1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/IR/Instructions.h" 16 #include "LLVMContextImpl.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // CallSite Class 31 //===----------------------------------------------------------------------===// 32 33 User::op_iterator CallSite::getCallee() const { 34 Instruction *II(getInstruction()); 35 return isCall() 36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee 37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee 38 } 39 40 //===----------------------------------------------------------------------===// 41 // TerminatorInst Class 42 //===----------------------------------------------------------------------===// 43 44 // Out of line virtual method, so the vtable, etc has a home. 45 TerminatorInst::~TerminatorInst() { 46 } 47 48 //===----------------------------------------------------------------------===// 49 // UnaryInstruction Class 50 //===----------------------------------------------------------------------===// 51 52 // Out of line virtual method, so the vtable, etc has a home. 53 UnaryInstruction::~UnaryInstruction() { 54 } 55 56 //===----------------------------------------------------------------------===// 57 // SelectInst Class 58 //===----------------------------------------------------------------------===// 59 60 /// areInvalidOperands - Return a string if the specified operands are invalid 61 /// for a select operation, otherwise return null. 62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 63 if (Op1->getType() != Op2->getType()) 64 return "both values to select must have same type"; 65 66 if (Op1->getType()->isTokenTy()) 67 return "select values cannot have token type"; 68 69 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 70 // Vector select. 71 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 72 return "vector select condition element type must be i1"; 73 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 74 if (!ET) 75 return "selected values for vector select must be vectors"; 76 if (ET->getNumElements() != VT->getNumElements()) 77 return "vector select requires selected vectors to have " 78 "the same vector length as select condition"; 79 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 80 return "select condition must be i1 or <n x i1>"; 81 } 82 return nullptr; 83 } 84 85 86 //===----------------------------------------------------------------------===// 87 // PHINode Class 88 //===----------------------------------------------------------------------===// 89 90 void PHINode::anchor() {} 91 92 PHINode::PHINode(const PHINode &PN) 93 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 94 ReservedSpace(PN.getNumOperands()) { 95 allocHungoffUses(PN.getNumOperands()); 96 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 97 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 98 SubclassOptionalData = PN.SubclassOptionalData; 99 } 100 101 // removeIncomingValue - Remove an incoming value. This is useful if a 102 // predecessor basic block is deleted. 103 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 104 Value *Removed = getIncomingValue(Idx); 105 106 // Move everything after this operand down. 107 // 108 // FIXME: we could just swap with the end of the list, then erase. However, 109 // clients might not expect this to happen. The code as it is thrashes the 110 // use/def lists, which is kinda lame. 111 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 112 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 113 114 // Nuke the last value. 115 Op<-1>().set(nullptr); 116 setNumHungOffUseOperands(getNumOperands() - 1); 117 118 // If the PHI node is dead, because it has zero entries, nuke it now. 119 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 120 // If anyone is using this PHI, make them use a dummy value instead... 121 replaceAllUsesWith(UndefValue::get(getType())); 122 eraseFromParent(); 123 } 124 return Removed; 125 } 126 127 /// growOperands - grow operands - This grows the operand list in response 128 /// to a push_back style of operation. This grows the number of ops by 1.5 129 /// times. 130 /// 131 void PHINode::growOperands() { 132 unsigned e = getNumOperands(); 133 unsigned NumOps = e + e / 2; 134 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 135 136 ReservedSpace = NumOps; 137 growHungoffUses(ReservedSpace, /* IsPhi */ true); 138 } 139 140 /// hasConstantValue - If the specified PHI node always merges together the same 141 /// value, return the value, otherwise return null. 142 Value *PHINode::hasConstantValue() const { 143 // Exploit the fact that phi nodes always have at least one entry. 144 Value *ConstantValue = getIncomingValue(0); 145 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 146 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 147 if (ConstantValue != this) 148 return nullptr; // Incoming values not all the same. 149 // The case where the first value is this PHI. 150 ConstantValue = getIncomingValue(i); 151 } 152 if (ConstantValue == this) 153 return UndefValue::get(getType()); 154 return ConstantValue; 155 } 156 157 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 158 /// together the same value, assuming that undefs result in the same value as 159 /// non-undefs. 160 /// Unlike \ref hasConstantValue, this does not return a value because the 161 /// unique non-undef incoming value need not dominate the PHI node. 162 bool PHINode::hasConstantOrUndefValue() const { 163 Value *ConstantValue = nullptr; 164 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 165 Value *Incoming = getIncomingValue(i); 166 if (Incoming != this && !isa<UndefValue>(Incoming)) { 167 if (ConstantValue && ConstantValue != Incoming) 168 return false; 169 ConstantValue = Incoming; 170 } 171 } 172 return true; 173 } 174 175 //===----------------------------------------------------------------------===// 176 // LandingPadInst Implementation 177 //===----------------------------------------------------------------------===// 178 179 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 180 const Twine &NameStr, Instruction *InsertBefore) 181 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 182 init(NumReservedValues, NameStr); 183 } 184 185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 186 const Twine &NameStr, BasicBlock *InsertAtEnd) 187 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 188 init(NumReservedValues, NameStr); 189 } 190 191 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 192 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 193 LP.getNumOperands()), 194 ReservedSpace(LP.getNumOperands()) { 195 allocHungoffUses(LP.getNumOperands()); 196 Use *OL = getOperandList(); 197 const Use *InOL = LP.getOperandList(); 198 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 199 OL[I] = InOL[I]; 200 201 setCleanup(LP.isCleanup()); 202 } 203 204 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 205 const Twine &NameStr, 206 Instruction *InsertBefore) { 207 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 208 } 209 210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 211 const Twine &NameStr, 212 BasicBlock *InsertAtEnd) { 213 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 214 } 215 216 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 217 ReservedSpace = NumReservedValues; 218 setNumHungOffUseOperands(0); 219 allocHungoffUses(ReservedSpace); 220 setName(NameStr); 221 setCleanup(false); 222 } 223 224 /// growOperands - grow operands - This grows the operand list in response to a 225 /// push_back style of operation. This grows the number of ops by 2 times. 226 void LandingPadInst::growOperands(unsigned Size) { 227 unsigned e = getNumOperands(); 228 if (ReservedSpace >= e + Size) return; 229 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 230 growHungoffUses(ReservedSpace); 231 } 232 233 void LandingPadInst::addClause(Constant *Val) { 234 unsigned OpNo = getNumOperands(); 235 growOperands(1); 236 assert(OpNo < ReservedSpace && "Growing didn't work!"); 237 setNumHungOffUseOperands(getNumOperands() + 1); 238 getOperandList()[OpNo] = Val; 239 } 240 241 //===----------------------------------------------------------------------===// 242 // CallInst Implementation 243 //===----------------------------------------------------------------------===// 244 245 CallInst::~CallInst() { 246 } 247 248 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 249 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 250 this->FTy = FTy; 251 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 252 "NumOperands not set up?"); 253 Op<-1>() = Func; 254 255 #ifndef NDEBUG 256 assert((Args.size() == FTy->getNumParams() || 257 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 258 "Calling a function with bad signature!"); 259 260 for (unsigned i = 0; i != Args.size(); ++i) 261 assert((i >= FTy->getNumParams() || 262 FTy->getParamType(i) == Args[i]->getType()) && 263 "Calling a function with a bad signature!"); 264 #endif 265 266 std::copy(Args.begin(), Args.end(), op_begin()); 267 268 auto It = populateBundleOperandInfos(Bundles, Args.size()); 269 (void)It; 270 assert(It + 1 == op_end() && "Should add up!"); 271 272 setName(NameStr); 273 } 274 275 void CallInst::init(Value *Func, const Twine &NameStr) { 276 FTy = 277 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 278 assert(getNumOperands() == 1 && "NumOperands not set up?"); 279 Op<-1>() = Func; 280 281 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 282 283 setName(NameStr); 284 } 285 286 CallInst::CallInst(Value *Func, const Twine &Name, 287 Instruction *InsertBefore) 288 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 289 ->getElementType())->getReturnType(), 290 Instruction::Call, 291 OperandTraits<CallInst>::op_end(this) - 1, 292 1, InsertBefore) { 293 init(Func, Name); 294 } 295 296 CallInst::CallInst(Value *Func, const Twine &Name, 297 BasicBlock *InsertAtEnd) 298 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 299 ->getElementType())->getReturnType(), 300 Instruction::Call, 301 OperandTraits<CallInst>::op_end(this) - 1, 302 1, InsertAtEnd) { 303 init(Func, Name); 304 } 305 306 CallInst::CallInst(const CallInst &CI) 307 : Instruction(CI.getType(), Instruction::Call, 308 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), 309 CI.getNumOperands()), 310 AttributeList(CI.AttributeList), FTy(CI.FTy) { 311 setTailCallKind(CI.getTailCallKind()); 312 setCallingConv(CI.getCallingConv()); 313 314 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 315 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 316 bundle_op_info_begin()); 317 SubclassOptionalData = CI.SubclassOptionalData; 318 } 319 320 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 321 Instruction *InsertPt) { 322 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 323 324 auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(), 325 InsertPt); 326 NewCI->setTailCallKind(CI->getTailCallKind()); 327 NewCI->setCallingConv(CI->getCallingConv()); 328 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 329 NewCI->setAttributes(CI->getAttributes()); 330 NewCI->setDebugLoc(CI->getDebugLoc()); 331 return NewCI; 332 } 333 334 Value *CallInst::getReturnedArgOperand() const { 335 unsigned Index; 336 337 if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 338 return getArgOperand(Index-1); 339 if (const Function *F = getCalledFunction()) 340 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 341 Index) 342 return getArgOperand(Index-1); 343 344 return nullptr; 345 } 346 347 void CallInst::addAttribute(unsigned i, Attribute::AttrKind Kind) { 348 AttributeSet PAL = getAttributes(); 349 PAL = PAL.addAttribute(getContext(), i, Kind); 350 setAttributes(PAL); 351 } 352 353 void CallInst::addAttribute(unsigned i, StringRef Kind, StringRef Value) { 354 AttributeSet PAL = getAttributes(); 355 PAL = PAL.addAttribute(getContext(), i, Kind, Value); 356 setAttributes(PAL); 357 } 358 359 void CallInst::addAttribute(unsigned i, Attribute Attr) { 360 AttributeSet PAL = getAttributes(); 361 PAL = PAL.addAttribute(getContext(), i, Attr); 362 setAttributes(PAL); 363 } 364 365 void CallInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.removeAttribute(getContext(), i, Kind); 368 setAttributes(PAL); 369 } 370 371 void CallInst::removeAttribute(unsigned i, StringRef Kind) { 372 AttributeSet PAL = getAttributes(); 373 PAL = PAL.removeAttribute(getContext(), i, Kind); 374 setAttributes(PAL); 375 } 376 377 void CallInst::removeAttribute(unsigned i, Attribute Attr) { 378 AttributeSet PAL = getAttributes(); 379 AttrBuilder B(Attr); 380 LLVMContext &Context = getContext(); 381 PAL = PAL.removeAttributes(Context, i, 382 AttributeSet::get(Context, i, B)); 383 setAttributes(PAL); 384 } 385 386 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 387 AttributeSet PAL = getAttributes(); 388 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 389 setAttributes(PAL); 390 } 391 392 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 393 AttributeSet PAL = getAttributes(); 394 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 395 setAttributes(PAL); 396 } 397 398 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const { 399 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); 400 401 if (AttributeList.hasAttribute(i, Kind)) 402 return true; 403 if (const Function *F = getCalledFunction()) 404 return F->getAttributes().hasAttribute(i, Kind); 405 return false; 406 } 407 408 Attribute CallInst::getAttribute(unsigned i, Attribute::AttrKind Kind) const { 409 return getAttributes().getAttribute(i, Kind); 410 } 411 412 Attribute CallInst::getAttribute(unsigned i, StringRef Kind) const { 413 return getAttributes().getAttribute(i, Kind); 414 } 415 416 bool CallInst::dataOperandHasImpliedAttr(unsigned i, 417 Attribute::AttrKind Kind) const { 418 // There are getNumOperands() - 1 data operands. The last operand is the 419 // callee. 420 assert(i < getNumOperands() && "Data operand index out of bounds!"); 421 422 // The attribute A can either be directly specified, if the operand in 423 // question is a call argument; or be indirectly implied by the kind of its 424 // containing operand bundle, if the operand is a bundle operand. 425 426 if (i < (getNumArgOperands() + 1)) 427 return paramHasAttr(i, Kind); 428 429 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && 430 "Must be either a call argument or an operand bundle!"); 431 return bundleOperandHasAttr(i - 1, Kind); 432 } 433 434 /// IsConstantOne - Return true only if val is constant int 1 435 static bool IsConstantOne(Value *val) { 436 assert(val && "IsConstantOne does not work with nullptr val"); 437 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 438 return CVal && CVal->isOne(); 439 } 440 441 static Instruction *createMalloc(Instruction *InsertBefore, 442 BasicBlock *InsertAtEnd, Type *IntPtrTy, 443 Type *AllocTy, Value *AllocSize, 444 Value *ArraySize, 445 ArrayRef<OperandBundleDef> OpB, 446 Function *MallocF, const Twine &Name) { 447 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 448 "createMalloc needs either InsertBefore or InsertAtEnd"); 449 450 // malloc(type) becomes: 451 // bitcast (i8* malloc(typeSize)) to type* 452 // malloc(type, arraySize) becomes: 453 // bitcast (i8* malloc(typeSize*arraySize)) to type* 454 if (!ArraySize) 455 ArraySize = ConstantInt::get(IntPtrTy, 1); 456 else if (ArraySize->getType() != IntPtrTy) { 457 if (InsertBefore) 458 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 459 "", InsertBefore); 460 else 461 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 462 "", InsertAtEnd); 463 } 464 465 if (!IsConstantOne(ArraySize)) { 466 if (IsConstantOne(AllocSize)) { 467 AllocSize = ArraySize; // Operand * 1 = Operand 468 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 469 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 470 false /*ZExt*/); 471 // Malloc arg is constant product of type size and array size 472 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 473 } else { 474 // Multiply type size by the array size... 475 if (InsertBefore) 476 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 477 "mallocsize", InsertBefore); 478 else 479 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 480 "mallocsize", InsertAtEnd); 481 } 482 } 483 484 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 485 // Create the call to Malloc. 486 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 487 Module *M = BB->getParent()->getParent(); 488 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 489 Value *MallocFunc = MallocF; 490 if (!MallocFunc) 491 // prototype malloc as "void *malloc(size_t)" 492 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr); 493 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 494 CallInst *MCall = nullptr; 495 Instruction *Result = nullptr; 496 if (InsertBefore) { 497 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 498 InsertBefore); 499 Result = MCall; 500 if (Result->getType() != AllocPtrType) 501 // Create a cast instruction to convert to the right type... 502 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 503 } else { 504 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 505 Result = MCall; 506 if (Result->getType() != AllocPtrType) { 507 InsertAtEnd->getInstList().push_back(MCall); 508 // Create a cast instruction to convert to the right type... 509 Result = new BitCastInst(MCall, AllocPtrType, Name); 510 } 511 } 512 MCall->setTailCall(); 513 if (Function *F = dyn_cast<Function>(MallocFunc)) { 514 MCall->setCallingConv(F->getCallingConv()); 515 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); 516 } 517 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 518 519 return Result; 520 } 521 522 /// CreateMalloc - Generate the IR for a call to malloc: 523 /// 1. Compute the malloc call's argument as the specified type's size, 524 /// possibly multiplied by the array size if the array size is not 525 /// constant 1. 526 /// 2. Call malloc with that argument. 