind = FoundOverloaded;
    486     else if (isa<UnresolvedUsingValueDecl>(D))
    487       ResultKind = FoundUnresolvedValue;
    488     return;
    489   }
    490 
    491   // Don't do any extra resolution if we've already resolved as ambiguous.
    492   if (ResultKind == Ambiguous) return;
    493 
    494   llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
    495   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
    496 
    497   bool Ambiguous = false;
    498   bool HasTag = false, HasFunction = false;
    499   bool HasFunctionTemplate = false, HasUnresolved = false;
    500   NamedDecl *HasNonFunction = nullptr;
    501 
    502   llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
    503 
    504   unsigned UniqueTagIndex = 0;
    505 
    506   unsigned I = 0;
    507   while (I < N) {
    508     NamedDecl *D = Decls[I]->getUnderlyingDecl();
    509     D = cast<NamedDecl>(D->getCanonicalDecl());
    510 
    511     // Ignore an invalid declaration unless it's the only one left.
    512     if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
    513       Decls[I] = Decls[--N];
    514       continue;
    515     }
    516 
    517     llvm::Optional<unsigned> ExistingI;
    518 
    519     // Redeclarations of types via typedef can occur both within a scope
    520     // and, through using declarations and directives, across scopes. There is
    521     // no ambiguity if they all refer to the same type, so unique based on the
    522     // canonical type.
    523     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
    524       QualType T = getSema().Context.getTypeDeclType(TD);
    525       auto UniqueResult = UniqueTypes.insert(
    526           std::make_pair(getSema().Context.getCanonicalType(T), I));
    527       if (!UniqueResult.second) {
    528         // The type is not unique.
    529         ExistingI = UniqueResult.first->second;
    530       }
    531     }
    532 
    533     // For non-type declarations, check for a prior lookup result naming this
    534     // canonical declaration.
    535     if (!ExistingI) {
    536       auto UniqueResult = Unique.insert(std::make_pair(D, I));
    537       if (!UniqueResult.second) {
    538         // We've seen this entity before.
    539         ExistingI = UniqueResult.first->second;
    540       }
    541     }
    542 
    543     if (ExistingI) {
    544       // This is not a unique lookup result. Pick one of the results and
    545       // discard the other.
    546       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
    547                                   Decls[*ExistingI]))
    548         Decls[*ExistingI] = Decls[I];
    549       Decls[I] = Decls[--N];
    550       continue;
    551     }
    552 
    553     // Otherwise, do some decl type analysis and then continue.
    554 
    555     if (isa<UnresolvedUsingValueDecl>(D)) {
    556       HasUnresolved = true;
    557     } else if (isa<TagDecl>(D)) {
    558       if (HasTag)
    559         Ambiguous = true;
    560       UniqueTagIndex = I;
    561       HasTag = true;
    562     } else if (isa<FunctionTemplateDecl>(D)) {
    563       HasFunction = true;
    564       HasFunctionTemplate = true;
    565     } else if (isa<FunctionDecl>(D)) {
    566       HasFunction = true;
    567     } else {
    568       if (HasNonFunction) {
    569         // If we're about to create an ambiguity between two declarations that
    570         // are equivalent, but one is an internal linkage declaration from one
    571         // module and the other is an internal linkage declaration from another
    572         // module, just skip it.
    573         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
    574                                                              D)) {
    575           EquivalentNonFunctions.push_back(D);
    576           Decls[I] = Decls[--N];
    577           continue;
    578         }
    579 
    580         Ambiguous = true;
    581       }
    582       HasNonFunction = D;
    583     }
    584     I++;
    585   }
    586 
    587   // C++ [basic.scope.hiding]p2:
    588   //   A class name or enumeration name can be hidden by the name of
    589   //   an object, function, or enumerator declared in the same
    590   //   scope. If a class or enumeration name and an object, function,
    591   //   or enumerator are declared in the same scope (in any order)
    592   //   with the same name, the class or enumeration name is hidden
    593   //   wherever the object, function, or enumerator name is visible.
    594   // But it's still an error if there are distinct tag types found,
    595   // even if they're not visible. (ref?)
    596   if (N > 1 && HideTags && HasTag && !Ambiguous &&
    597       (HasFunction || HasNonFunction || HasUnresolved)) {
    598     NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
    599     if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
    600         getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
    601             getContextForScopeMatching(OtherDecl)) &&
    602         canHideTag(OtherDecl))
    603       Decls[UniqueTagIndex] = Decls[--N];
    604     else
    605       Ambiguous = true;
    606   }
    607 
    608   // FIXME: This diagnostic should really be delayed until we're done with
    609   // the lookup result, in case the ambiguity is resolved by the caller.
    610   if (!EquivalentNonFunctions.empty() && !Ambiguous)
    611     getSema().diagnoseEquivalentInternalLinkageDeclarations(
    612         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
    613 
    614   Decls.set_size(N);
    615 
    616   if (HasNonFunction && (HasFunction || HasUnresolved))
    617     Ambiguous = true;
    618 
    619   if (Ambiguous)
    620     setAmbiguous(LookupResult::AmbiguousReference);
    621   else if (HasUnresolved)
    622     ResultKind = LookupResult::FoundUnresolvedValue;
    623   else if (N > 1 || HasFunctionTemplate)
    624     ResultKind = LookupResult::FoundOverloaded;
    625   else
    626     ResultKind = LookupResult::Found;
    627 }
    628 
    629 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
    630   CXXBasePaths::const_paths_iterator I, E;
    631   for (I = P.begin(), E = P.end(); I != E; ++I)
    632     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
    633          DE = I->Decls.end(); DI != DE; ++DI)
    634       addDecl(*DI);
    635 }
    636 
    637 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
    638   Paths = new CXXBasePaths;
    639   Paths->swap(P);
    640   addDeclsFromBasePaths(*Paths);
    641   resolveKind();
    642   setAmbiguous(AmbiguousBaseSubobjects);
    643 }
    644 
    645 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
    646   Paths = new CXXBasePaths;
    647   Paths->swap(P);
    648   addDeclsFromBasePaths(*Paths);
    649   resolveKind();
    650   setAmbiguous(AmbiguousBaseSubobjectTypes);
    651 }
    652 
    653 void LookupResult::print(raw_ostream &Out) {
    654   Out << Decls.size() << " result(s)";
    655   if (isAmbiguous()) Out << ", ambiguous";
    656   if (Paths) Out << ", base paths present";
    657 
    658   for (iterator I = begin(), E = end(); I != E; ++I) {
    659     Out << "\n";
    660     (*I)->print(Out, 2);
    661   }
    662 }
    663 
    664 LLVM_DUMP_METHOD void LookupResult::dump() {
    665   llvm::errs() << "lookup results for " << getLookupName().getAsString()
    666                << ":\n";
    667   for (NamedDecl *D : *this)
    668     D->dump();
    669 }
    670 
    671 /// \brief Lookup a builtin function, when name lookup would otherwise
    672 /// fail.
    673 static bool LookupBuiltin(Sema &S, LookupResult &R) {
    674   Sema::LookupNameKind NameKind = R.getLookupKind();
    675 
    676   // If we didn't find a use of this identifier, and if the identifier
    677   // corresponds to a compiler builtin, create the decl object for the builtin
    678   // now, injecting it into translation unit scope, and return it.
    679   if (NameKind == Sema::LookupOrdinaryName ||
    680       NameKind == Sema::LookupRedeclarationWithLinkage) {
    681     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
    682     if (II) {
    683       if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
    684         if (II == S.getASTContext().getMakeIntegerSeqName()) {
    685           R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
    686           return true;
    687         } else if (II == S.getASTContext().getTypePackElementName()) {
    688           R.addDecl(S.getASTContext().getTypePackElementDecl());
    689           return true;
    690         }
    691       }
    692 
    693       // If this is a builtin on this (or all) targets, create the decl.
    694       if (unsigned BuiltinID = II->getBuiltinID()) {
    695         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
    696         // library functions like 'malloc'. Instead, we'll just error.
    697         if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
    698             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    699           return false;
    700 
    701         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
    702                                                  BuiltinID, S.TUScope,
    703                                                  R.isForRedeclaration(),
    704                                                  R.getNameLoc())) {
    705           R.addDecl(D);
    706           return true;
    707         }
    708       }
    709     }
    710   }
    711 
    712   return false;
    713 }
    714 
    715 /// \brief Determine whether we can declare a special member function within
    716 /// the class at this point.
    717 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
    718   // We need to have a definition for the class.
    719   if (!Class->getDefinition() || Class->isDependentContext())
    720     return false;
    721 
    722   // We can't be in the middle of defining the class.
    723   return !Class->isBeingDefined();
    724 }
    725 
    726 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
    727   if (!CanDeclareSpecialMemberFunction(Class))
    728     return;
    729 
    730   // If the default constructor has not yet been declared, do so now.
    731   if (Class->needsImplicitDefaultConstructor())
    732     DeclareImplicitDefaultConstructor(Class);
    733 
    734   // If the copy constructor has not yet been declared, do so now.
    735   if (Class->needsImplicitCopyConstructor())
    736     DeclareImplicitCopyConstructor(Class);
    737 
    738   // If the copy assignment operator has not yet been declared, do so now.
    739   if (Class->needsImplicitCopyAssignment())
    740     DeclareImplicitCopyAssignment(Class);
    741 
    742   if (getLangOpts().CPlusPlus11) {
    743     // If the move constructor has not yet been declared, do so now.
    744     if (Class->needsImplicitMoveConstructor())
    745       DeclareImplicitMoveConstructor(Class);
    746 
    747     // If the move assignment operator has not yet been declared, do so now.
    748     if (Class->needsImplicitMoveAssignment())
    749       DeclareImplicitMoveAssignment(Class);
    750   }
    751 
    752   // If the destructor has not yet been declared, do so now.
    753   if (Class->needsImplicitDestructor())
    754     DeclareImplicitDestructor(Class);
    755 }
    756 
    757 /// \brief Determine whether this is the name of an implicitly-declared
    758 /// special member function.
    759 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
    760   switch (Name.getNameKind()) {
    761   case DeclarationName::CXXConstructorName:
    762   case DeclarationName::CXXDestructorName:
    763     return true;
    764 
    765   case DeclarationName::CXXOperatorName:
    766     return Name.getCXXOverloadedOperator() == OO_Equal;
    767 
    768   default:
    769     break;
    770   }
    771 
    772   return false;
    773 }
    774 
    775 /// \brief If there are any implicit member functions with the given name
    776 /// that need to be declared in the given declaration context, do so.
    777 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
    778                                                    DeclarationName Name,
    779                                                    const DeclContext *DC) {
    780   if (!DC)
    781     return;
    782 
    783   switch (Name.getNameKind()) {
    784   case DeclarationName::CXXConstructorName:
    785     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    786       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    787         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    788         if (Record->needsImplicitDefaultConstructor())
    789           S.DeclareImplicitDefaultConstructor(Class);
    790         if (Record->needsImplicitCopyConstructor())
    791           S.DeclareImplicitCopyConstructor(Class);
    792         if (S.getLangOpts().CPlusPlus11 &&
    793             Record->needsImplicitMoveConstructor())
    794           S.DeclareImplicitMoveConstructor(Class);
    795       }
    796     break;
    797 
    798   case DeclarationName::CXXDestructorName:
    799     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    800       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
    801           CanDeclareSpecialMemberFunction(Record))
    802         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
    803     break;
    804 
    805   case DeclarationName::CXXOperatorName:
    806     if (Name.getCXXOverloadedOperator() != OO_Equal)
    807       break;
    808 
    809     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
    810       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    811         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    812         if (Record->needsImplicitCopyAssignment())
    813           S.DeclareImplicitCopyAssignment(Class);
    814         if (S.getLangOpts().CPlusPlus11 &&
    815             Record->needsImplicitMoveAssignment())
    816           S.DeclareImplicitMoveAssignment(Class);
    817       }
    818     }
    819     break;
    820 
    821   default:
    822     break;
    823   }
    824 }
    825 
    826 // Adds all qualifying matches for a name within a decl context to the
    827 // given lookup result.  Returns true if any matches were found.
    828 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
    829   bool Found = false;
    830 
    831   // Lazily declare C++ special member functions.
    832   if (S.getLangOpts().CPlusPlus)
    833     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
    834 
    835   // Perform lookup into this declaration context.
    836   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
    837   for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
    838        ++I) {
    839     NamedDecl *D = *I;
    840     if ((D = R.getAcceptableDecl(D))) {
    841       R.addDecl(D);
    842       Found = true;
    843     }
    844   }
    845 
    846   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
    847     return true;
    848 
    849   if (R.getLookupName().getNameKind()
    850         != DeclarationName::CXXConversionFunctionName ||
    851       R.getLookupName().getCXXNameType()->isDependentType() ||
    852       !isa<CXXRecordDecl>(DC))
    853     return Found;
    854 
    855   // C++ [temp.mem]p6:
    856   //   A specialization of a conversion function template is not found by
    857   //   name lookup. Instead, any conversion function templates visible in the
    858   //   context of the use are considered. [...]
    859   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
    860   if (!Record->isCompleteDefinition())
    861     return Found;
    862 
    863   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
    864          UEnd = Record->conversion_end(); U != UEnd; ++U) {
    865     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
    866     if (!ConvTemplate)
    867       continue;
    868 
    869     // When we're performing lookup for the purposes of redeclaration, just
    870     // add the conversion function template. When we deduce template
    871     // arguments for specializations, we'll end up unifying the return
    872     // type of the new declaration with the type of the function template.
    873     if (R.isForRedeclaration()) {
    874       R.addDecl(ConvTemplate);
    875       Found = true;
    876       continue;
    877     }
    878 
    879     // C++ [temp.mem]p6:
    880     //   [...] For each such operator, if argument deduction succeeds
    881     //   (14.9.2.3), the resulting specialization is used as if found by
    882     //   name lookup.
    883     //
    884     // When referencing a conversion function for any purpose other than
    885     // a redeclaration (such that we'll be building an expression with the
    886     // result), perform template argument deduction and place the
    887     // specialization into the result set. We do this to avoid forcing all
    888     // callers to perform special deduction for conversion functions.
    889     TemplateDeductionInfo Info(R.getNameLoc());
    890     FunctionDecl *Specialization = nullptr;
    891 
    892     const FunctionProtoType *ConvProto
    893       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
    894     assert(ConvProto && "Nonsensical conversion function template type");
    895 
    896     // Compute the type of the function that we would expect the conversion
    897     // function to have, if it were to match the name given.
    898     // FIXME: Calling convention!
    899     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
    900     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
    901     EPI.ExceptionSpec = EST_None;
    902     QualType ExpectedType
    903       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
    904                                             None, EPI);
    905 
    906     // Perform template argument deduction against the type that we would
    907     // expect the function to have.
    908     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
    909                                             Specialization, Info)
    910           == Sema::TDK_Success) {
    911       R.addDecl(Specialization);
    912       Found = true;
    913     }
    914   }
    915 
    916   return Found;
    917 }
    918 
    919 // Performs C++ unqualified lookup into the given file context.
    920 static bool
    921 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
    922                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
    923 
    924   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
    925 
    926   // Perform direct name lookup into the LookupCtx.
    927   bool Found = LookupDirect(S, R, NS);
    928 
    929   // Perform direct name lookup into the namespaces nominated by the
    930   // using directives whose common ancestor is this namespace.
    931   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
    932     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
    933       Found = true;
    934 
    935   R.resolveKind();
    936 
    937   return Found;
    938 }
    939 
    940 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
    941   if (DeclContext *Ctx = S->getEntity())
    942     return Ctx->isFileContext();
    943   return false;
    944 }
    945 
    946 // Find the next outer declaration context from this scope. This
    947 // routine actually returns the semantic outer context, which may
    948 // differ from the lexical context (encoded directly in the Scope
    949 // stack) when we are parsing a member of a class template. In this
    950 // case, the second element of the pair will be true, to indicate that
    951 // name lookup should continue searching in this semantic context when
    952 // it leaves the current template parameter scope.
    953 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
    954   DeclContext *DC = S->getEntity();
    955   DeclContext *Lexical = nullptr;
    956   for (Scope *OuterS = S->getParent(); OuterS;
    957        OuterS = OuterS->getParent()) {
    958     if (OuterS->getEntity()) {
    959       Lexical = OuterS->getEntity();
    960       break;
    961     }
    962   }
    963 
    964   // C++ [temp.local]p8:
    965   //   In the definition of a member of a class template that appears
    966   //   outside of the namespace containing the class template
    967   //   definition, the name of a template-parameter hides the name of
    968   //   a member of this namespace.
    969   //
    970   // Example:
    971   //
    972   //   namespace N {
    973   //     class C { };
    974   //
    975   //     template<class T> class B {
    976   //       void f(T);
    977   //     };
    978   //   }
    979   //
    980   //   template<class C> void N::B<C>::f(C) {
    981   //     C b;  // C is the template parameter, not N::C
    982   //   }
    983   //
    984   // In this example, the lexical context we return is the
    985   // TranslationUnit, while the semantic context is the namespace N.
    986   if (!Lexical || !DC || !S->getParent() ||
    987       !S->getParent()->isTemplateParamScope())
    988     return std::make_pair(Lexical, false);
    989 
    990   // Find the outermost template parameter scope.
    991   // For the example, this is the scope for the template parameters of
    992   // template<class C>.
    993   Scope *OutermostTemplateScope = S->getParent();
    994   while (OutermostTemplateScope->getParent() &&
    995          OutermostTemplateScope->getParent()->isTemplateParamScope())
    996     OutermostTemplateScope = OutermostTemplateScope->getParent();
    997 
    998   // Find the namespace context in which the original scope occurs. In
    999   // the example, this is namespace N.
   1000   DeclContext *Semantic = DC;
   1001   while (!Semantic->isFileContext())
   1002     Semantic = Semantic->getParent();
   1003 
   1004   // Find the declaration context just outside of the template
   1005   // parameter scope. This is the context in which the template is
   1006   // being lexically declaration (a namespace context). In the
   1007   // example, this is the global scope.
   1008   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
   1009       Lexical->Encloses(Semantic))
   1010     return std::make_pair(Semantic, true);
   1011 
   1012   return std::make_pair(Lexical, false);
   1013 }
   1014 
   1015 namespace {
   1016 /// An RAII object to specify that we want to find block scope extern
   1017 /// declarations.
   1018 struct FindLocalExternScope {
   1019   FindLocalExternScope(LookupResult &R)
   1020       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
   1021                                  Decl::IDNS_LocalExtern) {
   1022     R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
   1023   }
   1024   void restore() {
   1025     R.setFindLocalExtern(OldFindLocalExtern);
   1026   }
   1027   ~FindLocalExternScope() {
   1028     restore();
   1029   }
   1030   LookupResult &R;
   1031   bool OldFindLocalExtern;
   1032 };
   1033 } // end anonymous namespace
   1034 
   1035 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
   1036   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
   1037 
   1038   DeclarationName Name = R.getLookupName();
   1039   Sema::LookupNameKind NameKind = R.getLookupKind();
   1040 
   1041   // If this is the name of an implicitly-declared special member function,
   1042   // go through the scope stack to implicitly declare
   1043   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
   1044     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
   1045       if (DeclContext *DC = PreS->getEntity())
   1046         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
   1047   }
   1048 
   1049   // Implicitly declare member functions with the name we're looking for, if in
   1050   // fact we are in a scope where it matters.
   1051 
   1052   Scope *Initial = S;
   1053   IdentifierResolver::iterator
   1054     I = IdResolver.begin(Name),
   1055     IEnd = IdResolver.end();
   1056 
   1057   // First we lookup local scope.
   1058   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
   1059   // ...During unqualified name lookup (3.4.1), the names appear as if
   1060   // they were declared in the nearest enclosing namespace which contains
   1061   // both the using-directive and the nominated namespace.
   1062   // [Note: in this context, "contains" means "contains directly or
   1063   // indirectly".
   1064   //
   1065   // For example:
   1066   // namespace A { int i; }
   1067   // void foo() {
   1068   //   int i;
   1069   //   {
   1070   //     using namespace A;
   1071   //     ++i; // finds local 'i', A::i appears at global scope
   1072   //   }
   1073   // }
   1074   //
   1075   UnqualUsingDirectiveSet UDirs;
   1076   bool VisitedUsingDirectives = false;
   1077   bool LeftStartingScope = false;
   1078   DeclContext *OutsideOfTemplateParamDC = nullptr;
   1079 
   1080   // When performing a scope lookup, we want to find local extern decls.
   1081   FindLocalExternScope FindLocals(R);
   1082 
   1083   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
   1084     DeclContext *Ctx = S->getEntity();
   1085     bool SearchNamespaceScope = true;
   1086     // Check whether the IdResolver has anything in this scope.
