Home | History | Annotate | Download | only in Mips
      1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //
     11 // This pass is used to make Pc relative loads of constants.
     12 // For now, only Mips16 will use this.
     13 //
     14 // Loading constants inline is expensive on Mips16 and it's in general better
     15 // to place the constant nearby in code space and then it can be loaded with a
     16 // simple 16 bit load instruction.
     17 //
     18 // The constants can be not just numbers but addresses of functions and labels.
     19 // This can be particularly helpful in static relocation mode for embedded
     20 // non-linux targets.
     21 //
     22 //
     23 
     24 #include "Mips.h"
     25 #include "MCTargetDesc/MipsBaseInfo.h"
     26 #include "Mips16InstrInfo.h"
     27 #include "MipsMachineFunction.h"
     28 #include "MipsTargetMachine.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/CodeGen/MachineBasicBlock.h"
     31 #include "llvm/CodeGen/MachineConstantPool.h"
     32 #include "llvm/CodeGen/MachineFunctionPass.h"
     33 #include "llvm/CodeGen/MachineInstrBuilder.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/InstIterator.h"
     37 #include "llvm/Support/CommandLine.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/Format.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Target/TargetInstrInfo.h"
     43 #include "llvm/Target/TargetMachine.h"
     44 #include "llvm/Target/TargetRegisterInfo.h"
     45 #include <algorithm>
     46 
     47 using namespace llvm;
     48 
     49 #define DEBUG_TYPE "mips-constant-islands"
     50 
     51 STATISTIC(NumCPEs,       "Number of constpool entries");
     52 STATISTIC(NumSplit,      "Number of uncond branches inserted");
     53 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
     54 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
     55 
     56 // FIXME: This option should be removed once it has received sufficient testing.
     57 static cl::opt<bool>
     58 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
     59           cl::desc("Align constant islands in code"));
     60 
     61 
     62 // Rather than do make check tests with huge amounts of code, we force
     63 // the test to use this amount.
     64 //
     65 static cl::opt<int> ConstantIslandsSmallOffset(
     66   "mips-constant-islands-small-offset",
     67   cl::init(0),
     68   cl::desc("Make small offsets be this amount for testing purposes"),
     69   cl::Hidden);
     70 
     71 //
     72 // For testing purposes we tell it to not use relaxed load forms so that it
     73 // will split blocks.
     74 //
     75 static cl::opt<bool> NoLoadRelaxation(
     76   "mips-constant-islands-no-load-relaxation",
     77   cl::init(false),
     78   cl::desc("Don't relax loads to long loads - for testing purposes"),
     79   cl::Hidden);
     80 
     81 static unsigned int branchTargetOperand(MachineInstr *MI) {
     82   switch (MI->getOpcode()) {
     83   case Mips::Bimm16:
     84   case Mips::BimmX16:
     85   case Mips::Bteqz16:
     86   case Mips::BteqzX16:
     87   case Mips::Btnez16:
     88   case Mips::BtnezX16:
     89   case Mips::JalB16:
     90     return 0;
     91   case Mips::BeqzRxImm16:
     92   case Mips::BeqzRxImmX16:
     93   case Mips::BnezRxImm16:
     94   case Mips::BnezRxImmX16:
     95     return 1;
     96   }
     97   llvm_unreachable("Unknown branch type");
     98 }
     99 
    100 static unsigned int longformBranchOpcode(unsigned int Opcode) {
    101   switch (Opcode) {
    102   case Mips::Bimm16:
    103   case Mips::BimmX16:
    104     return Mips::BimmX16;
    105   case Mips::Bteqz16:
    106   case Mips::BteqzX16:
    107     return Mips::BteqzX16;
    108   case Mips::Btnez16:
    109   case Mips::BtnezX16:
    110     return Mips::BtnezX16;
    111   case Mips::JalB16:
    112     return Mips::JalB16;
    113   case Mips::BeqzRxImm16:
    114   case Mips::BeqzRxImmX16:
    115     return Mips::BeqzRxImmX16;
    116   case Mips::BnezRxImm16:
    117   case Mips::BnezRxImmX16:
    118     return Mips::BnezRxImmX16;
    119   }
    120   llvm_unreachable("Unknown branch type");
    121 }
    122 
    123 //
    124 // FIXME: need to go through this whole constant islands port and check the math
    125 // for branch ranges and clean this up and make some functions to calculate things
    126 // that are done many times identically.
    127 // Need to refactor some of the code to call this routine.
    128 //
    129 static unsigned int branchMaxOffsets(unsigned int Opcode) {
    130   unsigned Bits, Scale;
    131   switch (Opcode) {
    132     case Mips::Bimm16:
    133       Bits = 11;
    134       Scale = 2;
    135       break;
    136     case Mips::BimmX16:
    137       Bits = 16;
    138       Scale = 2;
    139       break;
    140     case Mips::BeqzRxImm16:
    141       Bits = 8;
    142       Scale = 2;
    143       break;
    144     case Mips::BeqzRxImmX16:
    145       Bits = 16;
    146       Scale = 2;
    147       break;
    148     case Mips::BnezRxImm16:
    149       Bits = 8;
    150       Scale = 2;
    151       break;
    152     case Mips::BnezRxImmX16:
    153       Bits = 16;
    154       Scale = 2;
    155       break;
    156     case Mips::Bteqz16:
    157       Bits = 8;
    158       Scale = 2;
    159       break;
    160     case Mips::BteqzX16:
    161       Bits = 16;
    162       Scale = 2;
    163       break;
    164     case Mips::Btnez16:
    165       Bits = 8;
    166       Scale = 2;
    167       break;
    168     case Mips::BtnezX16:
    169       Bits = 16;
    170       Scale = 2;
    171       break;
    172     default:
    173       llvm_unreachable("Unknown branch type");
    174   }
    175   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    176   return MaxOffs;
    177 }
    178 
    179 namespace {
    180 
    181 
    182   typedef MachineBasicBlock::iterator Iter;
    183   typedef MachineBasicBlock::reverse_iterator ReverseIter;
    184 
    185   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
    186   /// requires constant pool entries to be scattered among the instructions
    187   /// inside a function.  To do this, it completely ignores the normal LLVM
    188   /// constant pool; instead, it places constants wherever it feels like with
    189   /// special instructions.
    190   ///
    191   /// The terminology used in this pass includes:
    192   ///   Islands - Clumps of constants placed in the function.
    193   ///   Water   - Potential places where an island could be formed.
    194   ///   CPE     - A constant pool entry that has been placed somewhere, which
    195   ///             tracks a list of users.
    196 
    197   class MipsConstantIslands : public MachineFunctionPass {
    198 
    199     /// BasicBlockInfo - Information about the offset and size of a single
    200     /// basic block.
    201     struct BasicBlockInfo {
    202       /// Offset - Distance from the beginning of the function to the beginning
    203       /// of this basic block.
    204       ///
    205       /// Offsets are computed assuming worst case padding before an aligned
    206       /// block. This means that subtracting basic block offsets always gives a
    207       /// conservative estimate of the real distance which may be smaller.
    208       ///
    209       /// Because worst case padding is used, the computed offset of an aligned
    210       /// block may not actually be aligned.
    211       unsigned Offset;
    212 
    213       /// Size - Size of the basic block in bytes.  If the block contains
    214       /// inline assembly, this is a worst case estimate.
    215       ///
    216       /// The size does not include any alignment padding whether from the
    217       /// beginning of the block, or from an aligned jump table at the end.
    218       unsigned Size;
    219 
    220       // FIXME: ignore LogAlign for this patch
    221       //
    222       unsigned postOffset(unsigned LogAlign = 0) const {
    223         unsigned PO = Offset + Size;
    224         return PO;
    225       }
    226 
    227       BasicBlockInfo() : Offset(0), Size(0) {}
    228 
    229     };
    230 
    231     std::vector<BasicBlockInfo> BBInfo;
    232 
    233     /// WaterList - A sorted list of basic blocks where islands could be placed
    234     /// (i.e. blocks that don't fall through to the following block, due
    235     /// to a return, unreachable, or unconditional branch).
