Home | History | Annotate | Download | only in NVPTX
      1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Convert generic global variables into either .global or .const access based
     11 // on the variable's "constant" qualifier.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "NVPTX.h"
     16 #include "MCTargetDesc/NVPTXBaseInfo.h"
     17 #include "NVPTXUtilities.h"
     18 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     19 #include "llvm/CodeGen/ValueTypes.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/IRBuilder.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/Intrinsics.h"
     25 #include "llvm/IR/LegacyPassManager.h"
     26 #include "llvm/IR/Module.h"
     27 #include "llvm/IR/Operator.h"
     28 #include "llvm/IR/ValueMap.h"
     29 #include "llvm/Transforms/Utils/ValueMapper.h"
     30 
     31 using namespace llvm;
     32 
     33 namespace llvm {
     34 void initializeGenericToNVVMPass(PassRegistry &);
     35 }
     36 
     37 namespace {
     38 class GenericToNVVM : public ModulePass {
     39 public:
     40   static char ID;
     41 
     42   GenericToNVVM() : ModulePass(ID) {}
     43 
     44   bool runOnModule(Module &M) override;
     45 
     46   void getAnalysisUsage(AnalysisUsage &AU) const override {}
     47 
     48 private:
     49   Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
     50                          IRBuilder<> &Builder);
     51   Value *remapConstant(Module *M, Function *F, Constant *C,
     52                        IRBuilder<> &Builder);
     53   Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
     54                                                 Constant *C,
     55                                                 IRBuilder<> &Builder);
     56   Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
     57                            IRBuilder<> &Builder);
     58   void remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N);
     59 
     60   typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
     61   typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
     62   GVMapTy GVMap;
     63   ConstantToValueMapTy ConstantToValueMap;
     64 };
     65 } // end namespace
     66 
     67 char GenericToNVVM::ID = 0;
     68 
     69 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
     70 
     71 INITIALIZE_PASS(
     72     GenericToNVVM, "generic-to-nvvm",
     73     "Ensure that the global variables are in the global address space", false,
     74     false)
     75 
     76 bool GenericToNVVM::runOnModule(Module &M) {
     77   // Create a clone of each global variable that has the default address space.
     78   // The clone is created with the global address space  specifier, and the pair
     79   // of original global variable and its clone is placed in the GVMap for later
     80   // use.
     81 
     82   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
     83        I != E;) {
     84     GlobalVariable *GV = &*I++;
     85     if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
     86         !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
     87         !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
     88       GlobalVariable *NewGV = new GlobalVariable(
     89           M, GV->getValueType(), GV->isConstant(),
     90           GV->getLinkage(),
     91           GV->hasInitializer() ? GV->getInitializer() : nullptr,
     92           "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
     93       NewGV->copyAttributesFrom(GV);
     94       GVMap[GV] = NewGV;
     95     }
     96   }
     97 
     98   // Return immediately, if every global variable has a specific address space
     99   // specifier.
    100   if (GVMap.empty()) {
    101     return false;
    102   }
    103 
    104   // Walk through the instructions in function defitinions, and replace any use
    105   // of original global variables in GVMap with a use of the corresponding
    106   // copies in GVMap.  If necessary, promote constants to instructions.
    107   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    108     if (I->isDeclaration()) {
    109       continue;
    110     }
    111     IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
    112     for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
    113          ++BBI) {
    114       for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
    115            ++II) {
    116         for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
    117           Value *Operand = II->getOperand(i);
    118           if (isa<Constant>(Operand)) {
    119             II->setOperand(
    120                 i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
    121           }
    122         }
    123       }
    124     }
    125     ConstantToValueMap.clear();
    126   }
    127 
    128   // Copy GVMap over to a standard value map.
    129   ValueToValueMapTy VM;
    130   for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
    131     VM[I->first] = I->second;
    132 
    133   // Walk through the metadata section and update the debug information
    134   // associated with the global variables in the default address space.
    135   for (NamedMDNode &I : M.named_metadata()) {
    136     remapNamedMDNode(VM, &I);
    137   }
    138 
    139   // Walk through the global variable  initializers, and replace any use of
    140   // original global variables in GVMap with a use of the corresponding copies
    141   // in GVMap.  The copies need to be bitcast to the original global variable
    142   // types, as we cannot use cvta in global variable initializers.
    143   for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
    144     GlobalVariable *GV = I->first;
    145     GlobalVariable *NewGV = I->second;
    146 
    147     // Remove GV from the map so that it can be RAUWed.  Note that
    148     // DenseMap::erase() won't invalidate any iterators but this one.