   1087     for (; I != IEnd && S->isDeclScope(*I); ++I) {
   1088       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
   1089         if (NameKind == LookupRedeclarationWithLinkage &&
   1090             !(*I)->isTemplateParameter()) {
   1091           // If it's a template parameter, we still find it, so we can diagnose
   1092           // the invalid redeclaration.
   1093 
   1094           // Determine whether this (or a previous) declaration is
   1095           // out-of-scope.
   1096           if (!LeftStartingScope && !Initial->isDeclScope(*I))
   1097             LeftStartingScope = true;
   1098 
   1099           // If we found something outside of our starting scope that
   1100           // does not have linkage, skip it.
   1101           if (LeftStartingScope && !((*I)->hasLinkage())) {
   1102             R.setShadowed();
   1103             continue;
   1104           }
   1105         } else {
   1106           // We found something in this scope, we should not look at the
   1107           // namespace scope
   1108           SearchNamespaceScope = false;
   1109         }
   1110         R.addDecl(ND);
   1111       }
   1112     }
   1113     if (!SearchNamespaceScope) {
   1114       R.resolveKind();
   1115       if (S->isClassScope())
   1116         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
   1117           R.setNamingClass(Record);
   1118       return true;
   1119     }
   1120 
   1121     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
   1122       // C++11 [class.friend]p11:
   1123       //   If a friend declaration appears in a local class and the name
   1124       //   specified is an unqualified name, a prior declaration is
   1125       //   looked up without considering scopes that are outside the
   1126       //   innermost enclosing non-class scope.
   1127       return false;
   1128     }
   1129 
   1130     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
   1131         S->getParent() && !S->getParent()->isTemplateParamScope()) {
   1132       // We've just searched the last template parameter scope and
   1133       // found nothing, so look into the contexts between the
   1134       // lexical and semantic declaration contexts returned by
   1135       // findOuterContext(). This implements the name lookup behavior
   1136       // of C++ [temp.local]p8.
   1137       Ctx = OutsideOfTemplateParamDC;
   1138       OutsideOfTemplateParamDC = nullptr;
   1139     }
   1140 
   1141     if (Ctx) {
   1142       DeclContext *OuterCtx;
   1143       bool SearchAfterTemplateScope;
   1144       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
   1145       if (SearchAfterTemplateScope)
   1146         OutsideOfTemplateParamDC = OuterCtx;
   1147 
   1148       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
   1149         // We do not directly look into transparent contexts, since
   1150         // those entities will be found in the nearest enclosing
   1151         // non-transparent context.
   1152         if (Ctx->isTransparentContext())
   1153           continue;
   1154 
   1155         // We do not look directly into function or method contexts,
   1156         // since all of the local variables and parameters of the
   1157         // function/method are present within the Scope.
   1158         if (Ctx->isFunctionOrMethod()) {
   1159           // If we have an Objective-C instance method, look for ivars
   1160           // in the corresponding interface.
   1161           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   1162             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
   1163               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
   1164                 ObjCInterfaceDecl *ClassDeclared;
   1165                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
   1166                                                  Name.getAsIdentifierInfo(),
   1167                                                              ClassDeclared)) {
   1168                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
   1169                     R.addDecl(ND);
   1170                     R.resolveKind();
   1171                     return true;
   1172                   }
   1173                 }
   1174               }
   1175           }
   1176 
   1177           continue;
   1178         }
   1179 
   1180         // If this is a file context, we need to perform unqualified name
   1181         // lookup considering using directives.
   1182         if (Ctx->isFileContext()) {
   1183           // If we haven't handled using directives yet, do so now.
   1184           if (!VisitedUsingDirectives) {
   1185             // Add using directives from this context up to the top level.
   1186             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
   1187               if (UCtx->isTransparentContext())
   1188                 continue;
   1189 
   1190               UDirs.visit(UCtx, UCtx);
   1191             }
   1192 
   1193             // Find the innermost file scope, so we can add using directives
   1194             // from local scopes.
   1195             Scope *InnermostFileScope = S;
   1196             while (InnermostFileScope &&
   1197                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
   1198               InnermostFileScope = InnermostFileScope->getParent();
   1199             UDirs.visitScopeChain(Initial, InnermostFileScope);
   1200 
   1201             UDirs.done();
   1202 
   1203             VisitedUsingDirectives = true;
   1204           }
   1205 
   1206           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
   1207             R.resolveKind();
   1208             return true;
   1209           }
   1210 
   1211           continue;
   1212         }
   1213 
   1214         // Perform qualified name lookup into this context.
   1215         // FIXME: In some cases, we know that every name that could be found by
   1216         // this qualified name lookup will also be on the identifier chain. For
   1217         // example, inside a class without any base classes, we never need to
   1218         // perform qualified lookup because all of the members are on top of the
   1219         // identifier chain.
   1220         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
   1221           return true;
   1222       }
   1223     }
   1224   }
   1225 
   1226   // Stop if we ran out of scopes.
   1227   // FIXME:  This really, really shouldn't be happening.
   1228   if (!S) return false;
   1229 
   1230   // If we are looking for members, no need to look into global/namespace scope.
   1231   if (NameKind == LookupMemberName)
   1232     return false;
   1233 
   1234   // Collect UsingDirectiveDecls in all scopes, and recursively all
   1235   // nominated namespaces by those using-directives.
   1236   //
   1237   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
   1238   // don't build it for each lookup!
   1239   if (!VisitedUsingDirectives) {
   1240     UDirs.visitScopeChain(Initial, S);
   1241     UDirs.done();
   1242   }
   1243 
   1244   // If we're not performing redeclaration lookup, do not look for local
   1245   // extern declarations outside of a function scope.
   1246   if (!R.isForRedeclaration())
   1247     FindLocals.restore();
   1248 
   1249   // Lookup namespace scope, and global scope.
   1250   // Unqualified name lookup in C++ requires looking into scopes
   1251   // that aren't strictly lexical, and therefore we walk through the
   1252   // context as well as walking through the scopes.
   1253   for (; S; S = S->getParent()) {
   1254     // Check whether the IdResolver has anything in this scope.
   1255     bool Found = false;
   1256     for (; I != IEnd && S->isDeclScope(*I); ++I) {
   1257       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
   1258         // We found something.  Look for anything else in our scope
   1259         // with this same name and in an acceptable identifier
   1260         // namespace, so that we can construct an overload set if we
   1261         // need to.
   1262         Found = true;
   1263         R.addDecl(ND);
   1264       }
   1265     }
   1266 
   1267     if (Found && S->isTemplateParamScope()) {
   1268       R.resolveKind();
   1269       return true;
   1270     }
   1271 
   1272     DeclContext *Ctx = S->getEntity();
   1273     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
   1274         S->getParent() && !S->getParent()->isTemplateParamScope()) {
   1275       // We've just searched the last template parameter scope and
   1276       // found nothing, so look into the contexts between the
   1277       // lexical and semantic declaration contexts returned by
   1278       // findOuterContext(). This implements the name lookup behavior
   1279       // of C++ [temp.local]p8.
   1280       Ctx = OutsideOfTemplateParamDC;
   1281       OutsideOfTemplateParamDC = nullptr;
   1282     }
   1283 
   1284     if (Ctx) {
   1285       DeclContext *OuterCtx;
   1286       bool SearchAfterTemplateScope;
   1287       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
   1288       if (SearchAfterTemplateScope)
   1289         OutsideOfTemplateParamDC = OuterCtx;
   1290 
   1291       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
   1292         // We do not directly look into transparent contexts, since
   1293         // those entities will be found in the nearest enclosing
   1294         // non-transparent context.
   1295         if (Ctx->isTransparentContext())
   1296           continue;
   1297 
   1298         // If we have a context, and it's not a context stashed in the
   1299         // template parameter scope for an out-of-line definition, also
   1300         // look into that context.
   1301         if (!(Found && S && S->isTemplateParamScope())) {
   1302           assert(Ctx->isFileContext() &&
   1303               "We should have been looking only at file context here already.");
   1304 
   1305           // Look into context considering using-directives.
   1306           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
   1307             Found = true;
   1308         }
   1309 
   1310         if (Found) {
   1311           R.resolveKind();
   1312           return true;
   1313         }
   1314 
   1315         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
   1316           return false;
   1317       }
   1318     }
   1319 
   1320     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
   1321       return false;
   1322   }
   1323 
   1324   return !R.empty();
   1325 }
   1326 
   1327 /// \brief Find the declaration that a class temploid member specialization was
   1328 /// instantiated from, or the member itself if it is an explicit specialization.
   1329 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
   1330   return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
   1331 }
   1332 
   1333 Module *Sema::getOwningModule(Decl *Entity) {
   1334   // If it's imported, grab its owning module.
   1335   Module *M = Entity->getImportedOwningModule();
   1336   if (M || !isa<NamedDecl>(Entity) || !cast<NamedDecl>(Entity)->isHidden())
   1337     return M;
   1338   assert(!Entity->isFromASTFile() &&
   1339          "hidden entity from AST file has no owning module");
   1340 
   1341   if (!getLangOpts().ModulesLocalVisibility) {
   1342     // If we're not tracking visibility locally, the only way a declaration
   1343     // can be hidden and local is if it's hidden because it's parent is (for
   1344     // instance, maybe this is a lazily-declared special member of an imported
   1345     // class).
   1346     auto *Parent = cast<NamedDecl>(Entity->getDeclContext());
   1347     assert(Parent->isHidden() && "unexpectedly hidden decl");
   1348     return getOwningModule(Parent);
   1349   }
   1350 
   1351   // It's local and hidden; grab or compute its owning module.
   1352   M = Entity->getLocalOwningModule();
   1353   if (M)
   1354     return M;
   1355 
   1356   if (auto *Containing =
   1357           PP.getModuleContainingLocation(Entity->getLocation())) {
   1358     M = Containing;
   1359   } else if (Entity->isInvalidDecl() || Entity->getLocation().isInvalid()) {
   1360     // Don't bother tracking visibility for invalid declarations with broken
   1361     // locations.
   1362     cast<NamedDecl>(Entity)->setHidden(false);
   1363   } else {
   1364     // We need to assign a module to an entity that exists outside of any
   1365     // module, so that we can hide it from modules that we textually enter.
   1366     // Invent a fake module for all such entities.
   1367     if (!CachedFakeTopLevelModule) {
   1368       CachedFakeTopLevelModule =
   1369           PP.getHeaderSearchInfo().getModuleMap().findOrCreateModule(
   1370               "<top-level>", nullptr, false, false).first;
   1371 
   1372       auto &SrcMgr = PP.getSourceManager();
   1373       SourceLocation StartLoc =
   1374           SrcMgr.getLocForStartOfFile(SrcMgr.getMainFileID());
   1375       auto &TopLevel =
   1376           VisibleModulesStack.empty() ? VisibleModules : VisibleModulesStack[0];
   1377       TopLevel.setVisible(CachedFakeTopLevelModule, StartLoc);
   1378     }
   1379 
   1380     M = CachedFakeTopLevelModule;
   1381   }
   1382 
   1383   if (M)
   1384     Entity->setLocalOwningModule(M);
   1385   return M;
   1386 }
   1387 
   1388 void Sema::makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc) {
   1389   if (auto *M = PP.getModuleContainingLocation(Loc))
   1390     Context.mergeDefinitionIntoModule(ND, M);
   1391   else
   1392     // We're not building a module; just make the definition visible.
   1393     ND->setHidden(false);
   1394 
   1395   // If ND is a template declaration, make the template parameters
   1396   // visible too. They're not (necessarily) within a mergeable DeclContext.
   1397   if (auto *TD = dyn_cast<TemplateDecl>(ND))
   1398     for (auto *Param : *TD->getTemplateParameters())
   1399       makeMergedDefinitionVisible(Param, Loc);
   1400 }
   1401 
   1402 /// \brief Find the module in which the given declaration was defined.
   1403 static Module *getDefiningModule(Sema &S, Decl *Entity) {
   1404   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
   1405     // If this function was instantiated from a template, the defining module is
   1406     // the module containing the pattern.
   1407     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
   1408       Entity = Pattern;
   1409   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
   1410     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
   1411       Entity = Pattern;
   1412   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
   1413     if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
   1414       Entity = getInstantiatedFrom(ED, MSInfo);
   1415   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
   1416     // FIXME: Map from variable template specializations back to the template.
   1417     if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
   1418       Entity = getInstantiatedFrom(VD, MSInfo);
   1419   }
   1420 
   1421   // Walk up to the containing context. That might also have been instantiated
   1422   // from a template.
   1423   DeclContext *Context = Entity->getDeclContext();
   1424   if (Context->isFileContext())
   1425     return S.getOwningModule(Entity);
   1426   return getDefiningModule(S, cast<Decl>(Context));
   1427 }
   1428 
   1429 llvm::DenseSet<Module*> &Sema::getLookupModules() {
   1430   unsigned N = ActiveTemplateInstantiations.size();
   1431   for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
   1432        I != N; ++I) {
   1433     Module *M =
   1434         getDefiningModule(*this, ActiveTemplateInstantiations[I].Entity);
   1435     if (M && !LookupModulesCache.insert(M).second)
   1436       M = nullptr;
   1437     ActiveTemplateInstantiationLookupModules.push_back(M);
   1438   }
   1439   return LookupModulesCache;
   1440 }
   1441 
   1442 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
   1443   for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
   1444     if (isModuleVisible(Merged))
   1445       return true;
   1446   return false;
   1447 }
   1448 
   1449 template<typename ParmDecl>
   1450 static bool
   1451 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
   1452                           llvm::SmallVectorImpl<Module *> *Modules) {
   1453   if (!D->hasDefaultArgument())
   1454     return false;
   1455 
   1456   while (D) {
   1457     auto &DefaultArg = D->getDefaultArgStorage();
   1458     if (!DefaultArg.isInherited() && S.isVisible(D))
   1459       return true;
   1460 
   1461     if (!DefaultArg.isInherited() && Modules) {
   1462       auto *NonConstD = const_cast<ParmDecl*>(D);
   1463       Modules->push_back(S.getOwningModule(NonConstD));
   1464       const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
   1465       Modules->insert(Modules->end(), Merged.begin(), Merged.end());
   1466     }
   1467 
   1468     // If there was a previous default argument, maybe its parameter is visible.
   1469     D = DefaultArg.getInheritedFrom();
   1470   }
   1471   return false;
   1472 }
   1473 
   1474 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
   1475                                      llvm::SmallVectorImpl<Module *> *Modules) {
   1476   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
   1477     return ::hasVisibleDefaultArgument(*this, P, Modules);
   1478   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
   1479     return ::hasVisibleDefaultArgument(*this, P, Modules);
   1480   return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
   1481                                      Modules);
   1482 }
   1483 
   1484 bool Sema::hasVisibleMemberSpecialization(
   1485     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
   1486   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
   1487          "not a member specialization");
   1488   for (auto *Redecl : D->redecls()) {
   1489     // If the specialization is declared at namespace scope, then it's a member
   1490     // specialization declaration. If it's lexically inside the class
   1491     // definition then it was instantiated.
   1492     //
   1493     // FIXME: This is a hack. There should be a better way to determine this.
   1494     // FIXME: What about MS-style explicit specializations declared within a
   1495     //        class definition?
   1496     if (Redecl->getLexicalDeclContext()->isFileContext()) {
   1497       auto *NonConstR = const_cast<NamedDecl*>(cast<NamedDecl>(Redecl));
   1498 
   1499       if (isVisible(NonConstR))
   1500         return true;
   1501 
   1502       if (Modules) {
   1503         Modules->push_back(getOwningModule(NonConstR));
   1504         const auto &Merged = Context.getModulesWithMergedDefinition(NonConstR);
   1505         Modules->insert(Modules->end(), Merged.begin(), Merged.end());
   1506       }
   1507     }
   1508   }
   1509 
   1510   return false;
   1511 }
   1512 
   1513 /// \brief Determine whether a declaration is visible to name lookup.
   1514 ///
   1515 /// This routine determines whether the declaration D is visible in the current
   1516 /// lookup context, taking into account the current template instantiation
   1517 /// stack. During template instantiation, a declaration is visible if it is
   1518 /// visible from a module containing any entity on the template instantiation
   1519 /// path (by instantiating a template, you allow it to see the declarations that
   1520 /// your module can see, including those later on in your module).
   1521 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
   1522   assert(D->isHidden() && "should not call this: not in slow case");
   1523   Module *DeclModule = nullptr;
   1524 
   1525   if (SemaRef.getLangOpts().ModulesLocalVisibility) {
   1526     DeclModule = SemaRef.getOwningModule(D);
   1527     if (!DeclModule) {
   1528       // getOwningModule() may have decided the declaration should not be hidden.
   1529       assert(!D->isHidden() && "hidden decl not from a module");
   1530       return true;
   1531     }
   1532 
   1533     // If the owning module is visible, and the decl is not module private,
   1534     // then the decl is visible too. (Module private is ignored within the same
   1535     // top-level module.)
   1536     if ((!D->isFromASTFile() || !D->isModulePrivate()) &&
   1537         (SemaRef.isModuleVisible(DeclModule) ||
   1538          SemaRef.hasVisibleMergedDefinition(D)))
   1539       return true;
   1540   }
   1541 
   1542   // If this declaration is not at namespace scope nor module-private,
   1543   // then it is visible if its lexical parent has a visible definition.
   1544   DeclContext *DC = D->getLexicalDeclContext();
   1545   if (!D->isModulePrivate() &&
   1546       DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
   1547     // For a parameter, check whether our current template declaration's
   1548     // lexical context is visible, not whether there's some other visible
   1549     // definition of it, because parameters aren't "within" the definition.
   1550     if ((D->isTemplateParameter() || isa<ParmVarDecl>(D))
   1551             ? isVisible(SemaRef, cast<NamedDecl>(DC))
   1552             : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
   1553       if (SemaRef.ActiveTemplateInstantiations.empty() &&
   1554           // FIXME: Do something better in this case.
   1555           !SemaRef.getLangOpts().ModulesLocalVisibility) {
   1556         // Cache the fact that this declaration is implicitly visible because
   1557         // its parent has a visible definition.
   1558         D->setHidden(false);
   1559       }
   1560       return true;
   1561     }
   1562     return false;
   1563   }
   1564 
   1565   // Find the extra places where we need to look.
   1566   llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
   1567   if (LookupModules.empty())
   1568     return false;
   1569 
   1570   if (!DeclModule) {
   1571     DeclModule = SemaRef.getOwningModule(D);
   1572     assert(DeclModule && "hidden decl not from a module");
   1573   }
   1574 
   1575   // If our lookup set contains the decl's module, it's visible.
   1576   if (LookupModules.count(DeclModule))
   1577     return true;
   1578 
   1579   // If the declaration isn't exported, it's not visible in any other module.
   1580   if (D->isModulePrivate())
   1581     return false;
   1582 
   1583   // Check whether DeclModule is transitively exported to an import of
   1584   // the lookup set.
   1585   return std::any_of(LookupModules.begin(), LookupModules.end(),
   1586                      [&](Module *M) { return M->isModuleVisible(DeclModule); });
   1587 }
   1588 
   1589 bool Sema::isVisibleSlow(const NamedDecl *D) {
   1590   return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
   1591 }
   1592 
   1593 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
   1594   for (auto *D : R) {
   1595     if (isVisible(D))
   1596       return true;
   1597   }
   1598   return New->isExternallyVisible();
   1599 }
   1600 
   1601 /// \brief Retrieve the visible declaration corresponding to D, if any.
   1602 ///
   1603 /// This routine determines whether the declaration D is visible in the current
   1604 /// module, with the current imports. If not, it checks whether any
   1605 /// redeclaration of D is visible, and if so, returns that declaration.
   1606 ///
   1607 /// \returns D, or a visible previous declaration of D, whichever is more recent
   1608 /// and visible. If no declaration of D is visible, returns null.
   1609 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
   1610   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
   1611 
   1612   for (auto RD : D->redecls()) {
   1613     // Don't bother with extra checks if we already know this one isn't visible.
   1614     if (RD == D)
   1615       continue;
   1616 
   1617     auto ND = cast<NamedDecl>(RD);
   1618     // FIXME: This is wrong in the case where the previous declaration is not
   1619     // visible in the same scope as D. This needs to be done much more
   1620     // carefully.
   1621     if (LookupResult::isVisible(SemaRef, ND))
   1622       return ND;
   1623   }
   1624 
   1625   return nullptr;
   1626 }
   1627 
   1628 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
   1629                                      llvm::SmallVectorImpl<Module *> *Modules) {
   1630   assert(!isVisible(D) && "not in slow case");
   1631 
   1632   for (auto *Redecl : D->redecls()) {
   1633     auto *NonConstR = const_cast<NamedDecl*>(cast<NamedDecl>(Redecl));
   1634     if (isVisible(NonConstR))
   1635       return true;
   1636 
   1637     if (Modules) {
   1638       Modules->push_back(getOwningModule(NonConstR));
   1639       const auto &Merged = Context.getModulesWithMergedDefinition(NonConstR);
   1640       Modules->insert(Modules->end(), Merged.begin(), Merged.end());
   1641     }
   1642   }
   1643 
   1644   return false;
   1645 }
   1646 
   1647 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
   1648   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
   1649     // Namespaces are a bit of a special case: we expect there to be a lot of
   1650     // redeclarations of some namespaces, all declarations of a namespace are
   1651     // essentially interchangeable, all declarations are found by name lookup
   1652     // if any is, and namespaces are never looked up during template
   1653     // instantiation. So we benefit from caching the check in this case, and
   1654     // it is correct to do so.
