1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LowerSwitch transformation rewrites switch instructions with a sequence 11 // of branches, which allows targets to get away with not implementing the 12 // switch instruction until it is convenient. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/CFG.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/Compiler.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 #define DEBUG_TYPE "lower-switch" 33 34 namespace { 35 struct IntRange { 36 int64_t Low, High; 37 }; 38 // Return true iff R is covered by Ranges. 39 static bool IsInRanges(const IntRange &R, 40 const std::vector<IntRange> &Ranges) { 41 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 42 43 // Find the first range whose High field is >= R.High, 44 // then check if the Low field is <= R.Low. If so, we 45 // have a Range that covers R. 46 auto I = std::lower_bound( 47 Ranges.begin(), Ranges.end(), R, 48 [](const IntRange &A, const IntRange &B) { return A.High < B.High; }); 49 return I != Ranges.end() && I->Low <= R.Low; 50 } 51 52 /// Replace all SwitchInst instructions with chained branch instructions. 53 class LowerSwitch : public FunctionPass { 54 public: 55 static char ID; // Pass identification, replacement for typeid 56 LowerSwitch() : FunctionPass(ID) { 57 initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); 58 } 59 60 bool runOnFunction(Function &F) override; 61 62 struct CaseRange { 63 ConstantInt* Low; 64 ConstantInt* High; 65 BasicBlock* BB; 66 67 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) 68 : Low(low), High(high), BB(bb) {} 69 }; 70 71 typedef std::vector<CaseRange> CaseVector; 72 typedef std::vector<CaseRange>::iterator CaseItr; 73 private: 74 void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList); 75 76 BasicBlock *switchConvert(CaseItr Begin, CaseItr End, 77 ConstantInt *LowerBound, ConstantInt *UpperBound, 78 Value *Val, BasicBlock *Predecessor, 79 BasicBlock *OrigBlock, BasicBlock *Default, 80 const std::vector<IntRange> &UnreachableRanges); 81 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock, 82 BasicBlock *Default); 83 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI); 84 }; 85 86 /// The comparison function for sorting the switch case values in the vector. 87 /// WARNING: Case ranges should be disjoint! 88 struct CaseCmp { 89 bool operator () (const LowerSwitch::CaseRange& C1, 90 const LowerSwitch::CaseRange& C2) { 91 92 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); 93 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); 94 return CI1->getValue().slt(CI2->getValue()); 95 } 96 }; 97 } 98 99 char LowerSwitch::ID = 0; 100 INITIALIZE_PASS(LowerSwitch, "lowerswitch", 101 "Lower SwitchInst's to branches", false, false) 102 103 // Publicly exposed interface to pass... 104 char &llvm::LowerSwitchID = LowerSwitch::ID; 105 // createLowerSwitchPass - Interface to this file... 106 FunctionPass *llvm::createLowerSwitchPass() { 107 return new LowerSwitch(); 108 } 109 110 bool LowerSwitch::runOnFunction(Function &F) { 111 bool Changed = false; 112 SmallPtrSet<BasicBlock*, 8> DeleteList; 113 114 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 115 BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks 116 117 // If the block is a dead Default block that will be deleted later, don't 118 // waste time processing it. 119 if (DeleteList.count(Cur)) 120 continue; 121 122 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { 123 Changed = true; 124 processSwitchInst(SI, DeleteList); 125 } 126 } 127 128 for (BasicBlock* BB: DeleteList) { 129 DeleteDeadBlock(BB); 130 } 131 132 return Changed; 133 } 134 135 /// Used for debugging purposes. 136 static raw_ostream& operator<<(raw_ostream &O, 137 const LowerSwitch::CaseVector &C) 138 LLVM_ATTRIBUTE_USED; 139 static raw_ostream& operator<<(raw_ostream &O, 140 const LowerSwitch::CaseVector &C) { 141 O << "["; 142 143 for (LowerSwitch::CaseVector::const_iterator B = C.begin(), 144 E = C.end(); B != E; ) { 145 O << *B->Low << " -" << *B->High; 146 if (++B != E) O << ", "; 147 } 148 149 return O << "]"; 150 } 151 152 /// \brief Update the first occurrence of the "switch statement" BB in the PHI 153 /// node with the "new" BB. The other occurrences will: 154 /// 155 /// 1) Be updated by subsequent calls to this function. Switch statements may 156 /// have more than one outcoming edge into the same BB if they all have the same 157 /// value. When the switch statement is converted these incoming edges are now 158 /// coming from multiple BBs. 159 /// 2) Removed if subsequent incoming values now share the same case, i.e., 160 /// multiple outcome edges are condensed into one. This is necessary to keep the 161 /// number of phi values equal to the number of branches to SuccBB. 162 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 163 unsigned NumMergedCases) { 164 for (BasicBlock::iterator I = SuccBB->begin(), 165 IE = SuccBB->getFirstNonPHI()->getIterator(); 166 I != IE; ++I) { 167 PHINode *PN = cast<PHINode>(I); 168 169 // Only update the first occurrence. 170 unsigned Idx = 0, E = PN->getNumIncomingValues(); 171 unsigned LocalNumMergedCases = NumMergedCases; 172 for (; Idx != E; ++Idx) { 173 if (PN->getIncomingBlock(Idx) == OrigBB) { 174 PN->setIncomingBlock(Idx, NewBB); 175 break; 176 } 177 } 178 179 // Remove additional occurrences coming from condensed cases and keep the 180 // number of incoming values equal to the number of branches to SuccBB. 181 SmallVector<unsigned, 8> Indices; 182 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) 183 if (PN->getIncomingBlock(Idx) == OrigBB) { 184 Indices.push_back(Idx); 185 LocalNumMergedCases--; 186 } 187 // Remove incoming values in the reverse order to prevent invalidating 188 // *successive* index. 