527 /// 3. Bitcast the result of the malloc call to the specified type. 528 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 529 Type *IntPtrTy, Type *AllocTy, 530 Value *AllocSize, Value *ArraySize, 531 Function *MallocF, 532 const Twine &Name) { 533 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 534 ArraySize, None, MallocF, Name); 535 } 536 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 537 Type *IntPtrTy, Type *AllocTy, 538 Value *AllocSize, Value *ArraySize, 539 ArrayRef<OperandBundleDef> OpB, 540 Function *MallocF, 541 const Twine &Name) { 542 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 543 ArraySize, OpB, MallocF, Name); 544 } 545 546 547 /// CreateMalloc - Generate the IR for a call to malloc: 548 /// 1. Compute the malloc call's argument as the specified type's size, 549 /// possibly multiplied by the array size if the array size is not 550 /// constant 1. 551 /// 2. Call malloc with that argument. 552 /// 3. Bitcast the result of the malloc call to the specified type. 553 /// Note: This function does not add the bitcast to the basic block, that is the 554 /// responsibility of the caller. 555 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 556 Type *IntPtrTy, Type *AllocTy, 557 Value *AllocSize, Value *ArraySize, 558 Function *MallocF, const Twine &Name) { 559 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 560 ArraySize, None, MallocF, Name); 561 } 562 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 563 Type *IntPtrTy, Type *AllocTy, 564 Value *AllocSize, Value *ArraySize, 565 ArrayRef<OperandBundleDef> OpB, 566 Function *MallocF, const Twine &Name) { 567 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 568 ArraySize, OpB, MallocF, Name); 569 } 570 571 static Instruction *createFree(Value *Source, 572 ArrayRef<OperandBundleDef> Bundles, 573 Instruction *InsertBefore, 574 BasicBlock *InsertAtEnd) { 575 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 576 "createFree needs either InsertBefore or InsertAtEnd"); 577 assert(Source->getType()->isPointerTy() && 578 "Can not free something of nonpointer type!"); 579 580 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 581 Module *M = BB->getParent()->getParent(); 582 583 Type *VoidTy = Type::getVoidTy(M->getContext()); 584 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 585 // prototype free as "void free(void*)" 586 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr); 587 CallInst *Result = nullptr; 588 Value *PtrCast = Source; 589 if (InsertBefore) { 590 if (Source->getType() != IntPtrTy) 591 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 592 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 593 } else { 594 if (Source->getType() != IntPtrTy) 595 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 596 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 597 } 598 Result->setTailCall(); 599 if (Function *F = dyn_cast<Function>(FreeFunc)) 600 Result->setCallingConv(F->getCallingConv()); 601 602 return Result; 603 } 604 605 /// CreateFree - Generate the IR for a call to the builtin free function. 606 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 607 return createFree(Source, None, InsertBefore, nullptr); 608 } 609 Instruction *CallInst::CreateFree(Value *Source, 610 ArrayRef<OperandBundleDef> Bundles, 611 Instruction *InsertBefore) { 612 return createFree(Source, Bundles, InsertBefore, nullptr); 613 } 614 615 /// CreateFree - Generate the IR for a call to the builtin free function. 616 /// Note: This function does not add the call to the basic block, that is the 617 /// responsibility of the caller. 618 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 619 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 620 assert(FreeCall && "CreateFree did not create a CallInst"); 621 return FreeCall; 622 } 623 Instruction *CallInst::CreateFree(Value *Source, 624 ArrayRef<OperandBundleDef> Bundles, 625 BasicBlock *InsertAtEnd) { 626 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 627 assert(FreeCall && "CreateFree did not create a CallInst"); 628 return FreeCall; 629 } 630 631 //===----------------------------------------------------------------------===// 632 // InvokeInst Implementation 633 //===----------------------------------------------------------------------===// 634 635 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 636 BasicBlock *IfException, ArrayRef<Value *> Args, 637 ArrayRef<OperandBundleDef> Bundles, 638 const Twine &NameStr) { 639 this->FTy = FTy; 640 641 assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) && 642 "NumOperands not set up?"); 643 Op<-3>() = Fn; 644 Op<-2>() = IfNormal; 645 Op<-1>() = IfException; 646 647 #ifndef NDEBUG 648 assert(((Args.size() == FTy->getNumParams()) || 649 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 650 "Invoking a function with bad signature"); 651 652 for (unsigned i = 0, e = Args.size(); i != e; i++) 653 assert((i >= FTy->getNumParams() || 654 FTy->getParamType(i) == Args[i]->getType()) && 655 "Invoking a function with a bad signature!"); 656 #endif 657 658 std::copy(Args.begin(), Args.end(), op_begin()); 659 660 auto It = populateBundleOperandInfos(Bundles, Args.size()); 661 (void)It; 662 assert(It + 3 == op_end() && "Should add up!"); 663 664 setName(NameStr); 665 } 666 667 InvokeInst::InvokeInst(const InvokeInst &II) 668 : TerminatorInst(II.getType(), Instruction::Invoke, 669 OperandTraits<InvokeInst>::op_end(this) - 670 II.getNumOperands(), 671 II.getNumOperands()), 672 AttributeList(II.AttributeList), FTy(II.FTy) { 673 setCallingConv(II.getCallingConv()); 674 std::copy(II.op_begin(), II.op_end(), op_begin()); 675 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 676 bundle_op_info_begin()); 677 SubclassOptionalData = II.SubclassOptionalData; 678 } 679 680 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 681 Instruction *InsertPt) { 682 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 683 684 auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(), 685 II->getUnwindDest(), Args, OpB, 686 II->getName(), InsertPt); 687 NewII->setCallingConv(II->getCallingConv()); 688 NewII->SubclassOptionalData = II->SubclassOptionalData; 689 NewII->setAttributes(II->getAttributes()); 690 NewII->setDebugLoc(II->getDebugLoc()); 691 return NewII; 692 } 693 694 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { 695 return getSuccessor(idx); 696 } 697 unsigned InvokeInst::getNumSuccessorsV() const { 698 return getNumSuccessors(); 699 } 700 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { 701 return setSuccessor(idx, B); 702 } 703 704 Value *InvokeInst::getReturnedArgOperand() const { 705 unsigned Index; 706 707 if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 708 return getArgOperand(Index-1); 709 if (const Function *F = getCalledFunction()) 710 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 711 Index) 712 return getArgOperand(Index-1); 713 714 return nullptr; 715 } 716 717 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const { 718 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); 719 720 if (AttributeList.hasAttribute(i, Kind)) 721 return true; 722 if (const Function *F = getCalledFunction()) 723 return F->getAttributes().hasAttribute(i, Kind); 724 return false; 725 } 726 727 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i, 728 Attribute::AttrKind Kind) const { 729 // There are getNumOperands() - 3 data operands. The last three operands are 730 // the callee and the two successor basic blocks. 731 assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!"); 732 733 // The attribute A can either be directly specified, if the operand in 734 // question is an invoke argument; or be indirectly implied by the kind of its 735 // containing operand bundle, if the operand is a bundle operand. 736 737 if (i < (getNumArgOperands() + 1)) 738 return paramHasAttr(i, Kind); 739 740 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && 741 "Must be either an invoke argument or an operand bundle!"); 742 return bundleOperandHasAttr(i - 1, Kind); 743 } 744 745 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind Kind) { 746 AttributeSet PAL = getAttributes(); 747 PAL = PAL.addAttribute(getContext(), i, Kind); 748 setAttributes(PAL); 749 } 750 751 void InvokeInst::addAttribute(unsigned i, Attribute Attr) { 752 AttributeSet PAL = getAttributes(); 753 PAL = PAL.addAttribute(getContext(), i, Attr); 754 setAttributes(PAL); 755 } 756 757 void InvokeInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 758 AttributeSet PAL = getAttributes(); 759 PAL = PAL.removeAttribute(getContext(), i, Kind); 760 setAttributes(PAL); 761 } 762 763 void InvokeInst::removeAttribute(unsigned i, StringRef Kind) { 764 AttributeSet PAL = getAttributes(); 765 PAL = PAL.removeAttribute(getContext(), i, Kind); 766 setAttributes(PAL); 767 } 768 769 void InvokeInst::removeAttribute(unsigned i, Attribute Attr) { 770 AttributeSet PAL = getAttributes(); 771 AttrBuilder B(Attr); 772 PAL = PAL.removeAttributes(getContext(), i, 773 AttributeSet::get(getContext(), i, B)); 774 setAttributes(PAL); 775 } 776 777 Attribute InvokeInst::getAttribute(unsigned i, 778 Attribute::AttrKind Kind) const { 779 return getAttributes().getAttribute(i, Kind); 780 } 781 782 Attribute InvokeInst::getAttribute(unsigned i, StringRef Kind) const { 783 return getAttributes().getAttribute(i, Kind); 784 } 785 786 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 787 AttributeSet PAL = getAttributes(); 788 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 789 setAttributes(PAL); 790 } 791 792 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 793 AttributeSet PAL = getAttributes(); 794 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 795 setAttributes(PAL); 796 } 797 798 LandingPadInst *InvokeInst::getLandingPadInst() const { 799 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 800 } 801 802 //===----------------------------------------------------------------------===// 803 // ReturnInst Implementation 804 //===----------------------------------------------------------------------===// 805 806 ReturnInst::ReturnInst(const ReturnInst &RI) 807 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, 808 OperandTraits<ReturnInst>::op_end(this) - 809 RI.getNumOperands(), 810 RI.getNumOperands()) { 811 if (RI.getNumOperands()) 812 Op<0>() = RI.Op<0>(); 813 SubclassOptionalData = RI.SubclassOptionalData; 814 } 815 816 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 817 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 818 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 819 InsertBefore) { 820 if (retVal) 821 Op<0>() = retVal; 822 } 823 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 824 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 825 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 826 InsertAtEnd) { 827 if (retVal) 828 Op<0>() = retVal; 829 } 830 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 831 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, 832 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { 833 } 834 835 unsigned ReturnInst::getNumSuccessorsV() const { 836 return getNumSuccessors(); 837 } 838 839 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to 840 /// emit the vtable for the class in this translation unit. 841 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 842 llvm_unreachable("ReturnInst has no successors!"); 843 } 844 845 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { 846 llvm_unreachable("ReturnInst has no successors!"); 847 } 848 849 ReturnInst::~ReturnInst() { 850 } 851 852 //===----------------------------------------------------------------------===// 853 // ResumeInst Implementation 854 //===----------------------------------------------------------------------===// 855 856 ResumeInst::ResumeInst(const ResumeInst &RI) 857 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, 858 OperandTraits<ResumeInst>::op_begin(this), 1) { 859 Op<0>() = RI.Op<0>(); 860 } 861 862 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 863 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 864 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 865 Op<0>() = Exn; 866 } 867 868 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 869 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 870 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 871 Op<0>() = Exn; 872 } 873 874 unsigned ResumeInst::getNumSuccessorsV() const { 875 return getNumSuccessors(); 876 } 877 878 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 879 llvm_unreachable("ResumeInst has no successors!"); 880 } 881 882 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { 883 llvm_unreachable("ResumeInst has no successors!"); 884 } 885 886 //===----------------------------------------------------------------------===// 887 // CleanupReturnInst Implementation 888 //===----------------------------------------------------------------------===// 889 890 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 891 : TerminatorInst(CRI.getType(), Instruction::CleanupRet, 892 OperandTraits<CleanupReturnInst>::op_end(this) - 893 CRI.getNumOperands(), 894 CRI.getNumOperands()) { 895 setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); 896 Op<0>() = CRI.Op<0>(); 897 if (CRI.hasUnwindDest()) 898 Op<1>() = CRI.Op<1>(); 899 } 900 901 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 902 if (UnwindBB) 903 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 904 905 Op<0>() = CleanupPad; 906 if (UnwindBB) 907 Op<1>() = UnwindBB; 908 } 909 910 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 911 unsigned Values, Instruction *InsertBefore) 912 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), 913 Instruction::CleanupRet, 914 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 915 Values, InsertBefore) { 916 init(CleanupPad, UnwindBB); 917 } 918 919 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 920 unsigned Values, BasicBlock *InsertAtEnd) 921 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), 922 Instruction::CleanupRet, 923 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 924 Values, InsertAtEnd) { 925 init(CleanupPad, UnwindBB); 926 } 927 928 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const { 929 assert(Idx == 0); 930 return getUnwindDest(); 931 } 932 unsigned CleanupReturnInst::getNumSuccessorsV() const { 933 return getNumSuccessors(); 934 } 935 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { 936 assert(Idx == 0); 937 setUnwindDest(B); 938 } 939 940 //===----------------------------------------------------------------------===// 941 // CatchReturnInst Implementation 942 //===----------------------------------------------------------------------===// 943 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 944 Op<0>() = CatchPad; 945 Op<1>() = BB; 946 } 947 948 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 949 : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 950 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 951 Op<0>() = CRI.Op<0>(); 952 Op<1>() = CRI.Op<1>(); 953 } 954 955 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 956 Instruction *InsertBefore) 957 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 958 OperandTraits<CatchReturnInst>::op_begin(this), 2, 959 InsertBefore) { 960 init(CatchPad, BB); 961 } 962 963 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 964 BasicBlock *InsertAtEnd) 965 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 966 OperandTraits<CatchReturnInst>::op_begin(this), 2, 967 InsertAtEnd) { 968 init(CatchPad, BB); 969 } 970 971 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const { 972 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 973 return getSuccessor(); 974 } 975 unsigned CatchReturnInst::getNumSuccessorsV() const { 976 return getNumSuccessors(); 977 } 978 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { 979 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 980 setSuccessor(B); 981 } 982 983 //===----------------------------------------------------------------------===// 984 // CatchSwitchInst Implementation 985 //===----------------------------------------------------------------------===// 986 987 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 988 unsigned NumReservedValues, 989 const Twine &NameStr, 990 Instruction *InsertBefore) 991 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 992 InsertBefore) { 993 if (UnwindDest) 994 ++NumReservedValues; 995 init(ParentPad, UnwindDest, NumReservedValues + 1); 996 setName(NameStr); 997 } 998 999 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1000 unsigned NumReservedValues, 1001 const Twine &NameStr, BasicBlock *InsertAtEnd) 1002 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1003 InsertAtEnd) { 1004 if (UnwindDest) 1005 ++NumReservedValues; 1006 init(ParentPad, UnwindDest, NumReservedValues + 1); 1007 setName(NameStr); 1008 } 1009 1010 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 1011 : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr, 1012 CSI.getNumOperands()) { 1013 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 1014 setNumHungOffUseOperands(ReservedSpace); 1015 Use *OL = getOperandList(); 1016 const Use *InOL = CSI.getOperandList(); 1017 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 1018 OL[I] = InOL[I]; 1019 } 1020 1021 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 1022 unsigned NumReservedValues) { 1023 assert(ParentPad && NumReservedValues); 1024 1025 ReservedSpace = NumReservedValues; 1026 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 1027 allocHungoffUses(ReservedSpace); 1028 1029 Op<0>() = ParentPad; 1030 if (UnwindDest) { 1031 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 1032 setUnwindDest(UnwindDest); 1033 } 1034 } 1035 1036 /// growOperands - grow operands - This grows the operand list in response to a 1037 /// push_back style of operation. This grows the number of ops by 2 times. 