Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements an idiom recognizer that transforms simple loops into a
     11 // non-loop form.  In cases that this kicks in, it can be a significant
     12 // performance win.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 //
     16 // TODO List:
     17 //
     18 // Future loop memory idioms to recognize:
     19 //   memcmp, memmove, strlen, etc.
     20 // Future floating point idioms to recognize in -ffast-math mode:
     21 //   fpowi
     22 // Future integer operation idioms to recognize:
     23 //   ctpop, ctlz, cttz
     24 //
     25 // Beware that isel's default lowering for ctpop is highly inefficient for
     26 // i64 and larger types when i64 is legal and the value has few bits set.  It
     27 // would be good to enhance isel to emit a loop for ctpop in this case.
     28 //
     29 // This could recognize common matrix multiplies and dot product idioms and
     30 // replace them with calls to BLAS (if linked in??).
     31 //
     32 //===----------------------------------------------------------------------===//
     33 
     34 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
     35 #include "llvm/ADT/MapVector.h"
     36 #include "llvm/ADT/SetVector.h"
     37 #include "llvm/ADT/Statistic.h"
     38 #include "llvm/Analysis/AliasAnalysis.h"
     39 #include "llvm/Analysis/BasicAliasAnalysis.h"
     40 #include "llvm/Analysis/GlobalsModRef.h"
     41 #include "llvm/Analysis/LoopAccessAnalysis.h"
     42 #include "llvm/Analysis/LoopPass.h"
     43 #include "llvm/Analysis/LoopPassManager.h"
     44 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     45 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     47 #include "llvm/Analysis/TargetLibraryInfo.h"
     48 #include "llvm/Analysis/TargetTransformInfo.h"
     49 #include "llvm/Analysis/ValueTracking.h"
     50 #include "llvm/IR/DataLayout.h"
     51 #include "llvm/IR/Dominators.h"
     52 #include "llvm/IR/IRBuilder.h"
     53 #include "llvm/IR/IntrinsicInst.h"
     54 #include "llvm/IR/Module.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/raw_ostream.h"
     57 #include "llvm/Transforms/Scalar.h"
     58 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     59 #include "llvm/Transforms/Utils/Local.h"
     60 #include "llvm/Transforms/Utils/LoopUtils.h"
     61 using namespace llvm;
     62 
     63 #define DEBUG_TYPE "loop-idiom"
     64 
     65 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
     66 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
     67 
     68 namespace {
     69 
     70 class LoopIdiomRecognize {
     71   Loop *CurLoop;
     72   AliasAnalysis *AA;
     73   DominatorTree *DT;
     74   LoopInfo *LI;
     75   ScalarEvolution *SE;
     76   TargetLibraryInfo *TLI;
     77   const TargetTransformInfo *TTI;
     78   const DataLayout *DL;
     79 
     80 public:
     81   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
     82                               LoopInfo *LI, ScalarEvolution *SE,
     83                               TargetLibraryInfo *TLI,
     84                               const TargetTransformInfo *TTI,
     85                               const DataLayout *DL)
     86       : CurLoop(nullptr), AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI),
     87         DL(DL) {}
     88 
     89   bool runOnLoop(Loop *L);
     90 
     91 private:
     92   typedef SmallVector<StoreInst *, 8> StoreList;
     93   typedef MapVector<Value *, StoreList> StoreListMap;
     94   StoreListMap StoreRefsForMemset;
     95   StoreListMap StoreRefsForMemsetPattern;
     96   StoreList StoreRefsForMemcpy;
     97   bool HasMemset;
     98   bool HasMemsetPattern;
     99   bool HasMemcpy;
    100 
    101   /// \name Countable Loop Idiom Handling
    102   /// @{
    103 
    104   bool runOnCountableLoop();
    105   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
    106                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
    107 
    108   void collectStores(BasicBlock *BB);
    109   bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern,
    110                     bool &ForMemcpy);
    111   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
    112                          bool ForMemset);
    113   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
    114 
    115   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
    116                                unsigned StoreAlignment, Value *StoredVal,
    117                                Instruction *TheStore,
    118                                SmallPtrSetImpl<Instruction *> &Stores,
    119                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
    120                                bool NegStride);
    121   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
    122 
    123   /// @}
    124   /// \name Noncountable Loop Idiom Handling
    125   /// @{
    126 
    127   bool runOnNoncountableLoop();
    128 
    129   bool recognizePopcount();
    130   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
    131                                PHINode *CntPhi, Value *Var);
    132 
    133   /// @}
    134 };
    135 
    136 class LoopIdiomRecognizeLegacyPass : public LoopPass {
    137 public:
    138   static char ID;
    139   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
    140     initializeLoopIdiomRecognizeLegacyPassPass(
    141         *PassRegistry::getPassRegistry());
    142   }
    143 
    144   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    145     if (skipLoop(L))
    146       return false;
    147 
    148     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    149     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    150     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    151     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    152     TargetLibraryInfo *TLI =
    153         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    154     const TargetTransformInfo *TTI =
    155         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
    156             *L->getHeader()->getParent());
    157     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
    158 
    159     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
    160     return LIR.runOnLoop(L);
    161   }
    162 
    163   /// This transformation requires natural loop information & requires that
    164   /// loop preheaders be inserted into the CFG.
    165   ///
    166   void getAnalysisUsage(AnalysisUsage &AU) const override {
    167     AU.addRequired<TargetLibraryInfoWrapperPass>();
    168     AU.addRequired<TargetTransformInfoWrapperPass>();
    169     getLoopAnalysisUsage(AU);
    170   }
    171 };
    172 } // End anonymous namespace.