    236     std::vector<MachineBasicBlock*> WaterList;
    237 
    238     /// NewWaterList - The subset of WaterList that was created since the
    239     /// previous iteration by inserting unconditional branches.
    240     SmallSet<MachineBasicBlock*, 4> NewWaterList;
    241 
    242     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
    243 
    244     /// CPUser - One user of a constant pool, keeping the machine instruction
    245     /// pointer, the constant pool being referenced, and the max displacement
    246     /// allowed from the instruction to the CP.  The HighWaterMark records the
    247     /// highest basic block where a new CPEntry can be placed.  To ensure this
    248     /// pass terminates, the CP entries are initially placed at the end of the
    249     /// function and then move monotonically to lower addresses.  The
    250     /// exception to this rule is when the current CP entry for a particular
    251     /// CPUser is out of range, but there is another CP entry for the same
    252     /// constant value in range.  We want to use the existing in-range CP
    253     /// entry, but if it later moves out of range, the search for new water
    254     /// should resume where it left off.  The HighWaterMark is used to record
    255     /// that point.
    256     struct CPUser {
    257       MachineInstr *MI;
    258       MachineInstr *CPEMI;
    259       MachineBasicBlock *HighWaterMark;
    260     private:
    261       unsigned MaxDisp;
    262       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
    263                                 // with different displacements
    264       unsigned LongFormOpcode;
    265     public:
    266       bool NegOk;
    267       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
    268              bool neg,
    269              unsigned longformmaxdisp, unsigned longformopcode)
    270         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
    271           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
    272           NegOk(neg){
    273         HighWaterMark = CPEMI->getParent();
    274       }
    275       /// getMaxDisp - Returns the maximum displacement supported by MI.
    276       unsigned getMaxDisp() const {
    277         unsigned xMaxDisp = ConstantIslandsSmallOffset?
    278                             ConstantIslandsSmallOffset: MaxDisp;
    279         return xMaxDisp;
    280       }
    281       void setMaxDisp(unsigned val) {
    282         MaxDisp = val;
    283       }
    284       unsigned getLongFormMaxDisp() const {
    285         return LongFormMaxDisp;
    286       }
    287       unsigned getLongFormOpcode() const {
    288           return LongFormOpcode;
    289       }
    290     };
    291 
    292     /// CPUsers - Keep track of all of the machine instructions that use various
    293     /// constant pools and their max displacement.
    294     std::vector<CPUser> CPUsers;
    295 
    296   /// CPEntry - One per constant pool entry, keeping the machine instruction
    297   /// pointer, the constpool index, and the number of CPUser's which
    298   /// reference this entry.
    299   struct CPEntry {
    300     MachineInstr *CPEMI;
    301     unsigned CPI;
    302     unsigned RefCount;
    303     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
    304       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
    305   };
    306 
    307   /// CPEntries - Keep track of all of the constant pool entry machine
    308   /// instructions. For each original constpool index (i.e. those that
    309   /// existed upon entry to this pass), it keeps a vector of entries.
    310   /// Original elements are cloned as we go along; the clones are
    311   /// put in the vector of the original element, but have distinct CPIs.
    312   std::vector<std::vector<CPEntry> > CPEntries;
    313 
    314   /// ImmBranch - One per immediate branch, keeping the machine instruction
    315   /// pointer, conditional or unconditional, the max displacement,
    316   /// and (if isCond is true) the corresponding unconditional branch
    317   /// opcode.
    318   struct ImmBranch {
    319     MachineInstr *MI;
    320     unsigned MaxDisp : 31;
    321     bool isCond : 1;
    322     int UncondBr;
    323     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
    324       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
    325   };
    326 
    327   /// ImmBranches - Keep track of all the immediate branch instructions.
    328   ///
    329   std::vector<ImmBranch> ImmBranches;
    330 
    331   /// HasFarJump - True if any far jump instruction has been emitted during
    332   /// the branch fix up pass.
    333   bool HasFarJump;
    334 
    335   const MipsSubtarget *STI;
    336   const Mips16InstrInfo *TII;
    337   MipsFunctionInfo *MFI;
    338   MachineFunction *MF;
    339   MachineConstantPool *MCP;
    340 
    341   unsigned PICLabelUId;
    342   bool PrescannedForConstants;
    343 
    344   void initPICLabelUId(unsigned UId) {
    345     PICLabelUId = UId;
    346   }
    347 
    348 
    349   unsigned createPICLabelUId() {
    350     return PICLabelUId++;
    351   }
    352 
    353   public:
    354     static char ID;
    355     MipsConstantIslands()
    356         : MachineFunctionPass(ID), STI(nullptr), MF(nullptr), MCP(nullptr),
    357           PrescannedForConstants(false) {}
    358 
    359     const char *getPassName() const override {
    360       return "Mips Constant Islands";
    361     }
    362 
    363     bool runOnMachineFunction(MachineFunction &F) override;
    364 
    365     MachineFunctionProperties getRequiredProperties() const override {
    366       return MachineFunctionProperties().set(
    367           MachineFunctionProperties::Property::AllVRegsAllocated);
    368     }
    369 
    370     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
    371     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    372     unsigned getCPELogAlign(const MachineInstr &CPEMI);
    373     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
    374     unsigned getOffsetOf(MachineInstr *MI) const;
    375     unsigned getUserOffset(CPUser&) const;
    376     void dumpBBs();
    377 
    378     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    379                          unsigned Disp, bool NegativeOK);
    380     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    381                          const CPUser &U);
    382 
    383     void computeBlockSize(MachineBasicBlock *MBB);
    384     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
    385     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    386     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
    387     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
    388     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
    389     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
    390     bool findAvailableWater(CPUser&U, unsigned UserOffset,
    391                             water_iterator &WaterIter);
    392     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
    393                         MachineBasicBlock *&NewMBB);
    394     bool handleConstantPoolUser(unsigned CPUserIndex);
    395     void removeDeadCPEMI(MachineInstr *CPEMI);
    396     bool removeUnusedCPEntries();
    397     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
    398                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
    399                           bool DoDump = false);
    400     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
    401                         CPUser &U, unsigned &Growth);
    402     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    403     bool fixupImmediateBr(ImmBranch &Br);
    404     bool fixupConditionalBr(ImmBranch &Br);
    405     bool fixupUnconditionalBr(ImmBranch &Br);
    406 
    407     void prescanForConstants();
    408 
    409   private:
    410 
    411   };
    412 
    413   char MipsConstantIslands::ID = 0;
    414 } // end of anonymous namespace
    415 
    416 bool MipsConstantIslands::isOffsetInRange
    417   (unsigned UserOffset, unsigned TrialOffset,
    418    const CPUser &U) {
    419   return isOffsetInRange(UserOffset, TrialOffset,
    420                          U.getMaxDisp(), U.NegOk);
    421 }
    422 /// print block size and offset information - debugging
    423 void MipsConstantIslands::dumpBBs() {
    424   DEBUG({
    425     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
    426       const BasicBlockInfo &BBI = BBInfo[J];
    427       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
    428              << format(" size=%#x\n", BBInfo[J].Size);
    429     }
    430   });
    431 }
    432 /// Returns a pass that converts branches to long branches.
    433 FunctionPass *llvm::createMipsConstantIslandPass() {
    434   return new MipsConstantIslands();
    435 }
    436 
    437 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
    438   // The intention is for this to be a mips16 only pass for now
    439   // FIXME:
    440   MF = &mf;
    441   MCP = mf.getConstantPool();
    442   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
    443   DEBUG(dbgs() << "constant island machine function " << "\n");
    444   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
    445     return false;
    446   }
    447   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
    448   MFI = MF->getInfo<MipsFunctionInfo>();
    449   DEBUG(dbgs() << "constant island processing " << "\n");
    450   //
    451   // will need to make predermination if there is any constants we need to
    452   // put in constant islands. TBD.