   1655     auto *Key = ND->getCanonicalDecl();
   1656     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
   1657       return Acceptable;
   1658     auto *Acceptable =
   1659         isVisible(getSema(), Key) ? Key : findAcceptableDecl(getSema(), Key);
   1660     if (Acceptable)
   1661       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
   1662     return Acceptable;
   1663   }
   1664 
   1665   return findAcceptableDecl(getSema(), D);
   1666 }
   1667 
   1668 /// @brief Perform unqualified name lookup starting from a given
   1669 /// scope.
   1670 ///
   1671 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
   1672 /// used to find names within the current scope. For example, 'x' in
   1673 /// @code
   1674 /// int x;
   1675 /// int f() {
   1676 ///   return x; // unqualified name look finds 'x' in the global scope
   1677 /// }
   1678 /// @endcode
   1679 ///
   1680 /// Different lookup criteria can find different names. For example, a
   1681 /// particular scope can have both a struct and a function of the same
   1682 /// name, and each can be found by certain lookup criteria. For more
   1683 /// information about lookup criteria, see the documentation for the
   1684 /// class LookupCriteria.
   1685 ///
   1686 /// @param S        The scope from which unqualified name lookup will
   1687 /// begin. If the lookup criteria permits, name lookup may also search
   1688 /// in the parent scopes.
   1689 ///
   1690 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
   1691 /// look up and the lookup kind), and is updated with the results of lookup
   1692 /// including zero or more declarations and possibly additional information
   1693 /// used to diagnose ambiguities.
   1694 ///
   1695 /// @returns \c true if lookup succeeded and false otherwise.
   1696 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
   1697   DeclarationName Name = R.getLookupName();
   1698   if (!Name) return false;
   1699 
   1700   LookupNameKind NameKind = R.getLookupKind();
   1701 
   1702   if (!getLangOpts().CPlusPlus) {
   1703     // Unqualified name lookup in C/Objective-C is purely lexical, so
   1704     // search in the declarations attached to the name.
   1705     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
   1706       // Find the nearest non-transparent declaration scope.
   1707       while (!(S->getFlags() & Scope::DeclScope) ||
   1708              (S->getEntity() && S->getEntity()->isTransparentContext()))
   1709         S = S->getParent();
   1710     }
   1711 
   1712     // When performing a scope lookup, we want to find local extern decls.
   1713     FindLocalExternScope FindLocals(R);
   1714 
   1715     // Scan up the scope chain looking for a decl that matches this
   1716     // identifier that is in the appropriate namespace.  This search
   1717     // should not take long, as shadowing of names is uncommon, and
   1718     // deep shadowing is extremely uncommon.
   1719     bool LeftStartingScope = false;
   1720 
   1721     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
   1722                                    IEnd = IdResolver.end();
   1723          I != IEnd; ++I)
   1724       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
   1725         if (NameKind == LookupRedeclarationWithLinkage) {
   1726           // Determine whether this (or a previous) declaration is
   1727           // out-of-scope.
   1728           if (!LeftStartingScope && !S->isDeclScope(*I))
   1729             LeftStartingScope = true;
   1730 
   1731           // If we found something outside of our starting scope that
   1732           // does not have linkage, skip it.
   1733           if (LeftStartingScope && !((*I)->hasLinkage())) {
   1734             R.setShadowed();
   1735             continue;
   1736           }
   1737         }
   1738         else if (NameKind == LookupObjCImplicitSelfParam &&
   1739                  !isa<ImplicitParamDecl>(*I))
   1740           continue;
   1741 
   1742         R.addDecl(D);
   1743 
   1744         // Check whether there are any other declarations with the same name
   1745         // and in the same scope.
   1746         if (I != IEnd) {
   1747           // Find the scope in which this declaration was declared (if it
   1748           // actually exists in a Scope).
   1749           while (S && !S->isDeclScope(D))
   1750             S = S->getParent();
   1751 
   1752           // If the scope containing the declaration is the translation unit,
   1753           // then we'll need to perform our checks based on the matching
   1754           // DeclContexts rather than matching scopes.
   1755           if (S && isNamespaceOrTranslationUnitScope(S))
   1756             S = nullptr;
   1757 
   1758           // Compute the DeclContext, if we need it.
   1759           DeclContext *DC = nullptr;
   1760           if (!S)
   1761             DC = (*I)->getDeclContext()->getRedeclContext();
   1762 
   1763           IdentifierResolver::iterator LastI = I;
   1764           for (++LastI; LastI != IEnd; ++LastI) {
   1765             if (S) {
   1766               // Match based on scope.
   1767               if (!S->isDeclScope(*LastI))
   1768                 break;
   1769             } else {
   1770               // Match based on DeclContext.
   1771               DeclContext *LastDC
   1772                 = (*LastI)->getDeclContext()->getRedeclContext();
   1773               if (!LastDC->Equals(DC))
   1774                 break;
   1775             }
   1776 
   1777             // If the declaration is in the right namespace and visible, add it.
   1778             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
   1779               R.addDecl(LastD);
   1780           }
   1781 
   1782           R.resolveKind();
   1783         }
   1784 
   1785         return true;
   1786       }
   1787   } else {
   1788     // Perform C++ unqualified name lookup.
   1789     if (CppLookupName(R, S))
   1790       return true;
   1791   }
   1792 
   1793   // If we didn't find a use of this identifier, and if the identifier
   1794   // corresponds to a compiler builtin, create the decl object for the builtin
   1795   // now, injecting it into translation unit scope, and return it.
   1796   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
   1797     return true;
   1798 
   1799   // If we didn't find a use of this identifier, the ExternalSource
   1800   // may be able to handle the situation.
   1801   // Note: some lookup failures are expected!
   1802   // See e.g. R.isForRedeclaration().
   1803   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
   1804 }
   1805 
   1806 /// @brief Perform qualified name lookup in the namespaces nominated by
   1807 /// using directives by the given context.
   1808 ///
   1809 /// C++98 [namespace.qual]p2:
   1810 ///   Given X::m (where X is a user-declared namespace), or given \::m
   1811 ///   (where X is the global namespace), let S be the set of all
   1812 ///   declarations of m in X and in the transitive closure of all
   1813 ///   namespaces nominated by using-directives in X and its used
   1814 ///   namespaces, except that using-directives are ignored in any
   1815 ///   namespace, including X, directly containing one or more
   1816 ///   declarations of m. No namespace is searched more than once in
   1817 ///   the lookup of a name. If S is the empty set, the program is
   1818 ///   ill-formed. Otherwise, if S has exactly one member, or if the
   1819 ///   context of the reference is a using-declaration
   1820 ///   (namespace.udecl), S is the required set of declarations of
   1821 ///   m. Otherwise if the use of m is not one that allows a unique
   1822 ///   declaration to be chosen from S, the program is ill-formed.
   1823 ///
   1824 /// C++98 [namespace.qual]p5:
   1825 ///   During the lookup of a qualified namespace member name, if the
   1826 ///   lookup finds more than one declaration of the member, and if one
   1827 ///   declaration introduces a class name or enumeration name and the
   1828 ///   other declarations either introduce the same object, the same
   1829 ///   enumerator or a set of functions, the non-type name hides the
   1830 ///   class or enumeration name if and only if the declarations are
   1831 ///   from the same namespace; otherwise (the declarations are from
   1832 ///   different namespaces), the program is ill-formed.
   1833 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
   1834                                                  DeclContext *StartDC) {
   1835   assert(StartDC->isFileContext() && "start context is not a file context");
   1836 
   1837   DeclContext::udir_range UsingDirectives = StartDC->using_directives();
   1838   if (UsingDirectives.begin() == UsingDirectives.end()) return false;
   1839 
   1840   // We have at least added all these contexts to the queue.
   1841   llvm::SmallPtrSet<DeclContext*, 8> Visited;
   1842   Visited.insert(StartDC);
   1843 
   1844   // We have not yet looked into these namespaces, much less added
   1845   // their "using-children" to the queue.
   1846   SmallVector<NamespaceDecl*, 8> Queue;
   1847 
   1848   // We have already looked into the initial namespace; seed the queue
   1849   // with its using-children.
   1850   for (auto *I : UsingDirectives) {
   1851     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
   1852     if (Visited.insert(ND).second)
   1853       Queue.push_back(ND);
   1854   }
   1855 
   1856   // The easiest way to implement the restriction in [namespace.qual]p5
   1857   // is to check whether any of the individual results found a tag
   1858   // and, if so, to declare an ambiguity if the final result is not
   1859   // a tag.
   1860   bool FoundTag = false;
   1861   bool FoundNonTag = false;
   1862 
   1863   LookupResult LocalR(LookupResult::Temporary, R);
   1864 
   1865   bool Found = false;
   1866   while (!Queue.empty()) {
   1867     NamespaceDecl *ND = Queue.pop_back_val();
   1868 
   1869     // We go through some convolutions here to avoid copying results
   1870     // between LookupResults.
   1871     bool UseLocal = !R.empty();
   1872     LookupResult &DirectR = UseLocal ? LocalR : R;
   1873     bool FoundDirect = LookupDirect(S, DirectR, ND);
   1874 
   1875     if (FoundDirect) {
   1876       // First do any local hiding.
   1877       DirectR.resolveKind();
   1878 
   1879       // If the local result is a tag, remember that.
   1880       if (DirectR.isSingleTagDecl())
   1881         FoundTag = true;
   1882       else
   1883         FoundNonTag = true;
   1884 
   1885       // Append the local results to the total results if necessary.
   1886       if (UseLocal) {
   1887         R.addAllDecls(LocalR);
   1888         LocalR.clear();
   1889       }
   1890     }
   1891 
   1892     // If we find names in this namespace, ignore its using directives.
   1893     if (FoundDirect) {
   1894       Found = true;
   1895       continue;
   1896     }
   1897 
   1898     for (auto I : ND->using_directives()) {
   1899       NamespaceDecl *Nom = I->getNominatedNamespace();
   1900       if (Visited.insert(Nom).second)
   1901         Queue.push_back(Nom);
   1902     }
   1903   }
   1904 
   1905   if (Found) {
   1906     if (FoundTag && FoundNonTag)
   1907       R.setAmbiguousQualifiedTagHiding();
   1908     else
   1909       R.resolveKind();
   1910   }
   1911 
   1912   return Found;
   1913 }
   1914 
   1915 /// \brief Callback that looks for any member of a class with the given name.
   1916 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
   1917                             CXXBasePath &Path, DeclarationName Name) {
   1918   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   1919 
   1920   Path.Decls = BaseRecord->lookup(Name);
   1921   return !Path.Decls.empty();
   1922 }
   1923 
   1924 /// \brief Determine whether the given set of member declarations contains only
   1925 /// static members, nested types, and enumerators.
   1926 template<typename InputIterator>
   1927 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
   1928   Decl *D = (*First)->getUnderlyingDecl();
   1929   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
   1930     return true;
   1931 
   1932   if (isa<CXXMethodDecl>(D)) {
   1933     // Determine whether all of the methods are static.
   1934     bool AllMethodsAreStatic = true;
   1935     for(; First != Last; ++First) {
   1936       D = (*First)->getUnderlyingDecl();
   1937 
   1938       if (!isa<CXXMethodDecl>(D)) {
   1939         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
   1940         break;
   1941       }
   1942 
   1943       if (!cast<CXXMethodDecl>(D)->isStatic()) {
   1944         AllMethodsAreStatic = false;
   1945         break;
   1946       }
   1947     }
   1948 
   1949     if (AllMethodsAreStatic)
   1950       return true;
   1951   }
   1952 
   1953   return false;
   1954 }
   1955 
   1956 /// \brief Perform qualified name lookup into a given context.
   1957 ///
   1958 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
   1959 /// names when the context of those names is explicit specified, e.g.,
   1960 /// "std::vector" or "x->member", or as part of unqualified name lookup.
   1961 ///
   1962 /// Different lookup criteria can find different names. For example, a
   1963 /// particular scope can have both a struct and a function of the same
   1964 /// name, and each can be found by certain lookup criteria. For more
   1965 /// information about lookup criteria, see the documentation for the
   1966 /// class LookupCriteria.
   1967 ///
   1968 /// \param R captures both the lookup criteria and any lookup results found.
   1969 ///
   1970 /// \param LookupCtx The context in which qualified name lookup will
   1971 /// search. If the lookup criteria permits, name lookup may also search
   1972 /// in the parent contexts or (for C++ classes) base classes.
   1973 ///
   1974 /// \param InUnqualifiedLookup true if this is qualified name lookup that
   1975 /// occurs as part of unqualified name lookup.
   1976 ///
   1977 /// \returns true if lookup succeeded, false if it failed.
   1978 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   1979                                bool InUnqualifiedLookup) {
   1980   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
   1981 
   1982   if (!R.getLookupName())
   1983     return false;
   1984 
   1985   // Make sure that the declaration context is complete.
   1986   assert((!isa<TagDecl>(LookupCtx) ||
   1987           LookupCtx->isDependentContext() ||
   1988           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
   1989           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
   1990          "Declaration context must already be complete!");
   1991 
   1992   struct QualifiedLookupInScope {
   1993     bool oldVal;
   1994     DeclContext *Context;
   1995     // Set flag in DeclContext informing debugger that we're looking for qualified name
   1996     QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
   1997       oldVal = ctx->setUseQualifiedLookup();
   1998     }
   1999     ~QualifiedLookupInScope() {
   2000       Context->setUseQualifiedLookup(oldVal);
   2001     }
   2002   } QL(LookupCtx);
   2003 
   2004   if (LookupDirect(*this, R, LookupCtx)) {
   2005     R.resolveKind();
   2006     if (isa<CXXRecordDecl>(LookupCtx))
   2007       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
   2008     return true;
   2009   }
   2010 
   2011   // Don't descend into implied contexts for redeclarations.
   2012   // C++98 [namespace.qual]p6:
   2013   //   In a declaration for a namespace member in which the
   2014   //   declarator-id is a qualified-id, given that the qualified-id
   2015   //   for the namespace member has the form
   2016   //     nested-name-specifier unqualified-id
   2017   //   the unqualified-id shall name a member of the namespace
   2018   //   designated by the nested-name-specifier.
   2019   // See also [class.mfct]p5 and [class.static.data]p2.
   2020   if (R.isForRedeclaration())
   2021     return false;
   2022 
   2023   // If this is a namespace, look it up in the implied namespaces.
   2024   if (LookupCtx->isFileContext())
   2025     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
   2026 
   2027   // If this isn't a C++ class, we aren't allowed to look into base
   2028   // classes, we're done.
   2029   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
   2030   if (!LookupRec || !LookupRec->getDefinition())
   2031     return false;
   2032 
   2033   // If we're performing qualified name lookup into a dependent class,
   2034   // then we are actually looking into a current instantiation. If we have any
   2035   // dependent base classes, then we either have to delay lookup until
   2036   // template instantiation time (at which point all bases will be available)
   2037   // or we have to fail.
   2038   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
   2039       LookupRec->hasAnyDependentBases()) {
   2040     R.setNotFoundInCurrentInstantiation();
   2041     return false;
   2042   }
   2043 
   2044   // Perform lookup into our base classes.
   2045   CXXBasePaths Paths;
   2046   Paths.setOrigin(LookupRec);
   2047 
   2048   // Look for this member in our base classes
   2049   bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
   2050                        DeclarationName Name) = nullptr;
   2051   switch (R.getLookupKind()) {
   2052     case LookupObjCImplicitSelfParam:
   2053     case LookupOrdinaryName:
   2054     case LookupMemberName:
   2055     case LookupRedeclarationWithLinkage:
   2056     case LookupLocalFriendName:
   2057       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
   2058       break;
   2059 
   2060     case LookupTagName:
   2061       BaseCallback = &CXXRecordDecl::FindTagMember;
   2062       break;
   2063 
   2064     case LookupAnyName:
   2065       BaseCallback = &LookupAnyMember;
   2066       break;
   2067 
   2068     case LookupOMPReductionName:
   2069       BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
   2070       break;
   2071 
   2072     case LookupUsingDeclName:
   2073       // This lookup is for redeclarations only.
   2074 
   2075     case LookupOperatorName:
   2076     case LookupNamespaceName:
   2077     case LookupObjCProtocolName:
   2078     case LookupLabel:
   2079       // These lookups will never find a member in a C++ class (or base class).
   2080       return false;
   2081 
   2082     case LookupNestedNameSpecifierName:
   2083       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
   2084       break;
   2085   }
   2086 
   2087   DeclarationName Name = R.getLookupName();
   2088   if (!LookupRec->lookupInBases(
   2089           [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
   2090             return BaseCallback(Specifier, Path, Name);
   2091           },
   2092           Paths))
   2093     return false;
   2094 
   2095   R.setNamingClass(LookupRec);
   2096 
   2097   // C++ [class.member.lookup]p2:
   2098   //   [...] If the resulting set of declarations are not all from
   2099   //   sub-objects of the same type, or the set has a nonstatic member
   2100   //   and includes members from distinct sub-objects, there is an
   2101   //   ambiguity and the program is ill-formed. Otherwise that set is
   2102   //   the result of the lookup.
   2103   QualType SubobjectType;
   2104   int SubobjectNumber = 0;
   2105   AccessSpecifier SubobjectAccess = AS_none;
   2106 
   2107   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
   2108        Path != PathEnd; ++Path) {
   2109     const CXXBasePathElement &PathElement = Path->back();
   2110 
   2111     // Pick the best (i.e. most permissive i.e. numerically lowest) access
   2112     // across all paths.
   2113     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
   2114 
   2115     // Determine whether we're looking at a distinct sub-object or not.
   2116     if (SubobjectType.isNull()) {
   2117       // This is the first subobject we've looked at. Record its type.
   2118       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
   2119       SubobjectNumber = PathElement.SubobjectNumber;
   2120       continue;
   2121     }
   2122 
   2123     if (SubobjectType
   2124                  != Context.getCanonicalType(PathElement.Base->getType())) {
   2125       // We found members of the given name in two subobjects of
   2126       // different types. If the declaration sets aren't the same, this
   2127       // lookup is ambiguous.
   2128       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
   2129         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
   2130         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
   2131         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
   2132 
   2133         while (FirstD != FirstPath->Decls.end() &&
   2134                CurrentD != Path->Decls.end()) {
   2135          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
   2136              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
   2137            break;
   2138 
   2139           ++FirstD;
   2140           ++CurrentD;
   2141         }
   2142 
   2143         if (FirstD == FirstPath->Decls.end() &&
   2144             CurrentD == Path->Decls.end())
   2145           continue;
   2146       }
   2147 
   2148       R.setAmbiguousBaseSubobjectTypes(Paths);
   2149       return true;
   2150     }
   2151 
   2152     if (SubobjectNumber != PathElement.SubobjectNumber) {
   2153       // We have a different subobject of the same type.
   2154 
   2155       // C++ [class.member.lookup]p5:
   2156       //   A static member, a nested type or an enumerator defined in
   2157       //   a base class T can unambiguously be found even if an object
   2158       //   has more than one base class subobject of type T.
   2159       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
   2160         continue;
   2161 
   2162       // We have found a nonstatic member name in multiple, distinct
   2163       // subobjects. Name lookup is ambiguous.
   2164       R.setAmbiguousBaseSubobjects(Paths);
   2165       return true;
   2166     }
   2167   }
   2168 
   2169   // Lookup in a base class succeeded; return these results.
   2170 
   2171   for (auto *D : Paths.front().Decls) {
   2172     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
   2173                                                     D->getAccess());
   2174     R.addDecl(D, AS);
   2175   }
   2176   R.resolveKind();
   2177   return true;
   2178 }
   2179 
   2180 /// \brief Performs qualified name lookup or special type of lookup for
   2181 /// "__super::" scope specifier.
   2182 ///
   2183 /// This routine is a convenience overload meant to be called from contexts
   2184 /// that need to perform a qualified name lookup with an optional C++ scope
   2185 /// specifier that might require special kind of lookup.
   2186 ///
   2187 /// \param R captures both the lookup criteria and any lookup results found.
   2188 ///
   2189 /// \param LookupCtx The context in which qualified name lookup will
   2190 /// search.
   2191 ///
   2192 /// \param SS An optional C++ scope-specifier.
   2193 ///
   2194 /// \returns true if lookup succeeded, false if it failed.