1038 void CatchSwitchInst::growOperands(unsigned Size) { 1039 unsigned NumOperands = getNumOperands(); 1040 assert(NumOperands >= 1); 1041 if (ReservedSpace >= NumOperands + Size) 1042 return; 1043 ReservedSpace = (NumOperands + Size / 2) * 2; 1044 growHungoffUses(ReservedSpace); 1045 } 1046 1047 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1048 unsigned OpNo = getNumOperands(); 1049 growOperands(1); 1050 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1051 setNumHungOffUseOperands(getNumOperands() + 1); 1052 getOperandList()[OpNo] = Handler; 1053 } 1054 1055 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1056 // Move all subsequent handlers up one. 1057 Use *EndDst = op_end() - 1; 1058 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1059 *CurDst = *(CurDst + 1); 1060 // Null out the last handler use. 1061 *EndDst = nullptr; 1062 1063 setNumHungOffUseOperands(getNumOperands() - 1); 1064 } 1065 1066 BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const { 1067 return getSuccessor(idx); 1068 } 1069 unsigned CatchSwitchInst::getNumSuccessorsV() const { 1070 return getNumSuccessors(); 1071 } 1072 void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 1073 setSuccessor(idx, B); 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // FuncletPadInst Implementation 1078 //===----------------------------------------------------------------------===// 1079 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1080 const Twine &NameStr) { 1081 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1082 std::copy(Args.begin(), Args.end(), op_begin()); 1083 setParentPad(ParentPad); 1084 setName(NameStr); 1085 } 1086 1087 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1088 : Instruction(FPI.getType(), FPI.getOpcode(), 1089 OperandTraits<FuncletPadInst>::op_end(this) - 1090 FPI.getNumOperands(), 1091 FPI.getNumOperands()) { 1092 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1093 setParentPad(FPI.getParentPad()); 1094 } 1095 1096 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1097 ArrayRef<Value *> Args, unsigned Values, 1098 const Twine &NameStr, Instruction *InsertBefore) 1099 : Instruction(ParentPad->getType(), Op, 1100 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1101 InsertBefore) { 1102 init(ParentPad, Args, NameStr); 1103 } 1104 1105 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1106 ArrayRef<Value *> Args, unsigned Values, 1107 const Twine &NameStr, BasicBlock *InsertAtEnd) 1108 : Instruction(ParentPad->getType(), Op, 1109 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1110 InsertAtEnd) { 1111 init(ParentPad, Args, NameStr); 1112 } 1113 1114 //===----------------------------------------------------------------------===// 1115 // UnreachableInst Implementation 1116 //===----------------------------------------------------------------------===// 1117 1118 UnreachableInst::UnreachableInst(LLVMContext &Context, 1119 Instruction *InsertBefore) 1120 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 1121 nullptr, 0, InsertBefore) { 1122 } 1123 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1124 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 1125 nullptr, 0, InsertAtEnd) { 1126 } 1127 1128 unsigned UnreachableInst::getNumSuccessorsV() const { 1129 return getNumSuccessors(); 1130 } 1131 1132 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 1133 llvm_unreachable("UnreachableInst has no successors!"); 1134 } 1135 1136 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { 1137 llvm_unreachable("UnreachableInst has no successors!"); 1138 } 1139 1140 //===----------------------------------------------------------------------===// 1141 // BranchInst Implementation 1142 //===----------------------------------------------------------------------===// 1143 1144 void BranchInst::AssertOK() { 1145 if (isConditional()) 1146 assert(getCondition()->getType()->isIntegerTy(1) && 1147 "May only branch on boolean predicates!"); 1148 } 1149 1150 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1151 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1152 OperandTraits<BranchInst>::op_end(this) - 1, 1153 1, InsertBefore) { 1154 assert(IfTrue && "Branch destination may not be null!"); 1155 Op<-1>() = IfTrue; 1156 } 1157 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1158 Instruction *InsertBefore) 1159 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1160 OperandTraits<BranchInst>::op_end(this) - 3, 1161 3, InsertBefore) { 1162 Op<-1>() = IfTrue; 1163 Op<-2>() = IfFalse; 1164 Op<-3>() = Cond; 1165 #ifndef NDEBUG 1166 AssertOK(); 1167 #endif 1168 } 1169 1170 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1171 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1172 OperandTraits<BranchInst>::op_end(this) - 1, 1173 1, InsertAtEnd) { 1174 assert(IfTrue && "Branch destination may not be null!"); 1175 Op<-1>() = IfTrue; 1176 } 1177 1178 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1179 BasicBlock *InsertAtEnd) 1180 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1181 OperandTraits<BranchInst>::op_end(this) - 3, 1182 3, InsertAtEnd) { 1183 Op<-1>() = IfTrue; 1184 Op<-2>() = IfFalse; 1185 Op<-3>() = Cond; 1186 #ifndef NDEBUG 1187 AssertOK(); 1188 #endif 1189 } 1190 1191 1192 BranchInst::BranchInst(const BranchInst &BI) : 1193 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, 1194 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1195 BI.getNumOperands()) { 1196 Op<-1>() = BI.Op<-1>(); 1197 if (BI.getNumOperands() != 1) { 1198 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1199 Op<-3>() = BI.Op<-3>(); 1200 Op<-2>() = BI.Op<-2>(); 1201 } 1202 SubclassOptionalData = BI.SubclassOptionalData; 1203 } 1204 1205 void BranchInst::swapSuccessors() { 1206 assert(isConditional() && 1207 "Cannot swap successors of an unconditional branch"); 1208 Op<-1>().swap(Op<-2>()); 1209 1210 // Update profile metadata if present and it matches our structural 1211 // expectations. 1212 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); 1213 if (!ProfileData || ProfileData->getNumOperands() != 3) 1214 return; 1215 1216 // The first operand is the name. Fetch them backwards and build a new one. 1217 Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2), 1218 ProfileData->getOperand(1)}; 1219 setMetadata(LLVMContext::MD_prof, 1220 MDNode::get(ProfileData->getContext(), Ops)); 1221 } 1222 1223 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { 1224 return getSuccessor(idx); 1225 } 1226 unsigned BranchInst::getNumSuccessorsV() const { 1227 return getNumSuccessors(); 1228 } 1229 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 1230 setSuccessor(idx, B); 1231 } 1232 1233 1234 //===----------------------------------------------------------------------===// 1235 // AllocaInst Implementation 1236 //===----------------------------------------------------------------------===// 1237 1238 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1239 if (!Amt) 1240 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1241 else { 1242 assert(!isa<BasicBlock>(Amt) && 1243 "Passed basic block into allocation size parameter! Use other ctor"); 1244 assert(Amt->getType()->isIntegerTy() && 1245 "Allocation array size is not an integer!"); 1246 } 1247 return Amt; 1248 } 1249 1250 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore) 1251 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1252 1253 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) 1254 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1255 1256 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, 1257 Instruction *InsertBefore) 1258 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {} 1259 1260 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, 1261 BasicBlock *InsertAtEnd) 1262 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} 1263 1264 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 1265 const Twine &Name, Instruction *InsertBefore) 1266 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 1267 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1268 AllocatedType(Ty) { 1269 setAlignment(Align); 1270 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1271 setName(Name); 1272 } 1273 1274 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 1275 const Twine &Name, BasicBlock *InsertAtEnd) 1276 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 1277 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1278 AllocatedType(Ty) { 1279 setAlignment(Align); 1280 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1281 setName(Name); 1282 } 1283 1284 // Out of line virtual method, so the vtable, etc has a home. 1285 AllocaInst::~AllocaInst() { 1286 } 1287 1288 void AllocaInst::setAlignment(unsigned Align) { 1289 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1290 assert(Align <= MaximumAlignment && 1291 "Alignment is greater than MaximumAlignment!"); 1292 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | 1293 (Log2_32(Align) + 1)); 1294 assert(getAlignment() == Align && "Alignment representation error!"); 1295 } 1296 1297 bool AllocaInst::isArrayAllocation() const { 1298 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1299 return !CI->isOne(); 1300 return true; 1301 } 1302 1303 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1304 /// function and is a constant size. If so, the code generator will fold it 1305 /// into the prolog/epilog code, so it is basically free. 1306 bool AllocaInst::isStaticAlloca() const { 1307 // Must be constant size. 1308 if (!isa<ConstantInt>(getArraySize())) return false; 1309 1310 // Must be in the entry block. 1311 const BasicBlock *Parent = getParent(); 1312 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1313 } 1314 1315 //===----------------------------------------------------------------------===// 1316 // LoadInst Implementation 1317 //===----------------------------------------------------------------------===// 1318 1319 void LoadInst::AssertOK() { 1320 assert(getOperand(0)->getType()->isPointerTy() && 1321 "Ptr must have pointer type."); 1322 assert(!(isAtomic() && getAlignment() == 0) && 1323 "Alignment required for atomic load"); 1324 } 1325 1326 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) 1327 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1328 1329 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) 1330 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1331 1332 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1333 Instruction *InsertBef) 1334 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} 1335 1336 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1337 BasicBlock *InsertAE) 1338 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} 1339 1340 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1341 unsigned Align, Instruction *InsertBef) 1342 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1343 CrossThread, InsertBef) {} 1344 1345 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1346 unsigned Align, BasicBlock *InsertAE) 1347 : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1348 CrossThread, InsertAE) {} 1349 1350 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1351 unsigned Align, AtomicOrdering Order, 1352 SynchronizationScope SynchScope, Instruction *InsertBef) 1353 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1354 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1355 setVolatile(isVolatile); 1356 setAlignment(Align); 1357 setAtomic(Order, SynchScope); 1358 AssertOK(); 1359 setName(Name); 1360 } 1361 1362 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1363 unsigned Align, AtomicOrdering Order, 1364 SynchronizationScope SynchScope, 1365 BasicBlock *InsertAE) 1366 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1367 Load, Ptr, InsertAE) { 1368 setVolatile(isVolatile); 1369 setAlignment(Align); 1370 setAtomic(Order, SynchScope); 1371 AssertOK(); 1372 setName(Name); 1373 } 1374 1375 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) 1376 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1377 Load, Ptr, InsertBef) { 1378 setVolatile(false); 1379 setAlignment(0); 1380 setAtomic(AtomicOrdering::NotAtomic); 1381 AssertOK(); 1382 if (Name && Name[0]) setName(Name); 1383 } 1384 1385 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) 1386 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1387 Load, Ptr, InsertAE) { 1388 setVolatile(false); 1389 setAlignment(0); 1390 setAtomic(AtomicOrdering::NotAtomic); 1391 AssertOK(); 1392 if (Name && Name[0]) setName(Name); 1393 } 1394 1395 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile, 1396 Instruction *InsertBef) 1397 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1398 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1399 setVolatile(isVolatile); 1400 setAlignment(0); 1401 setAtomic(AtomicOrdering::NotAtomic); 1402 AssertOK(); 1403 if (Name && Name[0]) setName(Name); 1404 } 1405 1406 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1407 BasicBlock *InsertAE) 1408 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1409 Load, Ptr, InsertAE) { 1410 setVolatile(isVolatile); 1411 setAlignment(0); 1412 setAtomic(AtomicOrdering::NotAtomic); 1413 AssertOK(); 1414 if (Name && Name[0]) setName(Name); 1415 } 1416 1417 void LoadInst::setAlignment(unsigned Align) { 1418 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1419 assert(Align <= MaximumAlignment && 1420 "Alignment is greater than MaximumAlignment!"); 1421 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1422 ((Log2_32(Align)+1)<<1)); 1423 assert(getAlignment() == Align && "Alignment representation error!"); 1424 } 1425 1426 //===----------------------------------------------------------------------===// 1427 // StoreInst Implementation 1428 //===----------------------------------------------------------------------===// 1429 1430 void StoreInst::AssertOK() { 1431 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1432 assert(getOperand(1)->getType()->isPointerTy() && 1433 "Ptr must have pointer type!"); 1434 assert(getOperand(0)->getType() == 1435 cast<PointerType>(getOperand(1)->getType())->getElementType() 1436 && "Ptr must be a pointer to Val type!"); 1437 assert(!(isAtomic() && getAlignment() == 0) && 1438 "Alignment required for atomic store"); 1439 } 1440 1441 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1442 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1443 1444 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1445 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1446 1447 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1448 Instruction *InsertBefore) 1449 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} 1450 1451 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1452 BasicBlock *InsertAtEnd) 1453 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} 1454 1455 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1456 Instruction *InsertBefore) 1457 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1458 CrossThread, InsertBefore) {} 1459 1460 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1461 BasicBlock *InsertAtEnd) 1462 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1463 CrossThread, InsertAtEnd) {} 1464 1465 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1466 unsigned Align, AtomicOrdering Order, 1467 SynchronizationScope SynchScope, 1468 Instruction *InsertBefore) 1469 : Instruction(Type::getVoidTy(val->getContext()), Store, 1470 OperandTraits<StoreInst>::op_begin(this), 1471 OperandTraits<StoreInst>::operands(this), 1472 InsertBefore) { 1473 Op<0>() = val; 1474 Op<1>() = addr; 1475 setVolatile(isVolatile); 1476 setAlignment(Align); 1477 setAtomic(Order, SynchScope); 1478 AssertOK(); 1479 } 1480 1481 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1482 unsigned Align, AtomicOrdering Order, 1483 SynchronizationScope SynchScope, 1484 BasicBlock *InsertAtEnd) 1485 : Instruction(Type::getVoidTy(val->getContext()), Store, 1486 OperandTraits<StoreInst>::op_begin(this), 1487 OperandTraits<StoreInst>::operands(this), 1488 InsertAtEnd) { 1489 Op<0>() = val; 1490 Op<1>() = addr; 1491 setVolatile(isVolatile); 1492 setAlignment(Align); 1493 setAtomic(Order, SynchScope); 1494 AssertOK(); 1495 } 1496 1497 void StoreInst::setAlignment(unsigned Align) { 1498 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1499 assert(Align <= MaximumAlignment && 1500 "Alignment is greater than MaximumAlignment!"); 1501 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1502 ((Log2_32(Align)+1) << 1)); 1503 assert(getAlignment() == Align && "Alignment representation error!"); 1504 } 1505 1506 //===----------------------------------------------------------------------===// 1507 // AtomicCmpXchgInst Implementation 1508 //===----------------------------------------------------------------------===// 1509 1510 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1511 AtomicOrdering SuccessOrdering, 1512 AtomicOrdering FailureOrdering, 1513 SynchronizationScope SynchScope) { 1514 Op<0>() = Ptr; 1515 Op<1>() = Cmp; 1516 Op<2>() = NewVal; 1517 setSuccessOrdering(SuccessOrdering); 1518 setFailureOrdering(FailureOrdering); 1519 setSynchScope(SynchScope); 1520 1521 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1522 "All operands must be non-null!"); 1523 assert(getOperand(0)->getType()->isPointerTy() && 1524 "Ptr must have pointer type!"); 1525 assert(getOperand(1)->getType() == 1526 cast<PointerType>(getOperand(0)->getType())->getElementType() 1527 && "Ptr must be a pointer to Cmp type!"); 1528 assert(getOperand(2)->getType() == 1529 cast<PointerType>(getOperand(0)->getType())->getElementType() 1530 && "Ptr must be a pointer to NewVal type!"); 1531 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1532 "AtomicCmpXchg instructions must be atomic!"); 1533 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1534 "AtomicCmpXchg instructions must be atomic!"); 1535 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1536 "AtomicCmpXchg failure argument shall be no stronger than the success " 1537 "argument"); 1538 assert(FailureOrdering != AtomicOrdering::Release && 1539 FailureOrdering != AtomicOrdering::AcquireRelease && 1540 "AtomicCmpXchg failure ordering cannot include release semantics"); 1541 } 1542 1543 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1544 AtomicOrdering SuccessOrdering, 1545 AtomicOrdering FailureOrdering, 1546 SynchronizationScope SynchScope, 1547 Instruction *InsertBefore) 1548 : Instruction( 1549 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1550 nullptr), 1551 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1552 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1553 