    453   //
    454   if (!PrescannedForConstants) prescanForConstants();
    455 
    456   HasFarJump = false;
    457   // This pass invalidates liveness information when it splits basic blocks.
    458   MF->getRegInfo().invalidateLiveness();
    459 
    460   // Renumber all of the machine basic blocks in the function, guaranteeing that
    461   // the numbers agree with the position of the block in the function.
    462   MF->RenumberBlocks();
    463 
    464   bool MadeChange = false;
    465 
    466   // Perform the initial placement of the constant pool entries.  To start with,
    467   // we put them all at the end of the function.
    468   std::vector<MachineInstr*> CPEMIs;
    469   if (!MCP->isEmpty())
    470     doInitialPlacement(CPEMIs);
    471 
    472   /// The next UID to take is the first unused one.
    473   initPICLabelUId(CPEMIs.size());
    474 
    475   // Do the initial scan of the function, building up information about the
    476   // sizes of each block, the location of all the water, and finding all of the
    477   // constant pool users.
    478   initializeFunctionInfo(CPEMIs);
    479   CPEMIs.clear();
    480   DEBUG(dumpBBs());
    481 
    482   /// Remove dead constant pool entries.
    483   MadeChange |= removeUnusedCPEntries();
    484 
    485   // Iteratively place constant pool entries and fix up branches until there
    486   // is no change.
    487   unsigned NoCPIters = 0, NoBRIters = 0;
    488   (void)NoBRIters;
    489   while (true) {
    490     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
    491     bool CPChange = false;
    492     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
    493       CPChange |= handleConstantPoolUser(i);
    494     if (CPChange && ++NoCPIters > 30)
    495       report_fatal_error("Constant Island pass failed to converge!");
    496     DEBUG(dumpBBs());
    497 
    498     // Clear NewWaterList now.  If we split a block for branches, it should
    499     // appear as "new water" for the next iteration of constant pool placement.
    500     NewWaterList.clear();
    501 
    502     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
    503     bool BRChange = false;
    504     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
    505       BRChange |= fixupImmediateBr(ImmBranches[i]);
    506     if (BRChange && ++NoBRIters > 30)
    507       report_fatal_error("Branch Fix Up pass failed to converge!");
    508     DEBUG(dumpBBs());
    509     if (!CPChange && !BRChange)
    510       break;
    511     MadeChange = true;
    512   }
    513 
    514   DEBUG(dbgs() << '\n'; dumpBBs());
    515 
    516   BBInfo.clear();
    517   WaterList.clear();
    518   CPUsers.clear();
    519   CPEntries.clear();
    520   ImmBranches.clear();
    521   return MadeChange;
    522 }
    523 
    524 /// doInitialPlacement - Perform the initial placement of the constant pool
    525 /// entries.  To start with, we put them all at the end of the function.
    526 void
    527 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
    528   // Create the basic block to hold the CPE's.
    529   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
    530   MF->push_back(BB);
    531 
    532 
    533   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
    534   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
    535 
    536   // Mark the basic block as required by the const-pool.
    537   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
    538   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
    539 
    540   // The function needs to be as aligned as the basic blocks. The linker may
    541   // move functions around based on their alignment.
    542   MF->ensureAlignment(BB->getAlignment());
    543 
    544   // Order the entries in BB by descending alignment.  That ensures correct
    545   // alignment of all entries as long as BB is sufficiently aligned.  Keep
    546   // track of the insertion point for each alignment.  We are going to bucket
    547   // sort the entries as they are created.
    548   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
    549 
    550   // Add all of the constants from the constant pool to the end block, use an
    551   // identity mapping of CPI's to CPE's.
    552   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
    553 
    554   const DataLayout &TD = MF->getDataLayout();
    555   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    556     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
    557     assert(Size >= 4 && "Too small constant pool entry");
    558     unsigned Align = CPs[i].getAlignment();
    559     assert(isPowerOf2_32(Align) && "Invalid alignment");
    560     // Verify that all constant pool entries are a multiple of their alignment.
    561     // If not, we would have to pad them out so that instructions stay aligned.
    562     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
    563 
    564     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
    565     unsigned LogAlign = Log2_32(Align);
    566     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
    567 
    568     MachineInstr *CPEMI =
    569       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
    570         .addImm(i).addConstantPoolIndex(i).addImm(Size);
    571 
    572     CPEMIs.push_back(CPEMI);
    573 
    574     // Ensure that future entries with higher alignment get inserted before
    575     // CPEMI. This is bucket sort with iterators.
    576     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
    577       if (InsPoint[a] == InsAt)
    578         InsPoint[a] = CPEMI;
    579     // Add a new CPEntry, but no corresponding CPUser yet.
    580     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
    581     ++NumCPEs;
    582     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
    583                  << Size << ", align = " << Align <<'\n');
    584   }
    585   DEBUG(BB->dump());
    586 }
    587 
    588 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
    589 /// into the block immediately after it.
    590 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
    591   // Get the next machine basic block in the function.
    592   MachineFunction::iterator MBBI = MBB->getIterator();
    593   // Can't fall off end of function.
    594   if (std::next(MBBI) == MBB->getParent()->end())
    595     return false;
    596 
    597   MachineBasicBlock *NextBB = &*std::next(MBBI);
    598   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
    599        E = MBB->succ_end(); I != E; ++I)
    600     if (*I == NextBB)
    601       return true;
    602 
    603   return false;
    604 }
    605 
    606 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
    607 /// look up the corresponding CPEntry.
    608 MipsConstantIslands::CPEntry
    609 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
    610                                         const MachineInstr *CPEMI) {
    611   std::vector<CPEntry> &CPEs = CPEntries[CPI];
    612   // Number of entries per constpool index should be small, just do a
    613   // linear search.
    614   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    615     if (CPEs[i].CPEMI == CPEMI)
    616       return &CPEs[i];
    617   }
    618   return nullptr;
    619 }
    620 
    621 /// getCPELogAlign - Returns the required alignment of the constant pool entry
    622 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
    623 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
    624   assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
    625 
    626   // Everything is 4-byte aligned unless AlignConstantIslands is set.
    627   if (!AlignConstantIslands)
    628     return 2;
    629 
    630   unsigned CPI = CPEMI.getOperand(1).getIndex();
    631   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
    632   unsigned Align = MCP->getConstants()[CPI].getAlignment();
    633   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
    634   return Log2_32(Align);
    635 }
    636 
    637 /// initializeFunctionInfo - Do the initial scan of the function, building up
    638 /// information about the sizes of each block, the location of all the water,
    639 /// and finding all of the constant pool users.
    640 void MipsConstantIslands::
    641 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
    642   BBInfo.clear();
    643   BBInfo.resize(MF->getNumBlockIDs());
    644 
    645   // First thing, compute the size of all basic blocks, and see if the function
    646   // has any inline assembly in it. If so, we have to be conservative about
    647   // alignment assumptions, as we don't know for sure the size of any
    648   // instructions in the inline assembly.
    649   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
    650     computeBlockSize(&*I);
    651 
    652 
    653   // Compute block offsets.
    654   adjustBBOffsetsAfter(&MF->front());
    655 
    656   // Now go back through the instructions and build up our data structures.
    657   for (MachineBasicBlock &MBB : *MF) {
    658     // If this block doesn't fall through into the next MBB, then this is
    659     // 'water' that a constant pool island could be placed.