    173 
    174 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L,
    175                                               AnalysisManager<Loop> &AM) {
    176   const auto &FAM =
    177       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
    178   Function *F = L.getHeader()->getParent();
    179 
    180   // Use getCachedResult because Loop pass cannot trigger a function analysis.
    181   auto *AA = FAM.getCachedResult<AAManager>(*F);
    182   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
    183   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
    184   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
    185   auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F);
    186   const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
    187   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
    188   assert((AA && DT && LI && SE && TLI && TTI && DL) &&
    189          "Analyses for Loop Idiom Recognition not available");
    190 
    191   LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
    192   if (!LIR.runOnLoop(&L))
    193     return PreservedAnalyses::all();
    194 
    195   return getLoopPassPreservedAnalyses();
    196 }
    197 
    198 char LoopIdiomRecognizeLegacyPass::ID = 0;
    199 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
    200                       "Recognize loop idioms", false, false)
    201 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    202 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    203 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    204 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
    205                     "Recognize loop idioms", false, false)
    206 
    207 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
    208 
    209 static void deleteDeadInstruction(Instruction *I) {
    210   I->replaceAllUsesWith(UndefValue::get(I->getType()));
    211   I->eraseFromParent();
    212 }
    213 
    214 //===----------------------------------------------------------------------===//
    215 //
    216 //          Implementation of LoopIdiomRecognize
    217 //
    218 //===----------------------------------------------------------------------===//
    219 
    220 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
    221   CurLoop = L;
    222   // If the loop could not be converted to canonical form, it must have an
    223   // indirectbr in it, just give up.
    224   if (!L->getLoopPreheader())
    225     return false;
    226 
    227   // Disable loop idiom recognition if the function's name is a common idiom.
    228   StringRef Name = L->getHeader()->getParent()->getName();
    229   if (Name == "memset" || Name == "memcpy")
    230     return false;
    231 
    232   HasMemset = TLI->has(LibFunc::memset);
    233   HasMemsetPattern = TLI->has(LibFunc::memset_pattern16);
    234   HasMemcpy = TLI->has(LibFunc::memcpy);
    235 
    236   if (HasMemset || HasMemsetPattern || HasMemcpy)
    237     if (SE->hasLoopInvariantBackedgeTakenCount(L))
    238       return runOnCountableLoop();
    239 
    240   return runOnNoncountableLoop();
    241 }
    242 
    243 bool LoopIdiomRecognize::runOnCountableLoop() {
    244   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
    245   assert(!isa<SCEVCouldNotCompute>(BECount) &&
    246          "runOnCountableLoop() called on a loop without a predictable"
    247          "backedge-taken count");
    248 
    249   // If this loop executes exactly one time, then it should be peeled, not
    250   // optimized by this pass.
    251   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    252     if (BECst->getAPInt() == 0)
    253       return false;
    254 
    255   SmallVector<BasicBlock *, 8> ExitBlocks;
    256   CurLoop->getUniqueExitBlocks(ExitBlocks);
    257 
    258   DEBUG(dbgs() << "loop-idiom Scanning: F["
    259                << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
    260                << CurLoop->getHeader()->getName() << "\n");
    261 
    262   bool MadeChange = false;
    263 
    264   // The following transforms hoist stores/memsets into the loop pre-header.
    265   // Give up if the loop has instructions may throw.
    266   LoopSafetyInfo SafetyInfo;
    267   computeLoopSafetyInfo(&SafetyInfo, CurLoop);
    268   if (SafetyInfo.MayThrow)
    269     return MadeChange;
    270 
    271   // Scan all the blocks in the loop that are not in subloops.
    272   for (auto *BB : CurLoop->getBlocks()) {
    273     // Ignore blocks in subloops.
    274     if (LI->getLoopFor(BB) != CurLoop)
    275       continue;
    276 
    277     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
    278   }
    279   return MadeChange;
    280 }
    281 
    282 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
    283   uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
    284   assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
    285          "Don't overflow unsigned.");
    286   return (unsigned)SizeInBits >> 3;
    287 }
    288 
    289 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
    290   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
    291   return ConstStride->getAPInt();
    292 }
    293 
    294 /// getMemSetPatternValue - If a strided store of the specified value is safe to
    295 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
    296 /// be passed in.  Otherwise, return null.
    297 ///
    298 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
    299 /// just replicate their input array and then pass on to memset_pattern16.
    300 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
    301   // If the value isn't a constant, we can't promote it to being in a constant
    302   // array.  We could theoretically do a store to an alloca or something, but
    303   // that doesn't seem worthwhile.
    304   Constant *C = dyn_cast<Constant>(V);
    305   if (!C)
    306     return nullptr;
    307 
    308   // Only handle simple values that are a power of two bytes in size.
    309   uint64_t Size = DL->getTypeSizeInBits(V->getType());
    310   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
    311     return nullptr;
    312 
    313   // Don't care enough about darwin/ppc to implement this.
    314   if (DL->isBigEndian())
    315     return nullptr;
    316 
    317   // Convert to size in bytes.
    318   Size /= 8;
    319 
    320   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
    321   // if the top and bottom are the same (e.g. for vectors and large integers).
    322   if (Size > 16)
    323     return nullptr;
    324 
    325   // If the constant is exactly 16 bytes, just use it.
    326   if (Size == 16)
    327     return C;
    328 
    329   // Otherwise, we'll use an array of the constants.
