Home | History | Annotate | Download | only in IPO
      1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass deletes dead arguments from internal functions.  Dead argument
     11 // elimination removes arguments which are directly dead, as well as arguments
     12 // only passed into function calls as dead arguments of other functions.  This
     13 // pass also deletes dead return values in a similar way.
     14 //
     15 // This pass is often useful as a cleanup pass to run after aggressive
     16 // interprocedural passes, which add possibly-dead arguments or return values.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/IR/CallSite.h"
     25 #include "llvm/IR/CallingConv.h"
     26 #include "llvm/IR/Constant.h"
     27 #include "llvm/IR/DIBuilder.h"
     28 #include "llvm/IR/DebugInfo.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/LLVMContext.h"
     33 #include "llvm/IR/Module.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Transforms/IPO.h"
     38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     39 #include <set>
     40 #include <tuple>
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "deadargelim"
     44 
     45 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
     46 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
     47 STATISTIC(NumArgumentsReplacedWithUndef,
     48           "Number of unread args replaced with undef");
     49 namespace {
     50   /// DAE - The dead argument elimination pass.
     51   ///
     52   class DAE : public ModulePass {
     53   protected:
     54     // DAH uses this to specify a different ID.
     55     explicit DAE(char &ID) : ModulePass(ID) {}
     56 
     57   public:
     58     static char ID; // Pass identification, replacement for typeid
     59     DAE() : ModulePass(ID) {
     60       initializeDAEPass(*PassRegistry::getPassRegistry());
     61     }
     62 
     63     bool runOnModule(Module &M) override {
     64       if (skipModule(M))
     65         return false;
     66       DeadArgumentEliminationPass DAEP(ShouldHackArguments());
     67       ModuleAnalysisManager DummyMAM;
     68       PreservedAnalyses PA = DAEP.run(M, DummyMAM);
     69       return !PA.areAllPreserved();
     70     }
     71 
     72     virtual bool ShouldHackArguments() const { return false; }
     73   };
     74 }
     75 
     76 
     77 char DAE::ID = 0;
     78 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
     79 
     80 namespace {
     81   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
     82   /// deletes arguments to functions which are external.  This is only for use
     83   /// by bugpoint.
     84   struct DAH : public DAE {
     85     static char ID;
     86     DAH() : DAE(ID) {}
     87 
     88     bool ShouldHackArguments() const override { return true; }
     89   };
     90 }
     91 
     92 char DAH::ID = 0;
     93 INITIALIZE_PASS(DAH, "deadarghaX0r",
     94                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
     95                 false, false)
     96 
     97 /// createDeadArgEliminationPass - This pass removes arguments from functions
     98 /// which are not used by the body of the function.
     99 ///
    100 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
    101 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
    102 
    103 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
    104 /// llvm.vastart is never called, the varargs list is dead for the function.
    105 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
    106   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
    107   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
    108 
    109   // Ensure that the function is only directly called.
    110   if (Fn.hasAddressTaken())
    111     return false;
    112 
    113   // Don't touch naked functions. The assembly might be using an argument, or
    114   // otherwise rely on the frame layout in a way that this analysis will not
    115   // see.
    116   if (Fn.hasFnAttribute(Attribute::Naked)) {
    117     return false;
    118   }
    119 
    120   // Okay, we know we can transform this function if safe.  Scan its body
    121   // looking for calls marked musttail or calls to llvm.vastart.
    122   for (BasicBlock &BB : Fn) {
    123     for (Instruction &I : BB) {
    124       CallInst *CI = dyn_cast<CallInst>(&I);
    125       if (!CI)
    126         continue;
    127       if (CI->isMustTailCall())
    128         return false;
    129       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
    130         if (II->getIntrinsicID() == Intrinsic::vastart)
    131           return false;
    132       }
    133     }
    134   }
    135 
    136   // If we get here, there are no calls to llvm.vastart in the function body,
    137   // remove the "..." and adjust all the calls.
    138 
    139   // Start by computing a new prototype for the function, which is the same as
    140   // the old function, but doesn't have isVarArg set.
    141   FunctionType *FTy = Fn.getFunctionType();
    142 
    143   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
    144   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
    145                                                 Params, false);
    146   unsigned NumArgs = Params.size();
    147 
    148   // Create the new function body and insert it into the module...
    149   Function *NF = Function::Create(NFTy, Fn.getLinkage());
    150   NF->copyAttributesFrom(&Fn);
    151   NF->setComdat(Fn.getComdat());
    152   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
    153   NF->takeName(&Fn);
    154 
    155   // Loop over all of the callers of the function, transforming the call sites
    156   // to pass in a smaller number of arguments into the new function.
    157   //
    158   std::vector<Value*> Args;
    159   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
    160     CallSite CS(*I++);
    161     if (!CS)
    162       continue;
    163     Instruction *Call = CS.getInstruction();
    164 
    165     // Pass all the same arguments.