    660     if (!BBHasFallthrough(&MBB))
    661       WaterList.push_back(&MBB);
    662     for (MachineInstr &MI : MBB) {
    663       if (MI.isDebugValue())
    664         continue;
    665 
    666       int Opc = MI.getOpcode();
    667       if (MI.isBranch()) {
    668         bool isCond = false;
    669         unsigned Bits = 0;
    670         unsigned Scale = 1;
    671         int UOpc = Opc;
    672         switch (Opc) {
    673         default:
    674           continue;  // Ignore other branches for now
    675         case Mips::Bimm16:
    676           Bits = 11;
    677           Scale = 2;
    678           isCond = false;
    679           break;
    680         case Mips::BimmX16:
    681           Bits = 16;
    682           Scale = 2;
    683           isCond = false;
    684           break;
    685         case Mips::BeqzRxImm16:
    686           UOpc=Mips::Bimm16;
    687           Bits = 8;
    688           Scale = 2;
    689           isCond = true;
    690           break;
    691         case Mips::BeqzRxImmX16:
    692           UOpc=Mips::Bimm16;
    693           Bits = 16;
    694           Scale = 2;
    695           isCond = true;
    696           break;
    697         case Mips::BnezRxImm16:
    698           UOpc=Mips::Bimm16;
    699           Bits = 8;
    700           Scale = 2;
    701           isCond = true;
    702           break;
    703         case Mips::BnezRxImmX16:
    704           UOpc=Mips::Bimm16;
    705           Bits = 16;
    706           Scale = 2;
    707           isCond = true;
    708           break;
    709         case Mips::Bteqz16:
    710           UOpc=Mips::Bimm16;
    711           Bits = 8;
    712           Scale = 2;
    713           isCond = true;
    714           break;
    715         case Mips::BteqzX16:
    716           UOpc=Mips::Bimm16;
    717           Bits = 16;
    718           Scale = 2;
    719           isCond = true;
    720           break;
    721         case Mips::Btnez16:
    722           UOpc=Mips::Bimm16;
    723           Bits = 8;
    724           Scale = 2;
    725           isCond = true;
    726           break;
    727         case Mips::BtnezX16:
    728           UOpc=Mips::Bimm16;
    729           Bits = 16;
    730           Scale = 2;
    731           isCond = true;
    732           break;
    733         }
    734         // Record this immediate branch.
    735         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    736         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
    737       }
    738 
    739       if (Opc == Mips::CONSTPOOL_ENTRY)
    740         continue;
    741 
    742 
    743       // Scan the instructions for constant pool operands.
    744       for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
    745         if (MI.getOperand(op).isCPI()) {
    746 
    747           // We found one.  The addressing mode tells us the max displacement
    748           // from the PC that this instruction permits.
    749 
    750           // Basic size info comes from the TSFlags field.
    751           unsigned Bits = 0;
    752           unsigned Scale = 1;
    753           bool NegOk = false;
    754           unsigned LongFormBits = 0;
    755           unsigned LongFormScale = 0;
    756           unsigned LongFormOpcode = 0;
    757           switch (Opc) {
    758           default:
    759             llvm_unreachable("Unknown addressing mode for CP reference!");
    760           case Mips::LwRxPcTcp16:
    761             Bits = 8;
    762             Scale = 4;
    763             LongFormOpcode = Mips::LwRxPcTcpX16;
    764             LongFormBits = 14;
    765             LongFormScale = 1;
    766             break;
    767           case Mips::LwRxPcTcpX16:
    768             Bits = 14;
    769             Scale = 1;
    770             NegOk = true;
    771             break;
    772           }
    773           // Remember that this is a user of a CP entry.
    774           unsigned CPI = MI.getOperand(op).getIndex();
    775           MachineInstr *CPEMI = CPEMIs[CPI];
    776           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
    777           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
    778           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
    779                                    LongFormOpcode));
    780 
    781           // Increment corresponding CPEntry reference count.
    782           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
    783           assert(CPE && "Cannot find a corresponding CPEntry!");
    784           CPE->RefCount++;
    785 
    786           // Instructions can only use one CP entry, don't bother scanning the
    787           // rest of the operands.
    788           break;
    789 
    790         }
    791 
    792     }
    793   }
    794 
    795 }
    796 
    797 /// computeBlockSize - Compute the size and some alignment information for MBB.
    798 /// This function updates BBInfo directly.
    799 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
    800   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
    801   BBI.Size = 0;
    802 
    803   for (const MachineInstr &MI : *MBB)
    804     BBI.Size += TII->GetInstSizeInBytes(MI);
    805 }
    806 
    807 /// getOffsetOf - Return the current offset of the specified machine instruction
    808 /// from the start of the function.  This offset changes as stuff is moved
    809 /// around inside the function.
    810 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
    811   MachineBasicBlock *MBB = MI->getParent();
    812 
    813   // The offset is composed of two things: the sum of the sizes of all MBB's
    814   // before this instruction's block, and the offset from the start of the block
    815   // it is in.
    816   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
    817 
    818   // Sum instructions before MI in MBB.
    819   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
    820     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    821     Offset += TII->GetInstSizeInBytes(*I);
    822   }
    823   return Offset;
    824 }
    825 
    826 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
    827 /// ID.
    828 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
    829                               const MachineBasicBlock *RHS) {
    830   return LHS->getNumber() < RHS->getNumber();
    831 }
    832 
    833 /// updateForInsertedWaterBlock - When a block is newly inserted into the
    834 /// machine function, it upsets all of the block numbers.  Renumber the blocks
    835 /// and update the arrays that parallel this numbering.
    836 void MipsConstantIslands::updateForInsertedWaterBlock
    837   (MachineBasicBlock *NewBB) {
    838   // Renumber the MBB's to keep them consecutive.
    839   NewBB->getParent()->RenumberBlocks(NewBB);
    840 
    841   // Insert an entry into BBInfo to align it properly with the (newly
    842   // renumbered) block numbers.
    843   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    844 
    845   // Next, update WaterList.  Specifically, we need to add NewMBB as having
    846   // available water after it.
    847   water_iterator IP =
    848     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
    849                      CompareMBBNumbers);
    850   WaterList.insert(IP, NewBB);
    851 }
    852 
    853 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
    854   return getOffsetOf(U.MI);
    855 }
    856 
    857 /// Split the basic block containing MI into two blocks, which are joined by
    858 /// an unconditional branch.  Update data structures and renumber blocks to
    859 /// account for this change and returns the newly created block.
    860 MachineBasicBlock *
    861 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
    862   MachineBasicBlock *OrigBB = MI.getParent();
    863 
    864   // Create a new MBB for the code after the OrigBB.
    865   MachineBasicBlock *NewBB =
    866     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
    867   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
    868   MF->insert(MBBI, NewBB);
    869 
    870   // Splice the instructions starting with MI over to NewBB.
    871   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
    872 
    873   // Add an unconditional branch from OrigBB to NewBB.
    874   // Note the new unconditional branch is not being recorded.
    875   // There doesn't seem to be meaningful DebugInfo available; this doesn't
    876   // correspond to anything in the source.
    877   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
    878   ++NumSplit;
    879 
    880   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
    881   NewBB->transferSuccessors(OrigBB);
    882 
    883   // OrigBB branches to NewBB.
    884   OrigBB->addSuccessor(NewBB);
    885 
    886   // Update internal data structures to account for the newly inserted MBB.
    887   // This is almost the same as updateForInsertedWaterBlock, except that
    888   // the Water goes after OrigBB, not NewBB.
    889   MF->RenumberBlocks(NewBB);
    890 
    891   // Insert an entry into BBInfo to align it properly with the (newly
    892   // renumbered) block numbers.
    893   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    894 
    895   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
    896   // available water after it (but not if it's already there, which happens
    897   // when splitting before a conditional branch that is followed by an
    898   // unconditional branch - in that case we want to insert NewBB).