    330   unsigned ArraySize = 16 / Size;
    331   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
    332   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
    333 }
    334 
    335 bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
    336                                       bool &ForMemsetPattern, bool &ForMemcpy) {
    337   // Don't touch volatile stores.
    338   if (!SI->isSimple())
    339     return false;
    340 
    341   // Avoid merging nontemporal stores.
    342   if (SI->getMetadata(LLVMContext::MD_nontemporal))
    343     return false;
    344 
    345   Value *StoredVal = SI->getValueOperand();
    346   Value *StorePtr = SI->getPointerOperand();
    347 
    348   // Reject stores that are so large that they overflow an unsigned.
    349   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
    350   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
    351     return false;
    352 
    353   // See if the pointer expression is an AddRec like {base,+,1} on the current
    354   // loop, which indicates a strided store.  If we have something else, it's a
    355   // random store we can't handle.
    356   const SCEVAddRecExpr *StoreEv =
    357       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    358   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    359     return false;
    360 
    361   // Check to see if we have a constant stride.
    362   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
    363     return false;
    364 
    365   // See if the store can be turned into a memset.
    366 
    367   // If the stored value is a byte-wise value (like i32 -1), then it may be
    368   // turned into a memset of i8 -1, assuming that all the consecutive bytes
    369   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
    370   // but it can be turned into memset_pattern if the target supports it.
    371   Value *SplatValue = isBytewiseValue(StoredVal);
    372   Constant *PatternValue = nullptr;
    373 
    374   // If we're allowed to form a memset, and the stored value would be
    375   // acceptable for memset, use it.
    376   if (HasMemset && SplatValue &&
    377       // Verify that the stored value is loop invariant.  If not, we can't
    378       // promote the memset.
    379       CurLoop->isLoopInvariant(SplatValue)) {
    380     // It looks like we can use SplatValue.
    381     ForMemset = true;
    382     return true;
    383   } else if (HasMemsetPattern &&
    384              // Don't create memset_pattern16s with address spaces.
    385              StorePtr->getType()->getPointerAddressSpace() == 0 &&
    386              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
    387     // It looks like we can use PatternValue!
    388     ForMemsetPattern = true;
    389     return true;
    390   }
    391 
    392   // Otherwise, see if the store can be turned into a memcpy.
    393   if (HasMemcpy) {
    394     // Check to see if the stride matches the size of the store.  If so, then we
    395     // know that every byte is touched in the loop.
    396     APInt Stride = getStoreStride(StoreEv);
    397     unsigned StoreSize = getStoreSizeInBytes(SI, DL);
    398     if (StoreSize != Stride && StoreSize != -Stride)
    399       return false;
    400 
    401     // The store must be feeding a non-volatile load.
    402     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
    403     if (!LI || !LI->isSimple())
    404       return false;
    405 
    406     // See if the pointer expression is an AddRec like {base,+,1} on the current
    407     // loop, which indicates a strided load.  If we have something else, it's a
    408     // random load we can't handle.
    409     const SCEVAddRecExpr *LoadEv =
    410         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
    411     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
    412       return false;
    413 
    414     // The store and load must share the same stride.
    415     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
    416       return false;
    417 
    418     // Success.  This store can be converted into a memcpy.
    419     ForMemcpy = true;
    420     return true;
    421   }
    422   // This store can't be transformed into a memset/memcpy.
    423   return false;
    424 }
    425 
    426 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
    427   StoreRefsForMemset.clear();
    428   StoreRefsForMemsetPattern.clear();
    429   StoreRefsForMemcpy.clear();
    430   for (Instruction &I : *BB) {
    431     StoreInst *SI = dyn_cast<StoreInst>(&I);
    432     if (!SI)
    433       continue;
    434 
    435     bool ForMemset = false;
    436     bool ForMemsetPattern = false;
    437     bool ForMemcpy = false;
    438     // Make sure this is a strided store with a constant stride.
    439     if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy))
    440       continue;
    441 
    442     // Save the store locations.
    443     if (ForMemset) {
    444       // Find the base pointer.
    445       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
    446       StoreRefsForMemset[Ptr].push_back(SI);
    447     } else if (ForMemsetPattern) {
    448       // Find the base pointer.
    449       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
    450       StoreRefsForMemsetPattern[Ptr].push_back(SI);
    451     } else if (ForMemcpy)
    452       StoreRefsForMemcpy.push_back(SI);
    453   }
    454 }
    455 
    456 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
    457 /// with the specified backedge count.  This block is known to be in the current
    458 /// loop and not in any subloops.
    459 bool LoopIdiomRecognize::runOnLoopBlock(
    460     BasicBlock *BB, const SCEV *BECount,
    461     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
    462   // We can only promote stores in this block if they are unconditionally
    463   // executed in the loop.  For a block to be unconditionally executed, it has
    464   // to dominate all the exit blocks of the loop.  Verify this now.
    465   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    466     if (!DT->dominates(BB, ExitBlocks[i]))
    467       return false;
    468 
    469   bool MadeChange = false;
    470   // Look for store instructions, which may be optimized to memset/memcpy.
    471   collectStores(BB);
    472 
    473   // Look for a single store or sets of stores with a common base, which can be
    474   // optimized into a memset (memset_pattern).  The latter most commonly happens
    475   // with structs and handunrolled loops.
    476   for (auto &SL : StoreRefsForMemset)
    477     MadeChange |= processLoopStores(SL.second, BECount, true);
    478 
    479   for (auto &SL : StoreRefsForMemsetPattern)
    480     MadeChange |= processLoopStores(SL.second, BECount, false);
    481 
    482   // Optimize the store into a memcpy, if it feeds an similarly strided load.