    166     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
    167 
    168     // Drop any attributes that were on the vararg arguments.
    169     AttributeSet PAL = CS.getAttributes();
    170     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
    171       SmallVector<AttributeSet, 8> AttributesVec;
    172       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
    173         AttributesVec.push_back(PAL.getSlotAttributes(i));
    174       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    175         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
    176                                                   PAL.getFnAttributes()));
    177       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
    178     }
    179 
    180     SmallVector<OperandBundleDef, 1> OpBundles;
    181     CS.getOperandBundlesAsDefs(OpBundles);
    182 
    183     Instruction *New;
    184     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    185       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    186                                Args, OpBundles, "", Call);
    187       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    188       cast<InvokeInst>(New)->setAttributes(PAL);
    189     } else {
    190       New = CallInst::Create(NF, Args, OpBundles, "", Call);
    191       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    192       cast<CallInst>(New)->setAttributes(PAL);
    193       if (cast<CallInst>(Call)->isTailCall())
    194         cast<CallInst>(New)->setTailCall();
    195     }
    196     New->setDebugLoc(Call->getDebugLoc());
    197 
    198     Args.clear();
    199 
    200     if (!Call->use_empty())
    201       Call->replaceAllUsesWith(New);
    202 
    203     New->takeName(Call);
    204 
    205     // Finally, remove the old call from the program, reducing the use-count of
    206     // F.
    207     Call->eraseFromParent();
    208   }
    209 
    210   // Since we have now created the new function, splice the body of the old
    211   // function right into the new function, leaving the old rotting hulk of the
    212   // function empty.
    213   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
    214 
    215   // Loop over the argument list, transferring uses of the old arguments over to
    216   // the new arguments, also transferring over the names as well.  While we're at
    217   // it, remove the dead arguments from the DeadArguments list.
    218   //
    219   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
    220        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    221     // Move the name and users over to the new version.
    222     I->replaceAllUsesWith(&*I2);
    223     I2->takeName(&*I);
    224   }
    225 
    226   // Patch the pointer to LLVM function in debug info descriptor.
    227   NF->setSubprogram(Fn.getSubprogram());
    228 
    229   // Fix up any BlockAddresses that refer to the function.
    230   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
    231   // Delete the bitcast that we just created, so that NF does not
    232   // appear to be address-taken.
    233   NF->removeDeadConstantUsers();
    234   // Finally, nuke the old function.
    235   Fn.eraseFromParent();
    236   return true;
    237 }
    238 
    239 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
    240 /// arguments that are unused, and changes the caller parameters to be undefined
    241 /// instead.
    242 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
    243   // We cannot change the arguments if this TU does not define the function or
    244   // if the linker may choose a function body from another TU, even if the
    245   // nominal linkage indicates that other copies of the function have the same
    246   // semantics. In the below example, the dead load from %p may not have been
    247   // eliminated from the linker-chosen copy of f, so replacing %p with undef
    248   // in callers may introduce undefined behavior.
    249   //
    250   // define linkonce_odr void @f(i32* %p) {
    251   //   %v = load i32 %p
    252   //   ret void
    253   // }
    254   if (!Fn.hasExactDefinition())
    255     return false;
    256 
    257   // Functions with local linkage should already have been handled, except the
    258   // fragile (variadic) ones which we can improve here.
    259   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
    260     return false;
    261 
    262   // Don't touch naked functions. The assembly might be using an argument, or
    263   // otherwise rely on the frame layout in a way that this analysis will not
    264   // see.
    265   if (Fn.hasFnAttribute(Attribute::Naked))
    266     return false;
    267 
    268   if (Fn.use_empty())
    269     return false;
    270 
    271   SmallVector<unsigned, 8> UnusedArgs;
    272   for (Argument &Arg : Fn.args()) {
    273     if (Arg.use_empty() && !Arg.hasByValOrInAllocaAttr())
    274       UnusedArgs.push_back(Arg.getArgNo());
    275   }
    276 
    277   if (UnusedArgs.empty())
    278     return false;
    279 
    280   bool Changed = false;
    281 
    282   for (Use &U : Fn.uses()) {
    283     CallSite CS(U.getUser());
    284     if (!CS || !CS.isCallee(&U))
    285       continue;
    286 
    287     // Now go through all unused args and replace them with "undef".
    288     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
    289       unsigned ArgNo = UnusedArgs[I];
    290 
    291       Value *Arg = CS.getArgument(ArgNo);
    292       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
    293       ++NumArgumentsReplacedWithUndef;
    294       Changed = true;
    295     }
    296   }
    297 
    298   return Changed;
    299 }
    300 
    301 /// Convenience function that returns the number of return values. It returns 0
    302 /// for void functions and 1 for functions not returning a struct. It returns
    303 /// the number of struct elements for functions returning a struct.