    899   water_iterator IP =
    900     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
    901                      CompareMBBNumbers);
    902   MachineBasicBlock* WaterBB = *IP;
    903   if (WaterBB == OrigBB)
    904     WaterList.insert(std::next(IP), NewBB);
    905   else
    906     WaterList.insert(IP, OrigBB);
    907   NewWaterList.insert(OrigBB);
    908 
    909   // Figure out how large the OrigBB is.  As the first half of the original
    910   // block, it cannot contain a tablejump.  The size includes
    911   // the new jump we added.  (It should be possible to do this without
    912   // recounting everything, but it's very confusing, and this is rarely
    913   // executed.)
    914   computeBlockSize(OrigBB);
    915 
    916   // Figure out how large the NewMBB is.  As the second half of the original
    917   // block, it may contain a tablejump.
    918   computeBlockSize(NewBB);
    919 
    920   // All BBOffsets following these blocks must be modified.
    921   adjustBBOffsetsAfter(OrigBB);
    922 
    923   return NewBB;
    924 }
    925 
    926 
    927 
    928 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
    929 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
    930 /// constant pool entry).
    931 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
    932                                          unsigned TrialOffset, unsigned MaxDisp,
    933                                          bool NegativeOK) {
    934   if (UserOffset <= TrialOffset) {
    935     // User before the Trial.
    936     if (TrialOffset - UserOffset <= MaxDisp)
    937       return true;
    938   } else if (NegativeOK) {
    939     if (UserOffset - TrialOffset <= MaxDisp)
    940       return true;
    941   }
    942   return false;
    943 }
    944 
    945 /// isWaterInRange - Returns true if a CPE placed after the specified
    946 /// Water (a basic block) will be in range for the specific MI.
    947 ///
    948 /// Compute how much the function will grow by inserting a CPE after Water.
    949 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
    950                                         MachineBasicBlock* Water, CPUser &U,
    951                                         unsigned &Growth) {
    952   unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
    953   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
    954   unsigned NextBlockOffset, NextBlockAlignment;
    955   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
    956   if (NextBlock == MF->end()) {
    957     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
    958     NextBlockAlignment = 0;
    959   } else {
    960     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
    961     NextBlockAlignment = NextBlock->getAlignment();
    962   }
    963   unsigned Size = U.CPEMI->getOperand(2).getImm();
    964   unsigned CPEEnd = CPEOffset + Size;
    965 
    966   // The CPE may be able to hide in the alignment padding before the next
    967   // block. It may also cause more padding to be required if it is more aligned
    968   // that the next block.
    969   if (CPEEnd > NextBlockOffset) {
    970     Growth = CPEEnd - NextBlockOffset;
    971     // Compute the padding that would go at the end of the CPE to align the next
    972     // block.
    973     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
    974 
    975     // If the CPE is to be inserted before the instruction, that will raise
    976     // the offset of the instruction. Also account for unknown alignment padding
    977     // in blocks between CPE and the user.
    978     if (CPEOffset < UserOffset)
    979       UserOffset += Growth;
    980   } else
    981     // CPE fits in existing padding.
    982     Growth = 0;
    983 
    984   return isOffsetInRange(UserOffset, CPEOffset, U);
    985 }
    986 
    987 /// isCPEntryInRange - Returns true if the distance between specific MI and
    988 /// specific ConstPool entry instruction can fit in MI's displacement field.
    989 bool MipsConstantIslands::isCPEntryInRange
    990   (MachineInstr *MI, unsigned UserOffset,
    991    MachineInstr *CPEMI, unsigned MaxDisp,
    992    bool NegOk, bool DoDump) {
    993   unsigned CPEOffset  = getOffsetOf(CPEMI);
    994 
    995   if (DoDump) {
    996     DEBUG({
    997       unsigned Block = MI->getParent()->getNumber();
    998       const BasicBlockInfo &BBI = BBInfo[Block];
    999       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
   1000              << " max delta=" << MaxDisp
   1001              << format(" insn address=%#x", UserOffset)
   1002              << " in BB#" << Block << ": "
   1003              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
   1004              << format("CPE address=%#x offset=%+d: ", CPEOffset,
   1005                        int(CPEOffset-UserOffset));
   1006     });
   1007   }
   1008 
   1009   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
   1010 }
   1011 
   1012 #ifndef NDEBUG
   1013 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
   1014 /// unconditionally branches to its only successor.
   1015 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
   1016   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
   1017     return false;
   1018   MachineBasicBlock *Succ = *MBB->succ_begin();
   1019   MachineBasicBlock *Pred = *MBB->pred_begin();
   1020   MachineInstr *PredMI = &Pred->back();
   1021   if (PredMI->getOpcode() == Mips::Bimm16)
   1022     return PredMI->getOperand(0).getMBB() == Succ;
   1023   return false;
   1024 }
   1025 #endif
   1026 
   1027 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
   1028   unsigned BBNum = BB->getNumber();
   1029   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
   1030     // Get the offset and known bits at the end of the layout predecessor.
   1031     // Include the alignment of the current block.
   1032     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
   1033     BBInfo[i].Offset = Offset;
   1034   }
   1035 }
   1036 
   1037 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
   1038 /// and instruction CPEMI, and decrement its refcount.  If the refcount
   1039 /// becomes 0 remove the entry and instruction.  Returns true if we removed
   1040 /// the entry, false if we didn't.
   1041 
   1042 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
   1043                                                     MachineInstr *CPEMI) {
   1044   // Find the old entry. Eliminate it if it is no longer used.
   1045   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
   1046   assert(CPE && "Unexpected!");
   1047   if (--CPE->RefCount == 0) {
   1048     removeDeadCPEMI(CPEMI);
   1049     CPE->CPEMI = nullptr;
   1050     --NumCPEs;
   1051     return true;
   1052   }
   1053   return false;
   1054 }
   1055 
   1056 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1057 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1058 /// change the data structures so the user references the clone.  Returns:
   1059 /// 0 = no existing entry found
   1060 /// 1 = entry found, and there were no code insertions or deletions
   1061 /// 2 = entry found, and there were code insertions or deletions
   1062 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
   1063 {
   1064   MachineInstr *UserMI = U.MI;
   1065   MachineInstr *CPEMI  = U.CPEMI;
   1066 
   1067   // Check to see if the CPE is already in-range.
   1068   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
   1069                        true)) {
   1070     DEBUG(dbgs() << "In range\n");
   1071     return 1;
   1072   }
   1073 
   1074   // No.  Look for previously created clones of the CPE that are in range.
   1075   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1076   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1077   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1078     // We already tried this one
   1079     if (CPEs[i].CPEMI == CPEMI)
   1080       continue;
   1081     // Removing CPEs can leave empty entries, skip
   1082     if (CPEs[i].CPEMI == nullptr)
   1083       continue;
   1084     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
   1085                      U.NegOk)) {
   1086       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
   1087                    << CPEs[i].CPI << "\n");
   1088       // Point the CPUser node to the replacement
   1089       U.CPEMI = CPEs[i].CPEMI;
   1090       // Change the CPI in the instruction operand to refer to the clone.
   1091       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1092         if (UserMI->getOperand(j).isCPI()) {
   1093           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1094           break;
   1095         }
   1096       // Adjust the refcount of the clone...
   1097       CPEs[i].RefCount++;
   1098       // ...and the original.  If we didn't remove the old entry, none of the
   1099       // addresses changed, so we don't need another pass.
   1100       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
   1101     }
   1102   }
   1103   return 0;
   1104 }
   1105 
   1106 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1107 /// This version checks if the longer form of the instruction can be used to
   1108 /// to satisfy things.
