Home | History | Annotate | Download | only in MCTargetDesc
      1 //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Utility functions for Hexagon specific MCInst queries
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
     15 #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
     16 
     17 #include "HexagonMCExpr.h"
     18 #include "llvm/MC/MCInst.h"
     19 
     20 namespace llvm {
     21 class HexagonMCChecker;
     22 class MCContext;
     23 class MCInstrDesc;
     24 class MCInstrInfo;
     25 class MCInst;
     26 class MCOperand;
     27 class MCSubtargetInfo;
     28 namespace HexagonII {
     29 enum class MemAccessSize;
     30 }
     31 class DuplexCandidate {
     32 public:
     33   unsigned packetIndexI, packetIndexJ, iClass;
     34   DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
     35       : packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
     36 };
     37 namespace HexagonMCInstrInfo {
     38 size_t const innerLoopOffset = 0;
     39 int64_t const innerLoopMask = 1 << innerLoopOffset;
     40 
     41 size_t const outerLoopOffset = 1;
     42 int64_t const outerLoopMask = 1 << outerLoopOffset;
     43 
     44 // do not reorder memory load/stores by default load/stores are re-ordered
     45 // and by default loads can be re-ordered
     46 size_t const memReorderDisabledOffset = 2;
     47 int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;
     48 
     49 // allow re-ordering of memory stores by default stores cannot be re-ordered
     50 size_t const memStoreReorderEnabledOffset = 3;
     51 int64_t const memStoreReorderEnabledMask = 1 << memStoreReorderEnabledOffset;
     52 
     53 size_t const bundleInstructionsOffset = 1;
     54 
     55 void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
     56 void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
     57                       MCInst const &MCI);
     58 
     59 // Returns a iterator range of instructions in this bundle
     60 iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
     61 
     62 // Returns the number of instructions in the bundle
     63 size_t bundleSize(MCInst const &MCI);
     64 
     65 // Put the packet in to canonical form, compound, duplex, pad, and shuffle
     66 bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
     67                         MCContext &Context, MCInst &MCB,
     68                         HexagonMCChecker *Checker);
     69 
     70 // Clamp off upper 26 bits of extendable operand for emission
     71 void clampExtended(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI);
     72 
     73 MCInst createBundle();
     74 
     75 // Return the extender for instruction at Index or nullptr if none
     76 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
     77 void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
     78                     MCInst const &MCI);
     79 
     80 // Create a duplex instruction given the two subinsts
     81 MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
     82                      MCInst const &inst1);
     83 MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
     84                       MCOperand const &MO);
     85 
     86 // Convert this instruction in to a duplex subinst
     87 MCInst deriveSubInst(MCInst const &Inst);
     88 
     89 // Return the extender for instruction at Index or nullptr if none
     90 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
     91 
     92 // Return memory access size
     93 HexagonII::MemAccessSize getAccessSize(MCInstrInfo const &MCII,
     94                                        MCInst const &MCI);
     95 
     96 // Return number of bits in the constant extended operand.
     97 unsigned getBitCount(MCInstrInfo const &MCII, MCInst const &MCI);
     98 
     99 // Return constant extended operand number.
    100 unsigned short getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI);
    101 
    102 MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
    103 
    104 // Return which duplex group this instruction belongs to
    105 unsigned getDuplexCandidateGroup(MCInst const &MI);
    106 
    107 // Return a list of all possible instruction duplex combinations
    108 SmallVector<DuplexCandidate, 8> getDuplexPossibilties(MCInstrInfo const &MCII,
    109                                                       MCInst const &MCB);
    110 unsigned getDuplexRegisterNumbering(unsigned Reg);
    111 
    112 MCExpr const &getExpr(MCExpr const &Expr);
    113 
    114 // Return the index of the extendable operand
    115 unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
    116 
    117 // Return a reference to the extendable operand
    118 MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
    119                                       MCInst const &MCI);
    120 
    121 // Return the implicit alignment of the extendable operand
    122 unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);
    123 
    124 // Return the number of logical bits of the extendable operand
    125 unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);
    126 
    127 // Return the max value that a constant extendable operand can have
    128 // without being extended.
    129 int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);
    130 
    131 // Return the min value that a constant extendable operand can have
    132 // without being extended.
    133 int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);
    134 
    135 // Return instruction name
    136 char const *getName(MCInstrInfo const &MCII, MCInst const &MCI);
    137 
    138 // Return the operand index for the new value.
    139 unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
    140 
    141 // Return the operand that consumes or produces a new value.
    142 MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
    143 unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
    144 MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
    145                                      MCInst const &MCI);
    146 
    147 int getSubTarget(MCInstrInfo const &MCII, MCInst const &MCI);
    148 
    149 // Return the Hexagon ISA class for the insn.
    150 unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
    151 
    152 /// Return the slots used by the insn.
    153 unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
    154                   MCInst const &MCI);
    155 
    156 // Does the packet have an extender for the instruction at Index
    157 bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
    158 
    159 bool hasImmExt(MCInst const &MCI);
    160 
    161 // Return whether the instruction is a legal new-value producer.