   2195 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   2196                                CXXScopeSpec &SS) {
   2197   auto *NNS = SS.getScopeRep();
   2198   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
   2199     return LookupInSuper(R, NNS->getAsRecordDecl());
   2200   else
   2201 
   2202     return LookupQualifiedName(R, LookupCtx);
   2203 }
   2204 
   2205 /// @brief Performs name lookup for a name that was parsed in the
   2206 /// source code, and may contain a C++ scope specifier.
   2207 ///
   2208 /// This routine is a convenience routine meant to be called from
   2209 /// contexts that receive a name and an optional C++ scope specifier
   2210 /// (e.g., "N::M::x"). It will then perform either qualified or
   2211 /// unqualified name lookup (with LookupQualifiedName or LookupName,
   2212 /// respectively) on the given name and return those results. It will
   2213 /// perform a special type of lookup for "__super::" scope specifier.
   2214 ///
   2215 /// @param S        The scope from which unqualified name lookup will
   2216 /// begin.
   2217 ///
   2218 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
   2219 ///
   2220 /// @param EnteringContext Indicates whether we are going to enter the
   2221 /// context of the scope-specifier SS (if present).
   2222 ///
   2223 /// @returns True if any decls were found (but possibly ambiguous)
   2224 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
   2225                             bool AllowBuiltinCreation, bool EnteringContext) {
   2226   if (SS && SS->isInvalid()) {
   2227     // When the scope specifier is invalid, don't even look for
   2228     // anything.
   2229     return false;
   2230   }
   2231 
   2232   if (SS && SS->isSet()) {
   2233     NestedNameSpecifier *NNS = SS->getScopeRep();
   2234     if (NNS->getKind() == NestedNameSpecifier::Super)
   2235       return LookupInSuper(R, NNS->getAsRecordDecl());
   2236 
   2237     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
   2238       // We have resolved the scope specifier to a particular declaration
   2239       // contex, and will perform name lookup in that context.
   2240       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
   2241         return false;
   2242 
   2243       R.setContextRange(SS->getRange());
   2244       return LookupQualifiedName(R, DC);
   2245     }
   2246 
   2247     // We could not resolve the scope specified to a specific declaration
   2248     // context, which means that SS refers to an unknown specialization.
   2249     // Name lookup can't find anything in this case.
   2250     R.setNotFoundInCurrentInstantiation();
   2251     R.setContextRange(SS->getRange());
   2252     return false;
   2253   }
   2254 
   2255   // Perform unqualified name lookup starting in the given scope.
   2256   return LookupName(R, S, AllowBuiltinCreation);
   2257 }
   2258 
   2259 /// \brief Perform qualified name lookup into all base classes of the given
   2260 /// class.
   2261 ///
   2262 /// \param R captures both the lookup criteria and any lookup results found.
   2263 ///
   2264 /// \param Class The context in which qualified name lookup will
   2265 /// search. Name lookup will search in all base classes merging the results.
   2266 ///
   2267 /// @returns True if any decls were found (but possibly ambiguous)
   2268 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
   2269   // The access-control rules we use here are essentially the rules for
   2270   // doing a lookup in Class that just magically skipped the direct
   2271   // members of Class itself.  That is, the naming class is Class, and the
   2272   // access includes the access of the base.
   2273   for (const auto &BaseSpec : Class->bases()) {
   2274     CXXRecordDecl *RD = cast<CXXRecordDecl>(
   2275         BaseSpec.getType()->castAs<RecordType>()->getDecl());
   2276     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
   2277 	Result.setBaseObjectType(Context.getRecordType(Class));
   2278     LookupQualifiedName(Result, RD);
   2279 
   2280     // Copy the lookup results into the target, merging the base's access into
   2281     // the path access.
   2282     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
   2283       R.addDecl(I.getDecl(),
   2284                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
   2285                                            I.getAccess()));
   2286     }
   2287 
   2288     Result.suppressDiagnostics();
   2289   }
   2290 
   2291   R.resolveKind();
   2292   R.setNamingClass(Class);
   2293 
   2294   return !R.empty();
   2295 }
   2296 
   2297 /// \brief Produce a diagnostic describing the ambiguity that resulted
   2298 /// from name lookup.
   2299 ///
   2300 /// \param Result The result of the ambiguous lookup to be diagnosed.
   2301 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
   2302   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
   2303 
   2304   DeclarationName Name = Result.getLookupName();
   2305   SourceLocation NameLoc = Result.getNameLoc();
   2306   SourceRange LookupRange = Result.getContextRange();
   2307 
   2308   switch (Result.getAmbiguityKind()) {
   2309   case LookupResult::AmbiguousBaseSubobjects: {
   2310     CXXBasePaths *Paths = Result.getBasePaths();
   2311     QualType SubobjectType = Paths->front().back().Base->getType();
   2312     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
   2313       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
   2314       << LookupRange;
   2315 
   2316     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
   2317     while (isa<CXXMethodDecl>(*Found) &&
   2318            cast<CXXMethodDecl>(*Found)->isStatic())
   2319       ++Found;
   2320 
   2321     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
   2322     break;
   2323   }
   2324 
   2325   case LookupResult::AmbiguousBaseSubobjectTypes: {
   2326     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
   2327       << Name << LookupRange;
   2328 
   2329     CXXBasePaths *Paths = Result.getBasePaths();
   2330     std::set<Decl *> DeclsPrinted;
   2331     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
   2332                                       PathEnd = Paths->end();
   2333          Path != PathEnd; ++Path) {
   2334       Decl *D = Path->Decls.front();
   2335       if (DeclsPrinted.insert(D).second)
   2336         Diag(D->getLocation(), diag::note_ambiguous_member_found);
   2337     }
   2338     break;
   2339   }
   2340 
   2341   case LookupResult::AmbiguousTagHiding: {
   2342     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
   2343 
   2344     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
   2345 
   2346     for (auto *D : Result)
   2347       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
   2348         TagDecls.insert(TD);
   2349         Diag(TD->getLocation(), diag::note_hidden_tag);
   2350       }
   2351 
   2352     for (auto *D : Result)
   2353       if (!isa<TagDecl>(D))
   2354         Diag(D->getLocation(), diag::note_hiding_object);
   2355 
   2356     // For recovery purposes, go ahead and implement the hiding.
   2357     LookupResult::Filter F = Result.makeFilter();
   2358     while (F.hasNext()) {
   2359       if (TagDecls.count(F.next()))
   2360         F.erase();
   2361     }
   2362     F.done();
   2363     break;
   2364   }
   2365 
   2366   case LookupResult::AmbiguousReference: {
   2367     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
   2368 
   2369     for (auto *D : Result)
   2370       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
   2371     break;
   2372   }
   2373   }
   2374 }
   2375 
   2376 namespace {
   2377   struct AssociatedLookup {
   2378     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
   2379                      Sema::AssociatedNamespaceSet &Namespaces,
   2380                      Sema::AssociatedClassSet &Classes)
   2381       : S(S), Namespaces(Namespaces), Classes(Classes),
   2382         InstantiationLoc(InstantiationLoc) {
   2383     }
   2384 
   2385     Sema &S;
   2386     Sema::AssociatedNamespaceSet &Namespaces;
   2387     Sema::AssociatedClassSet &Classes;
   2388     SourceLocation InstantiationLoc;
   2389   };
   2390 } // end anonymous namespace
   2391 
   2392 static void
   2393 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
   2394 
   2395 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
   2396                                       DeclContext *Ctx) {
   2397   // Add the associated namespace for this class.
   2398 
   2399   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
   2400   // be a locally scoped record.
   2401 
   2402   // We skip out of inline namespaces. The innermost non-inline namespace
   2403   // contains all names of all its nested inline namespaces anyway, so we can
   2404   // replace the entire inline namespace tree with its root.
   2405   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
   2406          Ctx->isInlineNamespace())
   2407     Ctx = Ctx->getParent();
   2408 
   2409   if (Ctx->isFileContext())
   2410     Namespaces.insert(Ctx->getPrimaryContext());
   2411 }
   2412 
   2413 // \brief Add the associated classes and namespaces for argument-dependent
   2414 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
   2415 static void
   2416 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   2417                                   const TemplateArgument &Arg) {
   2418   // C++ [basic.lookup.koenig]p2, last bullet:
   2419   //   -- [...] ;
   2420   switch (Arg.getKind()) {
   2421     case TemplateArgument::Null:
   2422       break;
   2423 
   2424     case TemplateArgument::Type:
   2425       // [...] the namespaces and classes associated with the types of the
   2426       // template arguments provided for template type parameters (excluding
   2427       // template template parameters)
   2428       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
   2429       break;
   2430 
   2431     case TemplateArgument::Template:
   2432     case TemplateArgument::TemplateExpansion: {
   2433       // [...] the namespaces in which any template template arguments are
   2434       // defined; and the classes in which any member templates used as
   2435       // template template arguments are defined.
   2436       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
   2437       if (ClassTemplateDecl *ClassTemplate
   2438                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
   2439         DeclContext *Ctx = ClassTemplate->getDeclContext();
   2440         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2441           Result.Classes.insert(EnclosingClass);
   2442         // Add the associated namespace for this class.
   2443         CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2444       }
   2445       break;
   2446     }
   2447 
   2448     case TemplateArgument::Declaration:
   2449     case TemplateArgument::Integral:
   2450     case TemplateArgument::Expression:
   2451     case TemplateArgument::NullPtr:
   2452       // [Note: non-type template arguments do not contribute to the set of
   2453       //  associated namespaces. ]
   2454       break;
   2455 
   2456     case TemplateArgument::Pack:
   2457       for (const auto &P : Arg.pack_elements())
   2458         addAssociatedClassesAndNamespaces(Result, P);
   2459       break;
   2460   }
   2461 }
   2462 
   2463 // \brief Add the associated classes and namespaces for
   2464 // argument-dependent lookup with an argument of class type
   2465 // (C++ [basic.lookup.koenig]p2).
   2466 static void
   2467 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   2468                                   CXXRecordDecl *Class) {
   2469 
   2470   // Just silently ignore anything whose name is __va_list_tag.
   2471   if (Class->getDeclName() == Result.S.VAListTagName)
   2472     return;
   2473 
   2474   // C++ [basic.lookup.koenig]p2:
   2475   //   [...]
   2476   //     -- If T is a class type (including unions), its associated
   2477   //        classes are: the class itself; the class of which it is a
   2478   //        member, if any; and its direct and indirect base
   2479   //        classes. Its associated namespaces are the namespaces in
   2480   //        which its associated classes are defined.
   2481 
   2482   // Add the class of which it is a member, if any.
   2483   DeclContext *Ctx = Class->getDeclContext();
   2484   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2485     Result.Classes.insert(EnclosingClass);
   2486   // Add the associated namespace for this class.
   2487   CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2488 
   2489   // Add the class itself. If we've already seen this class, we don't
   2490   // need to visit base classes.
   2491   //
   2492   // FIXME: That's not correct, we may have added this class only because it
   2493   // was the enclosing class of another class, and in that case we won't have
   2494   // added its base classes yet.
   2495   if (!Result.Classes.insert(Class))
   2496     return;
   2497 
   2498   // -- If T is a template-id, its associated namespaces and classes are
   2499   //    the namespace in which the template is defined; for member
   2500   //    templates, the member template's class; the namespaces and classes
   2501   //    associated with the types of the template arguments provided for
   2502   //    template type parameters (excluding template template parameters); the
   2503   //    namespaces in which any template template arguments are defined; and
   2504   //    the classes in which any member templates used as template template
   2505   //    arguments are defined. [Note: non-type template arguments do not
   2506   //    contribute to the set of associated namespaces. ]
   2507   if (ClassTemplateSpecializationDecl *Spec
   2508         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
   2509     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
   2510     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2511       Result.Classes.insert(EnclosingClass);
   2512     // Add the associated namespace for this class.
   2513     CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2514 
   2515     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   2516     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   2517       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
   2518   }
   2519 
   2520   // Only recurse into base classes for complete types.
   2521   if (!Result.S.isCompleteType(Result.InstantiationLoc,
   2522                                Result.S.Context.getRecordType(Class)))
   2523     return;
   2524 
   2525   // Add direct and indirect base classes along with their associated
   2526   // namespaces.
   2527   SmallVector<CXXRecordDecl *, 32> Bases;
   2528   Bases.push_back(Class);
   2529   while (!Bases.empty()) {
   2530     // Pop this class off the stack.
   2531     Class = Bases.pop_back_val();
   2532 
   2533     // Visit the base classes.
   2534     for (const auto &Base : Class->bases()) {
   2535       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
   2536       // In dependent contexts, we do ADL twice, and the first time around,
   2537       // the base type might be a dependent TemplateSpecializationType, or a
   2538       // TemplateTypeParmType. If that happens, simply ignore it.
   2539       // FIXME: If we want to support export, we probably need to add the
   2540       // namespace of the template in a TemplateSpecializationType, or even
   2541       // the classes and namespaces of known non-dependent arguments.
   2542       if (!BaseType)
   2543         continue;
   2544       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   2545       if (Result.Classes.insert(BaseDecl)) {
   2546         // Find the associated namespace for this base class.
   2547         DeclContext *BaseCtx = BaseDecl->getDeclContext();
   2548         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
   2549 
   2550         // Make sure we visit the bases of this base class.
   2551         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
   2552           Bases.push_back(BaseDecl);
   2553       }
   2554     }
   2555   }
   2556 }
   2557 
   2558 // \brief Add the associated classes and namespaces for
   2559 // argument-dependent lookup with an argument of type T
   2560 // (C++ [basic.lookup.koenig]p2).
   2561 static void
   2562 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
   2563   // C++ [basic.lookup.koenig]p2:
   2564   //
   2565   //   For each argument type T in the function call, there is a set
   2566   //   of zero or more associated namespaces and a set of zero or more
   2567   //   associated classes to be considered. The sets of namespaces and
   2568   //   classes is determined entirely by the types of the function
   2569   //   arguments (and the namespace of any template template
   2570   //   argument). Typedef names and using-declarations used to specify
   2571   //   the types do not contribute to this set. The sets of namespaces
   2572   //   and classes are determined in the following way:
   2573 
   2574   SmallVector<const Type *, 16> Queue;
   2575   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
   2576 
   2577   while (true) {
   2578     switch (T->getTypeClass()) {
   2579 
   2580 #define TYPE(Class, Base)
   2581 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   2582 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2583 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   2584 #define ABSTRACT_TYPE(Class, Base)
   2585 #include "clang/AST/TypeNodes.def"
   2586       // T is canonical.  We can also ignore dependent types because
   2587       // we don't need to do ADL at the definition point, but if we
   2588       // wanted to implement template export (or if we find some other
   2589       // use for associated classes and namespaces...) this would be
   2590       // wrong.
   2591       break;
   2592 
   2593     //    -- If T is a pointer to U or an array of U, its associated
   2594     //       namespaces and classes are those associated with U.
   2595     case Type::Pointer:
   2596       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
   2597       continue;
   2598     case Type::ConstantArray:
   2599     case Type::IncompleteArray:
   2600     case Type::VariableArray:
   2601       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   2602       continue;
   2603 
   2604     //     -- If T is a fundamental type, its associated sets of
   2605     //        namespaces and classes are both empty.
   2606     case Type::Builtin:
   2607       break;
   2608 
   2609     //     -- If T is a class type (including unions), its associated
   2610     //        classes are: the class itself; the class of which it is a
   2611     //        member, if any; and its direct and indirect base
   2612     //        classes. Its associated namespaces are the namespaces in
   2613     //        which its associated classes are defined.
   2614     case Type::Record: {
   2615       CXXRecordDecl *Class =
   2616           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
   2617       addAssociatedClassesAndNamespaces(Result, Class);
   2618       break;
   2619     }
   2620 
   2621     //     -- If T is an enumeration type, its associated namespace is
   2622     //        the namespace in which it is defined. If it is class
   2623     //        member, its associated class is the member's class; else
   2624     //        it has no associated class.
   2625     case Type::Enum: {
   2626       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
   2627 
   2628       DeclContext *Ctx = Enum->getDeclContext();
   2629       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2630         Result.Classes.insert(EnclosingClass);
   2631 
   2632       // Add the associated namespace for this class.
   2633       CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2634 
   2635       break;
   2636     }
   2637 
   2638     //     -- If T is a function type, its associated namespaces and
   2639     //        classes are those associated with the function parameter
   2640     //        types and those associated with the return type.
   2641     case Type::FunctionProto: {
   2642       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   2643       for (const auto &Arg : Proto->param_types())
   2644         Queue.push_back(Arg.getTypePtr());
   2645       // fallthrough
   2646     }
   2647     case Type::FunctionNoProto: {
   2648       const FunctionType *FnType = cast<FunctionType>(T);
   2649       T = FnType->getReturnType().getTypePtr();
   2650       continue;
   2651     }
   2652 
   2653     //     -- If T is a pointer to a member function of a class X, its
   2654     //        associated namespaces and classes are those associated
   2655     //        with the function parameter types and return type,
   2656     //        together with those associated with X.
   2657     //
   2658     //     -- If T is a pointer to a data member of class X, its
   2659     //        associated namespaces and classes are those associated
   2660     //        with the member type together with those associated with
   2661     //        X.
   2662     case Type::MemberPointer: {
   2663       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
   2664 
   2665       // Queue up the class type into which this points.
   2666       Queue.push_back(MemberPtr->getClass());
   2667 
   2668       // And directly continue with the pointee type.
   2669       T = MemberPtr->getPointeeType().getTypePtr();
   2670       continue;
   2671     }
   2672 
   2673     // As an extension, treat this like a normal pointer.
   2674     case Type::BlockPointer:
   2675       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
   2676       continue;
   2677 
   2678     // References aren't covered by the standard, but that's such an
   2679     // obvious defect that we cover them anyway.
   2680     case Type::LValueReference:
   2681     case Type::RValueReference:
   2682       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
   2683       continue;
   2684 
   2685     // These are fundamental types.
   2686     case Type::Vector:
   2687     case Type::ExtVector:
   2688     case Type::Complex:
   2689       break;
   2690 
   2691     // Non-deduced auto types only get here for error cases.
   2692     case Type::Auto:
   2693       break;
   2694 
   2695     // If T is an Objective-C object or interface type, or a pointer to an
   2696     // object or interface type, the associated namespace is the global
   2697     // namespace.
   2698     case Type::ObjCObject:
   2699     case Type::ObjCInterface:
   2700     case Type::ObjCObjectPointer:
   2701       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
   2702       break;
   2703 
   2704     // Atomic types are just wrappers; use the associations of the
   2705     // contained type.
   2706     case Type::Atomic:
   2707       T = cast<AtomicType>(T)->getValueType().getTypePtr();
   2708       continue;
   2709     case Type::Pipe:
   2710       T = cast<PipeType>(T)->getElementType().getTypePtr();
   2711       continue;
   2712     }
   2713 
   2714     if (Queue.empty())
   2715       break;
   2716     T = Queue.pop_back_val();
   2717   }
   2718 }
   2719 
   2720 /// \brief Find the associated classes and namespaces for
   2721 /// argument-dependent lookup for a call with the given set of
   2722 /// arguments.
   2723 ///
   2724 /// This routine computes the sets of associated classes and associated
   2725 /// namespaces searched by argument-dependent lookup
   2726 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
   2727 void Sema::FindAssociatedClassesAndNamespaces(
   2728     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
   2729     AssociatedNamespaceSet &AssociatedNamespaces,
   2730     AssociatedClassSet &AssociatedClasses) {
   2731   AssociatedNamespaces.clear();
   2732   AssociatedClasses.clear();
   2733 
   2734   AssociatedLookup Result(*this, InstantiationLoc,
   2735                           AssociatedNamespaces, AssociatedClasses);
   2736 
   2737   // C++ [basic.lookup.koenig]p2:
   2738   //   For each argument type T in the function call, there is a set
   2739   //   of zero or more associated namespaces and a set of zero or more
   2740   //   associated classes to be considered. The sets of namespaces and
   2741   //   classes is determined entirely by the types of the function
   2742   //   arguments (and the namespace of any template template
   2743   //   argument).
   2744   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   2745     Expr *Arg = Args[ArgIdx];
   2746 
   2747     if (Arg->getType() != Context.OverloadTy) {
   2748       addAssociatedClassesAndNamespaces(Result, Arg->getType());
   2749       continue;
   2750     }
   2751 
   2752     // [...] In addition, if the argument is the name or address of a
   2753     // set of overloaded functions and/or function templates, its
   2754     // associated classes and namespaces are the union of those
   2755     // associated with each of the members of the set: the namespace
   2756     // in which the function or function template is defined and the
   2757     // classes and namespaces associated with its (non-dependent)
   2758     // parameter types and return type.
   2759     Arg = Arg->IgnoreParens();
   2760     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
   2761       if (unaryOp->getOpcode() == UO_AddrOf)
   2762         Arg = unaryOp->getSubExpr();
   2763 
   2764     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
   2765     if (!ULE) continue;
   2766 
   2767     for (const auto *D : ULE->decls()) {
   2768       // Look through any using declarations to find the underlying function.