    483   for (auto &SI : StoreRefsForMemcpy)
    484     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
    485 
    486   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    487     Instruction *Inst = &*I++;
    488     // Look for memset instructions, which may be optimized to a larger memset.
    489     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
    490       WeakVH InstPtr(&*I);
    491       if (!processLoopMemSet(MSI, BECount))
    492         continue;
    493       MadeChange = true;
    494 
    495       // If processing the memset invalidated our iterator, start over from the
    496       // top of the block.
    497       if (!InstPtr)
    498         I = BB->begin();
    499       continue;
    500     }
    501   }
    502 
    503   return MadeChange;
    504 }
    505 
    506 /// processLoopStores - See if this store(s) can be promoted to a memset.
    507 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
    508                                            const SCEV *BECount,
    509                                            bool ForMemset) {
    510   // Try to find consecutive stores that can be transformed into memsets.
    511   SetVector<StoreInst *> Heads, Tails;
    512   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
    513 
    514   // Do a quadratic search on all of the given stores and find
    515   // all of the pairs of stores that follow each other.
    516   SmallVector<unsigned, 16> IndexQueue;
    517   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
    518     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
    519 
    520     Value *FirstStoredVal = SL[i]->getValueOperand();
    521     Value *FirstStorePtr = SL[i]->getPointerOperand();
    522     const SCEVAddRecExpr *FirstStoreEv =
    523         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
    524     APInt FirstStride = getStoreStride(FirstStoreEv);
    525     unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL);
    526 
    527     // See if we can optimize just this store in isolation.
    528     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
    529       Heads.insert(SL[i]);
    530       continue;
    531     }
    532 
    533     Value *FirstSplatValue = nullptr;
    534     Constant *FirstPatternValue = nullptr;
    535 
    536     if (ForMemset)
    537       FirstSplatValue = isBytewiseValue(FirstStoredVal);
    538     else
    539       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
    540 
    541     assert((FirstSplatValue || FirstPatternValue) &&
    542            "Expected either splat value or pattern value.");
    543 
    544     IndexQueue.clear();
    545     // If a store has multiple consecutive store candidates, search Stores
    546     // array according to the sequence: from i+1 to e, then from i-1 to 0.
    547     // This is because usually pairing with immediate succeeding or preceding
    548     // candidate create the best chance to find memset opportunity.
    549     unsigned j = 0;
    550     for (j = i + 1; j < e; ++j)
    551       IndexQueue.push_back(j);
    552     for (j = i; j > 0; --j)
    553       IndexQueue.push_back(j - 1);
    554 
    555     for (auto &k : IndexQueue) {
    556       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
    557       Value *SecondStorePtr = SL[k]->getPointerOperand();
    558       const SCEVAddRecExpr *SecondStoreEv =
    559           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
    560       APInt SecondStride = getStoreStride(SecondStoreEv);
    561 
    562       if (FirstStride != SecondStride)
    563         continue;
    564 
    565       Value *SecondStoredVal = SL[k]->getValueOperand();
    566       Value *SecondSplatValue = nullptr;
    567       Constant *SecondPatternValue = nullptr;
    568 
    569       if (ForMemset)
    570         SecondSplatValue = isBytewiseValue(SecondStoredVal);
    571       else
    572         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
    573 
    574       assert((SecondSplatValue || SecondPatternValue) &&
    575              "Expected either splat value or pattern value.");
    576 
    577       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
    578         if (ForMemset) {
    579           if (FirstSplatValue != SecondSplatValue)
    580             continue;
    581         } else {
    582           if (FirstPatternValue != SecondPatternValue)
    583             continue;
    584         }
    585         Tails.insert(SL[k]);
    586         Heads.insert(SL[i]);
    587         ConsecutiveChain[SL[i]] = SL[k];
    588         break;
    589       }
    590     }
    591   }
    592 
    593   // We may run into multiple chains that merge into a single chain. We mark the
    594   // stores that we transformed so that we don't visit the same store twice.
    595   SmallPtrSet<Value *, 16> TransformedStores;
    596   bool Changed = false;
    597 
    598   // For stores that start but don't end a link in the chain:
    599   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
    600        it != e; ++it) {
    601     if (Tails.count(*it))
    602       continue;
    603 
    604     // We found a store instr that starts a chain. Now follow the chain and try
    605     // to transform it.
    606     SmallPtrSet<Instruction *, 8> AdjacentStores;
    607     StoreInst *I = *it;
    608 
    609     StoreInst *HeadStore = I;
    610     unsigned StoreSize = 0;
    611 
    612     // Collect the chain into a list.
    613     while (Tails.count(I) || Heads.count(I)) {
    614       if (TransformedStores.count(I))
    615         break;
    616       AdjacentStores.insert(I);
    617 
    618       StoreSize += getStoreSizeInBytes(I, DL);
    619       // Move to the next value in the chain.
    620       I = ConsecutiveChain[I];
    621     }
    622 
    623     Value *StoredVal = HeadStore->getValueOperand();
    624     Value *StorePtr = HeadStore->getPointerOperand();
    625     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    626     APInt Stride = getStoreStride(StoreEv);
    627 
    628     // Check to see if the stride matches the size of the stores.  If so, then
    629     // we know that every byte is touched in the loop.