   1109 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1110 /// change the data structures so the user references the clone.  Returns:
   1111 /// 0 = no existing entry found
   1112 /// 1 = entry found, and there were no code insertions or deletions
   1113 /// 2 = entry found, and there were code insertions or deletions
   1114 int MipsConstantIslands::findLongFormInRangeCPEntry
   1115   (CPUser& U, unsigned UserOffset)
   1116 {
   1117   MachineInstr *UserMI = U.MI;
   1118   MachineInstr *CPEMI  = U.CPEMI;
   1119 
   1120   // Check to see if the CPE is already in-range.
   1121   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
   1122                        U.getLongFormMaxDisp(), U.NegOk,
   1123                        true)) {
   1124     DEBUG(dbgs() << "In range\n");
   1125     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
   1126     U.setMaxDisp(U.getLongFormMaxDisp());
   1127     return 2;  // instruction is longer length now
   1128   }
   1129 
   1130   // No.  Look for previously created clones of the CPE that are in range.
   1131   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1132   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1133   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1134     // We already tried this one
   1135     if (CPEs[i].CPEMI == CPEMI)
   1136       continue;
   1137     // Removing CPEs can leave empty entries, skip
   1138     if (CPEs[i].CPEMI == nullptr)
   1139       continue;
   1140     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
   1141                          U.getLongFormMaxDisp(), U.NegOk)) {
   1142       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
   1143                    << CPEs[i].CPI << "\n");
   1144       // Point the CPUser node to the replacement
   1145       U.CPEMI = CPEs[i].CPEMI;
   1146       // Change the CPI in the instruction operand to refer to the clone.
   1147       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1148         if (UserMI->getOperand(j).isCPI()) {
   1149           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1150           break;
   1151         }
   1152       // Adjust the refcount of the clone...
   1153       CPEs[i].RefCount++;
   1154       // ...and the original.  If we didn't remove the old entry, none of the
   1155       // addresses changed, so we don't need another pass.
   1156       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
   1157     }
   1158   }
   1159   return 0;
   1160 }
   1161 
   1162 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
   1163 /// the specific unconditional branch instruction.
   1164 static inline unsigned getUnconditionalBrDisp(int Opc) {
   1165   switch (Opc) {
   1166   case Mips::Bimm16:
   1167     return ((1<<10)-1)*2;
   1168   case Mips::BimmX16:
   1169     return ((1<<16)-1)*2;
   1170   default:
   1171     break;
   1172   }
   1173   return ((1<<16)-1)*2;
   1174 }
   1175 
   1176 /// findAvailableWater - Look for an existing entry in the WaterList in which
   1177 /// we can place the CPE referenced from U so it's within range of U's MI.
   1178 /// Returns true if found, false if not.  If it returns true, WaterIter
   1179 /// is set to the WaterList entry.
   1180 /// To ensure that this pass
   1181 /// terminates, the CPE location for a particular CPUser is only allowed to
   1182 /// move to a lower address, so search backward from the end of the list and
   1183 /// prefer the first water that is in range.
   1184 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
   1185                                       water_iterator &WaterIter) {
   1186   if (WaterList.empty())
   1187     return false;
   1188 
   1189   unsigned BestGrowth = ~0u;
   1190   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
   1191        --IP) {
   1192     MachineBasicBlock* WaterBB = *IP;
   1193     // Check if water is in range and is either at a lower address than the
   1194     // current "high water mark" or a new water block that was created since
   1195     // the previous iteration by inserting an unconditional branch.  In the
   1196     // latter case, we want to allow resetting the high water mark back to
   1197     // this new water since we haven't seen it before.  Inserting branches
   1198     // should be relatively uncommon and when it does happen, we want to be
   1199     // sure to take advantage of it for all the CPEs near that block, so that
   1200     // we don't insert more branches than necessary.
   1201     unsigned Growth;
   1202     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
   1203         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
   1204          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
   1205       // This is the least amount of required padding seen so far.
   1206       BestGrowth = Growth;
   1207       WaterIter = IP;
   1208       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
   1209                    << " Growth=" << Growth << '\n');
   1210 
   1211       // Keep looking unless it is perfect.
   1212       if (BestGrowth == 0)
   1213         return true;
   1214     }
   1215     if (IP == B)
   1216       break;
   1217   }
   1218   return BestGrowth != ~0u;
   1219 }
   1220 
   1221 /// createNewWater - No existing WaterList entry will work for
   1222 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
   1223 /// block is used if in range, and the conditional branch munged so control
   1224 /// flow is correct.  Otherwise the block is split to create a hole with an
   1225 /// unconditional branch around it.  In either case NewMBB is set to a
   1226 /// block following which the new island can be inserted (the WaterList
   1227 /// is not adjusted).
   1228 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
   1229                                         unsigned UserOffset,
   1230                                         MachineBasicBlock *&NewMBB) {
   1231   CPUser &U = CPUsers[CPUserIndex];
   1232   MachineInstr *UserMI = U.MI;
   1233   MachineInstr *CPEMI  = U.CPEMI;
   1234   unsigned CPELogAlign = getCPELogAlign(*CPEMI);
   1235   MachineBasicBlock *UserMBB = UserMI->getParent();
   1236   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
   1237 
   1238   // If the block does not end in an unconditional branch already, and if the
   1239   // end of the block is within range, make new water there.
   1240   if (BBHasFallthrough(UserMBB)) {
   1241     // Size of branch to insert.
   1242     unsigned Delta = 2;
   1243     // Compute the offset where the CPE will begin.
   1244     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
   1245 
   1246     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
   1247       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
   1248             << format(", expected CPE offset %#x\n", CPEOffset));
   1249       NewMBB = &*++UserMBB->getIterator();
   1250       // Add an unconditional branch from UserMBB to fallthrough block.  Record
   1251       // it for branch lengthening; this new branch will not get out of range,
   1252       // but if the preceding conditional branch is out of range, the targets
   1253       // will be exchanged, and the altered branch may be out of range, so the
   1254       // machinery has to know about it.
   1255       int UncondBr = Mips::Bimm16;
   1256       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
   1257       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
   1258       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
   1259                                       MaxDisp, false, UncondBr));
   1260       BBInfo[UserMBB->getNumber()].Size += Delta;
   1261       adjustBBOffsetsAfter(UserMBB);
   1262       return;
   1263     }
   1264   }
   1265 
   1266   // What a big block.  Find a place within the block to split it.
   1267 
   1268   // Try to split the block so it's fully aligned.  Compute the latest split
   1269   // point where we can add a 4-byte branch instruction, and then align to
   1270   // LogAlign which is the largest possible alignment in the function.
   1271   unsigned LogAlign = MF->getAlignment();
   1272   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
   1273   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
   1274   DEBUG(dbgs() << format("Split in middle of big block before %#x",
   1275                          BaseInsertOffset));
   1276 
   1277   // The 4 in the following is for the unconditional branch we'll be inserting
   1278   // Alignment of the island is handled
   1279   // inside isOffsetInRange.
   1280   BaseInsertOffset -= 4;
   1281 
   1282   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
   1283                << " la=" << LogAlign << '\n');
   1284 
   1285   // This could point off the end of the block if we've already got constant
   1286   // pool entries following this block; only the last one is in the water list.
   1287   // Back past any possible branches (allow for a conditional and a maximally
   1288   // long unconditional).
   1289   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
   1290     BaseInsertOffset = UserBBI.postOffset() - 8;
   1291     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
   1292   }
   1293   unsigned EndInsertOffset = BaseInsertOffset + 4 +
   1294     CPEMI->getOperand(2).getImm();
   1295   MachineBasicBlock::iterator MI = UserMI;
   1296   ++MI;
   1297   unsigned CPUIndex = CPUserIndex+1;
   1298   unsigned NumCPUsers = CPUsers.size();
   1299   //MachineInstr *LastIT = 0;
   1300   for (unsigned Offset = UserOffset + TII->GetInstSizeInBytes(*UserMI);
   1301        Offset < BaseInsertOffset;
   1302        Offset += TII->GetInstSizeInBytes(*MI), MI = std::next(MI)) {
   1303     assert(MI != UserMBB->end() && "Fell off end of block");
   1304     if (CPUIndex < NumCPUsers &&
   1305         CPUsers[CPUIndex].MI == static_cast<MachineInstr *>(MI)) {
   1306       CPUser &U = CPUsers[CPUIndex];
   1307       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
   1308         // Shift intertion point by one unit of alignment so it is within reach.