    304 static unsigned NumRetVals(const Function *F) {
    305   Type *RetTy = F->getReturnType();
    306   if (RetTy->isVoidTy())
    307     return 0;
    308   else if (StructType *STy = dyn_cast<StructType>(RetTy))
    309     return STy->getNumElements();
    310   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    311     return ATy->getNumElements();
    312   else
    313     return 1;
    314 }
    315 
    316 /// Returns the sub-type a function will return at a given Idx. Should
    317 /// correspond to the result type of an ExtractValue instruction executed with
    318 /// just that one Idx (i.e. only top-level structure is considered).
    319 static Type *getRetComponentType(const Function *F, unsigned Idx) {
    320   Type *RetTy = F->getReturnType();
    321   assert(!RetTy->isVoidTy() && "void type has no subtype");
    322 
    323   if (StructType *STy = dyn_cast<StructType>(RetTy))
    324     return STy->getElementType(Idx);
    325   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    326     return ATy->getElementType();
    327   else
    328     return RetTy;
    329 }
    330 
    331 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
    332 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
    333 /// liveness of Use.
    334 DeadArgumentEliminationPass::Liveness
    335 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
    336                                            UseVector &MaybeLiveUses) {
    337   // We're live if our use or its Function is already marked as live.
    338   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    339     return Live;
    340 
    341   // We're maybe live otherwise, but remember that we must become live if
    342   // Use becomes live.
    343   MaybeLiveUses.push_back(Use);
    344   return MaybeLive;
    345 }
    346 
    347 
    348 /// SurveyUse - This looks at a single use of an argument or return value
    349 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
    350 /// if it causes the used value to become MaybeLive.
    351 ///
    352 /// RetValNum is the return value number to use when this use is used in a
    353 /// return instruction. This is used in the recursion, you should always leave
    354 /// it at 0.
    355 DeadArgumentEliminationPass::Liveness
    356 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
    357                                        unsigned RetValNum) {
    358     const User *V = U->getUser();
    359     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
    360       // The value is returned from a function. It's only live when the
    361       // function's return value is live. We use RetValNum here, for the case
    362       // that U is really a use of an insertvalue instruction that uses the
    363       // original Use.
    364       const Function *F = RI->getParent()->getParent();
    365       if (RetValNum != -1U) {
    366         RetOrArg Use = CreateRet(F, RetValNum);
    367         // We might be live, depending on the liveness of Use.
    368         return MarkIfNotLive(Use, MaybeLiveUses);
    369       } else {
    370         DeadArgumentEliminationPass::Liveness Result = MaybeLive;
    371         for (unsigned i = 0; i < NumRetVals(F); ++i) {
    372           RetOrArg Use = CreateRet(F, i);
    373           // We might be live, depending on the liveness of Use. If any
    374           // sub-value is live, then the entire value is considered live. This
    375           // is a conservative choice, and better tracking is possible.
    376           DeadArgumentEliminationPass::Liveness SubResult =
    377               MarkIfNotLive(Use, MaybeLiveUses);
    378           if (Result != Live)
    379             Result = SubResult;
    380         }
    381         return Result;
    382       }
    383     }
    384     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
    385       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
    386           && IV->hasIndices())
    387         // The use we are examining is inserted into an aggregate. Our liveness
    388         // depends on all uses of that aggregate, but if it is used as a return
    389         // value, only index at which we were inserted counts.
    390         RetValNum = *IV->idx_begin();
    391 
    392       // Note that if we are used as the aggregate operand to the insertvalue,
    393       // we don't change RetValNum, but do survey all our uses.
    394 
    395       Liveness Result = MaybeLive;
    396       for (const Use &UU : IV->uses()) {
    397         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
    398         if (Result == Live)
    399           break;
    400       }
    401       return Result;
    402     }
    403 
    404     if (auto CS = ImmutableCallSite(V)) {
    405       const Function *F = CS.getCalledFunction();
    406       if (F) {
    407         // Used in a direct call.
    408 
    409         // The function argument is live if it is used as a bundle operand.
    410         if (CS.isBundleOperand(U))
    411           return Live;
    412 
    413         // Find the argument number. We know for sure that this use is an
    414         // argument, since if it was the function argument this would be an
    415         // indirect call and the we know can't be looking at a value of the
    416         // label type (for the invoke instruction).
    417         unsigned ArgNo = CS.getArgumentNo(U);
    418 
    419         if (ArgNo >= F->getFunctionType()->getNumParams())
    420           // The value is passed in through a vararg! Must be live.
    421           return Live;
    422 
    423         assert(CS.getArgument(ArgNo)
    424                == CS->getOperand(U->getOperandNo())
    425                && "Argument is not where we expected it");
    426 
    427         // Value passed to a normal call. It's only live when the corresponding
    428         // argument to the called function turns out live.
