Home | History | Annotate | Download | only in builtins
      1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements single-precision soft-float division
     11 // with the IEEE-754 default rounding (to nearest, ties to even).
     12 //
     13 // For simplicity, this implementation currently flushes denormals to zero.
     14 // It should be a fairly straightforward exercise to implement gradual
     15 // underflow with correct rounding.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define SINGLE_PRECISION
     20 #include "fp_lib.h"
     21 
     22 ARM_EABI_FNALIAS(fdiv, divsf3)
     23 
     24 COMPILER_RT_ABI fp_t
     25 __divsf3(fp_t a, fp_t b) {
     26 
     27     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
     28     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
     29     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
     30 
     31     rep_t aSignificand = toRep(a) & significandMask;
     32     rep_t bSignificand = toRep(b) & significandMask;
     33     int scale = 0;
     34 
     35     // Detect if a or b is zero, denormal, infinity, or NaN.
     36     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
     37 
     38         const rep_t aAbs = toRep(a) & absMask;
     39         const rep_t bAbs = toRep(b) & absMask;
     40 
     41         // NaN / anything = qNaN
     42         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
     43         // anything / NaN = qNaN
     44         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
     45 
     46         if (aAbs == infRep) {
     47             // infinity / infinity = NaN
     48             if (bAbs == infRep) return fromRep(qnanRep);
     49             // infinity / anything else = +/- infinity
     50             else return fromRep(aAbs | quotientSign);
     51         }
     52 
     53         // anything else / infinity = +/- 0
     54         if (bAbs == infRep) return fromRep(quotientSign);
     55 
     56         if (!aAbs) {
     57             // zero / zero = NaN
     58             if (!bAbs) return fromRep(qnanRep);
     59             // zero / anything else = +/- zero
     60             else return fromRep(quotientSign);
     61         }
     62         // anything else / zero = +/- infinity
     63         if (!bAbs) return fromRep(infRep | quotientSign);
     64 
     65         // one or both of a or b is denormal, the other (if applicable) is a
     66         // normal number.  Renormalize one or both of a and b, and set scale to
     67         // include the necessary exponent adjustment.
     68         if (aAbs < implicitBit) scale += normalize(&aSignificand);
     69         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
     70     }
     71 
     72     // Or in the implicit significand bit.  (If we fell through from the
     73     // denormal path it was already set by normalize( ), but setting it twice
     74     // won't hurt anything.)
     75     aSignificand |= implicitBit;
     76     bSignificand |= implicitBit;
     77     int quotientExponent = aExponent - bExponent + scale;
     78 
     79     // Align the significand of b as a Q31 fixed-point number in the range
     80     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
     81     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
     82     // is accurate to about 3.5 binary digits.
     83     uint32_t q31b = bSignificand << 8;
     84     uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
     85 
     86     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
     87     //
     88     //     x1 = x0 * (2 - x0 * b)
     89     //
     90     // This doubles the number of correct binary digits in the approximation
     91     // with each iteration, so after three iterations, we have about 28 binary
     92     // digits of accuracy.
     93     uint32_t correction;
     94     correction = -((uint64_t)reciprocal * q31b >> 32);
     95     reciprocal = (uint64_t)reciprocal * correction >> 31;
     96     correction = -((uint64_t)reciprocal * q31b >> 32);
     97     reciprocal = (uint64_t)reciprocal * correction >> 31;
     98     correction = -((uint64_t)reciprocal * q31b >> 32);
     99     reciprocal = (uint64_t)reciprocal * correction >> 31;
    100 
    101     // Exhaustive testing shows that the error in reciprocal after three steps
    102     // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
    103     // expectations.  We bump the reciprocal by a tiny value to force the error
    104     // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
    105     // be specific).  This also causes 1/1 to give a sensible approximation
    106     // instead of zero (due to overflow).
    107     reciprocal -= 2;
    108 
    109     // The numerical reciprocal is accurate to within 2^-28, lies in the
    110     // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
    111     // than the true reciprocal of b.  Multiplying a by this reciprocal thus
    112     // gives a numerical q = a/b in Q24 with the following properties:
    113     //
    114     //    1. q < a/b
    115     //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
    116     //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
    117     //       from the fact that we truncate the product, and the 2^27 term
    118     //       is the error in the reciprocal of b scaled by the maximum
    119     //       possible value of a.  As a consequence of this error bound,
    120     //       either q or nextafter(q) is the correctly rounded
    121     rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
    122 
    123     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
    124     // In either case, we are going to compute a residual of the form
    125     //
    126     //     r = a - q*b
    127     //
    128     // We know from the construction of q that r satisfies:
    129     //
    130     //     0 <= r < ulp(q)*b
    131     //
    132     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
    133     // already have the correct result.  The exact halfway case cannot occur.
    134     // We also take this time to right shift quotient if it falls in the [1,2)
    135     // range and adjust the exponent accordingly.
    136     rep_t residual;
    137     if (quotient < (implicitBit << 1)) {
    138         residual = (aSignificand << 24) - quotient * bSignificand;
    139         quotientExponent--;
    140     } else {
    141         quotient >>= 1;
    142         residual = (aSignificand << 23) - quotient * bSignificand;
    143     }
    144 
    145     const int writtenExponent = quotientExponent + exponentBias;
    146 
    147     if (writtenExponent >= maxExponent) {
    148         // If we have overflowed the exponent, return infinity.
    149         return fromRep(infRep | quotientSign);
    150     }
    151 
    152     else if (writtenExponent < 1) {
    153         // Flush denormals to zero.  In the future, it would be nice to add
    154         // code to round them correctly.
    155         return fromRep(quotientSign);
    156     }
    157 
    158     else {
    159         const bool round = (residual << 1) > bSignificand;
    160         // Clear the implicit bit
    161         rep_t absResult = quotient & significandMask;
    162         // Insert the exponent
    163         absResult |= (rep_t)writtenExponent << significandBits;
    164         // Round
    165         absResult += round;
    166         // Insert the sign and return
    167         return fromRep(absResult | quotientSign);
    168     }
    169 }
    170