   2769       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
   2770 
   2771       // Add the classes and namespaces associated with the parameter
   2772       // types and return type of this function.
   2773       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
   2774     }
   2775   }
   2776 }
   2777 
   2778 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
   2779                                   SourceLocation Loc,
   2780                                   LookupNameKind NameKind,
   2781                                   RedeclarationKind Redecl) {
   2782   LookupResult R(*this, Name, Loc, NameKind, Redecl);
   2783   LookupName(R, S);
   2784   return R.getAsSingle<NamedDecl>();
   2785 }
   2786 
   2787 /// \brief Find the protocol with the given name, if any.
   2788 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
   2789                                        SourceLocation IdLoc,
   2790                                        RedeclarationKind Redecl) {
   2791   Decl *D = LookupSingleName(TUScope, II, IdLoc,
   2792                              LookupObjCProtocolName, Redecl);
   2793   return cast_or_null<ObjCProtocolDecl>(D);
   2794 }
   2795 
   2796 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
   2797                                         QualType T1, QualType T2,
   2798                                         UnresolvedSetImpl &Functions) {
   2799   // C++ [over.match.oper]p3:
   2800   //     -- The set of non-member candidates is the result of the
   2801   //        unqualified lookup of operator@ in the context of the
   2802   //        expression according to the usual rules for name lookup in
   2803   //        unqualified function calls (3.4.2) except that all member
   2804   //        functions are ignored.
   2805   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   2806   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
   2807   LookupName(Operators, S);
   2808 
   2809   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
   2810   Functions.append(Operators.begin(), Operators.end());
   2811 }
   2812 
   2813 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
   2814                                                             CXXSpecialMember SM,
   2815                                                             bool ConstArg,
   2816                                                             bool VolatileArg,
   2817                                                             bool RValueThis,
   2818                                                             bool ConstThis,
   2819                                                             bool VolatileThis) {
   2820   assert(CanDeclareSpecialMemberFunction(RD) &&
   2821          "doing special member lookup into record that isn't fully complete");
   2822   RD = RD->getDefinition();
   2823   if (RValueThis || ConstThis || VolatileThis)
   2824     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
   2825            "constructors and destructors always have unqualified lvalue this");
   2826   if (ConstArg || VolatileArg)
   2827     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
   2828            "parameter-less special members can't have qualified arguments");
   2829 
   2830   llvm::FoldingSetNodeID ID;
   2831   ID.AddPointer(RD);
   2832   ID.AddInteger(SM);
   2833   ID.AddInteger(ConstArg);
   2834   ID.AddInteger(VolatileArg);
   2835   ID.AddInteger(RValueThis);
   2836   ID.AddInteger(ConstThis);
   2837   ID.AddInteger(VolatileThis);
   2838 
   2839   void *InsertPoint;
   2840   SpecialMemberOverloadResult *Result =
   2841     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
   2842 
   2843   // This was already cached
   2844   if (Result)
   2845     return Result;
   2846 
   2847   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
   2848   Result = new (Result) SpecialMemberOverloadResult(ID);
   2849   SpecialMemberCache.InsertNode(Result, InsertPoint);
   2850 
   2851   if (SM == CXXDestructor) {
   2852     if (RD->needsImplicitDestructor())
   2853       DeclareImplicitDestructor(RD);
   2854     CXXDestructorDecl *DD = RD->getDestructor();
   2855     assert(DD && "record without a destructor");
   2856     Result->setMethod(DD);
   2857     Result->setKind(DD->isDeleted() ?
   2858                     SpecialMemberOverloadResult::NoMemberOrDeleted :
   2859                     SpecialMemberOverloadResult::Success);
   2860     return Result;
   2861   }
   2862 
   2863   // Prepare for overload resolution. Here we construct a synthetic argument
   2864   // if necessary and make sure that implicit functions are declared.
   2865   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
   2866   DeclarationName Name;
   2867   Expr *Arg = nullptr;
   2868   unsigned NumArgs;
   2869 
   2870   QualType ArgType = CanTy;
   2871   ExprValueKind VK = VK_LValue;
   2872 
   2873   if (SM == CXXDefaultConstructor) {
   2874     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2875     NumArgs = 0;
   2876     if (RD->needsImplicitDefaultConstructor())
   2877       DeclareImplicitDefaultConstructor(RD);
   2878   } else {
   2879     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
   2880       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2881       if (RD->needsImplicitCopyConstructor())
   2882         DeclareImplicitCopyConstructor(RD);
   2883       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
   2884         DeclareImplicitMoveConstructor(RD);
   2885     } else {
   2886       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   2887       if (RD->needsImplicitCopyAssignment())
   2888         DeclareImplicitCopyAssignment(RD);
   2889       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
   2890         DeclareImplicitMoveAssignment(RD);
   2891     }
   2892 
   2893     if (ConstArg)
   2894       ArgType.addConst();
   2895     if (VolatileArg)
   2896       ArgType.addVolatile();
   2897 
   2898     // This isn't /really/ specified by the standard, but it's implied
   2899     // we should be working from an RValue in the case of move to ensure
   2900     // that we prefer to bind to rvalue references, and an LValue in the
   2901     // case of copy to ensure we don't bind to rvalue references.
   2902     // Possibly an XValue is actually correct in the case of move, but
   2903     // there is no semantic difference for class types in this restricted
   2904     // case.
   2905     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
   2906       VK = VK_LValue;
   2907     else
   2908       VK = VK_RValue;
   2909   }
   2910 
   2911   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
   2912 
   2913   if (SM != CXXDefaultConstructor) {
   2914     NumArgs = 1;
   2915     Arg = &FakeArg;
   2916   }
   2917 
   2918   // Create the object argument
   2919   QualType ThisTy = CanTy;
   2920   if (ConstThis)
   2921     ThisTy.addConst();
   2922   if (VolatileThis)
   2923     ThisTy.addVolatile();
   2924   Expr::Classification Classification =
   2925     OpaqueValueExpr(SourceLocation(), ThisTy,
   2926                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
   2927 
   2928   // Now we perform lookup on the name we computed earlier and do overload
   2929   // resolution. Lookup is only performed directly into the class since there
   2930   // will always be a (possibly implicit) declaration to shadow any others.
   2931   OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
   2932   DeclContext::lookup_result R = RD->lookup(Name);
   2933 
   2934   if (R.empty()) {
   2935     // We might have no default constructor because we have a lambda's closure
   2936     // type, rather than because there's some other declared constructor.
   2937     // Every class has a copy/move constructor, copy/move assignment, and
   2938     // destructor.
   2939     assert(SM == CXXDefaultConstructor &&
   2940            "lookup for a constructor or assignment operator was empty");
   2941     Result->setMethod(nullptr);
   2942     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2943     return Result;
   2944   }
   2945 
   2946   // Copy the candidates as our processing of them may load new declarations
   2947   // from an external source and invalidate lookup_result.
   2948   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
   2949 
   2950   for (NamedDecl *CandDecl : Candidates) {
   2951     if (CandDecl->isInvalidDecl())
   2952       continue;
   2953 
   2954     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
   2955     auto CtorInfo = getConstructorInfo(Cand);
   2956     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
   2957       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2958         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
   2959                            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2960       else if (CtorInfo)
   2961         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
   2962                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2963       else
   2964         AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
   2965                              true);
   2966     } else if (FunctionTemplateDecl *Tmpl =
   2967                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
   2968       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2969         AddMethodTemplateCandidate(
   2970             Tmpl, Cand, RD, nullptr, ThisTy, Classification,
   2971             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2972       else if (CtorInfo)
   2973         AddTemplateOverloadCandidate(
   2974             CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
   2975             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2976       else
   2977         AddTemplateOverloadCandidate(
   2978             Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2979     } else {
   2980       assert(isa<UsingDecl>(Cand.getDecl()) &&
   2981              "illegal Kind of operator = Decl");
   2982     }
   2983   }
   2984 
   2985   OverloadCandidateSet::iterator Best;
   2986   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
   2987     case OR_Success:
   2988       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2989       Result->setKind(SpecialMemberOverloadResult::Success);
   2990       break;
   2991 
   2992     case OR_Deleted:
   2993       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2994       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2995       break;
   2996 
   2997     case OR_Ambiguous:
   2998       Result->setMethod(nullptr);
   2999       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
   3000       break;
   3001 
   3002     case OR_No_Viable_Function:
   3003       Result->setMethod(nullptr);
   3004       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   3005       break;
   3006   }
   3007 
   3008   return Result;
   3009 }
   3010 
   3011 /// \brief Look up the default constructor for the given class.
   3012 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
   3013   SpecialMemberOverloadResult *Result =
   3014     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
   3015                         false, false);
   3016 
   3017   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   3018 }
   3019 
   3020 /// \brief Look up the copying constructor for the given class.
   3021 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
   3022                                                    unsigned Quals) {
   3023   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   3024          "non-const, non-volatile qualifiers for copy ctor arg");
   3025   SpecialMemberOverloadResult *Result =
   3026     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
   3027                         Quals & Qualifiers::Volatile, false, false, false);
   3028 
   3029   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   3030 }
   3031 
   3032 /// \brief Look up the moving constructor for the given class.
   3033 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
   3034                                                   unsigned Quals) {
   3035   SpecialMemberOverloadResult *Result =
   3036     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
   3037                         Quals & Qualifiers::Volatile, false, false, false);
   3038 
   3039   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   3040 }
   3041 
   3042 /// \brief Look up the constructors for the given class.
   3043 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
   3044   // If the implicit constructors have not yet been declared, do so now.
   3045   if (CanDeclareSpecialMemberFunction(Class)) {
   3046     if (Class->needsImplicitDefaultConstructor())
   3047       DeclareImplicitDefaultConstructor(Class);
   3048     if (Class->needsImplicitCopyConstructor())
   3049       DeclareImplicitCopyConstructor(Class);
   3050     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
   3051       DeclareImplicitMoveConstructor(Class);
   3052   }
   3053 
   3054   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
   3055   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
   3056   return Class->lookup(Name);
   3057 }
   3058 
   3059 /// \brief Look up the copying assignment operator for the given class.
   3060 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
   3061                                              unsigned Quals, bool RValueThis,
   3062                                              unsigned ThisQuals) {
   3063   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   3064          "non-const, non-volatile qualifiers for copy assignment arg");
   3065   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   3066          "non-const, non-volatile qualifiers for copy assignment this");
   3067   SpecialMemberOverloadResult *Result =
   3068     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
   3069                         Quals & Qualifiers::Volatile, RValueThis,
   3070                         ThisQuals & Qualifiers::Const,
   3071                         ThisQuals & Qualifiers::Volatile);
   3072 
   3073   return Result->getMethod();
   3074 }
   3075 
   3076 /// \brief Look up the moving assignment operator for the given class.
   3077 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
   3078                                             unsigned Quals,
   3079                                             bool RValueThis,
   3080                                             unsigned ThisQuals) {
   3081   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   3082          "non-const, non-volatile qualifiers for copy assignment this");
   3083   SpecialMemberOverloadResult *Result =
   3084     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
   3085                         Quals & Qualifiers::Volatile, RValueThis,
   3086                         ThisQuals & Qualifiers::Const,
   3087                         ThisQuals & Qualifiers::Volatile);
   3088 
   3089   return Result->getMethod();
   3090 }
   3091 
   3092 /// \brief Look for the destructor of the given class.
   3093 ///
   3094 /// During semantic analysis, this routine should be used in lieu of
   3095 /// CXXRecordDecl::getDestructor().
   3096 ///
   3097 /// \returns The destructor for this class.
   3098 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
   3099   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
   3100                                                      false, false, false,
   3101                                                      false, false)->getMethod());
   3102 }
   3103 
   3104 /// LookupLiteralOperator - Determine which literal operator should be used for
   3105 /// a user-defined literal, per C++11 [lex.ext].
   3106 ///
   3107 /// Normal overload resolution is not used to select which literal operator to
   3108 /// call for a user-defined literal. Look up the provided literal operator name,
   3109 /// and filter the results to the appropriate set for the given argument types.
   3110 Sema::LiteralOperatorLookupResult
   3111 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
   3112                             ArrayRef<QualType> ArgTys,
   3113                             bool AllowRaw, bool AllowTemplate,
   3114                             bool AllowStringTemplate) {
   3115   LookupName(R, S);
   3116   assert(R.getResultKind() != LookupResult::Ambiguous &&
   3117          "literal operator lookup can't be ambiguous");
   3118 
   3119   // Filter the lookup results appropriately.
   3120   LookupResult::Filter F = R.makeFilter();
   3121 
   3122   bool FoundRaw = false;
   3123   bool FoundTemplate = false;
   3124   bool FoundStringTemplate = false;
   3125   bool FoundExactMatch = false;
   3126 
   3127   while (F.hasNext()) {
   3128     Decl *D = F.next();
   3129     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
   3130       D = USD->getTargetDecl();
   3131 
   3132     // If the declaration we found is invalid, skip it.
   3133     if (D->isInvalidDecl()) {
   3134       F.erase();
   3135       continue;
   3136     }
   3137 
   3138     bool IsRaw = false;
   3139     bool IsTemplate = false;
   3140     bool IsStringTemplate = false;
   3141     bool IsExactMatch = false;
   3142 
   3143     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   3144       if (FD->getNumParams() == 1 &&
   3145           FD->getParamDecl(0)->getType()->getAs<PointerType>())
   3146         IsRaw = true;
   3147       else if (FD->getNumParams() == ArgTys.size()) {
   3148         IsExactMatch = true;
   3149         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
   3150           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
   3151           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
   3152             IsExactMatch = false;
   3153             break;
   3154           }
   3155         }
   3156       }
   3157     }
   3158     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
   3159       TemplateParameterList *Params = FD->getTemplateParameters();
   3160       if (Params->size() == 1)
   3161         IsTemplate = true;
   3162       else
   3163         IsStringTemplate = true;
   3164     }
   3165 
   3166     if (IsExactMatch) {
   3167       FoundExactMatch = true;
   3168       AllowRaw = false;
   3169       AllowTemplate = false;
   3170       AllowStringTemplate = false;
   3171       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
   3172         // Go through again and remove the raw and template decls we've
   3173         // already found.
   3174         F.restart();
   3175         FoundRaw = FoundTemplate = FoundStringTemplate = false;
   3176       }
   3177     } else if (AllowRaw && IsRaw) {
   3178       FoundRaw = true;
   3179     } else if (AllowTemplate && IsTemplate) {
   3180       FoundTemplate = true;
   3181     } else if (AllowStringTemplate && IsStringTemplate) {
   3182       FoundStringTemplate = true;
   3183     } else {
   3184       F.erase();
   3185     }
   3186   }
   3187 
   3188   F.done();
   3189 
   3190   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
   3191   // parameter type, that is used in preference to a raw literal operator
   3192   // or literal operator template.
   3193   if (FoundExactMatch)
   3194     return LOLR_Cooked;
   3195 
   3196   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
   3197   // operator template, but not both.
   3198   if (FoundRaw && FoundTemplate) {
   3199     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   3200     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   3201       NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
   3202     return LOLR_Error;
   3203   }
   3204 
   3205   if (FoundRaw)
   3206     return LOLR_Raw;
   3207 
   3208   if (FoundTemplate)
   3209     return LOLR_Template;
   3210 
   3211   if (FoundStringTemplate)
   3212     return LOLR_StringTemplate;
   3213 
   3214   // Didn't find anything we could use.
   3215   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
   3216     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
   3217     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
   3218     << (AllowTemplate || AllowStringTemplate);
   3219   return LOLR_Error;
   3220 }
   3221 
   3222 void ADLResult::insert(NamedDecl *New) {
   3223   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
   3224 
   3225   // If we haven't yet seen a decl for this key, or the last decl
   3226   // was exactly this one, we're done.
   3227   if (Old == nullptr || Old == New) {
   3228     Old = New;
   3229     return;
   3230   }
   3231 
   3232   // Otherwise, decide which is a more recent redeclaration.
   3233   FunctionDecl *OldFD = Old->getAsFunction();
   3234   FunctionDecl *NewFD = New->getAsFunction();
   3235 
   3236   FunctionDecl *Cursor = NewFD;
   3237   while (true) {
   3238     Cursor = Cursor->getPreviousDecl();
   3239 
   3240     // If we got to the end without finding OldFD, OldFD is the newer
   3241     // declaration;  leave things as they are.
   3242     if (!Cursor) return;
   3243 
   3244     // If we do find OldFD, then NewFD is newer.
   3245     if (Cursor == OldFD) break;
   3246 
   3247     // Otherwise, keep looking.
   3248   }
   3249 
   3250   Old = New;
   3251 }
   3252 
   3253 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
   3254                                    ArrayRef<Expr *> Args, ADLResult &Result) {
   3255   // Find all of the associated namespaces and classes based on the
   3256   // arguments we have.
   3257   AssociatedNamespaceSet AssociatedNamespaces;
   3258   AssociatedClassSet AssociatedClasses;
   3259   FindAssociatedClassesAndNamespaces(Loc, Args,
   3260                                      AssociatedNamespaces,
   3261                                      AssociatedClasses);
   3262 
   3263   // C++ [basic.lookup.argdep]p3:
   3264   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   3265   //   and let Y be the lookup set produced by argument dependent
   3266   //   lookup (defined as follows). If X contains [...] then Y is
   3267   //   empty. Otherwise Y is the set of declarations found in the
   3268   //   namespaces associated with the argument types as described
   3269   //   below. The set of declarations found by the lookup of the name
   3270   //   is the union of X and Y.
   3271   //
   3272   // Here, we compute Y and add its members to the overloaded
   3273   // candidate set.
   3274   for (auto *NS : AssociatedNamespaces) {
   3275     //   When considering an associated namespace, the lookup is the
   3276     //   same as the lookup performed when the associated namespace is
   3277     //   used as a qualifier (3.4.3.2) except that:
   3278     //
   3279     //     -- Any using-directives in the associated namespace are
   3280     //        ignored.
   3281     //
   3282     //     -- Any namespace-scope friend functions declared in
   3283     //        associated classes are visible within their respective
   3284     //        namespaces even if they are not visible during an ordinary
   3285     //        lookup (11.4).
   3286     DeclContext::lookup_result R = NS->lookup(Name);
   3287     for (auto *D : R) {
   3288       // If the only declaration here is an ordinary friend, consider
   3289       // it only if it was declared in an associated classes.
   3290       if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
   3291         // If it's neither ordinarily visible nor a friend, we can't find it.
   3292         if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
   3293           continue;
   3294 
   3295         bool DeclaredInAssociatedClass = false;
   3296         for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
   3297           DeclContext *LexDC = DI->getLexicalDeclContext();
   3298           if (isa<CXXRecordDecl>(LexDC) &&
   3299               AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
   3300               isVisible(cast<NamedDecl>(DI))) {
   3301             DeclaredInAssociatedClass = true;
   3302             break;
   3303           }
   3304         }
   3305         if (!DeclaredInAssociatedClass)
   3306           continue;
   3307       }
   3308 
   3309       if (isa<UsingShadowDecl>(D))
   3310         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3311 
   3312       if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
   3313         continue;
   3314 
   3315       if (!isVisible(D) && !(D = findAcceptableDecl(*this, D)))
   3316         continue;
   3317 
   3318       Result.insert(D);
   3319     }
   3320   }
   3321 }
   3322 
   3323 //----------------------------------------------------------------------------
   3324 // Search for all visible declarations.
   3325 //----------------------------------------------------------------------------
   3326 VisibleDeclConsumer::~VisibleDeclConsumer() { }
   3327 
   3328 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
   3329 
   3330 namespace {
   3331 
   3332 class ShadowContextRAII;
   3333 
   3334 class VisibleDeclsRecord {
   3335 public:
   3336   /// \brief An entry in the shadow map, which is optimized to store a
   3337   /// single declaration (the common case) but can also store a list
   3338   /// of declarations.
   3339   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
   3340 
   3341 private:
   3342   /// \brief A mapping from declaration names to the declarations that have
   3343   /// this name within a particular scope.
   3344   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
   3345 
   3346   /// \brief A list of shadow maps, which is used to model name hiding.
   3347   std::list<ShadowMap> ShadowMaps;
   3348 
   3349   /// \brief The declaration contexts we have already visited.
   3350   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
   3351 
   3352   friend class ShadowContextRAII;
   3353 
   3354 public:
   3355   /// \brief Determine whether we have already visited this context
   3356   /// (and, if not, note that we are going to visit that context now).
   3357   bool visitedContext(DeclContext *Ctx) {
   3358     return !VisitedContexts.insert(Ctx).second;
   3359   }
   3360 
   3361   bool alreadyVisitedContext(DeclContext *Ctx) {
   3362     return VisitedContexts.count(Ctx);
   3363   }
   3364 
   3365   /// \brief Determine whether the given declaration is hidden in the
   3366   /// current scope.