    429         RetOrArg Use = CreateArg(F, ArgNo);
    430         return MarkIfNotLive(Use, MaybeLiveUses);
    431       }
    432     }
    433     // Used in any other way? Value must be live.
    434     return Live;
    435 }
    436 
    437 /// SurveyUses - This looks at all the uses of the given value
    438 /// Returns the Liveness deduced from the uses of this value.
    439 ///
    440 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
    441 /// the result is Live, MaybeLiveUses might be modified but its content should
    442 /// be ignored (since it might not be complete).
    443 DeadArgumentEliminationPass::Liveness
    444 DeadArgumentEliminationPass::SurveyUses(const Value *V,
    445                                         UseVector &MaybeLiveUses) {
    446   // Assume it's dead (which will only hold if there are no uses at all..).
    447   Liveness Result = MaybeLive;
    448   // Check each use.
    449   for (const Use &U : V->uses()) {
    450     Result = SurveyUse(&U, MaybeLiveUses);
    451     if (Result == Live)
    452       break;
    453   }
    454   return Result;
    455 }
    456 
    457 // SurveyFunction - This performs the initial survey of the specified function,
    458 // checking out whether or not it uses any of its incoming arguments or whether
    459 // any callers use the return value.  This fills in the LiveValues set and Uses
    460 // map.
    461 //
    462 // We consider arguments of non-internal functions to be intrinsically alive as
    463 // well as arguments to functions which have their "address taken".
    464 //
    465 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
    466   // Functions with inalloca parameters are expecting args in a particular
    467   // register and memory layout.
    468   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
    469     MarkLive(F);
    470     return;
    471   }
    472 
    473   // Don't touch naked functions. The assembly might be using an argument, or
    474   // otherwise rely on the frame layout in a way that this analysis will not
    475   // see.
    476   if (F.hasFnAttribute(Attribute::Naked)) {
    477     MarkLive(F);
    478     return;
    479   }
    480 
    481   unsigned RetCount = NumRetVals(&F);
    482   // Assume all return values are dead
    483   typedef SmallVector<Liveness, 5> RetVals;
    484   RetVals RetValLiveness(RetCount, MaybeLive);
    485 
    486   typedef SmallVector<UseVector, 5> RetUses;
    487   // These vectors map each return value to the uses that make it MaybeLive, so
    488   // we can add those to the Uses map if the return value really turns out to be
    489   // MaybeLive. Initialized to a list of RetCount empty lists.
    490   RetUses MaybeLiveRetUses(RetCount);
    491 
    492   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    493     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
    494       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
    495           != F.getFunctionType()->getReturnType()) {
    496         // We don't support old style multiple return values.
    497         MarkLive(F);
    498         return;
    499       }
    500 
    501   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
    502     MarkLive(F);
    503     return;
    504   }
    505 
    506   DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
    507                << F.getName() << "\n");
    508   // Keep track of the number of live retvals, so we can skip checks once all
    509   // of them turn out to be live.
    510   unsigned NumLiveRetVals = 0;
    511   // Loop all uses of the function.
    512   for (const Use &U : F.uses()) {
    513     // If the function is PASSED IN as an argument, its address has been
    514     // taken.
    515     ImmutableCallSite CS(U.getUser());
    516     if (!CS || !CS.isCallee(&U)) {
    517       MarkLive(F);
    518       return;
    519     }
    520 
    521     // If this use is anything other than a call site, the function is alive.
    522     const Instruction *TheCall = CS.getInstruction();
    523     if (!TheCall) {   // Not a direct call site?
    524       MarkLive(F);
    525       return;
    526     }
    527 
    528     // If we end up here, we are looking at a direct call to our function.
    529 
    530     // Now, check how our return value(s) is/are used in this caller. Don't
    531     // bother checking return values if all of them are live already.
    532     if (NumLiveRetVals == RetCount)
    533       continue;
    534 
    535     // Check all uses of the return value.
    536     for (const Use &U : TheCall->uses()) {
    537       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
    538         // This use uses a part of our return value, survey the uses of
    539         // that part and store the results for this index only.
    540         unsigned Idx = *Ext->idx_begin();
    541         if (RetValLiveness[Idx] != Live) {
    542           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
    543           if (RetValLiveness[Idx] == Live)
    544             NumLiveRetVals++;
    545         }
    546       } else {
    547         // Used by something else than extractvalue. Survey, but assume that the
    548         // result applies to all sub-values.