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1554 } 1555 1556 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1557 AtomicOrdering SuccessOrdering, 1558 AtomicOrdering FailureOrdering, 1559 SynchronizationScope SynchScope, 1560 BasicBlock *InsertAtEnd) 1561 : Instruction( 1562 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1563 nullptr), 1564 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1565 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1566 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1567 } 1568 1569 //===----------------------------------------------------------------------===// 1570 // AtomicRMWInst Implementation 1571 //===----------------------------------------------------------------------===// 1572 1573 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1574 AtomicOrdering Ordering, 1575 SynchronizationScope SynchScope) { 1576 Op<0>() = Ptr; 1577 Op<1>() = Val; 1578 setOperation(Operation); 1579 setOrdering(Ordering); 1580 setSynchScope(SynchScope); 1581 1582 assert(getOperand(0) && getOperand(1) && 1583 "All operands must be non-null!"); 1584 assert(getOperand(0)->getType()->isPointerTy() && 1585 "Ptr must have pointer type!"); 1586 assert(getOperand(1)->getType() == 1587 cast<PointerType>(getOperand(0)->getType())->getElementType() 1588 && "Ptr must be a pointer to Val type!"); 1589 assert(Ordering != AtomicOrdering::NotAtomic && 1590 "AtomicRMW instructions must be atomic!"); 1591 } 1592 1593 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1594 AtomicOrdering Ordering, 1595 SynchronizationScope SynchScope, 1596 Instruction *InsertBefore) 1597 : Instruction(Val->getType(), AtomicRMW, 1598 OperandTraits<AtomicRMWInst>::op_begin(this), 1599 OperandTraits<AtomicRMWInst>::operands(this), 1600 InsertBefore) { 1601 Init(Operation, Ptr, Val, Ordering, SynchScope); 1602 } 1603 1604 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1605 AtomicOrdering Ordering, 1606 SynchronizationScope SynchScope, 1607 BasicBlock *InsertAtEnd) 1608 : Instruction(Val->getType(), AtomicRMW, 1609 OperandTraits<AtomicRMWInst>::op_begin(this), 1610 OperandTraits<AtomicRMWInst>::operands(this), 1611 InsertAtEnd) { 1612 Init(Operation, Ptr, Val, Ordering, SynchScope); 1613 } 1614 1615 //===----------------------------------------------------------------------===// 1616 // FenceInst Implementation 1617 //===----------------------------------------------------------------------===// 1618 1619 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1620 SynchronizationScope SynchScope, 1621 Instruction *InsertBefore) 1622 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1623 setOrdering(Ordering); 1624 setSynchScope(SynchScope); 1625 } 1626 1627 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1628 SynchronizationScope SynchScope, 1629 BasicBlock *InsertAtEnd) 1630 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1631 setOrdering(Ordering); 1632 setSynchScope(SynchScope); 1633 } 1634 1635 //===----------------------------------------------------------------------===// 1636 // GetElementPtrInst Implementation 1637 //===----------------------------------------------------------------------===// 1638 1639 void GetElementPtrInst::anchor() {} 1640 1641 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1642 const Twine &Name) { 1643 assert(getNumOperands() == 1 + IdxList.size() && 1644 "NumOperands not initialized?"); 1645 Op<0>() = Ptr; 1646 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); 1647 setName(Name); 1648 } 1649 1650 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1651 : Instruction(GEPI.getType(), GetElementPtr, 1652 OperandTraits<GetElementPtrInst>::op_end(this) - 1653 GEPI.getNumOperands(), 1654 GEPI.getNumOperands()), 1655 SourceElementType(GEPI.SourceElementType), 1656 ResultElementType(GEPI.ResultElementType) { 1657 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1658 SubclassOptionalData = GEPI.SubclassOptionalData; 1659 } 1660 1661 /// getIndexedType - Returns the type of the element that would be accessed with 1662 /// a gep instruction with the specified parameters. 1663 /// 1664 /// The Idxs pointer should point to a continuous piece of memory containing the 1665 /// indices, either as Value* or uint64_t. 1666 /// 1667 /// A null type is returned if the indices are invalid for the specified 1668 /// pointer type. 1669 /// 1670 template <typename IndexTy> 1671 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { 1672 // Handle the special case of the empty set index set, which is always valid. 1673 if (IdxList.empty()) 1674 return Agg; 1675 1676 // If there is at least one index, the top level type must be sized, otherwise 1677 // it cannot be 'stepped over'. 1678 if (!Agg->isSized()) 1679 return nullptr; 1680 1681 unsigned CurIdx = 1; 1682 for (; CurIdx != IdxList.size(); ++CurIdx) { 1683 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1684 if (!CT || CT->isPointerTy()) return nullptr; 1685 IndexTy Index = IdxList[CurIdx]; 1686 if (!CT->indexValid(Index)) return nullptr; 1687 Agg = CT->getTypeAtIndex(Index); 1688 } 1689 return CurIdx == IdxList.size() ? Agg : nullptr; 1690 } 1691 1692 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1693 return getIndexedTypeInternal(Ty, IdxList); 1694 } 1695 1696 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1697 ArrayRef<Constant *> IdxList) { 1698 return getIndexedTypeInternal(Ty, IdxList); 1699 } 1700 1701 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1702 return getIndexedTypeInternal(Ty, IdxList); 1703 } 1704 1705 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1706 /// zeros. If so, the result pointer and the first operand have the same 1707 /// value, just potentially different types. 1708 bool GetElementPtrInst::hasAllZeroIndices() const { 1709 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1710 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1711 if (!CI->isZero()) return false; 1712 } else { 1713 return false; 1714 } 1715 } 1716 return true; 1717 } 1718 1719 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1720 /// constant integers. If so, the result pointer and the first operand have 1721 /// a constant offset between them. 1722 bool GetElementPtrInst::hasAllConstantIndices() const { 1723 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1724 if (!isa<ConstantInt>(getOperand(i))) 1725 return false; 1726 } 1727 return true; 1728 } 1729 1730 void GetElementPtrInst::setIsInBounds(bool B) { 1731 cast<GEPOperator>(this)->setIsInBounds(B); 1732 } 1733 1734 bool GetElementPtrInst::isInBounds() const { 1735 return cast<GEPOperator>(this)->isInBounds(); 1736 } 1737 1738 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1739 APInt &Offset) const { 1740 // Delegate to the generic GEPOperator implementation. 1741 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1742 } 1743 1744 //===----------------------------------------------------------------------===// 1745 // ExtractElementInst Implementation 1746 //===----------------------------------------------------------------------===// 1747 1748 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1749 const Twine &Name, 1750 Instruction *InsertBef) 1751 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1752 ExtractElement, 1753 OperandTraits<ExtractElementInst>::op_begin(this), 1754 2, InsertBef) { 1755 assert(isValidOperands(Val, Index) && 1756 "Invalid extractelement instruction operands!"); 1757 Op<0>() = Val; 1758 Op<1>() = Index; 1759 setName(Name); 1760 } 1761 1762 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1763 const Twine &Name, 1764 BasicBlock *InsertAE) 1765 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1766 ExtractElement, 1767 OperandTraits<ExtractElementInst>::op_begin(this), 1768 2, InsertAE) { 1769 assert(isValidOperands(Val, Index) && 1770 "Invalid extractelement instruction operands!"); 1771 1772 Op<0>() = Val; 1773 Op<1>() = Index; 1774 setName(Name); 1775 } 1776 1777 1778 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1779 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1780 return false; 1781 return true; 1782 } 1783 1784 1785 //===----------------------------------------------------------------------===// 1786 // InsertElementInst Implementation 1787 //===----------------------------------------------------------------------===// 1788 1789 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1790 const Twine &Name, 1791 Instruction *InsertBef) 1792 : Instruction(Vec->getType(), InsertElement, 1793 OperandTraits<InsertElementInst>::op_begin(this), 1794 3, InsertBef) { 1795 assert(isValidOperands(Vec, Elt, Index) && 1796 "Invalid insertelement instruction operands!"); 1797 Op<0>() = Vec; 1798 Op<1>() = Elt; 1799 Op<2>() = Index; 1800 setName(Name); 1801 } 1802 1803 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1804 const Twine &Name, 1805 BasicBlock *InsertAE) 1806 : Instruction(Vec->getType(), InsertElement, 1807 OperandTraits<InsertElementInst>::op_begin(this), 1808 3, InsertAE) { 1809 assert(isValidOperands(Vec, Elt, Index) && 1810 "Invalid insertelement instruction operands!"); 1811 1812 Op<0>() = Vec; 1813 Op<1>() = Elt; 1814 Op<2>() = Index; 1815 setName(Name); 1816 } 1817 1818 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1819 const Value *Index) { 1820 if (!Vec->getType()->isVectorTy()) 1821 return false; // First operand of insertelement must be vector type. 1822 1823 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1824 return false;// Second operand of insertelement must be vector element type. 1825 1826 if (!Index->getType()->isIntegerTy()) 1827 return false; // Third operand of insertelement must be i32. 1828 return true; 1829 } 1830 1831 1832 //===----------------------------------------------------------------------===// 1833 // ShuffleVectorInst Implementation 1834 //===----------------------------------------------------------------------===// 1835 1836 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1837 const Twine &Name, 1838 Instruction *InsertBefore) 1839 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1840 cast<VectorType>(Mask->getType())->getNumElements()), 1841 ShuffleVector, 1842 OperandTraits<ShuffleVectorInst>::op_begin(this), 1843 OperandTraits<ShuffleVectorInst>::operands(this), 1844 InsertBefore) { 1845 assert(isValidOperands(V1, V2, Mask) && 1846 "Invalid shuffle vector instruction operands!"); 1847 Op<0>() = V1; 1848 Op<1>() = V2; 1849 Op<2>() = Mask; 1850 setName(Name); 1851 } 1852 1853 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1854 const Twine &Name, 1855 BasicBlock *InsertAtEnd) 1856 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1857 cast<VectorType>(Mask->getType())->getNumElements()), 1858 ShuffleVector, 1859 OperandTraits<ShuffleVectorInst>::op_begin(this), 1860 OperandTraits<ShuffleVectorInst>::operands(this), 1861 InsertAtEnd) { 1862 assert(isValidOperands(V1, V2, Mask) && 1863 "Invalid shuffle vector instruction operands!"); 1864 1865 Op<0>() = V1; 1866 Op<1>() = V2; 1867 Op<2>() = Mask; 1868 setName(Name); 1869 } 1870 1871 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1872 const Value *Mask) { 1873 // V1 and V2 must be vectors of the same type. 1874 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1875 return false; 1876 1877 // Mask must be vector of i32. 1878 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1879 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) 1880 return false; 1881 1882 // Check to see if Mask is valid. 1883 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1884 return true; 1885 1886 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { 1887 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1888 for (Value *Op : MV->operands()) { 1889 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1890 if (CI->uge(V1Size*2)) 1891 return false; 1892 } else if (!isa<UndefValue>(Op)) { 1893 return false; 1894 } 1895 } 1896 return true; 1897 } 1898 1899 if (const ConstantDataSequential *CDS = 1900 dyn_cast<ConstantDataSequential>(Mask)) { 1901 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1902 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1903 if (CDS->getElementAsInteger(i) >= V1Size*2) 1904 return false; 1905 return true; 1906 } 1907 1908 // The bitcode reader can create a place holder for a forward reference 1909 // used as the shuffle mask. When this occurs, the shuffle mask will 1910 // fall into this case and fail. To avoid this error, do this bit of 1911 // ugliness to allow such a mask pass. 1912 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) 1913 if (CE->getOpcode() == Instruction::UserOp1) 1914 return true; 1915 1916 return false; 1917 } 1918 1919 /// getMaskValue - Return the index from the shuffle mask for the specified 1920 /// output result. This is either -1 if the element is undef or a number less 1921 /// than 2*numelements. 1922 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { 1923 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1924 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) 1925 return CDS->getElementAsInteger(i); 1926 Constant *C = Mask->getAggregateElement(i); 1927 if (isa<UndefValue>(C)) 1928 return -1; 1929 return cast<ConstantInt>(C)->getZExtValue(); 1930 } 1931 1932 /// getShuffleMask - Return the full mask for this instruction, where each 1933 /// element is the element number and undef's are returned as -1. 1934 void ShuffleVectorInst::getShuffleMask(Constant *Mask, 1935 SmallVectorImpl<int> &Result) { 1936 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1937 1938 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { 1939 for (unsigned i = 0; i != NumElts; ++i) 1940 Result.push_back(CDS->getElementAsInteger(i)); 1941 return; 1942 } 1943 for (unsigned i = 0; i != NumElts; ++i) { 1944 Constant *C = Mask->getAggregateElement(i); 1945 Result.push_back(isa<UndefValue>(C) ? -1 : 1946 cast<ConstantInt>(C)->getZExtValue()); 1947 } 1948 } 1949 1950 1951 //===----------------------------------------------------------------------===// 1952 // InsertValueInst Class 1953 //===----------------------------------------------------------------------===// 1954 1955 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1956 const Twine &Name) { 1957 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 1958 1959 // There's no fundamental reason why we require at least one index 1960 // (other than weirdness with &*IdxBegin being invalid; see 1961 // getelementptr's init routine for example). But there's no 1962 // present need to support it. 1963 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); 1964 1965 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1966 Val->getType() && "Inserted value must match indexed type!"); 1967 Op<0>() = Agg; 1968 Op<1>() = Val; 1969 1970 Indices.append(Idxs.begin(), Idxs.end()); 1971 setName(Name); 1972 } 1973 1974 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1975 : Instruction(IVI.getType(), InsertValue, 1976 OperandTraits<InsertValueInst>::op_begin(this), 2), 1977 Indices(IVI.Indices) { 1978 Op<0>() = IVI.getOperand(0); 1979 Op<1>() = IVI.getOperand(1); 1980 SubclassOptionalData = IVI.SubclassOptionalData; 1981 } 1982 1983 //===----------------------------------------------------------------------===// 1984 // ExtractValueInst Class 1985 //===----------------------------------------------------------------------===// 1986 1987 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1988 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 1989 1990 // There's no fundamental reason why we require at least one index. 1991 // But there's no present need to support it. 1992 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); 1993 1994 Indices.append(Idxs.begin(), Idxs.end()); 1995 setName(Name); 1996 } 1997 1998 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1999 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2000 Indices(EVI.Indices) { 2001 SubclassOptionalData = EVI.SubclassOptionalData; 2002 } 2003 2004 // getIndexedType - Returns the type of the element that would be extracted 2005 // with an extractvalue instruction with the specified parameters. 2006 // 2007 // A null type is returned if the indices are invalid for the specified 2008 // pointer type. 2009 // 2010 Type *ExtractValueInst::getIndexedType(Type *Agg, 2011 ArrayRef<unsigned> Idxs) { 2012 for (unsigned Index : Idxs) { 2013 // We can't use CompositeType::indexValid(Index) here. 2014 // indexValid() always returns true for arrays because getelementptr allows 2015 // out-of-bounds indices. Since we don't allow those for extractvalue and 2016 // insertvalue we need to check array indexing manually. 2017 // Since the only other types we can index into are struct types it's just 2018 // as easy to check those manually as well. 2019 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2020 if (Index >= AT->getNumElements()) 2021 return nullptr; 2022 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2023 if (Index >= ST->getNumElements()) 2024 return nullptr; 2025 } else { 2026 // Not a valid type to index into. 2027 return nullptr; 2028 } 2029 2030 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 2031 } 2032 return const_cast<Type*>(Agg); 2033 } 2034 2035 //===----------------------------------------------------------------------===// 2036 // BinaryOperator Class 2037 //===----------------------------------------------------------------------===// 2038 2039 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2040 Type *Ty, const Twine &Name, 2041 Instruction *InsertBefore) 2042 : Instruction(Ty, iType, 2043 OperandTraits<BinaryOperator>::op_begin(this), 2044 OperandTraits<BinaryOperator>::operands(this), 2045 InsertBefore) { 2046 Op<0>() = S1; 2047 Op<1>() = S2; 2048 init(iType); 2049 setName(Name); 2050 } 2051 2052 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2053 Type *Ty, const Twine &Name, 2054 BasicBlock *InsertAtEnd) 2055 : Instruction(Ty, iType, 2056 OperandTraits<BinaryOperator>::op_begin(this), 2057 OperandTraits<BinaryOperator>::operands(this), 2058 InsertAtEnd) { 2059 Op<0>() = S1; 2060 Op<1>() = S2; 2061 init(iType); 2062 setName(Name); 2063 } 2064 2065 2066 void BinaryOperator::init(BinaryOps iType) { 2067 Value *LHS = getOperand(0), *RHS = getOperand(1); 2068 (void)LHS; (void)RHS; // Silence warnings. 