   3367   ///
   3368   /// \returns the declaration that hides the given declaration, or
   3369   /// NULL if no such declaration exists.
   3370   NamedDecl *checkHidden(NamedDecl *ND);
   3371 
   3372   /// \brief Add a declaration to the current shadow map.
   3373   void add(NamedDecl *ND) {
   3374     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
   3375   }
   3376 };
   3377 
   3378 /// \brief RAII object that records when we've entered a shadow context.
   3379 class ShadowContextRAII {
   3380   VisibleDeclsRecord &Visible;
   3381 
   3382   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
   3383 
   3384 public:
   3385   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
   3386     Visible.ShadowMaps.emplace_back();
   3387   }
   3388 
   3389   ~ShadowContextRAII() {
   3390     Visible.ShadowMaps.pop_back();
   3391   }
   3392 };
   3393 
   3394 } // end anonymous namespace
   3395 
   3396 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
   3397   unsigned IDNS = ND->getIdentifierNamespace();
   3398   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
   3399   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
   3400        SM != SMEnd; ++SM) {
   3401     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
   3402     if (Pos == SM->end())
   3403       continue;
   3404 
   3405     for (auto *D : Pos->second) {
   3406       // A tag declaration does not hide a non-tag declaration.
   3407       if (D->hasTagIdentifierNamespace() &&
   3408           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
   3409                    Decl::IDNS_ObjCProtocol)))
   3410         continue;
   3411 
   3412       // Protocols are in distinct namespaces from everything else.
   3413       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
   3414            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
   3415           D->getIdentifierNamespace() != IDNS)
   3416         continue;
   3417 
   3418       // Functions and function templates in the same scope overload
   3419       // rather than hide.  FIXME: Look for hiding based on function
   3420       // signatures!
   3421       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   3422           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   3423           SM == ShadowMaps.rbegin())
   3424         continue;
   3425 
   3426       // We've found a declaration that hides this one.
   3427       return D;
   3428     }
   3429   }
   3430 
   3431   return nullptr;
   3432 }
   3433 
   3434 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
   3435                                bool QualifiedNameLookup,
   3436                                bool InBaseClass,
   3437                                VisibleDeclConsumer &Consumer,
   3438                                VisibleDeclsRecord &Visited) {
   3439   if (!Ctx)
   3440     return;
   3441 
   3442   // Make sure we don't visit the same context twice.
   3443   if (Visited.visitedContext(Ctx->getPrimaryContext()))
   3444     return;
   3445 
   3446   // Outside C++, lookup results for the TU live on identifiers.
   3447   if (isa<TranslationUnitDecl>(Ctx) &&
   3448       !Result.getSema().getLangOpts().CPlusPlus) {
   3449     auto &S = Result.getSema();
   3450     auto &Idents = S.Context.Idents;
   3451 
   3452     // Ensure all external identifiers are in the identifier table.
   3453     if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
   3454       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
   3455       for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
   3456         Idents.get(Name);
   3457     }
   3458 
   3459     // Walk all lookup results in the TU for each identifier.
   3460     for (const auto &Ident : Idents) {
   3461       for (auto I = S.IdResolver.begin(Ident.getValue()),
   3462                 E = S.IdResolver.end();
   3463            I != E; ++I) {
   3464         if (S.IdResolver.isDeclInScope(*I, Ctx)) {
   3465           if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
   3466             Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   3467             Visited.add(ND);
   3468           }
   3469         }
   3470       }
   3471     }
   3472 
   3473     return;
   3474   }
   3475 
   3476   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
   3477     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
   3478 
   3479   // Enumerate all of the results in this context.
   3480   for (DeclContextLookupResult R : Ctx->lookups()) {
   3481     for (auto *D : R) {
   3482       if (auto *ND = Result.getAcceptableDecl(D)) {
   3483         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   3484         Visited.add(ND);
   3485       }
   3486     }
   3487   }
   3488 
   3489   // Traverse using directives for qualified name lookup.
   3490   if (QualifiedNameLookup) {
   3491     ShadowContextRAII Shadow(Visited);
   3492     for (auto I : Ctx->using_directives()) {
   3493       LookupVisibleDecls(I->getNominatedNamespace(), Result,
   3494                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3495     }
   3496   }
   3497 
   3498   // Traverse the contexts of inherited C++ classes.
   3499   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
   3500     if (!Record->hasDefinition())
   3501       return;
   3502 
   3503     for (const auto &B : Record->bases()) {
   3504       QualType BaseType = B.getType();
   3505 
   3506       // Don't look into dependent bases, because name lookup can't look
   3507       // there anyway.
   3508       if (BaseType->isDependentType())
   3509         continue;
   3510 
   3511       const RecordType *Record = BaseType->getAs<RecordType>();
   3512       if (!Record)
   3513         continue;
   3514 
   3515       // FIXME: It would be nice to be able to determine whether referencing
   3516       // a particular member would be ambiguous. For example, given
   3517       //
   3518       //   struct A { int member; };
   3519       //   struct B { int member; };
   3520       //   struct C : A, B { };
   3521       //
   3522       //   void f(C *c) { c->### }
   3523       //
   3524       // accessing 'member' would result in an ambiguity. However, we
   3525       // could be smart enough to qualify the member with the base
   3526       // class, e.g.,
   3527       //
   3528       //   c->B::member
   3529       //
   3530       // or
   3531       //
   3532       //   c->A::member
   3533 
   3534       // Find results in this base class (and its bases).
   3535       ShadowContextRAII Shadow(Visited);
   3536       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
   3537                          true, Consumer, Visited);
   3538     }
   3539   }
   3540 
   3541   // Traverse the contexts of Objective-C classes.
   3542   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
   3543     // Traverse categories.
   3544     for (auto *Cat : IFace->visible_categories()) {
   3545       ShadowContextRAII Shadow(Visited);
   3546       LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
   3547                          Consumer, Visited);
   3548     }
   3549 
   3550     // Traverse protocols.
   3551     for (auto *I : IFace->all_referenced_protocols()) {
   3552       ShadowContextRAII Shadow(Visited);
   3553       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3554                          Visited);
   3555     }
   3556 
   3557     // Traverse the superclass.
   3558     if (IFace->getSuperClass()) {
   3559       ShadowContextRAII Shadow(Visited);
   3560       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
   3561                          true, Consumer, Visited);
   3562     }
   3563 
   3564     // If there is an implementation, traverse it. We do this to find
   3565     // synthesized ivars.
   3566     if (IFace->getImplementation()) {
   3567       ShadowContextRAII Shadow(Visited);
   3568       LookupVisibleDecls(IFace->getImplementation(), Result,
   3569                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3570     }
   3571   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
   3572     for (auto *I : Protocol->protocols()) {
   3573       ShadowContextRAII Shadow(Visited);
   3574       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3575                          Visited);
   3576     }
   3577   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
   3578     for (auto *I : Category->protocols()) {
   3579       ShadowContextRAII Shadow(Visited);
   3580       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3581                          Visited);
   3582     }
   3583 
   3584     // If there is an implementation, traverse it.
   3585     if (Category->getImplementation()) {
   3586       ShadowContextRAII Shadow(Visited);
   3587       LookupVisibleDecls(Category->getImplementation(), Result,
   3588                          QualifiedNameLookup, true, Consumer, Visited);
   3589     }
   3590   }
   3591 }
   3592 
   3593 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
   3594                                UnqualUsingDirectiveSet &UDirs,
   3595                                VisibleDeclConsumer &Consumer,
   3596                                VisibleDeclsRecord &Visited) {
   3597   if (!S)
   3598     return;
   3599 
   3600   if (!S->getEntity() ||
   3601       (!S->getParent() &&
   3602        !Visited.alreadyVisitedContext(S->getEntity())) ||
   3603       (S->getEntity())->isFunctionOrMethod()) {
   3604     FindLocalExternScope FindLocals(Result);
   3605     // Walk through the declarations in this Scope.
   3606     for (auto *D : S->decls()) {
   3607       if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
   3608         if ((ND = Result.getAcceptableDecl(ND))) {
   3609           Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
   3610           Visited.add(ND);
   3611         }
   3612     }
   3613   }
   3614 
   3615   // FIXME: C++ [temp.local]p8
   3616   DeclContext *Entity = nullptr;
   3617   if (S->getEntity()) {
   3618     // Look into this scope's declaration context, along with any of its
   3619     // parent lookup contexts (e.g., enclosing classes), up to the point
   3620     // where we hit the context stored in the next outer scope.
   3621     Entity = S->getEntity();
   3622     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
   3623 
   3624     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
   3625          Ctx = Ctx->getLookupParent()) {
   3626       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   3627         if (Method->isInstanceMethod()) {
   3628           // For instance methods, look for ivars in the method's interface.
   3629           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
   3630                                   Result.getNameLoc(), Sema::LookupMemberName);
   3631           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
   3632             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
   3633                                /*InBaseClass=*/false, Consumer, Visited);
   3634           }
   3635         }
   3636 
   3637         // We've already performed all of the name lookup that we need
   3638         // to for Objective-C methods; the next context will be the
   3639         // outer scope.
   3640         break;
   3641       }
   3642 
   3643       if (Ctx->isFunctionOrMethod())
   3644         continue;
   3645 
   3646       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
   3647                          /*InBaseClass=*/false, Consumer, Visited);
   3648     }
   3649   } else if (!S->getParent()) {
   3650     // Look into the translation unit scope. We walk through the translation
   3651     // unit's declaration context, because the Scope itself won't have all of
   3652     // the declarations if we loaded a precompiled header.
   3653     // FIXME: We would like the translation unit's Scope object to point to the
   3654     // translation unit, so we don't need this special "if" branch. However,
   3655     // doing so would force the normal C++ name-lookup code to look into the
   3656     // translation unit decl when the IdentifierInfo chains would suffice.
   3657     // Once we fix that problem (which is part of a more general "don't look
   3658     // in DeclContexts unless we have to" optimization), we can eliminate this.
   3659     Entity = Result.getSema().Context.getTranslationUnitDecl();
   3660     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
   3661                        /*InBaseClass=*/false, Consumer, Visited);
   3662   }
   3663 
   3664   if (Entity) {
   3665     // Lookup visible declarations in any namespaces found by using
   3666     // directives.
   3667     for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
   3668       LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
   3669                          Result, /*QualifiedNameLookup=*/false,
   3670                          /*InBaseClass=*/false, Consumer, Visited);
   3671   }
   3672 
   3673   // Lookup names in the parent scope.
   3674   ShadowContextRAII Shadow(Visited);
   3675   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
   3676 }
   3677 
   3678 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
   3679                               VisibleDeclConsumer &Consumer,
   3680                               bool IncludeGlobalScope) {
   3681   // Determine the set of using directives available during
   3682   // unqualified name lookup.
   3683   Scope *Initial = S;
   3684   UnqualUsingDirectiveSet UDirs;
   3685   if (getLangOpts().CPlusPlus) {
   3686     // Find the first namespace or translation-unit scope.
   3687     while (S && !isNamespaceOrTranslationUnitScope(S))
   3688       S = S->getParent();
   3689 
   3690     UDirs.visitScopeChain(Initial, S);
   3691   }
   3692   UDirs.done();
   3693 
   3694   // Look for visible declarations.
   3695   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3696   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3697   VisibleDeclsRecord Visited;
   3698   if (!IncludeGlobalScope)
   3699     Visited.visitedContext(Context.getTranslationUnitDecl());
   3700   ShadowContextRAII Shadow(Visited);
   3701   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
   3702 }
   3703 
   3704 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
   3705                               VisibleDeclConsumer &Consumer,
   3706                               bool IncludeGlobalScope) {
   3707   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3708   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3709   VisibleDeclsRecord Visited;
   3710   if (!IncludeGlobalScope)
   3711     Visited.visitedContext(Context.getTranslationUnitDecl());
   3712   ShadowContextRAII Shadow(Visited);
   3713   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
   3714                        /*InBaseClass=*/false, Consumer, Visited);
   3715 }
   3716 
   3717 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
   3718 /// If GnuLabelLoc is a valid source location, then this is a definition
   3719 /// of an __label__ label name, otherwise it is a normal label definition
   3720 /// or use.
   3721 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
   3722                                      SourceLocation GnuLabelLoc) {
   3723   // Do a lookup to see if we have a label with this name already.
   3724   NamedDecl *Res = nullptr;
   3725 
   3726   if (GnuLabelLoc.isValid()) {
   3727     // Local label definitions always shadow existing labels.
   3728     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
   3729     Scope *S = CurScope;
   3730     PushOnScopeChains(Res, S, true);
   3731     return cast<LabelDecl>(Res);
   3732   }
   3733 
   3734   // Not a GNU local label.
   3735   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
   3736   // If we found a label, check to see if it is in the same context as us.
   3737   // When in a Block, we don't want to reuse a label in an enclosing function.
   3738   if (Res && Res->getDeclContext() != CurContext)
   3739     Res = nullptr;
   3740   if (!Res) {
   3741     // If not forward referenced or defined already, create the backing decl.
   3742     Res = LabelDecl::Create(Context, CurContext, Loc, II);
   3743     Scope *S = CurScope->getFnParent();
   3744     assert(S && "Not in a function?");
   3745     PushOnScopeChains(Res, S, true);
   3746   }
   3747   return cast<LabelDecl>(Res);
   3748 }
   3749 
   3750 //===----------------------------------------------------------------------===//
   3751 // Typo correction
   3752 //===----------------------------------------------------------------------===//
   3753 
   3754 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
   3755                               TypoCorrection &Candidate) {
   3756   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
   3757   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
   3758 }
   3759 
   3760 static void LookupPotentialTypoResult(Sema &SemaRef,
   3761                                       LookupResult &Res,
   3762                                       IdentifierInfo *Name,
   3763                                       Scope *S, CXXScopeSpec *SS,
   3764                                       DeclContext *MemberContext,
   3765                                       bool EnteringContext,
   3766                                       bool isObjCIvarLookup,
   3767                                       bool FindHidden);
   3768 
   3769 /// \brief Check whether the declarations found for a typo correction are
   3770 /// visible, and if none of them are, convert the correction to an 'import
   3771 /// a module' correction.
   3772 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
   3773   if (TC.begin() == TC.end())
   3774     return;
   3775 
   3776   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
   3777 
   3778   for (/**/; DI != DE; ++DI)
   3779     if (!LookupResult::isVisible(SemaRef, *DI))
   3780       break;
   3781   // Nothing to do if all decls are visible.
   3782   if (DI == DE)
   3783     return;
   3784 
   3785   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
   3786   bool AnyVisibleDecls = !NewDecls.empty();
   3787 
   3788   for (/**/; DI != DE; ++DI) {
   3789     NamedDecl *VisibleDecl = *DI;
   3790     if (!LookupResult::isVisible(SemaRef, *DI))
   3791       VisibleDecl = findAcceptableDecl(SemaRef, *DI);
   3792 
   3793     if (VisibleDecl) {
   3794       if (!AnyVisibleDecls) {
   3795         // Found a visible decl, discard all hidden ones.
   3796         AnyVisibleDecls = true;
   3797         NewDecls.clear();
   3798       }
   3799       NewDecls.push_back(VisibleDecl);
   3800     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
   3801       NewDecls.push_back(*DI);
   3802   }
   3803 
   3804   if (NewDecls.empty())
   3805     TC = TypoCorrection();
   3806   else {
   3807     TC.setCorrectionDecls(NewDecls);
   3808     TC.setRequiresImport(!AnyVisibleDecls);
   3809   }
   3810 }
   3811 
   3812 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
   3813 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
   3814 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
   3815 static void getNestedNameSpecifierIdentifiers(
   3816     NestedNameSpecifier *NNS,
   3817     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
   3818   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
   3819     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
   3820   else
   3821     Identifiers.clear();
   3822 
   3823   const IdentifierInfo *II = nullptr;
   3824 
   3825   switch (NNS->getKind()) {
   3826   case NestedNameSpecifier::Identifier:
   3827     II = NNS->getAsIdentifier();
   3828     break;
   3829 
   3830   case NestedNameSpecifier::Namespace:
   3831     if (NNS->getAsNamespace()->isAnonymousNamespace())
   3832       return;
   3833     II = NNS->getAsNamespace()->getIdentifier();
   3834     break;
   3835 
   3836   case NestedNameSpecifier::NamespaceAlias:
   3837     II = NNS->getAsNamespaceAlias()->getIdentifier();
   3838     break;
   3839 
   3840   case NestedNameSpecifier::TypeSpecWithTemplate:
   3841   case NestedNameSpecifier::TypeSpec:
   3842     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
   3843     break;
   3844 
   3845   case NestedNameSpecifier::Global:
   3846   case NestedNameSpecifier::Super:
   3847     return;
   3848   }
   3849 
   3850   if (II)
   3851     Identifiers.push_back(II);
   3852 }
   3853 
   3854 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
   3855                                        DeclContext *Ctx, bool InBaseClass) {
   3856   // Don't consider hidden names for typo correction.
   3857   if (Hiding)
   3858     return;
   3859 
   3860   // Only consider entities with identifiers for names, ignoring
   3861   // special names (constructors, overloaded operators, selectors,
   3862   // etc.).
   3863   IdentifierInfo *Name = ND->getIdentifier();
   3864   if (!Name)
   3865     return;
   3866 
   3867   // Only consider visible declarations and declarations from modules with
   3868   // names that exactly match.
   3869   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
   3870       !findAcceptableDecl(SemaRef, ND))
   3871     return;
   3872 
   3873   FoundName(Name->getName());
   3874 }
   3875 
   3876 void TypoCorrectionConsumer::FoundName(StringRef Name) {
   3877   // Compute the edit distance between the typo and the name of this
   3878   // entity, and add the identifier to the list of results.
   3879   addName(Name, nullptr);
   3880 }
   3881 
   3882 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
   3883   // Compute the edit distance between the typo and this keyword,
   3884   // and add the keyword to the list of results.
   3885   addName(Keyword, nullptr, nullptr, true);
   3886 }
   3887 
   3888 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
   3889                                      NestedNameSpecifier *NNS, bool isKeyword) {
   3890   // Use a simple length-based heuristic to determine the minimum possible
   3891   // edit distance. If the minimum isn't good enough, bail out early.
   3892   StringRef TypoStr = Typo->getName();
   3893   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
   3894   if (MinED && TypoStr.size() / MinED < 3)
   3895     return;
   3896 
   3897   // Compute an upper bound on the allowable edit distance, so that the
   3898   // edit-distance algorithm can short-circuit.
   3899   unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
   3900   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
   3901   if (ED >= UpperBound) return;
   3902 
   3903   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
   3904   if (isKeyword) TC.makeKeyword();
   3905   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
   3906   addCorrection(TC);
   3907 }
   3908 
   3909 static const unsigned MaxTypoDistanceResultSets = 5;
   3910 
   3911 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
   3912   StringRef TypoStr = Typo->getName();
   3913   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
   3914 
   3915   // For very short typos, ignore potential corrections that have a different
   3916   // base identifier from the typo or which have a normalized edit distance
   3917   // longer than the typo itself.
   3918   if (TypoStr.size() < 3 &&
   3919       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
   3920     return;
   3921 
   3922   // If the correction is resolved but is not viable, ignore it.
   3923   if (Correction.isResolved()) {
   3924     checkCorrectionVisibility(SemaRef, Correction);
   3925     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
   3926       return;
   3927   }
   3928 
   3929   TypoResultList &CList =
   3930       CorrectionResults[Correction.getEditDistance(false)][Name];
   3931 
   3932   if (!CList.empty() && !CList.back().isResolved())
   3933     CList.pop_back();
   3934   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
   3935     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
   3936     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
   3937          RI != RIEnd; ++RI) {
   3938       // If the Correction refers to a decl already in the result list,
   3939       // replace the existing result if the string representation of Correction
   3940       // comes before the current result alphabetically, then stop as there is
   3941       // nothing more to be done to add Correction to the candidate set.
   3942       if (RI->getCorrectionDecl() == NewND) {
   3943         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
   3944           *RI = Correction;
   3945         return;
   3946       }
   3947     }
   3948   }
   3949   if (CList.empty() || Correction.isResolved())
   3950     CList.push_back(Correction);
   3951 
   3952   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
   3953     CorrectionResults.erase(std::prev(CorrectionResults.end()));
   3954 }
   3955 
   3956 void TypoCorrectionConsumer::addNamespaces(
   3957     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
   3958   SearchNamespaces = true;
   3959 
   3960   for (auto KNPair : KnownNamespaces)
   3961     Namespaces.addNameSpecifier(KNPair.first);
   3962 
   3963   bool SSIsTemplate = false;
   3964   if (NestedNameSpecifier *NNS =
   3965           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
   3966     if (const Type *T = NNS->getAsType())
   3967       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
   3968   }
   3969   // Do not transform this into an iterator-based loop. The loop body can
   3970   // trigger the creation of further types (through lazy deserialization) and
   3971   // invalide iterators into this list.