    630     if (StoreSize != Stride && StoreSize != -Stride)
    631       continue;
    632 
    633     bool NegStride = StoreSize == -Stride;
    634 
    635     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
    636                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
    637                                 BECount, NegStride)) {
    638       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
    639       Changed = true;
    640     }
    641   }
    642 
    643   return Changed;
    644 }
    645 
    646 /// processLoopMemSet - See if this memset can be promoted to a large memset.
    647 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
    648                                            const SCEV *BECount) {
    649   // We can only handle non-volatile memsets with a constant size.
    650   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
    651     return false;
    652 
    653   // If we're not allowed to hack on memset, we fail.
    654   if (!HasMemset)
    655     return false;
    656 
    657   Value *Pointer = MSI->getDest();
    658 
    659   // See if the pointer expression is an AddRec like {base,+,1} on the current
    660   // loop, which indicates a strided store.  If we have something else, it's a
    661   // random store we can't handle.
    662   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
    663   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
    664     return false;
    665 
    666   // Reject memsets that are so large that they overflow an unsigned.
    667   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    668   if ((SizeInBytes >> 32) != 0)
    669     return false;
    670 
    671   // Check to see if the stride matches the size of the memset.  If so, then we
    672   // know that every byte is touched in the loop.
    673   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
    674   if (!ConstStride)
    675     return false;
    676 
    677   APInt Stride = ConstStride->getAPInt();
    678   if (SizeInBytes != Stride && SizeInBytes != -Stride)
    679     return false;
    680 
    681   // Verify that the memset value is loop invariant.  If not, we can't promote
    682   // the memset.
    683   Value *SplatValue = MSI->getValue();
    684   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
    685     return false;
    686 
    687   SmallPtrSet<Instruction *, 1> MSIs;
    688   MSIs.insert(MSI);
    689   bool NegStride = SizeInBytes == -Stride;
    690   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
    691                                  MSI->getAlignment(), SplatValue, MSI, MSIs, Ev,
    692                                  BECount, NegStride);
    693 }
    694 
    695 /// mayLoopAccessLocation - Return true if the specified loop might access the
    696 /// specified pointer location, which is a loop-strided access.  The 'Access'
    697 /// argument specifies what the verboten forms of access are (read or write).
    698 static bool
    699 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
    700                       const SCEV *BECount, unsigned StoreSize,
    701                       AliasAnalysis &AA,
    702                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
    703   // Get the location that may be stored across the loop.  Since the access is
    704   // strided positively through memory, we say that the modified location starts
    705   // at the pointer and has infinite size.
    706   uint64_t AccessSize = MemoryLocation::UnknownSize;
    707 
    708   // If the loop iterates a fixed number of times, we can refine the access size
    709   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
    710   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    711     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
    712 
    713   // TODO: For this to be really effective, we have to dive into the pointer
    714   // operand in the store.  Store to &A[i] of 100 will always return may alias
    715   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
    716   // which will then no-alias a store to &A[100].
    717   MemoryLocation StoreLoc(Ptr, AccessSize);
    718 
    719   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
    720        ++BI)
    721     for (Instruction &I : **BI)
    722       if (IgnoredStores.count(&I) == 0 &&
    723           (AA.getModRefInfo(&I, StoreLoc) & Access))
    724         return true;
    725 
    726   return false;
    727 }
    728 
    729 // If we have a negative stride, Start refers to the end of the memory location
    730 // we're trying to memset.  Therefore, we need to recompute the base pointer,
    731 // which is just Start - BECount*Size.
    732 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
    733                                         Type *IntPtr, unsigned StoreSize,
    734                                         ScalarEvolution *SE) {
    735   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
    736   if (StoreSize != 1)
    737     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
    738                            SCEV::FlagNUW);
    739   return SE->getMinusSCEV(Start, Index);
    740 }
    741 
    742 /// processLoopStridedStore - We see a strided store of some value.  If we can
    743 /// transform this into a memset or memset_pattern in the loop preheader, do so.
    744 bool LoopIdiomRecognize::processLoopStridedStore(
    745     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
    746     Value *StoredVal, Instruction *TheStore,
    747     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
    748     const SCEV *BECount, bool NegStride) {
    749   Value *SplatValue = isBytewiseValue(StoredVal);
    750   Constant *PatternValue = nullptr;
    751 
    752   if (!SplatValue)
    753     PatternValue = getMemSetPatternValue(StoredVal, DL);
    754 
    755   assert((SplatValue || PatternValue) &&
    756          "Expected either splat value or pattern value.");
    757 
    758   // The trip count of the loop and the base pointer of the addrec SCEV is
    759   // guaranteed to be loop invariant, which means that it should dominate the
    760   // header.  This allows us to insert code for it in the preheader.
    761   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
    762   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    763   IRBuilder<> Builder(Preheader->getTerminator());
    764   SCEVExpander Expander(*SE, *DL, "loop-idiom");
    765 
    766   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
    767   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
    768 
    769   const SCEV *Start = Ev->getStart();
    770   // Handle negative strided loops.
    771   if (NegStride)
    772     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
    773 
    774   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
    775   // this into a memset in the loop preheader now if we want.  However, this
    776   // would be unsafe to do if there is anything else in the loop that may read
    777   // or write to the aliased location.  Check for any overlap by generating the
    778   // base pointer and checking the region.
    779   Value *BasePtr =
    780       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
    781   if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
    782                             *AA, Stores)) {
    783     Expander.clear();
    784     // If we generated new code for the base pointer, clean up.
    785     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
    786     return false;
    787   }
    788 
    789   // Okay, everything looks good, insert the memset.
    790 
    791   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
    792   // pointer size if it isn't already.