2069 assert(LHS->getType() == RHS->getType() && 2070 "Binary operator operand types must match!"); 2071 #ifndef NDEBUG 2072 switch (iType) { 2073 case Add: case Sub: 2074 case Mul: 2075 assert(getType() == LHS->getType() && 2076 "Arithmetic operation should return same type as operands!"); 2077 assert(getType()->isIntOrIntVectorTy() && 2078 "Tried to create an integer operation on a non-integer type!"); 2079 break; 2080 case FAdd: case FSub: 2081 case FMul: 2082 assert(getType() == LHS->getType() && 2083 "Arithmetic operation should return same type as operands!"); 2084 assert(getType()->isFPOrFPVectorTy() && 2085 "Tried to create a floating-point operation on a " 2086 "non-floating-point type!"); 2087 break; 2088 case UDiv: 2089 case SDiv: 2090 assert(getType() == LHS->getType() && 2091 "Arithmetic operation should return same type as operands!"); 2092 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 2093 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2094 "Incorrect operand type (not integer) for S/UDIV"); 2095 break; 2096 case FDiv: 2097 assert(getType() == LHS->getType() && 2098 "Arithmetic operation should return same type as operands!"); 2099 assert(getType()->isFPOrFPVectorTy() && 2100 "Incorrect operand type (not floating point) for FDIV"); 2101 break; 2102 case URem: 2103 case SRem: 2104 assert(getType() == LHS->getType() && 2105 "Arithmetic operation should return same type as operands!"); 2106 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 2107 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2108 "Incorrect operand type (not integer) for S/UREM"); 2109 break; 2110 case FRem: 2111 assert(getType() == LHS->getType() && 2112 "Arithmetic operation should return same type as operands!"); 2113 assert(getType()->isFPOrFPVectorTy() && 2114 "Incorrect operand type (not floating point) for FREM"); 2115 break; 2116 case Shl: 2117 case LShr: 2118 case AShr: 2119 assert(getType() == LHS->getType() && 2120 "Shift operation should return same type as operands!"); 2121 assert((getType()->isIntegerTy() || 2122 (getType()->isVectorTy() && 2123 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2124 "Tried to create a shift operation on a non-integral type!"); 2125 break; 2126 case And: case Or: 2127 case Xor: 2128 assert(getType() == LHS->getType() && 2129 "Logical operation should return same type as operands!"); 2130 assert((getType()->isIntegerTy() || 2131 (getType()->isVectorTy() && 2132 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2133 "Tried to create a logical operation on a non-integral type!"); 2134 break; 2135 default: 2136 break; 2137 } 2138 #endif 2139 } 2140 2141 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2142 const Twine &Name, 2143 Instruction *InsertBefore) { 2144 assert(S1->getType() == S2->getType() && 2145 "Cannot create binary operator with two operands of differing type!"); 2146 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2147 } 2148 2149 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2150 const Twine &Name, 2151 BasicBlock *InsertAtEnd) { 2152 BinaryOperator *Res = Create(Op, S1, S2, Name); 2153 InsertAtEnd->getInstList().push_back(Res); 2154 return Res; 2155 } 2156 2157 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2158 Instruction *InsertBefore) { 2159 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2160 return new BinaryOperator(Instruction::Sub, 2161 zero, Op, 2162 Op->getType(), Name, InsertBefore); 2163 } 2164 2165 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2166 BasicBlock *InsertAtEnd) { 2167 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2168 return new BinaryOperator(Instruction::Sub, 2169 zero, Op, 2170 Op->getType(), Name, InsertAtEnd); 2171 } 2172 2173 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2174 Instruction *InsertBefore) { 2175 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2176 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2177 } 2178 2179 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2180 BasicBlock *InsertAtEnd) { 2181 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2182 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2183 } 2184 2185 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2186 Instruction *InsertBefore) { 2187 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2188 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2189 } 2190 2191 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2192 BasicBlock *InsertAtEnd) { 2193 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2194 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2195 } 2196 2197 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2198 Instruction *InsertBefore) { 2199 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2200 return new BinaryOperator(Instruction::FSub, zero, Op, 2201 Op->getType(), Name, InsertBefore); 2202 } 2203 2204 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2205 BasicBlock *InsertAtEnd) { 2206 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2207 return new BinaryOperator(Instruction::FSub, zero, Op, 2208 Op->getType(), Name, InsertAtEnd); 2209 } 2210 2211 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2212 Instruction *InsertBefore) { 2213 Constant *C = Constant::getAllOnesValue(Op->getType()); 2214 return new BinaryOperator(Instruction::Xor, Op, C, 2215 Op->getType(), Name, InsertBefore); 2216 } 2217 2218 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2219 BasicBlock *InsertAtEnd) { 2220 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2221 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2222 Op->getType(), Name, InsertAtEnd); 2223 } 2224 2225 2226 // isConstantAllOnes - Helper function for several functions below 2227 static inline bool isConstantAllOnes(const Value *V) { 2228 if (const Constant *C = dyn_cast<Constant>(V)) 2229 return C->isAllOnesValue(); 2230 return false; 2231 } 2232 2233 bool BinaryOperator::isNeg(const Value *V) { 2234 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2235 if (Bop->getOpcode() == Instruction::Sub) 2236 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) 2237 return C->isNegativeZeroValue(); 2238 return false; 2239 } 2240 2241 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { 2242 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2243 if (Bop->getOpcode() == Instruction::FSub) 2244 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) { 2245 if (!IgnoreZeroSign) 2246 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); 2247 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); 2248 } 2249 return false; 2250 } 2251 2252 bool BinaryOperator::isNot(const Value *V) { 2253 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2254 return (Bop->getOpcode() == Instruction::Xor && 2255 (isConstantAllOnes(Bop->getOperand(1)) || 2256 isConstantAllOnes(Bop->getOperand(0)))); 2257 return false; 2258 } 2259 2260 Value *BinaryOperator::getNegArgument(Value *BinOp) { 2261 return cast<BinaryOperator>(BinOp)->getOperand(1); 2262 } 2263 2264 const Value *BinaryOperator::getNegArgument(const Value *BinOp) { 2265 return getNegArgument(const_cast<Value*>(BinOp)); 2266 } 2267 2268 Value *BinaryOperator::getFNegArgument(Value *BinOp) { 2269 return cast<BinaryOperator>(BinOp)->getOperand(1); 2270 } 2271 2272 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { 2273 return getFNegArgument(const_cast<Value*>(BinOp)); 2274 } 2275 2276 Value *BinaryOperator::getNotArgument(Value *BinOp) { 2277 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); 2278 BinaryOperator *BO = cast<BinaryOperator>(BinOp); 2279 Value *Op0 = BO->getOperand(0); 2280 Value *Op1 = BO->getOperand(1); 2281 if (isConstantAllOnes(Op0)) return Op1; 2282 2283 assert(isConstantAllOnes(Op1)); 2284 return Op0; 2285 } 2286 2287 const Value *BinaryOperator::getNotArgument(const Value *BinOp) { 2288 return getNotArgument(const_cast<Value*>(BinOp)); 2289 } 2290 2291 2292 // swapOperands - Exchange the two operands to this instruction. This 2293 // instruction is safe to use on any binary instruction and does not 2294 // modify the semantics of the instruction. If the instruction is 2295 // order dependent (SetLT f.e.) the opcode is changed. 2296 // 2297 bool BinaryOperator::swapOperands() { 2298 if (!isCommutative()) 2299 return true; // Can't commute operands 2300 Op<0>().swap(Op<1>()); 2301 return false; 2302 } 2303 2304 2305 //===----------------------------------------------------------------------===// 2306 // FPMathOperator Class 2307 //===----------------------------------------------------------------------===// 2308 2309 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. 2310 /// An accuracy of 0.0 means that the operation should be performed with the 2311 /// default precision. 2312 float FPMathOperator::getFPAccuracy() const { 2313 const MDNode *MD = 2314 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2315 if (!MD) 2316 return 0.0; 2317 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2318 return Accuracy->getValueAPF().convertToFloat(); 2319 } 2320 2321 2322 //===----------------------------------------------------------------------===// 2323 // CastInst Class 2324 //===----------------------------------------------------------------------===// 2325 2326 void CastInst::anchor() {} 2327 2328 // Just determine if this cast only deals with integral->integral conversion. 2329 bool CastInst::isIntegerCast() const { 2330 switch (getOpcode()) { 2331 default: return false; 2332 case Instruction::ZExt: 2333 case Instruction::SExt: 2334 case Instruction::Trunc: 2335 return true; 2336 case Instruction::BitCast: 2337 return getOperand(0)->getType()->isIntegerTy() && 2338 getType()->isIntegerTy(); 2339 } 2340 } 2341 2342 bool CastInst::isLosslessCast() const { 2343 // Only BitCast can be lossless, exit fast if we're not BitCast 2344 if (getOpcode() != Instruction::BitCast) 2345 return false; 2346 2347 // Identity cast is always lossless 2348 Type *SrcTy = getOperand(0)->getType(); 2349 Type *DstTy = getType(); 2350 if (SrcTy == DstTy) 2351 return true; 2352 2353 // Pointer to pointer is always lossless. 2354 if (SrcTy->isPointerTy()) 2355 return DstTy->isPointerTy(); 2356 return false; // Other types have no identity values 2357 } 2358 2359 /// This function determines if the CastInst does not require any bits to be 2360 /// changed in order to effect the cast. Essentially, it identifies cases where 2361 /// no code gen is necessary for the cast, hence the name no-op cast. For 2362 /// example, the following are all no-op casts: 2363 /// # bitcast i32* %x to i8* 2364 /// # bitcast <2 x i32> %x to <4 x i16> 2365 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2366 /// @brief Determine if the described cast is a no-op. 2367 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2368 Type *SrcTy, 2369 Type *DestTy, 2370 Type *IntPtrTy) { 2371 switch (Opcode) { 2372 default: llvm_unreachable("Invalid CastOp"); 2373 case Instruction::Trunc: 2374 case Instruction::ZExt: 2375 case Instruction::SExt: 2376 case Instruction::FPTrunc: 2377 case Instruction::FPExt: 2378 case Instruction::UIToFP: 2379 case Instruction::SIToFP: 2380 case Instruction::FPToUI: 2381 case Instruction::FPToSI: 2382 case Instruction::AddrSpaceCast: 2383 // TODO: Target informations may give a more accurate answer here. 2384 return false; 2385 case Instruction::BitCast: 2386 return true; // BitCast never modifies bits. 2387 case Instruction::PtrToInt: 2388 return IntPtrTy->getScalarSizeInBits() == 2389 DestTy->getScalarSizeInBits(); 2390 case Instruction::IntToPtr: 2391 return IntPtrTy->getScalarSizeInBits() == 2392 SrcTy->getScalarSizeInBits(); 2393 } 2394 } 2395 2396 /// @brief Determine if a cast is a no-op. 2397 bool CastInst::isNoopCast(Type *IntPtrTy) const { 2398 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2399 } 2400 2401 bool CastInst::isNoopCast(const DataLayout &DL) const { 2402 Type *PtrOpTy = nullptr; 2403 if (getOpcode() == Instruction::PtrToInt) 2404 PtrOpTy = getOperand(0)->getType(); 2405 else if (getOpcode() == Instruction::IntToPtr) 2406 PtrOpTy = getType(); 2407 2408 Type *IntPtrTy = 2409 PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0); 2410 2411 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2412 } 2413 2414 /// This function determines if a pair of casts can be eliminated and what 2415 /// opcode should be used in the elimination. This assumes that there are two 2416 /// instructions like this: 2417 /// * %F = firstOpcode SrcTy %x to MidTy 2418 /// * %S = secondOpcode MidTy %F to DstTy 2419 /// The function returns a resultOpcode so these two casts can be replaced with: 2420 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2421 /// If no such cast is permitted, the function returns 0. 2422 unsigned CastInst::isEliminableCastPair( 2423 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2424 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2425 Type *DstIntPtrTy) { 2426 // Define the 144 possibilities for these two cast instructions. The values 2427 // in this matrix determine what to do in a given situation and select the 2428 // case in the switch below. The rows correspond to firstOp, the columns 2429 // correspond to secondOp. In looking at the table below, keep in mind 2430 // the following cast properties: 2431 // 2432 // Size Compare Source Destination 2433 // Operator Src ? Size Type Sign Type Sign 2434 // -------- ------------ ------------------- --------------------- 2435 // TRUNC > Integer Any Integral Any 2436 // ZEXT < Integral Unsigned Integer Any 2437 // SEXT < Integral Signed Integer Any 2438 // FPTOUI n/a FloatPt n/a Integral Unsigned 2439 // FPTOSI n/a FloatPt n/a Integral Signed 2440 // UITOFP n/a Integral Unsigned FloatPt n/a 2441 // SITOFP n/a Integral Signed FloatPt n/a 2442 // FPTRUNC > FloatPt n/a FloatPt n/a 2443 // FPEXT < FloatPt n/a FloatPt n/a 2444 // PTRTOINT n/a Pointer n/a Integral Unsigned 2445 // INTTOPTR n/a Integral Unsigned Pointer n/a 2446 // BITCAST = FirstClass n/a FirstClass n/a 2447 // ADDRSPCST n/a Pointer n/a Pointer n/a 2448 // 2449 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2450 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2451 // into "fptoui double to i64", but this loses information about the range 2452 // of the produced value (we no longer know the top-part is all zeros). 2453 // Further this conversion is often much more expensive for typical hardware, 2454 // and causes issues when building libgcc. We disallow fptosi+sext for the 2455 // same reason. 2456 const unsigned numCastOps = 2457 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2458 static const uint8_t CastResults[numCastOps][numCastOps] = { 2459 // T F F U S F F P I B A -+ 2460 // R Z S P P I I T P 2 N T S | 2461 // U E E 2 2 2 2 R E I T C C +- secondOp 2462 // N X X U S F F N X N 2 V V | 2463 // C T T I I P P C T T P T T -+ 2464 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2465 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2466 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2467 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2468 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2469 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2470 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2471 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2472 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt | 2473 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2474 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2475 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2476 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2477 }; 2478 2479 // TODO: This logic could be encoded into the table above and handled in the 2480 // switch below. 2481 // If either of the casts are a bitcast from scalar to vector, disallow the 2482 // merging. However, any pair of bitcasts are allowed. 2483 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2484 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2485 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2486 2487 // Check if any of the casts convert scalars <-> vectors. 2488 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2489 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2490 if (!AreBothBitcasts) 2491 return 0; 2492 2493 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2494 [secondOp-Instruction::CastOpsBegin]; 2495 switch (ElimCase) { 2496 case 0: 2497 // Categorically disallowed. 2498 return 0; 2499 case 1: 2500 // Allowed, use first cast's opcode. 2501 return firstOp; 2502 case 2: 2503 // Allowed, use second cast's opcode. 2504 return secondOp; 2505 case 3: 2506 // No-op cast in second op implies firstOp as long as the DestTy 2507 // is integer and we are not converting between a vector and a 2508 // non-vector type. 2509 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2510 return firstOp; 2511 return 0; 2512 case 4: 2513 // No-op cast in second op implies firstOp as long as the DestTy 2514 // is floating point. 2515 if (DstTy->isFloatingPointTy()) 2516 return firstOp; 2517 return 0; 2518 case 5: 2519 // No-op cast in first op implies secondOp as long as the SrcTy 2520 // is an integer. 2521 if (SrcTy->isIntegerTy()) 2522 return secondOp; 2523 return 0; 2524 case 6: 2525 // No-op cast in first op implies secondOp as long as the SrcTy 2526 // is a floating point. 2527 if (SrcTy->isFloatingPointTy()) 2528 return secondOp; 2529 return 0; 2530 case 7: { 2531 // Cannot simplify if address spaces are different! 