   3972   auto &Types = SemaRef.getASTContext().getTypes();
   3973   for (unsigned I = 0; I != Types.size(); ++I) {
   3974     const auto *TI = Types[I];
   3975     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
   3976       CD = CD->getCanonicalDecl();
   3977       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
   3978           !CD->isUnion() && CD->getIdentifier() &&
   3979           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
   3980           (CD->isBeingDefined() || CD->isCompleteDefinition()))
   3981         Namespaces.addNameSpecifier(CD);
   3982     }
   3983   }
   3984 }
   3985 
   3986 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
   3987   if (++CurrentTCIndex < ValidatedCorrections.size())
   3988     return ValidatedCorrections[CurrentTCIndex];
   3989 
   3990   CurrentTCIndex = ValidatedCorrections.size();
   3991   while (!CorrectionResults.empty()) {
   3992     auto DI = CorrectionResults.begin();
   3993     if (DI->second.empty()) {
   3994       CorrectionResults.erase(DI);
   3995       continue;
   3996     }
   3997 
   3998     auto RI = DI->second.begin();
   3999     if (RI->second.empty()) {
   4000       DI->second.erase(RI);
   4001       performQualifiedLookups();
   4002       continue;
   4003     }
   4004 
   4005     TypoCorrection TC = RI->second.pop_back_val();
   4006     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
   4007       ValidatedCorrections.push_back(TC);
   4008       return ValidatedCorrections[CurrentTCIndex];
   4009     }
   4010   }
   4011   return ValidatedCorrections[0];  // The empty correction.
   4012 }
   4013 
   4014 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
   4015   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
   4016   DeclContext *TempMemberContext = MemberContext;
   4017   CXXScopeSpec *TempSS = SS.get();
   4018 retry_lookup:
   4019   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
   4020                             EnteringContext,
   4021                             CorrectionValidator->IsObjCIvarLookup,
   4022                             Name == Typo && !Candidate.WillReplaceSpecifier());
   4023   switch (Result.getResultKind()) {
   4024   case LookupResult::NotFound:
   4025   case LookupResult::NotFoundInCurrentInstantiation:
   4026   case LookupResult::FoundUnresolvedValue:
   4027     if (TempSS) {
   4028       // Immediately retry the lookup without the given CXXScopeSpec
   4029       TempSS = nullptr;
   4030       Candidate.WillReplaceSpecifier(true);
   4031       goto retry_lookup;
   4032     }
   4033     if (TempMemberContext) {
   4034       if (SS && !TempSS)
   4035         TempSS = SS.get();
   4036       TempMemberContext = nullptr;
   4037       goto retry_lookup;
   4038     }
   4039     if (SearchNamespaces)
   4040       QualifiedResults.push_back(Candidate);
   4041     break;
   4042 
   4043   case LookupResult::Ambiguous:
   4044     // We don't deal with ambiguities.
   4045     break;
   4046 
   4047   case LookupResult::Found:
   4048   case LookupResult::FoundOverloaded:
   4049     // Store all of the Decls for overloaded symbols
   4050     for (auto *TRD : Result)
   4051       Candidate.addCorrectionDecl(TRD);
   4052     checkCorrectionVisibility(SemaRef, Candidate);
   4053     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
   4054       if (SearchNamespaces)
   4055         QualifiedResults.push_back(Candidate);
   4056       break;
   4057     }
   4058     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
   4059     return true;
   4060   }
   4061   return false;
   4062 }
   4063 
   4064 void TypoCorrectionConsumer::performQualifiedLookups() {
   4065   unsigned TypoLen = Typo->getName().size();
   4066   for (const TypoCorrection &QR : QualifiedResults) {
   4067     for (const auto &NSI : Namespaces) {
   4068       DeclContext *Ctx = NSI.DeclCtx;
   4069       const Type *NSType = NSI.NameSpecifier->getAsType();
   4070 
   4071       // If the current NestedNameSpecifier refers to a class and the
   4072       // current correction candidate is the name of that class, then skip
   4073       // it as it is unlikely a qualified version of the class' constructor
   4074       // is an appropriate correction.
   4075       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
   4076                                            nullptr) {
   4077         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
   4078           continue;
   4079       }
   4080 
   4081       TypoCorrection TC(QR);
   4082       TC.ClearCorrectionDecls();
   4083       TC.setCorrectionSpecifier(NSI.NameSpecifier);
   4084       TC.setQualifierDistance(NSI.EditDistance);
   4085       TC.setCallbackDistance(0); // Reset the callback distance
   4086 
   4087       // If the current correction candidate and namespace combination are
   4088       // too far away from the original typo based on the normalized edit
   4089       // distance, then skip performing a qualified name lookup.
   4090       unsigned TmpED = TC.getEditDistance(true);
   4091       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
   4092           TypoLen / TmpED < 3)
   4093         continue;
   4094 
   4095       Result.clear();
   4096       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
   4097       if (!SemaRef.LookupQualifiedName(Result, Ctx))
   4098         continue;
   4099 
   4100       // Any corrections added below will be validated in subsequent
   4101       // iterations of the main while() loop over the Consumer's contents.
   4102       switch (Result.getResultKind()) {
   4103       case LookupResult::Found:
   4104       case LookupResult::FoundOverloaded: {
   4105         if (SS && SS->isValid()) {
   4106           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
   4107           std::string OldQualified;
   4108           llvm::raw_string_ostream OldOStream(OldQualified);
   4109           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
   4110           OldOStream << Typo->getName();
   4111           // If correction candidate would be an identical written qualified
   4112           // identifer, then the existing CXXScopeSpec probably included a
   4113           // typedef that didn't get accounted for properly.
   4114           if (OldOStream.str() == NewQualified)
   4115             break;
   4116         }
   4117         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
   4118              TRD != TRDEnd; ++TRD) {
   4119           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
   4120                                         NSType ? NSType->getAsCXXRecordDecl()
   4121                                                : nullptr,
   4122                                         TRD.getPair()) == Sema::AR_accessible)
   4123             TC.addCorrectionDecl(*TRD);
   4124         }
   4125         if (TC.isResolved()) {
   4126           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
   4127           addCorrection(TC);
   4128         }
   4129         break;
   4130       }
   4131       case LookupResult::NotFound:
   4132       case LookupResult::NotFoundInCurrentInstantiation:
   4133       case LookupResult::Ambiguous:
   4134       case LookupResult::FoundUnresolvedValue:
   4135         break;
   4136       }
   4137     }
   4138   }
   4139   QualifiedResults.clear();
   4140 }
   4141 
   4142 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
   4143     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
   4144     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
   4145   if (NestedNameSpecifier *NNS =
   4146           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
   4147     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
   4148     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   4149 
   4150     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
   4151   }
   4152   // Build the list of identifiers that would be used for an absolute
   4153   // (from the global context) NestedNameSpecifier referring to the current
   4154   // context.
   4155   for (DeclContext *C : llvm::reverse(CurContextChain)) {
   4156     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
   4157       CurContextIdentifiers.push_back(ND->getIdentifier());
   4158   }
   4159 
   4160   // Add the global context as a NestedNameSpecifier
   4161   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
   4162                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
   4163   DistanceMap[1].push_back(SI);
   4164 }
   4165 
   4166 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
   4167     DeclContext *Start) -> DeclContextList {
   4168   assert(Start && "Building a context chain from a null context");
   4169   DeclContextList Chain;
   4170   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
   4171        DC = DC->getLookupParent()) {
   4172     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
   4173     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
   4174         !(ND && ND->isAnonymousNamespace()))
   4175       Chain.push_back(DC->getPrimaryContext());
   4176   }
   4177   return Chain;
   4178 }
   4179 
   4180 unsigned
   4181 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
   4182     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
   4183   unsigned NumSpecifiers = 0;
   4184   for (DeclContext *C : llvm::reverse(DeclChain)) {
   4185     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
   4186       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
   4187       ++NumSpecifiers;
   4188     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
   4189       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
   4190                                         RD->getTypeForDecl());
   4191       ++NumSpecifiers;
   4192     }
   4193   }
   4194   return NumSpecifiers;
   4195 }
   4196 
   4197 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
   4198     DeclContext *Ctx) {
   4199   NestedNameSpecifier *NNS = nullptr;
   4200   unsigned NumSpecifiers = 0;
   4201   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
   4202   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
   4203 
   4204   // Eliminate common elements from the two DeclContext chains.
   4205   for (DeclContext *C : llvm::reverse(CurContextChain)) {
   4206     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
   4207       break;
   4208     NamespaceDeclChain.pop_back();
   4209   }
   4210 
   4211   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
   4212   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
   4213 
   4214   // Add an explicit leading '::' specifier if needed.
   4215   if (NamespaceDeclChain.empty()) {
   4216     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   4217     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   4218     NumSpecifiers =
   4219         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   4220   } else if (NamedDecl *ND =
   4221                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
   4222     IdentifierInfo *Name = ND->getIdentifier();
   4223     bool SameNameSpecifier = false;
   4224     if (std::find(CurNameSpecifierIdentifiers.begin(),
   4225                   CurNameSpecifierIdentifiers.end(),
   4226                   Name) != CurNameSpecifierIdentifiers.end()) {
   4227       std::string NewNameSpecifier;
   4228       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
   4229       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
   4230       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   4231       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   4232       SpecifierOStream.flush();
   4233       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
   4234     }
   4235     if (SameNameSpecifier ||
   4236         std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
   4237                   Name) != CurContextIdentifiers.end()) {
   4238       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   4239       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   4240       NumSpecifiers =
   4241           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   4242     }
   4243   }
   4244 
   4245   // If the built NestedNameSpecifier would be replacing an existing
   4246   // NestedNameSpecifier, use the number of component identifiers that
   4247   // would need to be changed as the edit distance instead of the number
   4248   // of components in the built NestedNameSpecifier.
   4249   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
   4250     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
   4251     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   4252     NumSpecifiers = llvm::ComputeEditDistance(
   4253         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
   4254         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
   4255   }
   4256 
   4257   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
   4258   DistanceMap[NumSpecifiers].push_back(SI);
   4259 }
   4260 
   4261 /// \brief Perform name lookup for a possible result for typo correction.
   4262 static void LookupPotentialTypoResult(Sema &SemaRef,
   4263                                       LookupResult &Res,
   4264                                       IdentifierInfo *Name,
   4265                                       Scope *S, CXXScopeSpec *SS,
   4266                                       DeclContext *MemberContext,
   4267                                       bool EnteringContext,
   4268                                       bool isObjCIvarLookup,
   4269                                       bool FindHidden) {
   4270   Res.suppressDiagnostics();
   4271   Res.clear();
   4272   Res.setLookupName(Name);
   4273   Res.setAllowHidden(FindHidden);
   4274   if (MemberContext) {
   4275     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
   4276       if (isObjCIvarLookup) {
   4277         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
   4278           Res.addDecl(Ivar);
   4279           Res.resolveKind();
   4280           return;
   4281         }
   4282       }
   4283 
   4284       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
   4285               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
   4286         Res.addDecl(Prop);
   4287         Res.resolveKind();
   4288         return;
   4289       }
   4290     }
   4291 
   4292     SemaRef.LookupQualifiedName(Res, MemberContext);
   4293     return;
   4294   }
   4295 
   4296   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
   4297                            EnteringContext);
   4298 
   4299   // Fake ivar lookup; this should really be part of
   4300   // LookupParsedName.
   4301   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
   4302     if (Method->isInstanceMethod() && Method->getClassInterface() &&
   4303         (Res.empty() ||
   4304          (Res.isSingleResult() &&
   4305           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
   4306        if (ObjCIvarDecl *IV
   4307              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
   4308          Res.addDecl(IV);
   4309          Res.resolveKind();
   4310        }
   4311      }
   4312   }
   4313 }
   4314 
   4315 /// \brief Add keywords to the consumer as possible typo corrections.
   4316 static void AddKeywordsToConsumer(Sema &SemaRef,
   4317                                   TypoCorrectionConsumer &Consumer,
   4318                                   Scope *S, CorrectionCandidateCallback &CCC,
   4319                                   bool AfterNestedNameSpecifier) {
   4320   if (AfterNestedNameSpecifier) {
   4321     // For 'X::', we know exactly which keywords can appear next.
   4322     Consumer.addKeywordResult("template");
   4323     if (CCC.WantExpressionKeywords)
   4324       Consumer.addKeywordResult("operator");
   4325     return;
   4326   }
   4327 
   4328   if (CCC.WantObjCSuper)
   4329     Consumer.addKeywordResult("super");
   4330 
   4331   if (CCC.WantTypeSpecifiers) {
   4332     // Add type-specifier keywords to the set of results.
   4333     static const char *const CTypeSpecs[] = {
   4334       "char", "const", "double", "enum", "float", "int", "long", "short",
   4335       "signed", "struct", "union", "unsigned", "void", "volatile",
   4336       "_Complex", "_Imaginary",
   4337       // storage-specifiers as well
   4338       "extern", "inline", "static", "typedef"
   4339     };
   4340 
   4341     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
   4342     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
   4343       Consumer.addKeywordResult(CTypeSpecs[I]);
   4344 
   4345     if (SemaRef.getLangOpts().C99)
   4346       Consumer.addKeywordResult("restrict");
   4347     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
   4348       Consumer.addKeywordResult("bool");
   4349     else if (SemaRef.getLangOpts().C99)
   4350       Consumer.addKeywordResult("_Bool");
   4351 
   4352     if (SemaRef.getLangOpts().CPlusPlus) {
   4353       Consumer.addKeywordResult("class");
   4354       Consumer.addKeywordResult("typename");
   4355       Consumer.addKeywordResult("wchar_t");
   4356 
   4357       if (SemaRef.getLangOpts().CPlusPlus11) {
   4358         Consumer.addKeywordResult("char16_t");
   4359         Consumer.addKeywordResult("char32_t");
   4360         Consumer.addKeywordResult("constexpr");
   4361         Consumer.addKeywordResult("decltype");
   4362         Consumer.addKeywordResult("thread_local");
   4363       }
   4364     }
   4365 
   4366     if (SemaRef.getLangOpts().GNUMode)
   4367       Consumer.addKeywordResult("typeof");
   4368   } else if (CCC.WantFunctionLikeCasts) {
   4369     static const char *const CastableTypeSpecs[] = {
   4370       "char", "double", "float", "int", "long", "short",
   4371       "signed", "unsigned", "void"
   4372     };
   4373     for (auto *kw : CastableTypeSpecs)
   4374       Consumer.addKeywordResult(kw);
   4375   }
   4376 
   4377   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
   4378     Consumer.addKeywordResult("const_cast");
   4379     Consumer.addKeywordResult("dynamic_cast");
   4380     Consumer.addKeywordResult("reinterpret_cast");
   4381     Consumer.addKeywordResult("static_cast");
   4382   }
   4383 
   4384   if (CCC.WantExpressionKeywords) {
   4385     Consumer.addKeywordResult("sizeof");
   4386     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
   4387       Consumer.addKeywordResult("false");
   4388       Consumer.addKeywordResult("true");
   4389     }
   4390 
   4391     if (SemaRef.getLangOpts().CPlusPlus) {
   4392       static const char *const CXXExprs[] = {
   4393         "delete", "new", "operator", "throw", "typeid"
   4394       };
   4395       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
   4396       for (unsigned I = 0; I != NumCXXExprs; ++I)
   4397         Consumer.addKeywordResult(CXXExprs[I]);
   4398 
   4399       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
   4400           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
   4401         Consumer.addKeywordResult("this");
   4402 
   4403       if (SemaRef.getLangOpts().CPlusPlus11) {
   4404         Consumer.addKeywordResult("alignof");
   4405         Consumer.addKeywordResult("nullptr");
   4406       }
   4407     }
   4408 
   4409     if (SemaRef.getLangOpts().C11) {
   4410       // FIXME: We should not suggest _Alignof if the alignof macro
   4411       // is present.
   4412       Consumer.addKeywordResult("_Alignof");
   4413     }
   4414   }
   4415 
   4416   if (CCC.WantRemainingKeywords) {
   4417     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
   4418       // Statements.
   4419       static const char *const CStmts[] = {
   4420         "do", "else", "for", "goto", "if", "return", "switch", "while" };
   4421       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
   4422       for (unsigned I = 0; I != NumCStmts; ++I)
   4423         Consumer.addKeywordResult(CStmts[I]);
   4424 
   4425       if (SemaRef.getLangOpts().CPlusPlus) {
   4426         Consumer.addKeywordResult("catch");
   4427         Consumer.addKeywordResult("try");
   4428       }
   4429 
   4430       if (S && S->getBreakParent())
   4431         Consumer.addKeywordResult("break");
   4432 
   4433       if (S && S->getContinueParent())
   4434         Consumer.addKeywordResult("continue");
   4435 
   4436       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
   4437         Consumer.addKeywordResult("case");
   4438         Consumer.addKeywordResult("default");
   4439       }
   4440     } else {
   4441       if (SemaRef.getLangOpts().CPlusPlus) {
   4442         Consumer.addKeywordResult("namespace");
   4443         Consumer.addKeywordResult("template");
   4444       }
   4445 
   4446       if (S && S->isClassScope()) {
   4447         Consumer.addKeywordResult("explicit");
   4448         Consumer.addKeywordResult("friend");
   4449         Consumer.addKeywordResult("mutable");
   4450         Consumer.addKeywordResult("private");
   4451         Consumer.addKeywordResult("protected");
   4452         Consumer.addKeywordResult("public");
   4453         Consumer.addKeywordResult("virtual");
   4454       }
   4455     }
   4456 
   4457     if (SemaRef.getLangOpts().CPlusPlus) {
   4458       Consumer.addKeywordResult("using");
   4459 
   4460       if (SemaRef.getLangOpts().CPlusPlus11)
   4461         Consumer.addKeywordResult("static_assert");
   4462     }
   4463   }
   4464 }
   4465 
   4466 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
   4467     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
   4468     Scope *S, CXXScopeSpec *SS,
   4469     std::unique_ptr<CorrectionCandidateCallback> CCC,
   4470     DeclContext *MemberContext, bool EnteringContext,
   4471     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
   4472 
   4473   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
   4474       DisableTypoCorrection)
   4475     return nullptr;
   4476 
   4477   // In Microsoft mode, don't perform typo correction in a template member
   4478   // function dependent context because it interferes with the "lookup into
   4479   // dependent bases of class templates" feature.
   4480   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
   4481       isa<CXXMethodDecl>(CurContext))
   4482     return nullptr;
   4483 
   4484   // We only attempt to correct typos for identifiers.
   4485   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4486   if (!Typo)
   4487     return nullptr;
   4488 
   4489   // If the scope specifier itself was invalid, don't try to correct
   4490   // typos.
   4491   if (SS && SS->isInvalid())
   4492     return nullptr;
   4493 
   4494   // Never try to correct typos during template deduction or
   4495   // instantiation.
   4496   if (!ActiveTemplateInstantiations.empty())
   4497     return nullptr;
   4498 
   4499   // Don't try to correct 'super'.
   4500   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
   4501     return nullptr;
   4502 
   4503   // Abort if typo correction already failed for this specific typo.
   4504   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
   4505   if (locs != TypoCorrectionFailures.end() &&
   4506       locs->second.count(TypoName.getLoc()))
   4507     return nullptr;
   4508 
   4509   // Don't try to correct the identifier "vector" when in AltiVec mode.
   4510   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
   4511   // remove this workaround.
   4512   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
   4513     return nullptr;
   4514 
   4515   // Provide a stop gap for files that are just seriously broken.  Trying
   4516   // to correct all typos can turn into a HUGE performance penalty, causing
   4517   // some files to take minutes to get rejected by the parser.
   4518   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
   4519   if (Limit && TyposCorrected >= Limit)
   4520     return nullptr;
   4521   ++TyposCorrected;
   4522 
   4523   // If we're handling a missing symbol error, using modules, and the
   4524   // special search all modules option is used, look for a missing import.
   4525   if (ErrorRecovery && getLangOpts().Modules &&
   4526       getLangOpts().ModulesSearchAll) {
   4527     // The following has the side effect of loading the missing module.
   4528     getModuleLoader().lookupMissingImports(Typo->getName(),
   4529                                            TypoName.getLocStart());
   4530   }
   4531 
   4532   CorrectionCandidateCallback &CCCRef = *CCC;
   4533   auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
   4534       *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4535       EnteringContext);
   4536 
   4537   // Perform name lookup to find visible, similarly-named entities.
   4538   bool IsUnqualifiedLookup = false;
   4539   DeclContext *QualifiedDC = MemberContext;
   4540   if (MemberContext) {
   4541     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
   4542 
   4543     // Look in qualified interfaces.