    793   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
    794 
    795   const SCEV *NumBytesS =
    796       SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW);
    797   if (StoreSize != 1) {
    798     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
    799                                SCEV::FlagNUW);
    800   }
    801 
    802   Value *NumBytes =
    803       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
    804 
    805   CallInst *NewCall;
    806   if (SplatValue) {
    807     NewCall =
    808         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
    809   } else {
    810     // Everything is emitted in default address space
    811     Type *Int8PtrTy = DestInt8PtrTy;
    812 
    813     Module *M = TheStore->getModule();
    814     Value *MSP =
    815         M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
    816                                Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr);
    817     inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI);
    818 
    819     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
    820     // an constant array of 16-bytes.  Plop the value into a mergable global.
    821     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
    822                                             GlobalValue::PrivateLinkage,
    823                                             PatternValue, ".memset_pattern");
    824     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
    825     GV->setAlignment(16);
    826     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
    827     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
    828   }
    829 
    830   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
    831                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
    832   NewCall->setDebugLoc(TheStore->getDebugLoc());
    833 
    834   // Okay, the memset has been formed.  Zap the original store and anything that
    835   // feeds into it.
    836   for (auto *I : Stores)
    837     deleteDeadInstruction(I);
    838   ++NumMemSet;
    839   return true;
    840 }
    841 
    842 /// If the stored value is a strided load in the same loop with the same stride
    843 /// this may be transformable into a memcpy.  This kicks in for stuff like
    844 ///   for (i) A[i] = B[i];
    845 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
    846                                                     const SCEV *BECount) {
    847   assert(SI->isSimple() && "Expected only non-volatile stores.");
    848 
    849   Value *StorePtr = SI->getPointerOperand();
    850   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    851   APInt Stride = getStoreStride(StoreEv);
    852   unsigned StoreSize = getStoreSizeInBytes(SI, DL);
    853   bool NegStride = StoreSize == -Stride;
    854 
    855   // The store must be feeding a non-volatile load.
    856   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
    857   assert(LI->isSimple() && "Expected only non-volatile stores.");
    858 
    859   // See if the pointer expression is an AddRec like {base,+,1} on the current
    860   // loop, which indicates a strided load.  If we have something else, it's a
    861   // random load we can't handle.
    862   const SCEVAddRecExpr *LoadEv =
    863       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
    864 
    865   // The trip count of the loop and the base pointer of the addrec SCEV is
    866   // guaranteed to be loop invariant, which means that it should dominate the
    867   // header.  This allows us to insert code for it in the preheader.
    868   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    869   IRBuilder<> Builder(Preheader->getTerminator());
    870   SCEVExpander Expander(*SE, *DL, "loop-idiom");
    871 
    872   const SCEV *StrStart = StoreEv->getStart();
    873   unsigned StrAS = SI->getPointerAddressSpace();
    874   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
    875 
    876   // Handle negative strided loops.
    877   if (NegStride)
    878     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
    879 
    880   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
    881   // this into a memcpy in the loop preheader now if we want.  However, this
    882   // would be unsafe to do if there is anything else in the loop that may read
    883   // or write the memory region we're storing to.  This includes the load that
    884   // feeds the stores.  Check for an alias by generating the base address and
    885   // checking everything.
    886   Value *StoreBasePtr = Expander.expandCodeFor(
    887       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
    888 
    889   SmallPtrSet<Instruction *, 1> Stores;
    890   Stores.insert(SI);
    891   if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
    892                             StoreSize, *AA, Stores)) {
    893     Expander.clear();
    894     // If we generated new code for the base pointer, clean up.
    895     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
    896     return false;
    897   }
    898 
    899   const SCEV *LdStart = LoadEv->getStart();
    900   unsigned LdAS = LI->getPointerAddressSpace();
    901 
    902   // Handle negative strided loops.
    903   if (NegStride)
    904     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
    905 
    906   // For a memcpy, we have to make sure that the input array is not being
    907   // mutated by the loop.
    908   Value *LoadBasePtr = Expander.expandCodeFor(
    909       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
    910 
    911   if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
    912                             *AA, Stores)) {
    913     Expander.clear();
    914     // If we generated new code for the base pointer, clean up.
    915     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
    916     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
    917     return false;
    918   }
    919 
    920   // Okay, everything is safe, we can transform this!
    921 
    922   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
    923   // pointer size if it isn't already.
    924   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
    925 
    926   const SCEV *NumBytesS =
    927       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
    928   if (StoreSize != 1)
    929     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
    930                                SCEV::FlagNUW);
    931 
    932   Value *NumBytes =
    933       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
    934 
    935   CallInst *NewCall =
    936       Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
    937                            std::min(SI->getAlignment(), LI->getAlignment()));
    938   NewCall->setDebugLoc(SI->getDebugLoc());
    939 
    940   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
    941                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
    942                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
    943 
    944   // Okay, the memcpy has been formed.  Zap the original store and anything that
    945   // feeds into it.
    946   deleteDeadInstruction(SI);
    947   ++NumMemCpy;
    948   return true;
    949 }
    950 
    951 bool LoopIdiomRecognize::runOnNoncountableLoop() {
    952   return recognizePopcount();
    953 }
    954 
    955 /// Check if the given conditional branch is based on the comparison between
    956 /// a variable and zero, and if the variable is non-zero, the control yields to
    957 /// the loop entry. If the branch matches the behavior, the variable involved
    958 /// in the comparion is returned. This function will be called to see if the
    959 /// precondition and postcondition of the loop are in desirable form.