2532 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2533 return 0; 2534 2535 unsigned MidSize = MidTy->getScalarSizeInBits(); 2536 // We can still fold this without knowing the actual sizes as long we 2537 // know that the intermediate pointer is the largest possible 2538 // pointer size. 2539 // FIXME: Is this always true? 2540 if (MidSize == 64) 2541 return Instruction::BitCast; 2542 2543 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2544 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2545 return 0; 2546 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2547 if (MidSize >= PtrSize) 2548 return Instruction::BitCast; 2549 return 0; 2550 } 2551 case 8: { 2552 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2553 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2554 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2555 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2556 unsigned DstSize = DstTy->getScalarSizeInBits(); 2557 if (SrcSize == DstSize) 2558 return Instruction::BitCast; 2559 else if (SrcSize < DstSize) 2560 return firstOp; 2561 return secondOp; 2562 } 2563 case 9: 2564 // zext, sext -> zext, because sext can't sign extend after zext 2565 return Instruction::ZExt; 2566 case 10: 2567 // fpext followed by ftrunc is allowed if the bit size returned to is 2568 // the same as the original, in which case its just a bitcast 2569 if (SrcTy == DstTy) 2570 return Instruction::BitCast; 2571 return 0; // If the types are not the same we can't eliminate it. 2572 case 11: { 2573 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2574 if (!MidIntPtrTy) 2575 return 0; 2576 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2577 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2578 unsigned DstSize = DstTy->getScalarSizeInBits(); 2579 if (SrcSize <= PtrSize && SrcSize == DstSize) 2580 return Instruction::BitCast; 2581 return 0; 2582 } 2583 case 12: { 2584 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2585 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2586 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2587 return Instruction::AddrSpaceCast; 2588 return Instruction::BitCast; 2589 } 2590 case 13: 2591 // FIXME: this state can be merged with (1), but the following assert 2592 // is useful to check the correcteness of the sequence due to semantic 2593 // change of bitcast. 2594 assert( 2595 SrcTy->isPtrOrPtrVectorTy() && 2596 MidTy->isPtrOrPtrVectorTy() && 2597 DstTy->isPtrOrPtrVectorTy() && 2598 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2599 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2600 "Illegal addrspacecast, bitcast sequence!"); 2601 // Allowed, use first cast's opcode 2602 return firstOp; 2603 case 14: 2604 // bitcast, addrspacecast -> addrspacecast if the element type of 2605 // bitcast's source is the same as that of addrspacecast's destination. 2606 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType()) 2607 return Instruction::AddrSpaceCast; 2608 return 0; 2609 2610 case 15: 2611 // FIXME: this state can be merged with (1), but the following assert 2612 // is useful to check the correcteness of the sequence due to semantic 2613 // change of bitcast. 2614 assert( 2615 SrcTy->isIntOrIntVectorTy() && 2616 MidTy->isPtrOrPtrVectorTy() && 2617 DstTy->isPtrOrPtrVectorTy() && 2618 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2619 "Illegal inttoptr, bitcast sequence!"); 2620 // Allowed, use first cast's opcode 2621 return firstOp; 2622 case 16: 2623 // FIXME: this state can be merged with (2), but the following assert 2624 // is useful to check the correcteness of the sequence due to semantic 2625 // change of bitcast. 2626 assert( 2627 SrcTy->isPtrOrPtrVectorTy() && 2628 MidTy->isPtrOrPtrVectorTy() && 2629 DstTy->isIntOrIntVectorTy() && 2630 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2631 "Illegal bitcast, ptrtoint sequence!"); 2632 // Allowed, use second cast's opcode 2633 return secondOp; 2634 case 17: 2635 // (sitofp (zext x)) -> (uitofp x) 2636 return Instruction::UIToFP; 2637 case 99: 2638 // Cast combination can't happen (error in input). This is for all cases 2639 // where the MidTy is not the same for the two cast instructions. 2640 llvm_unreachable("Invalid Cast Combination"); 2641 default: 2642 llvm_unreachable("Error in CastResults table!!!"); 2643 } 2644 } 2645 2646 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2647 const Twine &Name, Instruction *InsertBefore) { 2648 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2649 // Construct and return the appropriate CastInst subclass 2650 switch (op) { 2651 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2652 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2653 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2654 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2655 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2656 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2657 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2658 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2659 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2660 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2661 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2662 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2663 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2664 default: llvm_unreachable("Invalid opcode provided"); 2665 } 2666 } 2667 2668 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2669 const Twine &Name, BasicBlock *InsertAtEnd) { 2670 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2671 // Construct and return the appropriate CastInst subclass 2672 switch (op) { 2673 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2674 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2675 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2676 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2677 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2678 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2679 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2680 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2681 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2682 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2683 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2684 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2685 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2686 default: llvm_unreachable("Invalid opcode provided"); 2687 } 2688 } 2689 2690 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2691 const Twine &Name, 2692 Instruction *InsertBefore) { 2693 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2694 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2695 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2696 } 2697 2698 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2699 const Twine &Name, 2700 BasicBlock *InsertAtEnd) { 2701 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2702 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2703 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2704 } 2705 2706 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2707 const Twine &Name, 2708 Instruction *InsertBefore) { 2709 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2710 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2711 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2712 } 2713 2714 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2715 const Twine &Name, 2716 BasicBlock *InsertAtEnd) { 2717 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2718 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2719 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2720 } 2721 2722 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2723 const Twine &Name, 2724 Instruction *InsertBefore) { 2725 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2726 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2727 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2728 } 2729 2730 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2731 const Twine &Name, 2732 BasicBlock *InsertAtEnd) { 2733 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2734 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2735 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2736 } 2737 2738 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2739 const Twine &Name, 2740 BasicBlock *InsertAtEnd) { 2741 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2742 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2743 "Invalid cast"); 2744 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2745 assert((!Ty->isVectorTy() || 2746 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2747 "Invalid cast"); 2748 2749 if (Ty->isIntOrIntVectorTy()) 2750 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2751 2752 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 2753 } 2754 2755 /// @brief Create a BitCast or a PtrToInt cast instruction 2756 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2757 const Twine &Name, 2758 Instruction *InsertBefore) { 2759 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2760 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2761 "Invalid cast"); 2762 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2763 assert((!Ty->isVectorTy() || 2764 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2765 "Invalid cast"); 2766 2767 if (Ty->isIntOrIntVectorTy()) 2768 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2769 2770 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 2771 } 2772 2773 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2774 Value *S, Type *Ty, 2775 const Twine &Name, 2776 BasicBlock *InsertAtEnd) { 2777 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2778 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2779 2780 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2781 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 2782 2783 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2784 } 2785 2786 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2787 Value *S, Type *Ty, 2788 const Twine &Name, 2789 Instruction *InsertBefore) { 2790 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2791 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2792 2793 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2794 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 2795 2796 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2797 } 2798 2799 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 2800 const Twine &Name, 2801 Instruction *InsertBefore) { 2802 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 2803 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2804 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 2805 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 2806 2807 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2808 } 2809 2810 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2811 bool isSigned, const Twine &Name, 2812 Instruction *InsertBefore) { 2813 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2814 "Invalid integer cast"); 2815 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2816 unsigned DstBits = Ty->getScalarSizeInBits(); 2817 Instruction::CastOps opcode = 2818 (SrcBits == DstBits ? Instruction::BitCast : 2819 (SrcBits > DstBits ? Instruction::Trunc : 2820 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2821 return Create(opcode, C, Ty, Name, InsertBefore); 2822 } 2823 2824 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2825 bool isSigned, const Twine &Name, 2826 BasicBlock *InsertAtEnd) { 2827 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2828 "Invalid cast"); 2829 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2830 unsigned DstBits = Ty->getScalarSizeInBits(); 2831 Instruction::CastOps opcode = 2832 (SrcBits == DstBits ? Instruction::BitCast : 2833 (SrcBits > DstBits ? Instruction::Trunc : 2834 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2835 return Create(opcode, C, Ty, Name, InsertAtEnd); 2836 } 2837 2838 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2839 const Twine &Name, 2840 Instruction *InsertBefore) { 2841 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2842 "Invalid cast"); 2843 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2844 unsigned DstBits = Ty->getScalarSizeInBits(); 2845 Instruction::CastOps opcode = 2846 (SrcBits == DstBits ? Instruction::BitCast : 2847 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2848 return Create(opcode, C, Ty, Name, InsertBefore); 2849 } 2850 2851 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2852 const Twine &Name, 2853 BasicBlock *InsertAtEnd) { 2854 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2855 "Invalid cast"); 2856 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2857 unsigned DstBits = Ty->getScalarSizeInBits(); 2858 Instruction::CastOps opcode = 2859 (SrcBits == DstBits ? Instruction::BitCast : 2860 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2861 return Create(opcode, C, Ty, Name, InsertAtEnd); 2862 } 2863 2864 // Check whether it is valid to call getCastOpcode for these types. 2865 // This routine must be kept in sync with getCastOpcode. 2866 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2867 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2868 return false; 2869 2870 if (SrcTy == DestTy) 2871 return true; 2872 2873 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2874 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2875 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2876 // An element by element cast. Valid if casting the elements is valid. 2877 SrcTy = SrcVecTy->getElementType(); 2878 DestTy = DestVecTy->getElementType(); 2879 } 2880 2881 // Get the bit sizes, we'll need these 2882 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2883 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2884 2885 // Run through the possibilities ... 2886 if (DestTy->isIntegerTy()) { // Casting to integral 2887 if (SrcTy->isIntegerTy()) // Casting from integral 2888 return true; 2889 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2890 return true; 2891 if (SrcTy->isVectorTy()) // Casting from vector 2892 return DestBits == SrcBits; 2893 // Casting from something else 2894 return SrcTy->isPointerTy(); 2895 } 2896 if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2897 if (SrcTy->isIntegerTy()) // Casting from integral 2898 return true; 2899 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2900 return true; 2901 if (SrcTy->isVectorTy()) // Casting from vector 2902 return DestBits == SrcBits; 2903 // Casting from something else 2904 return false; 2905 } 2906 if (DestTy->isVectorTy()) // Casting to vector 2907 return DestBits == SrcBits; 2908 if (DestTy->isPointerTy()) { // Casting to pointer 2909 if (SrcTy->isPointerTy()) // Casting from pointer 2910 return true; 2911 return SrcTy->isIntegerTy(); // Casting from integral 2912 } 2913 if (DestTy->isX86_MMXTy()) { 2914 if (SrcTy->isVectorTy()) 2915 return DestBits == SrcBits; // 64-bit vector to MMX 2916 return false; 2917 } // Casting to something else 2918 return false; 2919 } 2920 2921 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 2922 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2923 return false; 2924 2925 if (SrcTy == DestTy) 2926 return true; 2927 2928 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2929 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 2930 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2931 // An element by element cast. Valid if casting the elements is valid. 2932 SrcTy = SrcVecTy->getElementType(); 2933 DestTy = DestVecTy->getElementType(); 2934 } 2935 } 2936 } 2937 2938 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 2939 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 2940 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 2941 } 2942 } 2943 2944 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2945 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2946 2947 // Could still have vectors of pointers if the number of elements doesn't 2948 // match 2949 if (SrcBits == 0 || DestBits == 0) 2950 return false; 2951 2952 if (SrcBits != DestBits) 2953 return false; 2954 2955 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 2956 return false; 2957 2958 return true; 2959 } 2960 2961 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 2962 const DataLayout &DL) { 2963 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 2964 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 2965 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); 2966 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 2967 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 2968 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); 2969 2970 return isBitCastable(SrcTy, DestTy); 2971 } 2972 2973 // Provide a way to get a "cast" where the cast opcode is inferred from the 2974 // types and size of the operand. This, basically, is a parallel of the 2975 // logic in the castIsValid function below. This axiom should hold: 2976 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2977 // should not assert in castIsValid. In other words, this produces a "correct" 2978 // casting opcode for the arguments passed to it. 2979 // This routine must be kept in sync with isCastable. 2980 Instruction::CastOps 2981 CastInst::getCastOpcode( 2982 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2983 Type *SrcTy = Src->getType(); 2984 2985 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2986 "Only first class types are castable!"); 2987 2988 if (SrcTy == DestTy) 2989 return BitCast; 2990 2991 // FIXME: Check address space sizes here 2992 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2993 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2994 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2995 // An element by element cast. Find the appropriate opcode based on the 2996 // element types. 2997 SrcTy = SrcVecTy->getElementType(); 2998 DestTy = DestVecTy->getElementType(); 2999 } 3000 3001 // Get the bit sizes, we'll need these 3002 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3003 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3004 3005 // Run through the possibilities ... 