    549         UseVector MaybeLiveAggregateUses;
    550         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
    551           NumLiveRetVals = RetCount;
    552           RetValLiveness.assign(RetCount, Live);
    553           break;
    554         } else {
    555           for (unsigned i = 0; i != RetCount; ++i) {
    556             if (RetValLiveness[i] != Live)
    557               MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
    558                                          MaybeLiveAggregateUses.end());
    559           }
    560         }
    561       }
    562     }
    563   }
    564 
    565   // Now we've inspected all callers, record the liveness of our return values.
    566   for (unsigned i = 0; i != RetCount; ++i)
    567     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
    568 
    569   DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
    570                << F.getName() << "\n");
    571 
    572   // Now, check all of our arguments.
    573   unsigned i = 0;
    574   UseVector MaybeLiveArgUses;
    575   for (Function::const_arg_iterator AI = F.arg_begin(),
    576        E = F.arg_end(); AI != E; ++AI, ++i) {
    577     Liveness Result;
    578     if (F.getFunctionType()->isVarArg()) {
    579       // Variadic functions will already have a va_arg function expanded inside
    580       // them, making them potentially very sensitive to ABI changes resulting
    581       // from removing arguments entirely, so don't. For example AArch64 handles
    582       // register and stack HFAs very differently, and this is reflected in the
    583       // IR which has already been generated.
    584       Result = Live;
    585     } else {
    586       // See what the effect of this use is (recording any uses that cause
    587       // MaybeLive in MaybeLiveArgUses).
    588       Result = SurveyUses(&*AI, MaybeLiveArgUses);
    589     }
    590 
    591     // Mark the result.
    592     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    593     // Clear the vector again for the next iteration.
    594     MaybeLiveArgUses.clear();
    595   }
    596 }
    597 
    598 /// MarkValue - This function marks the liveness of RA depending on L. If L is
    599 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
    600 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
    601 /// live later on.
    602 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
    603                                             const UseVector &MaybeLiveUses) {
    604   switch (L) {
    605     case Live: MarkLive(RA); break;
    606     case MaybeLive:
    607     {
    608       // Note any uses of this value, so this return value can be
    609       // marked live whenever one of the uses becomes live.
    610       for (const auto &MaybeLiveUse : MaybeLiveUses)
    611         Uses.insert(std::make_pair(MaybeLiveUse, RA));
    612       break;
    613     }
    614   }
    615 }
    616 
    617 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
    618 /// changed in any way. Additionally,
    619 /// mark any values that are used as this function's parameters or by its return
    620 /// values (according to Uses) live as well.
    621 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
    622   DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
    623                << F.getName() << "\n");
    624   // Mark the function as live.
    625   LiveFunctions.insert(&F);
    626   // Mark all arguments as live.
    627   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    628     PropagateLiveness(CreateArg(&F, i));
    629   // Mark all return values as live.
    630   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    631     PropagateLiveness(CreateRet(&F, i));
    632 }
    633 
    634 /// MarkLive - Mark the given return value or argument as live. Additionally,
    635 /// mark any values that are used by this value (according to Uses) live as
    636 /// well.
    637 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
    638   if (LiveFunctions.count(RA.F))
    639     return; // Function was already marked Live.
    640 
    641   if (!LiveValues.insert(RA).second)
    642     return; // We were already marked Live.
    643 
    644   DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
    645                << RA.getDescription() << " live\n");
    646   PropagateLiveness(RA);
    647 }
    648 
    649 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
    650 /// to any other values it uses (according to Uses).
    651 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
    652   // We don't use upper_bound (or equal_range) here, because our recursive call
    653   // to ourselves is likely to cause the upper_bound (which is the first value
    654   // not belonging to RA) to become erased and the iterator invalidated.
    655   UseMap::iterator Begin = Uses.lower_bound(RA);
    656   UseMap::iterator E = Uses.end();
    657   UseMap::iterator I;
    658   for (I = Begin; I != E && I->first == RA; ++I)
    659     MarkLive(I->second);
    660 
    661   // Erase RA from the Uses map (from the lower bound to wherever we ended up
    662   // after the loop).
    663   Uses.erase(Begin, I);
    664 }
    665 
    666 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
    667 // that are not in LiveValues. Transform the function and all of the callees of
    668 // the function to not have these arguments and return values.
    669 //
    670 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
    671   // Don't modify fully live functions
    672   if (LiveFunctions.count(F))
    673     return false;
    674 
    675   // Start by computing a new prototype for the function, which is the same as
    676   // the old function, but has fewer arguments and a different return type.
    677   FunctionType *FTy = F->getFunctionType();
    678   std::vector<Type*> Params;
    679 
    680   // Keep track of if we have a live 'returned' argument
    681   bool HasLiveReturnedArg = false;
    682 
    683   // Set up to build a new list of parameter attributes.
    684   SmallVector<AttributeSet, 8> AttributesVec;
    685   const AttributeSet &PAL = F->getAttributes();
    686 
    687   // Remember which arguments are still alive.