    960 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
    961   if (!BI || !BI->isConditional())
    962     return nullptr;
    963 
    964   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
    965   if (!Cond)
    966     return nullptr;
    967 
    968   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
    969   if (!CmpZero || !CmpZero->isZero())
    970     return nullptr;
    971 
    972   ICmpInst::Predicate Pred = Cond->getPredicate();
    973   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
    974       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
    975     return Cond->getOperand(0);
    976 
    977   return nullptr;
    978 }
    979 
    980 /// Return true iff the idiom is detected in the loop.
    981 ///
    982 /// Additionally:
    983 /// 1) \p CntInst is set to the instruction counting the population bit.
    984 /// 2) \p CntPhi is set to the corresponding phi node.
    985 /// 3) \p Var is set to the value whose population bits are being counted.
    986 ///
    987 /// The core idiom we are trying to detect is:
    988 /// \code
    989 ///    if (x0 != 0)
    990 ///      goto loop-exit // the precondition of the loop
    991 ///    cnt0 = init-val;
    992 ///    do {
    993 ///       x1 = phi (x0, x2);
    994 ///       cnt1 = phi(cnt0, cnt2);
    995 ///
    996 ///       cnt2 = cnt1 + 1;
    997 ///        ...
    998 ///       x2 = x1 & (x1 - 1);
    999 ///        ...
   1000 ///    } while(x != 0);
   1001 ///
   1002 /// loop-exit:
   1003 /// \endcode
   1004 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
   1005                                 Instruction *&CntInst, PHINode *&CntPhi,
   1006                                 Value *&Var) {
   1007   // step 1: Check to see if the look-back branch match this pattern:
   1008   //    "if (a!=0) goto loop-entry".
   1009   BasicBlock *LoopEntry;
   1010   Instruction *DefX2, *CountInst;
   1011   Value *VarX1, *VarX0;
   1012   PHINode *PhiX, *CountPhi;
   1013 
   1014   DefX2 = CountInst = nullptr;
   1015   VarX1 = VarX0 = nullptr;
   1016   PhiX = CountPhi = nullptr;
   1017   LoopEntry = *(CurLoop->block_begin());
   1018 
   1019   // step 1: Check if the loop-back branch is in desirable form.
   1020   {
   1021     if (Value *T = matchCondition(
   1022             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
   1023       DefX2 = dyn_cast<Instruction>(T);
   1024     else
   1025       return false;
   1026   }
   1027 
   1028   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
   1029   {
   1030     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
   1031       return false;
   1032 
   1033     BinaryOperator *SubOneOp;
   1034 
   1035     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
   1036       VarX1 = DefX2->getOperand(1);
   1037     else {
   1038       VarX1 = DefX2->getOperand(0);
   1039       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
   1040     }
   1041     if (!SubOneOp)
   1042       return false;
   1043 
   1044     Instruction *SubInst = cast<Instruction>(SubOneOp);
   1045     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
   1046     if (!Dec ||
   1047         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
   1048           (SubInst->getOpcode() == Instruction::Add &&
   1049            Dec->isAllOnesValue()))) {
   1050       return false;
   1051     }
   1052   }
   1053 
   1054   // step 3: Check the recurrence of variable X
   1055   {
   1056     PhiX = dyn_cast<PHINode>(VarX1);
   1057     if (!PhiX ||
   1058         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
   1059       return false;
   1060     }
   1061   }
   1062 
   1063   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
   1064   {
   1065     CountInst = nullptr;
   1066     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
   1067                               IterE = LoopEntry->end();
   1068          Iter != IterE; Iter++) {
   1069       Instruction *Inst = &*Iter;
   1070       if (Inst->getOpcode() != Instruction::Add)
   1071         continue;
   1072 
   1073       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
   1074       if (!Inc || !Inc->isOne())
   1075         continue;
   1076 
   1077       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
   1078       if (!Phi || Phi->getParent() != LoopEntry)
   1079         continue;
   1080 
   1081       // Check if the result of the instruction is live of the loop.
   1082       bool LiveOutLoop = false;
   1083       for (User *U : Inst->users()) {
   1084         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
   1085           LiveOutLoop = true;
   1086           break;
   1087         }
   1088       }
   1089 
   1090       if (LiveOutLoop) {
   1091         CountInst = Inst;
   1092         CountPhi = Phi;
   1093         break;
   1094       }
   1095     }
   1096 
   1097     if (!CountInst)
   1098       return false;
   1099   }
   1100 
   1101   // step 5: check if the precondition is in this form:
   1102   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
   1103   {
   1104     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
   1105     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
   1106     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
   1107       return false;
   1108 
   1109     CntInst = CountInst;
   1110     CntPhi = CountPhi;
   1111     Var = T;
   1112   }
   1113 
   1114   return true;
   1115 }
   1116 
   1117 /// Recognizes a population count idiom in a non-countable loop.
   1118 ///
   1119 /// If detected, transforms the relevant code to issue the popcount intrinsic
   1120 /// function call, and returns true; otherwise, returns false.
   1121 bool LoopIdiomRecognize::recognizePopcount() {
   1122   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
   1123     return false;
   1124 
   1125   // Counting population are usually conducted by few arithmetic instructions.
   1126   // Such instructions can be easily "absorbed" by vacant slots in a
   1127   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
   1128   // in a compact loop.
   1129 
   1130   // Give up if the loop has multiple blocks or multiple backedges.
   1131   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
   1132     return false;
   1133 
   1134   BasicBlock *LoopBody = *(CurLoop->block_begin());
   1135   if (LoopBody->size() >= 20) {
   1136     // The loop is too big, bail out.