   1309         BaseInsertOffset -= 1u << LogAlign;
   1310         EndInsertOffset  -= 1u << LogAlign;
   1311       }
   1312       // This is overly conservative, as we don't account for CPEMIs being
   1313       // reused within the block, but it doesn't matter much.  Also assume CPEs
   1314       // are added in order with alignment padding.  We may eventually be able
   1315       // to pack the aligned CPEs better.
   1316       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
   1317       CPUIndex++;
   1318     }
   1319   }
   1320 
   1321   NewMBB = splitBlockBeforeInstr(*--MI);
   1322 }
   1323 
   1324 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
   1325 /// is out-of-range.  If so, pick up the constant pool value and move it some
   1326 /// place in-range.  Return true if we changed any addresses (thus must run
   1327 /// another pass of branch lengthening), false otherwise.
   1328 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
   1329   CPUser &U = CPUsers[CPUserIndex];
   1330   MachineInstr *UserMI = U.MI;
   1331   MachineInstr *CPEMI  = U.CPEMI;
   1332   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1333   unsigned Size = CPEMI->getOperand(2).getImm();
   1334   // Compute this only once, it's expensive.
   1335   unsigned UserOffset = getUserOffset(U);
   1336 
   1337   // See if the current entry is within range, or there is a clone of it
   1338   // in range.
   1339   int result = findInRangeCPEntry(U, UserOffset);
   1340   if (result==1) return false;
   1341   else if (result==2) return true;
   1342 
   1343 
   1344   // Look for water where we can place this CPE.
   1345   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
   1346   MachineBasicBlock *NewMBB;
   1347   water_iterator IP;
   1348   if (findAvailableWater(U, UserOffset, IP)) {
   1349     DEBUG(dbgs() << "Found water in range\n");
   1350     MachineBasicBlock *WaterBB = *IP;
   1351 
   1352     // If the original WaterList entry was "new water" on this iteration,
   1353     // propagate that to the new island.  This is just keeping NewWaterList
   1354     // updated to match the WaterList, which will be updated below.
   1355     if (NewWaterList.erase(WaterBB))
   1356       NewWaterList.insert(NewIsland);
   1357 
   1358     // The new CPE goes before the following block (NewMBB).
   1359     NewMBB = &*++WaterBB->getIterator();
   1360   } else {
   1361     // No water found.
   1362     // we first see if a longer form of the instrucion could have reached
   1363     // the constant. in that case we won't bother to split
   1364     if (!NoLoadRelaxation) {
   1365       result = findLongFormInRangeCPEntry(U, UserOffset);
   1366       if (result != 0) return true;
   1367     }
   1368     DEBUG(dbgs() << "No water found\n");
   1369     createNewWater(CPUserIndex, UserOffset, NewMBB);
   1370 
   1371     // splitBlockBeforeInstr adds to WaterList, which is important when it is
   1372     // called while handling branches so that the water will be seen on the
   1373     // next iteration for constant pools, but in this context, we don't want
   1374     // it.  Check for this so it will be removed from the WaterList.
   1375     // Also remove any entry from NewWaterList.
   1376     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
   1377     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
   1378     if (IP != WaterList.end())
   1379       NewWaterList.erase(WaterBB);
   1380 
   1381     // We are adding new water.  Update NewWaterList.
   1382     NewWaterList.insert(NewIsland);
   1383   }
   1384 
   1385   // Remove the original WaterList entry; we want subsequent insertions in
   1386   // this vicinity to go after the one we're about to insert.  This
   1387   // considerably reduces the number of times we have to move the same CPE
   1388   // more than once and is also important to ensure the algorithm terminates.
   1389   if (IP != WaterList.end())
   1390     WaterList.erase(IP);
   1391 
   1392   // Okay, we know we can put an island before NewMBB now, do it!
   1393   MF->insert(NewMBB->getIterator(), NewIsland);
   1394 
   1395   // Update internal data structures to account for the newly inserted MBB.
   1396   updateForInsertedWaterBlock(NewIsland);
   1397 
   1398   // Decrement the old entry, and remove it if refcount becomes 0.
   1399   decrementCPEReferenceCount(CPI, CPEMI);
   1400 
   1401   // No existing clone of this CPE is within range.
   1402   // We will be generating a new clone.  Get a UID for it.
   1403   unsigned ID = createPICLabelUId();
   1404 
   1405   // Now that we have an island to add the CPE to, clone the original CPE and
   1406   // add it to the island.
   1407   U.HighWaterMark = NewIsland;
   1408   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
   1409                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
   1410   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
   1411   ++NumCPEs;
   1412 
   1413   // Mark the basic block as aligned as required by the const-pool entry.
   1414   NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
   1415 
   1416   // Increase the size of the island block to account for the new entry.
   1417   BBInfo[NewIsland->getNumber()].Size += Size;
   1418   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
   1419 
   1420   // Finally, change the CPI in the instruction operand to be ID.
   1421   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
   1422     if (UserMI->getOperand(i).isCPI()) {
   1423       UserMI->getOperand(i).setIndex(ID);
   1424       break;
   1425     }
   1426 
   1427   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
   1428         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
   1429 
   1430   return true;
   1431 }
   1432 
   1433 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
   1434 /// sizes and offsets of impacted basic blocks.
   1435 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
   1436   MachineBasicBlock *CPEBB = CPEMI->getParent();
   1437   unsigned Size = CPEMI->getOperand(2).getImm();
   1438   CPEMI->eraseFromParent();
   1439   BBInfo[CPEBB->getNumber()].Size -= Size;
   1440   // All succeeding offsets have the current size value added in, fix this.
   1441   if (CPEBB->empty()) {
   1442     BBInfo[CPEBB->getNumber()].Size = 0;
   1443 
   1444     // This block no longer needs to be aligned.
   1445     CPEBB->setAlignment(0);
   1446   } else
   1447     // Entries are sorted by descending alignment, so realign from the front.
   1448     CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
   1449 
   1450   adjustBBOffsetsAfter(CPEBB);
   1451   // An island has only one predecessor BB and one successor BB. Check if
   1452   // this BB's predecessor jumps directly to this BB's successor. This
   1453   // shouldn't happen currently.
   1454   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
   1455   // FIXME: remove the empty blocks after all the work is done?
   1456 }
   1457 
   1458 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
   1459 /// are zero.
   1460 bool MipsConstantIslands::removeUnusedCPEntries() {
   1461   unsigned MadeChange = false;
   1462   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
   1463       std::vector<CPEntry> &CPEs = CPEntries[i];
   1464       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
   1465         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
   1466           removeDeadCPEMI(CPEs[j].CPEMI);
   1467           CPEs[j].CPEMI = nullptr;
   1468           MadeChange = true;
   1469         }
   1470       }
   1471   }
   1472   return MadeChange;
   1473 }
   1474 
   1475 /// isBBInRange - Returns true if the distance between specific MI and
   1476 /// specific BB can fit in MI's displacement field.
   1477 bool MipsConstantIslands::isBBInRange
   1478   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
   1479 
   1480 unsigned PCAdj = 4;
   1481 
   1482   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
   1483   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1484 
   1485   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
   1486                << " from BB#" << MI->getParent()->getNumber()
   1487                << " max delta=" << MaxDisp
   1488                << " from " << getOffsetOf(MI) << " to " << DestOffset
   1489                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
   1490 
   1491   if (BrOffset <= DestOffset) {
   1492     // Branch before the Dest.