    688   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
    689   // Construct the new parameter list from non-dead arguments. Also construct
    690   // a new set of parameter attributes to correspond. Skip the first parameter
    691   // attribute, since that belongs to the return value.
    692   unsigned i = 0;
    693   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    694        I != E; ++I, ++i) {
    695     RetOrArg Arg = CreateArg(F, i);
    696     if (LiveValues.erase(Arg)) {
    697       Params.push_back(I->getType());
    698       ArgAlive[i] = true;
    699 
    700       // Get the original parameter attributes (skipping the first one, that is
    701       // for the return value.
    702       if (PAL.hasAttributes(i + 1)) {
    703         AttrBuilder B(PAL, i + 1);
    704         if (B.contains(Attribute::Returned))
    705           HasLiveReturnedArg = true;
    706         AttributesVec.
    707           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    708       }
    709     } else {
    710       ++NumArgumentsEliminated;
    711       DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " << i
    712                    << " (" << I->getName() << ") from " << F->getName()
    713                    << "\n");
    714     }
    715   }
    716 
    717   // Find out the new return value.
    718   Type *RetTy = FTy->getReturnType();
    719   Type *NRetTy = nullptr;
    720   unsigned RetCount = NumRetVals(F);
    721 
    722   // -1 means unused, other numbers are the new index
    723   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
    724   std::vector<Type*> RetTypes;
    725 
    726   // If there is a function with a live 'returned' argument but a dead return
    727   // value, then there are two possible actions:
    728   // 1) Eliminate the return value and take off the 'returned' attribute on the
    729   //    argument.
    730   // 2) Retain the 'returned' attribute and treat the return value (but not the
    731   //    entire function) as live so that it is not eliminated.
    732   //
    733   // It's not clear in the general case which option is more profitable because,
    734   // even in the absence of explicit uses of the return value, code generation
    735   // is free to use the 'returned' attribute to do things like eliding
    736   // save/restores of registers across calls. Whether or not this happens is
    737   // target and ABI-specific as well as depending on the amount of register
    738   // pressure, so there's no good way for an IR-level pass to figure this out.
    739   //
    740   // Fortunately, the only places where 'returned' is currently generated by
    741   // the FE are places where 'returned' is basically free and almost always a
    742   // performance win, so the second option can just be used always for now.
    743   //
    744   // This should be revisited if 'returned' is ever applied more liberally.
    745   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
    746     NRetTy = RetTy;
    747   } else {
    748     // Look at each of the original return values individually.
    749     for (unsigned i = 0; i != RetCount; ++i) {
    750       RetOrArg Ret = CreateRet(F, i);
    751       if (LiveValues.erase(Ret)) {
    752         RetTypes.push_back(getRetComponentType(F, i));
    753         NewRetIdxs[i] = RetTypes.size() - 1;
    754       } else {
    755         ++NumRetValsEliminated;
    756         DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing return value "
    757                      << i << " from " << F->getName() << "\n");
    758       }
    759     }
    760     if (RetTypes.size() > 1) {
    761       // More than one return type? Reduce it down to size.
    762       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
    763         // Make the new struct packed if we used to return a packed struct
    764         // already.
    765         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    766       } else {
    767         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
    768         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
    769       }
    770     } else if (RetTypes.size() == 1)
    771       // One return type? Just a simple value then, but only if we didn't use to
    772       // return a struct with that simple value before.
    773       NRetTy = RetTypes.front();
    774     else if (RetTypes.size() == 0)
    775       // No return types? Make it void, but only if we didn't use to return {}.
    776       NRetTy = Type::getVoidTy(F->getContext());
    777   }
    778 
    779   assert(NRetTy && "No new return type found?");
    780 
    781   // The existing function return attributes.
    782   AttributeSet RAttrs = PAL.getRetAttributes();
    783 
    784   // Remove any incompatible attributes, but only if we removed all return
    785   // values. Otherwise, ensure that we don't have any conflicting attributes
    786   // here. Currently, this should not be possible, but special handling might be
    787   // required when new return value attributes are added.
    788   if (NRetTy->isVoidTy())
    789     RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
    790                                      AttributeSet::ReturnIndex,
    791                                      AttributeFuncs::typeIncompatible(NRetTy));
    792   else
    793     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    794              overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
    795            "Return attributes no longer compatible?");
    796 
    797   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    798     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
    799 
    800   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    801     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    802                                               PAL.getFnAttributes()));
    803 
    804   // Reconstruct the AttributesList based on the vector we constructed.
    805   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
    806 
    807   // Create the new function type based on the recomputed parameters.
    808   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
    809 
    810   // No change?
    811   if (NFTy == FTy)
    812     return false;
    813 
    814   // Create the new function body and insert it into the module...