3006 if (DestTy->isIntegerTy()) { // Casting to integral 3007 if (SrcTy->isIntegerTy()) { // Casting from integral 3008 if (DestBits < SrcBits) 3009 return Trunc; // int -> smaller int 3010 else if (DestBits > SrcBits) { // its an extension 3011 if (SrcIsSigned) 3012 return SExt; // signed -> SEXT 3013 else 3014 return ZExt; // unsigned -> ZEXT 3015 } else { 3016 return BitCast; // Same size, No-op cast 3017 } 3018 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3019 if (DestIsSigned) 3020 return FPToSI; // FP -> sint 3021 else 3022 return FPToUI; // FP -> uint 3023 } else if (SrcTy->isVectorTy()) { 3024 assert(DestBits == SrcBits && 3025 "Casting vector to integer of different width"); 3026 return BitCast; // Same size, no-op cast 3027 } else { 3028 assert(SrcTy->isPointerTy() && 3029 "Casting from a value that is not first-class type"); 3030 return PtrToInt; // ptr -> int 3031 } 3032 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3033 if (SrcTy->isIntegerTy()) { // Casting from integral 3034 if (SrcIsSigned) 3035 return SIToFP; // sint -> FP 3036 else 3037 return UIToFP; // uint -> FP 3038 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3039 if (DestBits < SrcBits) { 3040 return FPTrunc; // FP -> smaller FP 3041 } else if (DestBits > SrcBits) { 3042 return FPExt; // FP -> larger FP 3043 } else { 3044 return BitCast; // same size, no-op cast 3045 } 3046 } else if (SrcTy->isVectorTy()) { 3047 assert(DestBits == SrcBits && 3048 "Casting vector to floating point of different width"); 3049 return BitCast; // same size, no-op cast 3050 } 3051 llvm_unreachable("Casting pointer or non-first class to float"); 3052 } else if (DestTy->isVectorTy()) { 3053 assert(DestBits == SrcBits && 3054 "Illegal cast to vector (wrong type or size)"); 3055 return BitCast; 3056 } else if (DestTy->isPointerTy()) { 3057 if (SrcTy->isPointerTy()) { 3058 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3059 return AddrSpaceCast; 3060 return BitCast; // ptr -> ptr 3061 } else if (SrcTy->isIntegerTy()) { 3062 return IntToPtr; // int -> ptr 3063 } 3064 llvm_unreachable("Casting pointer to other than pointer or int"); 3065 } else if (DestTy->isX86_MMXTy()) { 3066 if (SrcTy->isVectorTy()) { 3067 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3068 return BitCast; // 64-bit vector to MMX 3069 } 3070 llvm_unreachable("Illegal cast to X86_MMX"); 3071 } 3072 llvm_unreachable("Casting to type that is not first-class"); 3073 } 3074 3075 //===----------------------------------------------------------------------===// 3076 // CastInst SubClass Constructors 3077 //===----------------------------------------------------------------------===// 3078 3079 /// Check that the construction parameters for a CastInst are correct. This 3080 /// could be broken out into the separate constructors but it is useful to have 3081 /// it in one place and to eliminate the redundant code for getting the sizes 3082 /// of the types involved. 3083 bool 3084 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 3085 3086 // Check for type sanity on the arguments 3087 Type *SrcTy = S->getType(); 3088 3089 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3090 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3091 return false; 3092 3093 // Get the size of the types in bits, we'll need this later 3094 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3095 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 3096 3097 // If these are vector types, get the lengths of the vectors (using zero for 3098 // scalar types means that checking that vector lengths match also checks that 3099 // scalars are not being converted to vectors or vectors to scalars). 3100 unsigned SrcLength = SrcTy->isVectorTy() ? 3101 cast<VectorType>(SrcTy)->getNumElements() : 0; 3102 unsigned DstLength = DstTy->isVectorTy() ? 3103 cast<VectorType>(DstTy)->getNumElements() : 0; 3104 3105 // Switch on the opcode provided 3106 switch (op) { 3107 default: return false; // This is an input error 3108 case Instruction::Trunc: 3109 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3110 SrcLength == DstLength && SrcBitSize > DstBitSize; 3111 case Instruction::ZExt: 3112 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3113 SrcLength == DstLength && SrcBitSize < DstBitSize; 3114 case Instruction::SExt: 3115 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3116 SrcLength == DstLength && SrcBitSize < DstBitSize; 3117 case Instruction::FPTrunc: 3118 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3119 SrcLength == DstLength && SrcBitSize > DstBitSize; 3120 case Instruction::FPExt: 3121 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3122 SrcLength == DstLength && SrcBitSize < DstBitSize; 3123 case Instruction::UIToFP: 3124 case Instruction::SIToFP: 3125 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3126 SrcLength == DstLength; 3127 case Instruction::FPToUI: 3128 case Instruction::FPToSI: 3129 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3130 SrcLength == DstLength; 3131 case Instruction::PtrToInt: 3132 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3133 return false; 3134 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3135 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3136 return false; 3137 return SrcTy->getScalarType()->isPointerTy() && 3138 DstTy->getScalarType()->isIntegerTy(); 3139 case Instruction::IntToPtr: 3140 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3141 return false; 3142 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3143 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3144 return false; 3145 return SrcTy->getScalarType()->isIntegerTy() && 3146 DstTy->getScalarType()->isPointerTy(); 3147 case Instruction::BitCast: { 3148 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3149 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3150 3151 // BitCast implies a no-op cast of type only. No bits change. 3152 // However, you can't cast pointers to anything but pointers. 3153 if (!SrcPtrTy != !DstPtrTy) 3154 return false; 3155 3156 // For non-pointer cases, the cast is okay if the source and destination bit 3157 // widths are identical. 3158 if (!SrcPtrTy) 3159 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3160 3161 // If both are pointers then the address spaces must match. 3162 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3163 return false; 3164 3165 // A vector of pointers must have the same number of elements. 3166 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3167 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3168 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3169 3170 return false; 3171 } 3172 3173 return true; 3174 } 3175 case Instruction::AddrSpaceCast: { 3176 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3177 if (!SrcPtrTy) 3178 return false; 3179 3180 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3181 if (!DstPtrTy) 3182 return false; 3183 3184 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3185 return false; 3186 3187 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3188 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3189 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3190 3191 return false; 3192 } 3193 3194 return true; 3195 } 3196 } 3197 } 3198 3199 TruncInst::TruncInst( 3200 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3201 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3202 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3203 } 3204 3205 TruncInst::TruncInst( 3206 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3207 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3208 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3209 } 3210 3211 ZExtInst::ZExtInst( 3212 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3213 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3214 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3215 } 3216 3217 ZExtInst::ZExtInst( 3218 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3219 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3220 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3221 } 3222 SExtInst::SExtInst( 3223 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3224 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3225 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3226 } 3227 3228 SExtInst::SExtInst( 3229 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3230 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3231 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3232 } 3233 3234 FPTruncInst::FPTruncInst( 3235 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3236 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3237 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3238 } 3239 3240 FPTruncInst::FPTruncInst( 3241 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3242 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3243 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3244 } 3245 3246 FPExtInst::FPExtInst( 3247 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3248 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3249 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3250 } 3251 3252 FPExtInst::FPExtInst( 3253 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3254 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3255 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3256 } 3257 3258 UIToFPInst::UIToFPInst( 3259 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3260 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3261 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3262 } 3263 3264 UIToFPInst::UIToFPInst( 3265 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3266 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3267 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3268 } 3269 3270 SIToFPInst::SIToFPInst( 3271 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3272 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3273 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3274 } 3275 3276 SIToFPInst::SIToFPInst( 3277 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3278 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3279 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3280 } 3281 3282 FPToUIInst::FPToUIInst( 3283 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3284 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3285 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3286 } 3287 3288 FPToUIInst::FPToUIInst( 3289 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3290 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3291 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3292 } 3293 3294 FPToSIInst::FPToSIInst( 3295 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3296 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3297 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3298 } 3299 3300 FPToSIInst::FPToSIInst( 3301 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3302 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3303 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3304 } 3305 3306 PtrToIntInst::PtrToIntInst( 3307 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3308 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3309 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3310 } 3311 3312 PtrToIntInst::PtrToIntInst( 3313 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3314 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3315 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3316 } 3317 3318 IntToPtrInst::IntToPtrInst( 3319 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3320 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3321 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3322 } 3323 3324 IntToPtrInst::IntToPtrInst( 3325 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3326 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3327 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3328 } 3329 3330 BitCastInst::BitCastInst( 3331 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3332 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3333 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3334 } 3335 3336 BitCastInst::BitCastInst( 3337 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3338 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3339 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3340 } 3341 3342 AddrSpaceCastInst::AddrSpaceCastInst( 3343 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3344 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3345 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3346 } 3347 3348 AddrSpaceCastInst::AddrSpaceCastInst( 3349 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3350 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3351 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3352 } 3353 3354 //===----------------------------------------------------------------------===// 3355 // CmpInst Classes 3356 //===----------------------------------------------------------------------===// 3357 3358 void CmpInst::anchor() {} 3359 3360 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3361 Value *RHS, const Twine &Name, Instruction *InsertBefore) 3362 : Instruction(ty, op, 3363 OperandTraits<CmpInst>::op_begin(this), 3364 OperandTraits<CmpInst>::operands(this), 3365 InsertBefore) { 3366 Op<0>() = LHS; 3367 Op<1>() = RHS; 3368 setPredicate((Predicate)predicate); 3369 setName(Name); 3370 } 3371 3372 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3373 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3374 : Instruction(ty, op, 3375 OperandTraits<CmpInst>::op_begin(this), 3376 OperandTraits<CmpInst>::operands(this), 3377 InsertAtEnd) { 3378 Op<0>() = LHS; 3379 Op<1>() = RHS; 3380 setPredicate((Predicate)predicate); 3381 setName(Name); 3382 } 3383 3384 CmpInst * 3385 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3386 const Twine &Name, Instruction *InsertBefore) { 3387 if (Op == Instruction::ICmp) { 3388 if (InsertBefore) 3389 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3390 S1, S2, Name); 3391 else 3392 return new ICmpInst(CmpInst::Predicate(predicate), 3393 S1, S2, Name); 3394 } 3395 3396 if (InsertBefore) 3397 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3398 S1, S2, Name); 3399 else 3400 return new FCmpInst(CmpInst::Predicate(predicate), 3401 S1, S2, Name); 3402 } 3403 3404 CmpInst * 3405 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3406 const Twine &Name, BasicBlock *InsertAtEnd) { 3407 if (Op == Instruction::ICmp) { 3408 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3409 S1, S2, Name); 3410 } 3411 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3412 S1, S2, Name); 3413 } 3414 3415 void CmpInst::swapOperands() { 3416 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3417 IC->swapOperands(); 3418 else 3419 cast<FCmpInst>(this)->swapOperands(); 3420 } 3421 3422 bool CmpInst::isCommutative() const { 3423 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3424 return IC->isCommutative(); 3425 return cast<FCmpInst>(this)->isCommutative(); 3426 } 3427 3428 bool CmpInst::isEquality() const { 3429 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3430 return IC->isEquality(); 3431 return cast<FCmpInst>(this)->isEquality(); 3432 } 3433 3434 3435 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3436 switch (pred) { 3437 default: llvm_unreachable("Unknown cmp predicate!"); 3438 case ICMP_EQ: return ICMP_NE; 3439 case ICMP_NE: return ICMP_EQ; 3440 case ICMP_UGT: return ICMP_ULE; 3441 case ICMP_ULT: return ICMP_UGE; 3442 case ICMP_UGE: return ICMP_ULT; 3443 case ICMP_ULE: return ICMP_UGT; 3444 case ICMP_SGT: return ICMP_SLE; 3445 case ICMP_SLT: return ICMP_SGE; 3446 case ICMP_SGE: return ICMP_SLT; 3447 case ICMP_SLE: return ICMP_SGT; 3448 3449 case FCMP_OEQ: return FCMP_UNE; 3450 case FCMP_ONE: return FCMP_UEQ; 3451 case FCMP_OGT: return FCMP_ULE; 3452 case FCMP_OLT: return FCMP_UGE; 3453 case FCMP_OGE: return FCMP_ULT; 3454 case FCMP_OLE: return FCMP_UGT; 3455 case FCMP_UEQ: return FCMP_ONE; 3456 case FCMP_UNE: return FCMP_OEQ; 3457 case FCMP_UGT: return FCMP_OLE; 3458 case FCMP_ULT: return FCMP_OGE; 3459 case FCMP_UGE: return FCMP_OLT; 3460 case FCMP_ULE: return FCMP_OGT; 3461 case FCMP_ORD: return FCMP_UNO; 3462 case FCMP_UNO: return FCMP_ORD; 3463 case FCMP_TRUE: return FCMP_FALSE; 3464 case FCMP_FALSE: return FCMP_TRUE; 3465 } 3466 } 3467 3468 void ICmpInst::anchor() {} 3469 3470 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3471 switch (pred) { 3472 default: llvm_unreachable("Unknown icmp predicate!"); 3473 case ICMP_EQ: case ICMP_NE: 3474 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3475 return pred; 3476 case ICMP_UGT: return ICMP_SGT; 3477 case ICMP_ULT: return ICMP_SLT; 3478 case ICMP_UGE: return ICMP_SGE; 3479 case ICMP_ULE: return ICMP_SLE; 3480 } 3481 } 3482 3483 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3484 switch (pred) { 3485 default: llvm_unreachable("Unknown icmp predicate!"); 3486 case ICMP_EQ: case ICMP_NE: 3487 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3488 return pred; 3489 case ICMP_SGT: return ICMP_UGT; 3490 case ICMP_SLT: return ICMP_ULT; 3491 case ICMP_SGE: return ICMP_UGE; 3492 case ICMP_SLE: return ICMP_ULE; 3493 } 3494 } 3495 3496 /// Initialize a set of values that all satisfy the condition with C. 3497 /// 3498 ConstantRange 3499 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { 3500 APInt Lower(C); 3501 APInt Upper(C); 3502 uint32_t BitWidth = C.getBitWidth(); 3503 switch (pred) { 3504 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); 3505 case ICmpInst::ICMP_EQ: ++Upper; break; 3506 case ICmpInst::ICMP_NE: ++Lower; break; 3507 case ICmpInst::ICMP_ULT: 3508 Lower = APInt::getMinValue(BitWidth); 3509 // Check for an empty-set condition. 3510 if (Lower == Upper) 3511 return ConstantRange(BitWidth, /*isFullSet=*/false); 3512 break; 3513 case ICmpInst::ICMP_SLT: 3514 Lower = APInt::getSignedMinValue(BitWidth); 3515 // Check for an empty-set condition. 3516 if (Lower == Upper) 3517 return ConstantRange(BitWidth, /*isFullSet=*/false); 3518 break; 3519 case ICmpInst::ICMP_UGT: 3520 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3521 // Check for an empty-set condition. 3522 if (Lower == Upper) 3523 return ConstantRange(BitWidth, /*isFullSet=*/false); 3524 break; 3525 case ICmpInst::ICMP_SGT: 3526 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3527 // Check for an empty-set condition. 