    162 bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
    163 bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
    164 
    165 // Return the instruction at Index
    166 MCInst const &instruction(MCInst const &MCB, size_t Index);
    167 
    168 // Returns whether this MCInst is a wellformed bundle
    169 bool isBundle(MCInst const &MCI);
    170 
    171 // Return whether the insn is an actual insn.
    172 bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
    173 bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
    174 
    175 // Return the duplex iclass given the two duplex classes
    176 unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
    177 
    178 int64_t minConstant(MCInst const &MCI, size_t Index);
    179 template <unsigned N, unsigned S>
    180 bool inRange(MCInst const &MCI, size_t Index) {
    181   return isShiftedUInt<N, S>(minConstant(MCI, Index));
    182 }
    183 template <unsigned N, unsigned S>
    184 bool inSRange(MCInst const &MCI, size_t Index) {
    185   return isShiftedInt<N, S>(minConstant(MCI, Index));
    186 }
    187 template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
    188   return isUInt<N>(minConstant(MCI, Index));
    189 }
    190 
    191 // Return whether the instruction needs to be constant extended.
    192 bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
    193 
    194 // Is this double register suitable for use in a duplex subinst
    195 bool isDblRegForSubInst(unsigned Reg);
    196 
    197 // Is this a duplex instruction
    198 bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
    199 
    200 // Can these instructions be duplexed
    201 bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
    202 
    203 // Can these duplex classes be combine in to a duplex instruction
    204 bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
    205 
    206 // Return true if the insn may be extended based on the operand value.
    207 bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
    208 
    209 // Return whether the instruction must be always extended.
    210 bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);
    211 
    212 /// Return whether it is a floating-point insn.
    213 bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);
    214 
    215 // Returns whether this instruction is an immediate extender
    216 bool isImmext(MCInst const &MCI);
    217 
    218 // Returns whether this bundle is an endloop0
    219 bool isInnerLoop(MCInst const &MCI);
    220 
    221 // Is this an integer register
    222 bool isIntReg(unsigned Reg);
    223 
    224 // Is this register suitable for use in a duplex subinst
    225 bool isIntRegForSubInst(unsigned Reg);
    226 bool isMemReorderDisabled(MCInst const &MCI);
    227 bool isMemStoreReorderEnabled(MCInst const &MCI);
    228 
    229 // Return whether the insn is a new-value consumer.
    230 bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
    231 
    232 // Return true if the operand can be constant extended.
    233 bool isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI,
    234                        unsigned short OperandNum);
    235 
    236 // Can these two instructions be duplexed
    237 bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
    238                          bool ExtendedA, MCInst const &MIb, bool ExtendedB,
    239                          bool bisReversable);
    240 
    241 // Returns whether this bundle is an endloop1
    242 bool isOuterLoop(MCInst const &MCI);
    243 
    244 // Return whether this instruction is predicated
    245 bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
    246 bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
    247 bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
    248 
    249 // Return whether the predicate sense is true
    250 bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
    251 
    252 // Is this a predicate register
    253 bool isPredReg(unsigned Reg);
    254 
    255 // Return whether the insn is a prefix.
    256 bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
    257 
    258 // Return whether the insn is solo, i.e., cannot be in a packet.
    259 bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);
    260 
    261 /// Return whether the insn can be packaged only with A and X-type insns.
    262 bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
    263 
    264 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
    265 bool isSoloAin1(MCInstrInfo const &MCII, MCInst const &MCI);
    266 bool isSubInstruction(MCInst const &MCI);
    267 bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
    268 bool mustExtend(MCExpr const &Expr);
    269 bool mustNotExtend(MCExpr const &Expr);
    270 
    271 // Pad the bundle with nops to satisfy endloop requirements
    272 void padEndloop(MCContext &Context, MCInst &MCI);
    273 
    274 bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
    275 
    276 // Replace the instructions inside MCB, represented by Candidate
    277 void replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate);
    278 
    279 bool s23_2_reloc(MCExpr const &Expr);
    280 // Marks a bundle as endloop0
    281 void setInnerLoop(MCInst &MCI);
    282 void setMemReorderDisabled(MCInst &MCI);
    283 void setMemStoreReorderEnabled(MCInst &MCI);
    284 void setMustExtend(MCExpr const &Expr, bool Val = true);
    285 void setMustNotExtend(MCExpr const &Expr, bool Val = true);
    286 void setS23_2_reloc(MCExpr const &Expr, bool Val = true);
    287 
    288 // Marks a bundle as endloop1
    289 void setOuterLoop(MCInst &MCI);
    290 
    291 // Would duplexing this instruction create a requirement to extend
    292 bool subInstWouldBeExtended(MCInst const &potentialDuplex);
    293 unsigned SubregisterBit(unsigned Consumer, unsigned Producer,
    294                         unsigned Producer2);
    295 
    296 // Attempt to find and replace compound pairs
    297 void tryCompound(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI);
    298 }
    299 }
    300 
    301 #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
    302