    815   Function *NF = Function::Create(NFTy, F->getLinkage());
    816   NF->copyAttributesFrom(F);
    817   NF->setComdat(F->getComdat());
    818   NF->setAttributes(NewPAL);
    819   // Insert the new function before the old function, so we won't be processing
    820   // it again.
    821   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
    822   NF->takeName(F);
    823 
    824   // Loop over all of the callers of the function, transforming the call sites
    825   // to pass in a smaller number of arguments into the new function.
    826   //
    827   std::vector<Value*> Args;
    828   while (!F->use_empty()) {
    829     CallSite CS(F->user_back());
    830     Instruction *Call = CS.getInstruction();
    831 
    832     AttributesVec.clear();
    833     const AttributeSet &CallPAL = CS.getAttributes();
    834 
    835     // The call return attributes.
    836     AttributeSet RAttrs = CallPAL.getRetAttributes();
    837 
    838     // Adjust in case the function was changed to return void.
    839     RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
    840                                      AttributeSet::ReturnIndex,
    841                         AttributeFuncs::typeIncompatible(NF->getReturnType()));
    842     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    843       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
    844 
    845     // Declare these outside of the loops, so we can reuse them for the second
    846     // loop, which loops the varargs.
    847     CallSite::arg_iterator I = CS.arg_begin();
    848     unsigned i = 0;
    849     // Loop over those operands, corresponding to the normal arguments to the
    850     // original function, and add those that are still alive.
    851     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
    852       if (ArgAlive[i]) {
    853         Args.push_back(*I);
    854         // Get original parameter attributes, but skip return attributes.
    855         if (CallPAL.hasAttributes(i + 1)) {
    856           AttrBuilder B(CallPAL, i + 1);
    857           // If the return type has changed, then get rid of 'returned' on the
    858           // call site. The alternative is to make all 'returned' attributes on
    859           // call sites keep the return value alive just like 'returned'
    860           // attributes on function declaration but it's less clearly a win
    861           // and this is not an expected case anyway
    862           if (NRetTy != RetTy && B.contains(Attribute::Returned))
    863             B.removeAttribute(Attribute::Returned);
    864           AttributesVec.
    865             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    866         }
    867       }
    868 
    869     // Push any varargs arguments on the list. Don't forget their attributes.
    870     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
    871       Args.push_back(*I);
    872       if (CallPAL.hasAttributes(i + 1)) {
    873         AttrBuilder B(CallPAL, i + 1);
    874         AttributesVec.
    875           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    876       }
    877     }
    878 
    879     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    880       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    881                                                 CallPAL.getFnAttributes()));
    882 
    883     // Reconstruct the AttributesList based on the vector we constructed.
    884     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
    885 
    886     SmallVector<OperandBundleDef, 1> OpBundles;
    887     CS.getOperandBundlesAsDefs(OpBundles);
    888 
    889     Instruction *New;
    890     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    891       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    892                                Args, OpBundles, "", Call->getParent());
    893       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    894       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    895     } else {
    896       New = CallInst::Create(NF, Args, OpBundles, "", Call);
    897       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    898       cast<CallInst>(New)->setAttributes(NewCallPAL);
    899       if (cast<CallInst>(Call)->isTailCall())
    900         cast<CallInst>(New)->setTailCall();
    901     }
    902     New->setDebugLoc(Call->getDebugLoc());
    903 
    904     Args.clear();
    905 
    906     if (!Call->use_empty()) {
    907       if (New->getType() == Call->getType()) {
    908         // Return type not changed? Just replace users then.
    909         Call->replaceAllUsesWith(New);
    910         New->takeName(Call);
    911       } else if (New->getType()->isVoidTy()) {
    912         // Our return value has uses, but they will get removed later on.
    913         // Replace by null for now.
    914         if (!Call->getType()->isX86_MMXTy())
    915           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    916       } else {
    917         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
    918                "Return type changed, but not into a void. The old return type"
    919                " must have been a struct or an array!");
    920         Instruction *InsertPt = Call;
    921         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    922           BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
    923           InsertPt = &*NewEdge->getFirstInsertionPt();
    924         }
    925 
    926         // We used to return a struct or array. Instead of doing smart stuff
    927         // with all the uses, we will just rebuild it using extract/insertvalue
    928         // chaining and let instcombine clean that up.
    929         //
    930         // Start out building up our return value from undef
    931         Value *RetVal = UndefValue::get(RetTy);
    932         for (unsigned i = 0; i != RetCount; ++i)
    933           if (NewRetIdxs[i] != -1) {
    934             Value *V;
    935             if (RetTypes.size() > 1)
    936               // We are still returning a struct, so extract the value from our
    937               // return value
    938               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
    939                                            InsertPt);
    940             else
    941               // We are now returning a single element, so just insert that
    942               V = New;
    943             // Insert the value at the old position
    944             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
    945           }
    946         // Now, replace all uses of the old call instruction with the return
    947         // struct we built
    948         Call->replaceAllUsesWith(RetVal);
    949         New->takeName(Call);
    950       }
    951     }
    952 
    953     // Finally, remove the old call from the program, reducing the use-count of
    954     // F.