3528 if (Lower == Upper) 3529 return ConstantRange(BitWidth, /*isFullSet=*/false); 3530 break; 3531 case ICmpInst::ICMP_ULE: 3532 Lower = APInt::getMinValue(BitWidth); ++Upper; 3533 // Check for a full-set condition. 3534 if (Lower == Upper) 3535 return ConstantRange(BitWidth, /*isFullSet=*/true); 3536 break; 3537 case ICmpInst::ICMP_SLE: 3538 Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 3539 // Check for a full-set condition. 3540 if (Lower == Upper) 3541 return ConstantRange(BitWidth, /*isFullSet=*/true); 3542 break; 3543 case ICmpInst::ICMP_UGE: 3544 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3545 // Check for a full-set condition. 3546 if (Lower == Upper) 3547 return ConstantRange(BitWidth, /*isFullSet=*/true); 3548 break; 3549 case ICmpInst::ICMP_SGE: 3550 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3551 // Check for a full-set condition. 3552 if (Lower == Upper) 3553 return ConstantRange(BitWidth, /*isFullSet=*/true); 3554 break; 3555 } 3556 return ConstantRange(Lower, Upper); 3557 } 3558 3559 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3560 switch (pred) { 3561 default: llvm_unreachable("Unknown cmp predicate!"); 3562 case ICMP_EQ: case ICMP_NE: 3563 return pred; 3564 case ICMP_SGT: return ICMP_SLT; 3565 case ICMP_SLT: return ICMP_SGT; 3566 case ICMP_SGE: return ICMP_SLE; 3567 case ICMP_SLE: return ICMP_SGE; 3568 case ICMP_UGT: return ICMP_ULT; 3569 case ICMP_ULT: return ICMP_UGT; 3570 case ICMP_UGE: return ICMP_ULE; 3571 case ICMP_ULE: return ICMP_UGE; 3572 3573 case FCMP_FALSE: case FCMP_TRUE: 3574 case FCMP_OEQ: case FCMP_ONE: 3575 case FCMP_UEQ: case FCMP_UNE: 3576 case FCMP_ORD: case FCMP_UNO: 3577 return pred; 3578 case FCMP_OGT: return FCMP_OLT; 3579 case FCMP_OLT: return FCMP_OGT; 3580 case FCMP_OGE: return FCMP_OLE; 3581 case FCMP_OLE: return FCMP_OGE; 3582 case FCMP_UGT: return FCMP_ULT; 3583 case FCMP_ULT: return FCMP_UGT; 3584 case FCMP_UGE: return FCMP_ULE; 3585 case FCMP_ULE: return FCMP_UGE; 3586 } 3587 } 3588 3589 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3590 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); 3591 3592 switch (pred) { 3593 default: 3594 llvm_unreachable("Unknown predicate!"); 3595 case CmpInst::ICMP_ULT: 3596 return CmpInst::ICMP_SLT; 3597 case CmpInst::ICMP_ULE: 3598 return CmpInst::ICMP_SLE; 3599 case CmpInst::ICMP_UGT: 3600 return CmpInst::ICMP_SGT; 3601 case CmpInst::ICMP_UGE: 3602 return CmpInst::ICMP_SGE; 3603 } 3604 } 3605 3606 bool CmpInst::isUnsigned(Predicate predicate) { 3607 switch (predicate) { 3608 default: return false; 3609 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3610 case ICmpInst::ICMP_UGE: return true; 3611 } 3612 } 3613 3614 bool CmpInst::isSigned(Predicate predicate) { 3615 switch (predicate) { 3616 default: return false; 3617 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3618 case ICmpInst::ICMP_SGE: return true; 3619 } 3620 } 3621 3622 bool CmpInst::isOrdered(Predicate predicate) { 3623 switch (predicate) { 3624 default: return false; 3625 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3626 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3627 case FCmpInst::FCMP_ORD: return true; 3628 } 3629 } 3630 3631 bool CmpInst::isUnordered(Predicate predicate) { 3632 switch (predicate) { 3633 default: return false; 3634 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3635 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3636 case FCmpInst::FCMP_UNO: return true; 3637 } 3638 } 3639 3640 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3641 switch(predicate) { 3642 default: return false; 3643 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3644 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3645 } 3646 } 3647 3648 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3649 switch(predicate) { 3650 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3651 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3652 default: return false; 3653 } 3654 } 3655 3656 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3657 // If the predicates match, then we know the first condition implies the 3658 // second is true. 3659 if (Pred1 == Pred2) 3660 return true; 3661 3662 switch (Pred1) { 3663 default: 3664 break; 3665 case ICMP_EQ: 3666 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3667 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3668 Pred2 == ICMP_SLE; 3669 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3670 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3671 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3672 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3673 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3674 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3675 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3676 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3677 } 3678 return false; 3679 } 3680 3681 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3682 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3683 } 3684 3685 //===----------------------------------------------------------------------===// 3686 // SwitchInst Implementation 3687 //===----------------------------------------------------------------------===// 3688 3689 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3690 assert(Value && Default && NumReserved); 3691 ReservedSpace = NumReserved; 3692 setNumHungOffUseOperands(2); 3693 allocHungoffUses(ReservedSpace); 3694 3695 Op<0>() = Value; 3696 Op<1>() = Default; 3697 } 3698 3699 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3700 /// switch on and a default destination. The number of additional cases can 3701 /// be specified here to make memory allocation more efficient. This 3702 /// constructor can also autoinsert before another instruction. 3703 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3704 Instruction *InsertBefore) 3705 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3706 nullptr, 0, InsertBefore) { 3707 init(Value, Default, 2+NumCases*2); 3708 } 3709 3710 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3711 /// switch on and a default destination. The number of additional cases can 3712 /// be specified here to make memory allocation more efficient. This 3713 /// constructor also autoinserts at the end of the specified BasicBlock. 3714 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3715 BasicBlock *InsertAtEnd) 3716 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3717 nullptr, 0, InsertAtEnd) { 3718 init(Value, Default, 2+NumCases*2); 3719 } 3720 3721 SwitchInst::SwitchInst(const SwitchInst &SI) 3722 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) { 3723 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3724 setNumHungOffUseOperands(SI.getNumOperands()); 3725 Use *OL = getOperandList(); 3726 const Use *InOL = SI.getOperandList(); 3727 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3728 OL[i] = InOL[i]; 3729 OL[i+1] = InOL[i+1]; 3730 } 3731 SubclassOptionalData = SI.SubclassOptionalData; 3732 } 3733 3734 3735 /// addCase - Add an entry to the switch instruction... 3736 /// 3737 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3738 unsigned NewCaseIdx = getNumCases(); 3739 unsigned OpNo = getNumOperands(); 3740 if (OpNo+2 > ReservedSpace) 3741 growOperands(); // Get more space! 3742 // Initialize some new operands. 3743 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3744 setNumHungOffUseOperands(OpNo+2); 3745 CaseIt Case(this, NewCaseIdx); 3746 Case.setValue(OnVal); 3747 Case.setSuccessor(Dest); 3748 } 3749 3750 /// removeCase - This method removes the specified case and its successor 3751 /// from the switch instruction. 3752 void SwitchInst::removeCase(CaseIt i) { 3753 unsigned idx = i.getCaseIndex(); 3754 3755 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3756 3757 unsigned NumOps = getNumOperands(); 3758 Use *OL = getOperandList(); 3759 3760 // Overwrite this case with the end of the list. 3761 if (2 + (idx + 1) * 2 != NumOps) { 3762 OL[2 + idx * 2] = OL[NumOps - 2]; 3763 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3764 } 3765 3766 // Nuke the last value. 3767 OL[NumOps-2].set(nullptr); 3768 OL[NumOps-2+1].set(nullptr); 3769 setNumHungOffUseOperands(NumOps-2); 3770 } 3771 3772 /// growOperands - grow operands - This grows the operand list in response 3773 /// to a push_back style of operation. This grows the number of ops by 3 times. 3774 /// 3775 void SwitchInst::growOperands() { 3776 unsigned e = getNumOperands(); 3777 unsigned NumOps = e*3; 3778 3779 ReservedSpace = NumOps; 3780 growHungoffUses(ReservedSpace); 3781 } 3782 3783 3784 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { 3785 return getSuccessor(idx); 3786 } 3787 unsigned SwitchInst::getNumSuccessorsV() const { 3788 return getNumSuccessors(); 3789 } 3790 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3791 setSuccessor(idx, B); 3792 } 3793 3794 //===----------------------------------------------------------------------===// 3795 // IndirectBrInst Implementation 3796 //===----------------------------------------------------------------------===// 3797 3798 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3799 assert(Address && Address->getType()->isPointerTy() && 3800 "Address of indirectbr must be a pointer"); 3801 ReservedSpace = 1+NumDests; 3802 setNumHungOffUseOperands(1); 3803 allocHungoffUses(ReservedSpace); 3804 3805 Op<0>() = Address; 3806 } 3807 3808 3809 /// growOperands - grow operands - This grows the operand list in response 3810 /// to a push_back style of operation. This grows the number of ops by 2 times. 3811 /// 3812 void IndirectBrInst::growOperands() { 3813 unsigned e = getNumOperands(); 3814 unsigned NumOps = e*2; 3815 3816 ReservedSpace = NumOps; 3817 growHungoffUses(ReservedSpace); 3818 } 3819 3820 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3821 Instruction *InsertBefore) 3822 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3823 nullptr, 0, InsertBefore) { 3824 init(Address, NumCases); 3825 } 3826 3827 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3828 BasicBlock *InsertAtEnd) 3829 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3830 nullptr, 0, InsertAtEnd) { 3831 init(Address, NumCases); 3832 } 3833 3834 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3835 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3836 nullptr, IBI.getNumOperands()) { 3837 allocHungoffUses(IBI.getNumOperands()); 3838 Use *OL = getOperandList(); 3839 const Use *InOL = IBI.getOperandList(); 3840 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3841 OL[i] = InOL[i]; 3842 SubclassOptionalData = IBI.SubclassOptionalData; 3843 } 3844 3845 /// addDestination - Add a destination. 3846 /// 3847 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3848 unsigned OpNo = getNumOperands(); 3849 if (OpNo+1 > ReservedSpace) 3850 growOperands(); // Get more space! 3851 // Initialize some new operands. 3852 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3853 setNumHungOffUseOperands(OpNo+1); 3854 getOperandList()[OpNo] = DestBB; 3855 } 3856 3857 /// removeDestination - This method removes the specified successor from the 3858 /// indirectbr instruction. 3859 void IndirectBrInst::removeDestination(unsigned idx) { 3860 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3861 3862 unsigned NumOps = getNumOperands(); 3863 Use *OL = getOperandList(); 3864 3865 // Replace this value with the last one. 3866 OL[idx+1] = OL[NumOps-1]; 3867 3868 // Nuke the last value. 3869 OL[NumOps-1].set(nullptr); 3870 setNumHungOffUseOperands(NumOps-1); 3871 } 3872 3873 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { 3874 return getSuccessor(idx); 3875 } 3876 unsigned IndirectBrInst::getNumSuccessorsV() const { 3877 return getNumSuccessors(); 3878 } 3879 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3880 setSuccessor(idx, B); 3881 } 3882 3883 //===----------------------------------------------------------------------===// 3884 // cloneImpl() implementations 3885 //===----------------------------------------------------------------------===// 3886 3887 // Define these methods here so vtables don't get emitted into every translation 3888 // unit that uses these classes. 3889 3890 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 3891 return new (getNumOperands()) GetElementPtrInst(*this); 3892 } 3893 3894 BinaryOperator *BinaryOperator::cloneImpl() const { 3895 return Create(getOpcode(), Op<0>(), Op<1>()); 3896 } 3897 3898 FCmpInst *FCmpInst::cloneImpl() const { 3899 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3900 } 3901 3902 ICmpInst *ICmpInst::cloneImpl() const { 3903 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3904 } 3905 3906 ExtractValueInst *ExtractValueInst::cloneImpl() const { 3907 return new ExtractValueInst(*this); 3908 } 3909 3910 InsertValueInst *InsertValueInst::cloneImpl() const { 3911 return new InsertValueInst(*this); 3912 } 3913 3914 AllocaInst *AllocaInst::cloneImpl() const { 3915 AllocaInst *Result = new AllocaInst(getAllocatedType(), 3916 (Value *)getOperand(0), getAlignment()); 3917 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 3918 Result->setSwiftError(isSwiftError()); 3919 return Result; 3920 } 3921 3922 LoadInst *LoadInst::cloneImpl() const { 3923 return new LoadInst(getOperand(0), Twine(), isVolatile(), 3924 getAlignment(), getOrdering(), getSynchScope()); 3925 } 3926 3927 StoreInst *StoreInst::cloneImpl() const { 3928 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3929 getAlignment(), getOrdering(), getSynchScope()); 3930 3931 } 3932 3933 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 3934 AtomicCmpXchgInst *Result = 3935 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3936 getSuccessOrdering(), getFailureOrdering(), 3937 getSynchScope()); 3938 Result->setVolatile(isVolatile()); 3939 Result->setWeak(isWeak()); 3940 return Result; 3941 } 3942 3943 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 3944 AtomicRMWInst *Result = 3945 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), 3946 getOrdering(), getSynchScope()); 3947 Result->setVolatile(isVolatile()); 3948 return Result; 3949 } 3950 3951 FenceInst *FenceInst::cloneImpl() const { 3952 return new FenceInst(getContext(), getOrdering(), getSynchScope()); 3953 } 3954 3955 TruncInst *TruncInst::cloneImpl() const { 3956 return new TruncInst(getOperand(0), getType()); 3957 } 3958 3959 ZExtInst *ZExtInst::cloneImpl() const { 3960 return new ZExtInst(getOperand(0), getType()); 3961 } 3962 3963 SExtInst *SExtInst::cloneImpl() const { 3964 return new SExtInst(getOperand(0), getType()); 3965 } 3966 3967 FPTruncInst *FPTruncInst::cloneImpl() const { 3968 return new FPTruncInst(getOperand(0), getType()); 3969 } 3970 3971 FPExtInst *FPExtInst::cloneImpl() const { 3972 return new FPExtInst(getOperand(0), getType()); 3973 } 3974 3975 UIToFPInst *UIToFPInst::cloneImpl() const { 3976 return new UIToFPInst(getOperand(0), getType()); 3977 } 3978 3979 SIToFPInst *SIToFPInst::cloneImpl() const { 3980 return new SIToFPInst(getOperand(0), getType()); 3981 } 3982 3983 FPToUIInst *FPToUIInst::cloneImpl() const { 3984 return new FPToUIInst(getOperand(0), getType()); 3985 } 3986 3987 FPToSIInst *FPToSIInst::cloneImpl() const { 3988 return new FPToSIInst(getOperand(0), getType()); 3989 } 3990 3991 PtrToIntInst *PtrToIntInst::cloneImpl() const { 3992 return new PtrToIntInst(getOperand(0), getType()); 3993 } 3994 3995 IntToPtrInst *IntToPtrInst::cloneImpl() const { 3996 return new IntToPtrInst(getOperand(0), getType()); 3997 } 3998 3999 BitCastInst *BitCastInst::cloneImpl() const { 4000 return new BitCastInst(getOperand(0), getType()); 4001 } 4002 4003 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4004 return new AddrSpaceCastInst(getOperand(0), getType()); 4005 } 4006 4007 CallInst *CallInst::cloneImpl() const { 4008 if (hasOperandBundles()) { 4009 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4010 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4011 } 4012 return new(getNumOperands()) CallInst(*this); 4013 } 4014 4015 SelectInst *SelectInst::cloneImpl() const { 4016 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4017 } 4018 4019 VAArgInst *VAArgInst::cloneImpl() const { 4020 return new VAArgInst(getOperand(0), getType()); 4021 } 4022 4023 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4024 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4025 } 4026 4027 InsertElementInst *InsertElementInst::cloneImpl() const { 4028 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4029 } 4030 4031 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4032 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 4033 } 4034 4035 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4036 4037 LandingPadInst *LandingPadInst::cloneImpl() const { 4038 return new LandingPadInst(*this); 4039 } 4040 4041 ReturnInst *ReturnInst::cloneImpl() const { 4042 return new(getNumOperands()) ReturnInst(*this); 4043 } 4044 4045 BranchInst *BranchInst::cloneImpl() const { 4046 return new(getNumOperands()) BranchInst(*this); 4047 } 4048 4049 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4050 4051 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4052 return new IndirectBrInst(*this); 4053 } 4054 4055 InvokeInst *InvokeInst::cloneImpl() const { 4056 if (hasOperandBundles()) { 4057 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4058 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4059 } 4060 return new(getNumOperands()) InvokeInst(*this); 4061 } 4062 4063 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4064 4065 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4066 return new (getNumOperands()) CleanupReturnInst(*this); 4067 } 4068 4069 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4070 return new (getNumOperands()) CatchReturnInst(*this); 4071 } 4072 4073 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4074 return new CatchSwitchInst(*this); 4075 } 4076 4077 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4078 return new (getNumOperands()) FuncletPadInst(*this); 4079 } 4080 4081 UnreachableInst *UnreachableInst::cloneImpl() const { 4082 LLVMContext &Context = getContext(); 4083 return new UnreachableInst(Context); 4084 } 4085