    149     auto Next = std::next(I);
    150     GVMap.erase(I);
    151     I = Next;
    152 
    153     Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
    154     // At this point, the remaining uses of GV should be found only in global
    155     // variable initializers, as other uses have been already been removed
    156     // while walking through the instructions in function definitions.
    157     GV->replaceAllUsesWith(BitCastNewGV);
    158     std::string Name = GV->getName();
    159     GV->eraseFromParent();
    160     NewGV->setName(Name);
    161   }
    162   assert(GVMap.empty() && "Expected it to be empty by now");
    163 
    164   return true;
    165 }
    166 
    167 Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
    168                                       GlobalVariable *GV,
    169                                       IRBuilder<> &Builder) {
    170   PointerType *GVType = GV->getType();
    171   Value *CVTA = nullptr;
    172 
    173   // See if the address space conversion requires the operand to be bitcast
    174   // to i8 addrspace(n)* first.
    175   EVT ExtendedGVType = EVT::getEVT(GV->getValueType(), true);
    176   if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
    177     // A bitcast to i8 addrspace(n)* on the operand is needed.
    178     LLVMContext &Context = M->getContext();
    179     unsigned int AddrSpace = GVType->getAddressSpace();
    180     Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
    181     CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
    182     // Insert the address space conversion.
    183     Type *ResultType =
    184         PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
    185     Function *CVTAFunction = Intrinsic::getDeclaration(
    186         M, Intrinsic::nvvm_ptr_global_to_gen, {ResultType, DestTy});
    187     CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
    188     // Another bitcast from i8 * to <the element type of GVType> * is
    189     // required.
    190     DestTy =
    191         PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC);
    192     CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
    193   } else {
    194     // A simple CVTA is enough.
    195     SmallVector<Type *, 2> ParamTypes;
    196     ParamTypes.push_back(PointerType::get(GV->getValueType(),
    197                                           llvm::ADDRESS_SPACE_GENERIC));
    198     ParamTypes.push_back(GVType);
    199     Function *CVTAFunction = Intrinsic::getDeclaration(
    200         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
    201     CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
    202   }
    203 
    204   return CVTA;
    205 }
    206 
    207 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
    208                                     IRBuilder<> &Builder) {
    209   // If the constant C has been converted already in the given function  F, just
    210   // return the converted value.
    211   ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
    212   if (CTII != ConstantToValueMap.end()) {
    213     return CTII->second;
    214   }
    215 
    216   Value *NewValue = C;
    217   if (isa<GlobalVariable>(C)) {
    218     // If the constant C is a global variable and is found in  GVMap, generate a
    219     // set set of instructions that convert the clone of C with the global
    220     // address space specifier to a generic pointer.
    221     // The constant C cannot be used here, as it will be erased from the
    222     // module eventually.  And the clone of C with the global address space
    223     // specifier cannot be used here either, as it will affect the types of
    224     // other instructions in the function.  Hence, this address space conversion
    225     // is required.
    226     GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
    227     if (I != GVMap.end()) {
    228       NewValue = getOrInsertCVTA(M, F, I->second, Builder);
    229     }
    230   } else if (isa<ConstantAggregate>(C)) {
    231     // If any element in the constant vector or aggregate C is or uses a global
    232     // variable in GVMap, the constant C needs to be reconstructed, using a set
    233     // of instructions.
    234     NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
    235   } else if (isa<ConstantExpr>(C)) {
    236     // If any operand in the constant expression C is or uses a global variable
    237     // in GVMap, the constant expression C needs to be reconstructed, using a
    238     // set of instructions.
    239     NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
    240   }
    241 
    242   ConstantToValueMap[C] = NewValue;
    243   return NewValue;
    244 }
    245 
    246 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
    247     Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
    248   bool OperandChanged = false;
    249   SmallVector<Value *, 4> NewOperands;
    250   unsigned NumOperands = C->getNumOperands();
    251 
    252   // Check if any element is or uses a global variable in  GVMap, and thus
    253   // converted to another value.
    254   for (unsigned i = 0; i < NumOperands; ++i) {
    255     Value *Operand = C->getOperand(i);
    256     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    257     OperandChanged |= Operand != NewOperand;
    258     NewOperands.push_back(NewOperand);
    259   }
    260 
    261   // If none of the elements has been modified, return C as it is.
    262   if (!OperandChanged) {
    263     return C;
    264   }
    265 
    266   // If any of the elements has been  modified, construct the equivalent
    267   // vector or aggregate value with a set instructions and the converted
    268   // elements.