   1493     if (DestOffset-BrOffset <= MaxDisp)
   1494       return true;
   1495   } else {
   1496     if (BrOffset-DestOffset <= MaxDisp)
   1497       return true;
   1498   }
   1499   return false;
   1500 }
   1501 
   1502 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
   1503 /// away to fit in its displacement field.
   1504 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
   1505   MachineInstr *MI = Br.MI;
   1506   unsigned TargetOperand = branchTargetOperand(MI);
   1507   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
   1508 
   1509   // Check to see if the DestBB is already in-range.
   1510   if (isBBInRange(MI, DestBB, Br.MaxDisp))
   1511     return false;
   1512 
   1513   if (!Br.isCond)
   1514     return fixupUnconditionalBr(Br);
   1515   return fixupConditionalBr(Br);
   1516 }
   1517 
   1518 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
   1519 /// too far away to fit in its displacement field. If the LR register has been
   1520 /// spilled in the epilogue, then we can use BL to implement a far jump.
   1521 /// Otherwise, add an intermediate branch instruction to a branch.
   1522 bool
   1523 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
   1524   MachineInstr *MI = Br.MI;
   1525   MachineBasicBlock *MBB = MI->getParent();
   1526   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1527   // Use BL to implement far jump.
   1528   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
   1529   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
   1530     Br.MaxDisp = BimmX16MaxDisp;
   1531     MI->setDesc(TII->get(Mips::BimmX16));
   1532   }
   1533   else {
   1534     // need to give the math a more careful look here
   1535     // this is really a segment address and not
   1536     // a PC relative address. FIXME. But I think that
   1537     // just reducing the bits by 1 as I've done is correct.
   1538     // The basic block we are branching too much be longword aligned.
   1539     // we know that RA is saved because we always save it right now.
   1540     // this requirement will be relaxed later but we also have an alternate
   1541     // way to implement this that I will implement that does not need jal.
   1542     // We should have a way to back out this alignment restriction if we "can" later.
   1543     // but it is not harmful.
   1544     //
   1545     DestBB->setAlignment(2);
   1546     Br.MaxDisp = ((1<<24)-1) * 2;
   1547     MI->setDesc(TII->get(Mips::JalB16));
   1548   }
   1549   BBInfo[MBB->getNumber()].Size += 2;
   1550   adjustBBOffsetsAfter(MBB);
   1551   HasFarJump = true;
   1552   ++NumUBrFixed;
   1553 
   1554   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
   1555 
   1556   return true;
   1557 }
   1558 
   1559 
   1560 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
   1561 /// far away to fit in its displacement field. It is converted to an inverse
   1562 /// conditional branch + an unconditional branch to the destination.
   1563 bool
   1564 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
   1565   MachineInstr *MI = Br.MI;
   1566   unsigned TargetOperand = branchTargetOperand(MI);
   1567   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
   1568   unsigned Opcode = MI->getOpcode();
   1569   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
   1570   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
   1571 
   1572   // Check to see if the DestBB is already in-range.
   1573   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
   1574     Br.MaxDisp = LongFormMaxOff;
   1575     MI->setDesc(TII->get(LongFormOpcode));
   1576     return true;
   1577   }
   1578 
   1579   // Add an unconditional branch to the destination and invert the branch
   1580   // condition to jump over it:
   1581   // bteqz L1
   1582   // =>
   1583   // bnez L2
   1584   // b   L1
   1585   // L2:
   1586 
   1587   // If the branch is at the end of its MBB and that has a fall-through block,
   1588   // direct the updated conditional branch to the fall-through block. Otherwise,
   1589   // split the MBB before the next instruction.
   1590   MachineBasicBlock *MBB = MI->getParent();
   1591   MachineInstr *BMI = &MBB->back();
   1592   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
   1593   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
   1594 
   1595   ++NumCBrFixed;
   1596   if (BMI != MI) {
   1597     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
   1598         BMI->isUnconditionalBranch()) {
   1599       // Last MI in the BB is an unconditional branch. Can we simply invert the
   1600       // condition and swap destinations:
   1601       // beqz L1
   1602       // b   L2
   1603       // =>
   1604       // bnez L2
   1605       // b   L1
   1606       unsigned BMITargetOperand = branchTargetOperand(BMI);
   1607       MachineBasicBlock *NewDest =
   1608         BMI->getOperand(BMITargetOperand).getMBB();
   1609       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
   1610         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
   1611                      << *BMI);
   1612         MI->setDesc(TII->get(OppositeBranchOpcode));
   1613         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
   1614         MI->getOperand(TargetOperand).setMBB(NewDest);
   1615         return true;
   1616       }
   1617     }
   1618   }
   1619 
   1620 
   1621   if (NeedSplit) {
   1622     splitBlockBeforeInstr(*MI);
   1623     // No need for the branch to the next block. We're adding an unconditional
   1624     // branch to the destination.
   1625     int delta = TII->GetInstSizeInBytes(MBB->back());
   1626     BBInfo[MBB->getNumber()].Size -= delta;
   1627     MBB->back().eraseFromParent();
   1628     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
   1629   }
   1630   MachineBasicBlock *NextBB = &*++MBB->getIterator();
   1631 
   1632   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
   1633                << " also invert condition and change dest. to BB#"
   1634                << NextBB->getNumber() << "\n");
   1635 
   1636   // Insert a new conditional branch and a new unconditional branch.
   1637   // Also update the ImmBranch as well as adding a new entry for the new branch.
   1638   if (MI->getNumExplicitOperands() == 2) {
   1639     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
   1640            .addReg(MI->getOperand(0).getReg())
   1641            .addMBB(NextBB);
   1642   } else {
   1643     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
   1644            .addMBB(NextBB);
   1645   }
   1646   Br.MI = &MBB->back();
   1647   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back());
   1648   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
   1649   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back());
   1650   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
   1651   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
   1652 
   1653   // Remove the old conditional branch.  It may or may not still be in MBB.
   1654   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(*MI);
   1655   MI->eraseFromParent();
   1656   adjustBBOffsetsAfter(MBB);
   1657   return true;
   1658 }
   1659 
   1660 
   1661 void MipsConstantIslands::prescanForConstants() {
   1662   unsigned J = 0;
   1663   (void)J;
   1664   for (MachineFunction::iterator B =
   1665          MF->begin(), E = MF->end(); B != E; ++B) {
   1666     for (MachineBasicBlock::instr_iterator I =
   1667         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
   1668       switch(I->getDesc().getOpcode()) {
   1669         case Mips::LwConstant32: {
   1670           PrescannedForConstants = true;
   1671           DEBUG(dbgs() << "constant island constant " << *I << "\n");
   1672           J = I->getNumOperands();
   1673           DEBUG(dbgs() << "num operands " << J  << "\n");
   1674           MachineOperand& Literal = I->getOperand(1);
   1675           if (Literal.isImm()) {
   1676             int64_t V = Literal.getImm();
   1677             DEBUG(dbgs() << "literal " << V  << "\n");
   1678             Type *Int32Ty =
   1679               Type::getInt32Ty(MF->getFunction()->getContext());
   1680             const Constant *C = ConstantInt::get(Int32Ty, V);
   1681             unsigned index = MCP->getConstantPoolIndex(C, 4);
   1682             I->getOperand(2).ChangeToImmediate(index);
   1683             DEBUG(dbgs() << "constant island constant " << *I << "\n");
   1684             I->setDesc(TII->get(Mips::LwRxPcTcp16));
   1685             I->RemoveOperand(1);
   1686             I->RemoveOperand(1);
   1687             I->addOperand(MachineOperand::CreateCPI(index, 0));
   1688             I->addOperand(MachineOperand::CreateImm(4));
   1689           }
   1690           break;
   1691         }
   1692         default:
   1693           break;
   1694       }
   1695     }
   1696   }
   1697 }
   1698