   1137     return false;
   1138   }
   1139 
   1140   // It should have a preheader containing nothing but an unconditional branch.
   1141   BasicBlock *PH = CurLoop->getLoopPreheader();
   1142   if (!PH)
   1143     return false;
   1144   if (&PH->front() != PH->getTerminator())
   1145     return false;
   1146   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
   1147   if (!EntryBI || EntryBI->isConditional())
   1148     return false;
   1149 
   1150   // It should have a precondition block where the generated popcount instrinsic
   1151   // function can be inserted.
   1152   auto *PreCondBB = PH->getSinglePredecessor();
   1153   if (!PreCondBB)
   1154     return false;
   1155   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
   1156   if (!PreCondBI || PreCondBI->isUnconditional())
   1157     return false;
   1158 
   1159   Instruction *CntInst;
   1160   PHINode *CntPhi;
   1161   Value *Val;
   1162   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
   1163     return false;
   1164 
   1165   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
   1166   return true;
   1167 }
   1168 
   1169 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
   1170                                        const DebugLoc &DL) {
   1171   Value *Ops[] = {Val};
   1172   Type *Tys[] = {Val->getType()};
   1173 
   1174   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
   1175   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
   1176   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
   1177   CI->setDebugLoc(DL);
   1178 
   1179   return CI;
   1180 }
   1181 
   1182 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
   1183                                                  Instruction *CntInst,
   1184                                                  PHINode *CntPhi, Value *Var) {
   1185   BasicBlock *PreHead = CurLoop->getLoopPreheader();
   1186   auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
   1187   const DebugLoc DL = CntInst->getDebugLoc();
   1188 
   1189   // Assuming before transformation, the loop is following:
   1190   //  if (x) // the precondition
   1191   //     do { cnt++; x &= x - 1; } while(x);
   1192 
   1193   // Step 1: Insert the ctpop instruction at the end of the precondition block
   1194   IRBuilder<> Builder(PreCondBr);
   1195   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
   1196   {
   1197     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
   1198     NewCount = PopCntZext =
   1199         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
   1200 
   1201     if (NewCount != PopCnt)
   1202       (cast<Instruction>(NewCount))->setDebugLoc(DL);
   1203 
   1204     // TripCnt is exactly the number of iterations the loop has
   1205     TripCnt = NewCount;
   1206 
   1207     // If the population counter's initial value is not zero, insert Add Inst.
   1208     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
   1209     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
   1210     if (!InitConst || !InitConst->isZero()) {
   1211       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
   1212       (cast<Instruction>(NewCount))->setDebugLoc(DL);
   1213     }
   1214   }
   1215 
   1216   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
   1217   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
   1218   //   function would be partial dead code, and downstream passes will drag
   1219   //   it back from the precondition block to the preheader.
   1220   {
   1221     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
   1222 
   1223     Value *Opnd0 = PopCntZext;
   1224     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
   1225     if (PreCond->getOperand(0) != Var)
   1226       std::swap(Opnd0, Opnd1);
   1227 
   1228     ICmpInst *NewPreCond = cast<ICmpInst>(
   1229         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
   1230     PreCondBr->setCondition(NewPreCond);
   1231 
   1232     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
   1233   }
   1234 
   1235   // Step 3: Note that the population count is exactly the trip count of the
   1236   // loop in question, which enable us to to convert the loop from noncountable
   1237   // loop into a countable one. The benefit is twofold:
   1238   //
   1239   //  - If the loop only counts population, the entire loop becomes dead after
   1240   //    the transformation. It is a lot easier to prove a countable loop dead
   1241   //    than to prove a noncountable one. (In some C dialects, an infinite loop
   1242   //    isn't dead even if it computes nothing useful. In general, DCE needs
   1243   //    to prove a noncountable loop finite before safely delete it.)
   1244   //
   1245   //  - If the loop also performs something else, it remains alive.
   1246   //    Since it is transformed to countable form, it can be aggressively
   1247   //    optimized by some optimizations which are in general not applicable
   1248   //    to a noncountable loop.
   1249   //
   1250   // After this step, this loop (conceptually) would look like following:
   1251   //   newcnt = __builtin_ctpop(x);
   1252   //   t = newcnt;
   1253   //   if (x)
   1254   //     do { cnt++; x &= x-1; t--) } while (t > 0);
   1255   BasicBlock *Body = *(CurLoop->block_begin());
   1256   {
   1257     auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
   1258     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
   1259     Type *Ty = TripCnt->getType();
   1260 
   1261     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
   1262 
   1263     Builder.SetInsertPoint(LbCond);
   1264     Instruction *TcDec = cast<Instruction>(
   1265         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
   1266                           "tcdec", false, true));
   1267 
   1268     TcPhi->addIncoming(TripCnt, PreHead);
   1269     TcPhi->addIncoming(TcDec, Body);
   1270 
   1271     CmpInst::Predicate Pred =
   1272         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
   1273     LbCond->setPredicate(Pred);
   1274     LbCond->setOperand(0, TcDec);
   1275     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
   1276   }
   1277 
   1278   // Step 4: All the references to the original population counter outside
   1279   //  the loop are replaced with the NewCount -- the value returned from
   1280   //  __builtin_ctpop().
   1281   CntInst->replaceUsesOutsideBlock(NewCount, Body);
   1282 
   1283   // step 5: Forget the "non-computable" trip-count SCEV associated with the
   1284   //   loop. The loop would otherwise not be deleted even if it becomes empty.
   1285   SE->forgetLoop(CurLoop);
   1286 }
   1287