    269   Value *NewValue = UndefValue::get(C->getType());
    270   if (isa<ConstantVector>(C)) {
    271     for (unsigned i = 0; i < NumOperands; ++i) {
    272       Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
    273       NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
    274     }
    275   } else {
    276     for (unsigned i = 0; i < NumOperands; ++i) {
    277       NewValue =
    278           Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
    279     }
    280   }
    281 
    282   return NewValue;
    283 }
    284 
    285 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
    286                                         IRBuilder<> &Builder) {
    287   bool OperandChanged = false;
    288   SmallVector<Value *, 4> NewOperands;
    289   unsigned NumOperands = C->getNumOperands();
    290 
    291   // Check if any operand is or uses a global variable in  GVMap, and thus
    292   // converted to another value.
    293   for (unsigned i = 0; i < NumOperands; ++i) {
    294     Value *Operand = C->getOperand(i);
    295     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    296     OperandChanged |= Operand != NewOperand;
    297     NewOperands.push_back(NewOperand);
    298   }
    299 
    300   // If none of the operands has been modified, return C as it is.
    301   if (!OperandChanged) {
    302     return C;
    303   }
    304 
    305   // If any of the operands has been modified, construct the instruction with
    306   // the converted operands.
    307   unsigned Opcode = C->getOpcode();
    308   switch (Opcode) {
    309   case Instruction::ICmp:
    310     // CompareConstantExpr (icmp)
    311     return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
    312                               NewOperands[0], NewOperands[1]);
    313   case Instruction::FCmp:
    314     // CompareConstantExpr (fcmp)
    315     llvm_unreachable("Address space conversion should have no effect "
    316                      "on float point CompareConstantExpr (fcmp)!");
    317   case Instruction::ExtractElement:
    318     // ExtractElementConstantExpr
    319     return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
    320   case Instruction::InsertElement:
    321     // InsertElementConstantExpr
    322     return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
    323                                        NewOperands[2]);
    324   case Instruction::ShuffleVector:
    325     // ShuffleVector
    326     return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
    327                                        NewOperands[2]);
    328   case Instruction::ExtractValue:
    329     // ExtractValueConstantExpr
    330     return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
    331   case Instruction::InsertValue:
    332     // InsertValueConstantExpr
    333     return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
    334                                      C->getIndices());
    335   case Instruction::GetElementPtr:
    336     // GetElementPtrConstantExpr
    337     return cast<GEPOperator>(C)->isInBounds()
    338                ? Builder.CreateGEP(
    339                      cast<GEPOperator>(C)->getSourceElementType(),
    340                      NewOperands[0],
    341                      makeArrayRef(&NewOperands[1], NumOperands - 1))
    342                : Builder.CreateInBoundsGEP(
    343                      cast<GEPOperator>(C)->getSourceElementType(),
    344                      NewOperands[0],
    345                      makeArrayRef(&NewOperands[1], NumOperands - 1));
    346   case Instruction::Select:
    347     // SelectConstantExpr
    348     return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
    349   default:
    350     // BinaryConstantExpr
    351     if (Instruction::isBinaryOp(Opcode)) {
    352       return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
    353                                  NewOperands[0], NewOperands[1]);
    354     }
    355     // UnaryConstantExpr
    356     if (Instruction::isCast(Opcode)) {
    357       return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
    358                                 NewOperands[0], C->getType());
    359     }
    360     llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
    361   }
    362 }
    363 
    364 void GenericToNVVM::remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N) {
    365 
    366   bool OperandChanged = false;
    367   SmallVector<MDNode *, 16> NewOperands;
    368   unsigned NumOperands = N->getNumOperands();
    369 
    370   // Check if any operand is or contains a global variable in  GVMap, and thus
    371   // converted to another value.
    372   for (unsigned i = 0; i < NumOperands; ++i) {
    373     MDNode *Operand = N->getOperand(i);
    374     MDNode *NewOperand = MapMetadata(Operand, VM);
    375     OperandChanged |= Operand != NewOperand;
    376     NewOperands.push_back(NewOperand);
    377   }
    378 
    379   // If none of the operands has been modified, return immediately.
    380   if (!OperandChanged) {
    381     return;
    382   }
    383 
    384   // Replace the old operands with the new operands.
    385   N->dropAllReferences();
    386   for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
    387                                            E = NewOperands.end();
    388        I != E; ++I) {
    389     N->addOperand(*I);
    390   }
    391 }
    392