    955     Call->eraseFromParent();
    956   }
    957 
    958   // Since we have now created the new function, splice the body of the old
    959   // function right into the new function, leaving the old rotting hulk of the
    960   // function empty.
    961   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    962 
    963   // Loop over the argument list, transferring uses of the old arguments over to
    964   // the new arguments, also transferring over the names as well.
    965   i = 0;
    966   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    967        I2 = NF->arg_begin(); I != E; ++I, ++i)
    968     if (ArgAlive[i]) {
    969       // If this is a live argument, move the name and users over to the new
    970       // version.
    971       I->replaceAllUsesWith(&*I2);
    972       I2->takeName(&*I);
    973       ++I2;
    974     } else {
    975       // If this argument is dead, replace any uses of it with null constants
    976       // (these are guaranteed to become unused later on).
    977       if (!I->getType()->isX86_MMXTy())
    978         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
    979     }
    980 
    981   // If we change the return value of the function we must rewrite any return
    982   // instructions.  Check this now.
    983   if (F->getReturnType() != NF->getReturnType())
    984     for (BasicBlock &BB : *NF)
    985       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
    986         Value *RetVal;
    987 
    988         if (NFTy->getReturnType()->isVoidTy()) {
    989           RetVal = nullptr;
    990         } else {
    991           assert(RetTy->isStructTy() || RetTy->isArrayTy());
    992           // The original return value was a struct or array, insert
    993           // extractvalue/insertvalue chains to extract only the values we need
    994           // to return and insert them into our new result.
    995           // This does generate messy code, but we'll let it to instcombine to
    996           // clean that up.
    997           Value *OldRet = RI->getOperand(0);
    998           // Start out building up our return value from undef
    999           RetVal = UndefValue::get(NRetTy);
   1000           for (unsigned i = 0; i != RetCount; ++i)
   1001             if (NewRetIdxs[i] != -1) {
   1002               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
   1003                                                               "oldret", RI);
   1004               if (RetTypes.size() > 1) {
   1005                 // We're still returning a struct, so reinsert the value into
   1006                 // our new return value at the new index
   1007 
   1008                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
   1009                                                  "newret", RI);
   1010               } else {
   1011                 // We are now only returning a simple value, so just return the
   1012                 // extracted value.
   1013                 RetVal = EV;
   1014               }
   1015             }
   1016         }
   1017         // Replace the return instruction with one returning the new return
   1018         // value (possibly 0 if we became void).
   1019         ReturnInst::Create(F->getContext(), RetVal, RI);
   1020         BB.getInstList().erase(RI);
   1021       }
   1022 
   1023   // Patch the pointer to LLVM function in debug info descriptor.
   1024   NF->setSubprogram(F->getSubprogram());
   1025 
   1026   // Now that the old function is dead, delete it.
   1027   F->eraseFromParent();
   1028 
   1029   return true;
   1030 }
   1031 
   1032 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
   1033                                                    ModuleAnalysisManager &) {
   1034   bool Changed = false;
   1035 
   1036   // First pass: Do a simple check to see if any functions can have their "..."
   1037   // removed.  We can do this if they never call va_start.  This loop cannot be
   1038   // fused with the next loop, because deleting a function invalidates
   1039   // information computed while surveying other functions.
   1040   DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
   1041   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1042     Function &F = *I++;
   1043     if (F.getFunctionType()->isVarArg())
   1044       Changed |= DeleteDeadVarargs(F);
   1045   }
   1046 
   1047   // Second phase:loop through the module, determining which arguments are live.
   1048   // We assume all arguments are dead unless proven otherwise (allowing us to
   1049   // determine that dead arguments passed into recursive functions are dead).
   1050   //
   1051   DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
   1052   for (auto &F : M)
   1053     SurveyFunction(F);
   1054 
   1055   // Now, remove all dead arguments and return values from each function in
   1056   // turn.
   1057   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1058     // Increment now, because the function will probably get removed (ie.
   1059     // replaced by a new one).
   1060     Function *F = &*I++;
   1061     Changed |= RemoveDeadStuffFromFunction(F);
   1062   }
   1063 
   1064   // Finally, look for any unused parameters in functions with non-local
   1065   // linkage and replace the passed in parameters with undef.
   1066   for (auto &F : M)
   1067     Changed |= RemoveDeadArgumentsFromCallers(F);
   1068 
   1069   if (!Changed)
   1070     return PreservedAnalyses::all();
   1071   return PreservedAnalyses::none();
   1072 }
   1073