   4544     if (OPT) {
   4545       for (auto *I : OPT->quals())
   4546         LookupVisibleDecls(I, LookupKind, *Consumer);
   4547     }
   4548   } else if (SS && SS->isSet()) {
   4549     QualifiedDC = computeDeclContext(*SS, EnteringContext);
   4550     if (!QualifiedDC)
   4551       return nullptr;
   4552 
   4553     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
   4554   } else {
   4555     IsUnqualifiedLookup = true;
   4556   }
   4557 
   4558   // Determine whether we are going to search in the various namespaces for
   4559   // corrections.
   4560   bool SearchNamespaces
   4561     = getLangOpts().CPlusPlus &&
   4562       (IsUnqualifiedLookup || (SS && SS->isSet()));
   4563 
   4564   if (IsUnqualifiedLookup || SearchNamespaces) {
   4565     // For unqualified lookup, look through all of the names that we have
   4566     // seen in this translation unit.
   4567     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4568     for (const auto &I : Context.Idents)
   4569       Consumer->FoundName(I.getKey());
   4570 
   4571     // Walk through identifiers in external identifier sources.
   4572     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4573     if (IdentifierInfoLookup *External
   4574                             = Context.Idents.getExternalIdentifierLookup()) {
   4575       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
   4576       do {
   4577         StringRef Name = Iter->Next();
   4578         if (Name.empty())
   4579           break;
   4580 
   4581         Consumer->FoundName(Name);
   4582       } while (true);
   4583     }
   4584   }
   4585 
   4586   AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
   4587 
   4588   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
   4589   // to search those namespaces.
   4590   if (SearchNamespaces) {
   4591     // Load any externally-known namespaces.
   4592     if (ExternalSource && !LoadedExternalKnownNamespaces) {
   4593       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
   4594       LoadedExternalKnownNamespaces = true;
   4595       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
   4596       for (auto *N : ExternalKnownNamespaces)
   4597         KnownNamespaces[N] = true;
   4598     }
   4599 
   4600     Consumer->addNamespaces(KnownNamespaces);
   4601   }
   4602 
   4603   return Consumer;
   4604 }
   4605 
   4606 /// \brief Try to "correct" a typo in the source code by finding
   4607 /// visible declarations whose names are similar to the name that was
   4608 /// present in the source code.
   4609 ///
   4610 /// \param TypoName the \c DeclarationNameInfo structure that contains
   4611 /// the name that was present in the source code along with its location.
   4612 ///
   4613 /// \param LookupKind the name-lookup criteria used to search for the name.
   4614 ///
   4615 /// \param S the scope in which name lookup occurs.
   4616 ///
   4617 /// \param SS the nested-name-specifier that precedes the name we're
   4618 /// looking for, if present.
   4619 ///
   4620 /// \param CCC A CorrectionCandidateCallback object that provides further
   4621 /// validation of typo correction candidates. It also provides flags for
   4622 /// determining the set of keywords permitted.
   4623 ///
   4624 /// \param MemberContext if non-NULL, the context in which to look for
   4625 /// a member access expression.
   4626 ///
   4627 /// \param EnteringContext whether we're entering the context described by
   4628 /// the nested-name-specifier SS.
   4629 ///
   4630 /// \param OPT when non-NULL, the search for visible declarations will
   4631 /// also walk the protocols in the qualified interfaces of \p OPT.
   4632 ///
   4633 /// \returns a \c TypoCorrection containing the corrected name if the typo
   4634 /// along with information such as the \c NamedDecl where the corrected name
   4635 /// was declared, and any additional \c NestedNameSpecifier needed to access
   4636 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
   4637 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
   4638                                  Sema::LookupNameKind LookupKind,
   4639                                  Scope *S, CXXScopeSpec *SS,
   4640                                  std::unique_ptr<CorrectionCandidateCallback> CCC,
   4641                                  CorrectTypoKind Mode,
   4642                                  DeclContext *MemberContext,
   4643                                  bool EnteringContext,
   4644                                  const ObjCObjectPointerType *OPT,
   4645                                  bool RecordFailure) {
   4646   assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
   4647 
   4648   // Always let the ExternalSource have the first chance at correction, even
   4649   // if we would otherwise have given up.
   4650   if (ExternalSource) {
   4651     if (TypoCorrection Correction = ExternalSource->CorrectTypo(
   4652         TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
   4653       return Correction;
   4654   }
   4655 
   4656   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
   4657   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
   4658   // some instances of CTC_Unknown, while WantRemainingKeywords is true
   4659   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
   4660   bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
   4661 
   4662   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4663   auto Consumer = makeTypoCorrectionConsumer(
   4664       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4665       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
   4666 
   4667   if (!Consumer)
   4668     return TypoCorrection();
   4669 
   4670   // If we haven't found anything, we're done.
   4671   if (Consumer->empty())
   4672     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4673 
   4674   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   4675   // is not more that about a third of the length of the typo's identifier.
   4676   unsigned ED = Consumer->getBestEditDistance(true);
   4677   unsigned TypoLen = Typo->getName().size();
   4678   if (ED > 0 && TypoLen / ED < 3)
   4679     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4680 
   4681   TypoCorrection BestTC = Consumer->getNextCorrection();
   4682   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
   4683   if (!BestTC)
   4684     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4685 
   4686   ED = BestTC.getEditDistance();
   4687 
   4688   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
   4689     // If this was an unqualified lookup and we believe the callback
   4690     // object wouldn't have filtered out possible corrections, note
   4691     // that no correction was found.
   4692     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4693   }
   4694 
   4695   // If only a single name remains, return that result.
   4696   if (!SecondBestTC ||
   4697       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
   4698     const TypoCorrection &Result = BestTC;
   4699 
   4700     // Don't correct to a keyword that's the same as the typo; the keyword
   4701     // wasn't actually in scope.
   4702     if (ED == 0 && Result.isKeyword())
   4703       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4704 
   4705     TypoCorrection TC = Result;
   4706     TC.setCorrectionRange(SS, TypoName);
   4707     checkCorrectionVisibility(*this, TC);
   4708     return TC;
   4709   } else if (SecondBestTC && ObjCMessageReceiver) {
   4710     // Prefer 'super' when we're completing in a message-receiver
   4711     // context.
   4712 
   4713     if (BestTC.getCorrection().getAsString() != "super") {
   4714       if (SecondBestTC.getCorrection().getAsString() == "super")
   4715         BestTC = SecondBestTC;
   4716       else if ((*Consumer)["super"].front().isKeyword())
   4717         BestTC = (*Consumer)["super"].front();
   4718     }
   4719     // Don't correct to a keyword that's the same as the typo; the keyword
   4720     // wasn't actually in scope.
   4721     if (BestTC.getEditDistance() == 0 ||
   4722         BestTC.getCorrection().getAsString() != "super")
   4723       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4724 
   4725     BestTC.setCorrectionRange(SS, TypoName);
   4726     return BestTC;
   4727   }
   4728 
   4729   // Record the failure's location if needed and return an empty correction. If
   4730   // this was an unqualified lookup and we believe the callback object did not
   4731   // filter out possible corrections, also cache the failure for the typo.
   4732   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
   4733 }
   4734 
   4735 /// \brief Try to "correct" a typo in the source code by finding
   4736 /// visible declarations whose names are similar to the name that was
   4737 /// present in the source code.
   4738 ///
   4739 /// \param TypoName the \c DeclarationNameInfo structure that contains
   4740 /// the name that was present in the source code along with its location.
   4741 ///
   4742 /// \param LookupKind the name-lookup criteria used to search for the name.
   4743 ///
   4744 /// \param S the scope in which name lookup occurs.
   4745 ///
   4746 /// \param SS the nested-name-specifier that precedes the name we're
   4747 /// looking for, if present.
   4748 ///
   4749 /// \param CCC A CorrectionCandidateCallback object that provides further
   4750 /// validation of typo correction candidates. It also provides flags for
   4751 /// determining the set of keywords permitted.
   4752 ///
   4753 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
   4754 /// diagnostics when the actual typo correction is attempted.
   4755 ///
   4756 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
   4757 /// Expr from a typo correction candidate.
   4758 ///
   4759 /// \param MemberContext if non-NULL, the context in which to look for
   4760 /// a member access expression.
   4761 ///
   4762 /// \param EnteringContext whether we're entering the context described by
   4763 /// the nested-name-specifier SS.
   4764 ///
   4765 /// \param OPT when non-NULL, the search for visible declarations will
   4766 /// also walk the protocols in the qualified interfaces of \p OPT.
   4767 ///
   4768 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
   4769 /// Expr representing the result of performing typo correction, or nullptr if
   4770 /// typo correction is not possible. If nullptr is returned, no diagnostics will
   4771 /// be emitted and it is the responsibility of the caller to emit any that are
   4772 /// needed.
   4773 TypoExpr *Sema::CorrectTypoDelayed(
   4774     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
   4775     Scope *S, CXXScopeSpec *SS,
   4776     std::unique_ptr<CorrectionCandidateCallback> CCC,
   4777     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
   4778     DeclContext *MemberContext, bool EnteringContext,
   4779     const ObjCObjectPointerType *OPT) {
   4780   assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
   4781 
   4782   auto Consumer = makeTypoCorrectionConsumer(
   4783       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4784       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
   4785 
   4786   // Give the external sema source a chance to correct the typo.
   4787   TypoCorrection ExternalTypo;
   4788   if (ExternalSource && Consumer) {
   4789     ExternalTypo = ExternalSource->CorrectTypo(
   4790         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
   4791         MemberContext, EnteringContext, OPT);
   4792     if (ExternalTypo)
   4793       Consumer->addCorrection(ExternalTypo);
   4794   }
   4795 
   4796   if (!Consumer || Consumer->empty())
   4797     return nullptr;
   4798 
   4799   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   4800   // is not more that about a third of the length of the typo's identifier.
   4801   unsigned ED = Consumer->getBestEditDistance(true);
   4802   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4803   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
   4804     return nullptr;
   4805 
   4806   ExprEvalContexts.back().NumTypos++;
   4807   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
   4808 }
   4809 
   4810 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
   4811   if (!CDecl) return;
   4812 
   4813   if (isKeyword())
   4814     CorrectionDecls.clear();
   4815 
   4816   CorrectionDecls.push_back(CDecl);
   4817 
   4818   if (!CorrectionName)
   4819     CorrectionName = CDecl->getDeclName();
   4820 }
   4821 
   4822 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
   4823   if (CorrectionNameSpec) {
   4824     std::string tmpBuffer;
   4825     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
   4826     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
   4827     PrefixOStream << CorrectionName;
   4828     return PrefixOStream.str();
   4829   }
   4830 
   4831   return CorrectionName.getAsString();
   4832 }
   4833 
   4834 bool CorrectionCandidateCallback::ValidateCandidate(
   4835     const TypoCorrection &candidate) {
   4836   if (!candidate.isResolved())
   4837     return true;
   4838 
   4839   if (candidate.isKeyword())
   4840     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
   4841            WantRemainingKeywords || WantObjCSuper;
   4842 
   4843   bool HasNonType = false;
   4844   bool HasStaticMethod = false;
   4845   bool HasNonStaticMethod = false;
   4846   for (Decl *D : candidate) {
   4847     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
   4848       D = FTD->getTemplatedDecl();
   4849     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   4850       if (Method->isStatic())
   4851         HasStaticMethod = true;
   4852       else
   4853         HasNonStaticMethod = true;
   4854     }
   4855     if (!isa<TypeDecl>(D))
   4856       HasNonType = true;
   4857   }
   4858 
   4859   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
   4860       !candidate.getCorrectionSpecifier())
   4861     return false;
   4862 
   4863   return WantTypeSpecifiers || HasNonType;
   4864 }
   4865 
   4866 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
   4867                                              bool HasExplicitTemplateArgs,
   4868                                              MemberExpr *ME)
   4869     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
   4870       CurContext(SemaRef.CurContext), MemberFn(ME) {
   4871   WantTypeSpecifiers = false;
   4872   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
   4873   WantRemainingKeywords = false;
   4874 }
   4875 
   4876 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
   4877   if (!candidate.getCorrectionDecl())
   4878     return candidate.isKeyword();
   4879 
   4880   for (auto *C : candidate) {
   4881     FunctionDecl *FD = nullptr;
   4882     NamedDecl *ND = C->getUnderlyingDecl();
   4883     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   4884       FD = FTD->getTemplatedDecl();
   4885     if (!HasExplicitTemplateArgs && !FD) {
   4886       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
   4887         // If the Decl is neither a function nor a template function,
   4888         // determine if it is a pointer or reference to a function. If so,
   4889         // check against the number of arguments expected for the pointee.
   4890         QualType ValType = cast<ValueDecl>(ND)->getType();
   4891         if (ValType->isAnyPointerType() || ValType->isReferenceType())
   4892           ValType = ValType->getPointeeType();
   4893         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
   4894           if (FPT->getNumParams() == NumArgs)
   4895             return true;
   4896       }
   4897     }
   4898 
   4899     // Skip the current candidate if it is not a FunctionDecl or does not accept
   4900     // the current number of arguments.
   4901     if (!FD || !(FD->getNumParams() >= NumArgs &&
   4902                  FD->getMinRequiredArguments() <= NumArgs))
   4903       continue;
   4904 
   4905     // If the current candidate is a non-static C++ method, skip the candidate
   4906     // unless the method being corrected--or the current DeclContext, if the
   4907     // function being corrected is not a method--is a method in the same class
   4908     // or a descendent class of the candidate's parent class.
   4909     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   4910       if (MemberFn || !MD->isStatic()) {
   4911         CXXMethodDecl *CurMD =
   4912             MemberFn
   4913                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
   4914                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
   4915         CXXRecordDecl *CurRD =
   4916             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
   4917         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
   4918         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
   4919           continue;
   4920       }
   4921     }
   4922     return true;
   4923   }
   4924   return false;
   4925 }
   4926 
   4927 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   4928                         const PartialDiagnostic &TypoDiag,
   4929                         bool ErrorRecovery) {
   4930   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
   4931                ErrorRecovery);
   4932 }
   4933 
   4934 /// Find which declaration we should import to provide the definition of
   4935 /// the given declaration.
   4936 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
   4937   if (VarDecl *VD = dyn_cast<VarDecl>(D))
   4938     return VD->getDefinition();
   4939   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   4940     return FD->getDefinition();
   4941   if (TagDecl *TD = dyn_cast<TagDecl>(D))
   4942     return TD->getDefinition();
   4943   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
   4944     return ID->getDefinition();
   4945   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
   4946     return PD->getDefinition();
   4947   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   4948     return getDefinitionToImport(TD->getTemplatedDecl());
   4949   return nullptr;
   4950 }
   4951 
   4952 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
   4953                                  MissingImportKind MIK, bool Recover) {
   4954   assert(!isVisible(Decl) && "missing import for non-hidden decl?");
   4955 
   4956   // Suggest importing a module providing the definition of this entity, if
   4957   // possible.
   4958   NamedDecl *Def = getDefinitionToImport(Decl);
   4959   if (!Def)
   4960     Def = Decl;
   4961 
   4962   Module *Owner = getOwningModule(Decl);
   4963   assert(Owner && "definition of hidden declaration is not in a module");
   4964 
   4965   llvm::SmallVector<Module*, 8> OwningModules;
   4966   OwningModules.push_back(Owner);
   4967   auto Merged = Context.getModulesWithMergedDefinition(Decl);
   4968   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
   4969 
   4970   diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
   4971                         Recover);
   4972 }
   4973 
   4974 /// \brief Get a "quoted.h" or <angled.h> include path to use in a diagnostic
   4975 /// suggesting the addition of a #include of the specified file.
   4976 static std::string getIncludeStringForHeader(Preprocessor &PP,
   4977                                              const FileEntry *E) {
   4978   bool IsSystem;
   4979   auto Path =
   4980       PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
   4981   return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
   4982 }
   4983 
   4984 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
   4985                                  SourceLocation DeclLoc,
   4986                                  ArrayRef<Module *> Modules,
   4987                                  MissingImportKind MIK, bool Recover) {
   4988   assert(!Modules.empty());
   4989 
   4990   if (Modules.size() > 1) {
   4991     std::string ModuleList;
   4992     unsigned N = 0;
   4993     for (Module *M : Modules) {
   4994       ModuleList += "\n        ";
   4995       if (++N == 5 && N != Modules.size()) {
   4996         ModuleList += "[...]";
   4997         break;
   4998       }
   4999       ModuleList += M->getFullModuleName();
   5000     }
   5001 
   5002     Diag(UseLoc, diag::err_module_unimported_use_multiple)
   5003       << (int)MIK << Decl << ModuleList;
   5004   } else if (const FileEntry *E =
   5005                  PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
   5006     // The right way to make the declaration visible is to include a header;
   5007     // suggest doing so.
   5008     //
   5009     // FIXME: Find a smart place to suggest inserting a #include, and add
   5010     // a FixItHint there.
   5011     Diag(UseLoc, diag::err_module_unimported_use_header)
   5012       << (int)MIK << Decl << Modules[0]->getFullModuleName()
   5013       << getIncludeStringForHeader(PP, E);
   5014   } else {
   5015     // FIXME: Add a FixItHint that imports the corresponding module.
   5016     Diag(UseLoc, diag::err_module_unimported_use)
   5017       << (int)MIK << Decl << Modules[0]->getFullModuleName();
   5018   }
   5019 
   5020   unsigned DiagID;
   5021   switch (MIK) {
   5022   case MissingImportKind::Declaration:
   5023     DiagID = diag::note_previous_declaration;
   5024     break;
   5025   case MissingImportKind::Definition:
   5026     DiagID = diag::note_previous_definition;
   5027     break;
   5028   case MissingImportKind::DefaultArgument:
   5029     DiagID = diag::note_default_argument_declared_here;
   5030     break;
   5031   case MissingImportKind::ExplicitSpecialization:
   5032     DiagID = diag::note_explicit_specialization_declared_here;
   5033     break;
   5034   case MissingImportKind::PartialSpecialization:
   5035     DiagID = diag::note_partial_specialization_declared_here;
   5036     break;
   5037   }
   5038   Diag(DeclLoc, DiagID);
   5039 
   5040   // Try to recover by implicitly importing this module.
   5041   if (Recover)
   5042     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
   5043 }
   5044 
   5045 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
   5046 /// itself to allow external validation of the result, etc.
   5047 ///
   5048 /// \param Correction The result of performing typo correction.
   5049 /// \param TypoDiag The diagnostic to produce. This will have the corrected
   5050 ///        string added to it (and usually also a fixit).
   5051 /// \param PrevNote A note to use when indicating the location of the entity to
   5052 ///        which we are correcting. Will have the correction string added to it.
   5053 /// \param ErrorRecovery If \c true (the default), the caller is going to
   5054 ///        recover from the typo as if the corrected string had been typed.
   5055 ///        In this case, \c PDiag must be an error, and we will attach a fixit
   5056 ///        to it.
   5057 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   5058                         const PartialDiagnostic &TypoDiag,
   5059                         const PartialDiagnostic &PrevNote,
   5060                         bool ErrorRecovery) {
   5061   std::string CorrectedStr = Correction.getAsString(getLangOpts());
   5062   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
   5063   FixItHint FixTypo = FixItHint::CreateReplacement(
   5064       Correction.getCorrectionRange(), CorrectedStr);
   5065 
   5066   // Maybe we're just missing a module import.
   5067   if (Correction.requiresImport()) {
   5068     NamedDecl *Decl = Correction.getFoundDecl();
   5069     assert(Decl && "import required but no declaration to import");
   5070 
   5071     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
   5072                           MissingImportKind::Declaration, ErrorRecovery);
   5073     return;
   5074   }
   5075 
   5076   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
   5077     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
   5078 
   5079   NamedDecl *ChosenDecl =
   5080       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
   5081   if (PrevNote.getDiagID() && ChosenDecl)
   5082     Diag(ChosenDecl->getLocation(), PrevNote)
   5083       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
   5084 }
   5085 
   5086 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
   5087                                   TypoDiagnosticGenerator TDG,
   5088                                   TypoRecoveryCallback TRC) {
   5089   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
   5090   auto TE = new (Context) TypoExpr(Context.DependentTy);
   5091   auto &State = DelayedTypos[TE];
   5092   State.Consumer = std::move(TCC);
   5093   State.DiagHandler = std::move(TDG);
   5094   State.RecoveryHandler = std::move(TRC);
   5095   return TE;
   5096 }
   5097 
   5098 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
   5099   auto Entry = DelayedTypos.find(TE);
   5100   assert(Entry != DelayedTypos.end() &&
   5101          "Failed to get the state for a TypoExpr!");
   5102   return Entry->second;
   5103 }
   5104 
   5105 void Sema::clearDelayedTypo(TypoExpr *TE) {
   5106   DelayedTypos.erase(TE);
   5107 }
   5108 
   5109 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
   5110   DeclarationNameInfo Name(II, IILoc);
   5111   LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
   5112   R.suppressDiagnostics();
   5113   R.setHideTags(false);
   5114   LookupName(R, S);
   5115   R.dump();
   5116 }
   5117