189 for (unsigned III : reverse(Indices)) 190 PN->removeIncomingValue(III); 191 } 192 } 193 194 /// Convert the switch statement into a binary lookup of the case values. 195 /// The function recursively builds this tree. LowerBound and UpperBound are 196 /// used to keep track of the bounds for Val that have already been checked by 197 /// a block emitted by one of the previous calls to switchConvert in the call 198 /// stack. 199 BasicBlock * 200 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 201 ConstantInt *UpperBound, Value *Val, 202 BasicBlock *Predecessor, BasicBlock *OrigBlock, 203 BasicBlock *Default, 204 const std::vector<IntRange> &UnreachableRanges) { 205 unsigned Size = End - Begin; 206 207 if (Size == 1) { 208 // Check if the Case Range is perfectly squeezed in between 209 // already checked Upper and Lower bounds. If it is then we can avoid 210 // emitting the code that checks if the value actually falls in the range 211 // because the bounds already tell us so. 212 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 213 unsigned NumMergedCases = 0; 214 if (LowerBound && UpperBound) 215 NumMergedCases = 216 UpperBound->getSExtValue() - LowerBound->getSExtValue(); 217 fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 218 return Begin->BB; 219 } 220 return newLeafBlock(*Begin, Val, OrigBlock, Default); 221 } 222 223 unsigned Mid = Size / 2; 224 std::vector<CaseRange> LHS(Begin, Begin + Mid); 225 DEBUG(dbgs() << "LHS: " << LHS << "\n"); 226 std::vector<CaseRange> RHS(Begin + Mid, End); 227 DEBUG(dbgs() << "RHS: " << RHS << "\n"); 228 229 CaseRange &Pivot = *(Begin + Mid); 230 DEBUG(dbgs() << "Pivot ==> " 231 << Pivot.Low->getValue() 232 << " -" << Pivot.High->getValue() << "\n"); 233 234 // NewLowerBound here should never be the integer minimal value. 235 // This is because it is computed from a case range that is never 236 // the smallest, so there is always a case range that has at least 237 // a smaller value. 238 ConstantInt *NewLowerBound = Pivot.Low; 239 240 // Because NewLowerBound is never the smallest representable integer 241 // it is safe here to subtract one. 242 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 243 NewLowerBound->getValue() - 1); 244 245 if (!UnreachableRanges.empty()) { 246 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 247 int64_t GapLow = LHS.back().High->getSExtValue() + 1; 248 int64_t GapHigh = NewLowerBound->getSExtValue() - 1; 249 IntRange Gap = { GapLow, GapHigh }; 250 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) 251 NewUpperBound = LHS.back().High; 252 } 253 254 DEBUG(dbgs() << "LHS Bounds ==> "; 255 if (LowerBound) { 256 dbgs() << LowerBound->getSExtValue(); 257 } else { 258 dbgs() << "NONE"; 259 } 260 dbgs() << " - " << NewUpperBound->getSExtValue() << "\n"; 261 dbgs() << "RHS Bounds ==> "; 262 dbgs() << NewLowerBound->getSExtValue() << " - "; 263 if (UpperBound) { 264 dbgs() << UpperBound->getSExtValue() << "\n"; 265 } else { 266 dbgs() << "NONE\n"; 267 }); 268 269 // Create a new node that checks if the value is < pivot. Go to the 270 // left branch if it is and right branch if not. 271 Function* F = OrigBlock->getParent(); 272 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 273 274 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, 275 Val, Pivot.Low, "Pivot"); 276 277 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound, 278 NewUpperBound, Val, NewNode, OrigBlock, 279 Default, UnreachableRanges); 280 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound, 281 UpperBound, Val, NewNode, OrigBlock, 282 Default, UnreachableRanges); 283 284 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); 285 NewNode->getInstList().push_back(Comp); 286 287 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 288 return NewNode; 289 } 290 291 /// Create a new leaf block for the binary lookup tree. It checks if the 292 /// switch's value == the case's value. If not, then it jumps to the default 293 /// branch. At this point in the tree, the value can't be another valid case 294 /// value, so the jump to the "default" branch is warranted. 295 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val, 296 BasicBlock* OrigBlock, 297 BasicBlock* Default) 298 { 299 Function* F = OrigBlock->getParent(); 300 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 301 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); 302 303 // Emit comparison 304 ICmpInst* Comp = nullptr; 305 if (Leaf.Low == Leaf.High) { 306 // Make the seteq instruction... 307 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, 308 Leaf.Low, "SwitchLeaf"); 309 } else { 310 // Make range comparison 311 if (Leaf.Low->isMinValue(true /*isSigned*/)) { 312 // Val >= Min && Val <= Hi --> Val <= Hi 313 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 314 "SwitchLeaf"); 315 } else if (Leaf.Low->isZero()) { 316 // Val >= 0 && Val <= Hi --> Val <=u Hi 317 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 318 "SwitchLeaf"); 319 } else { 320 // Emit V-Lo <=u Hi-Lo 321 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); 322 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, 323 Val->getName()+".off", 324 NewLeaf); 325 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 326 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 327 "SwitchLeaf"); 328 } 329 } 330 331 // Make the conditional branch... 332 BasicBlock* Succ = Leaf.BB; 333 BranchInst::Create(Succ, Default, Comp, NewLeaf); 334 335 // If there were any PHI nodes in this successor, rewrite one entry 336 // from OrigBlock to come from NewLeaf. 337 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 338 PHINode* PN = cast<PHINode>(I); 339 // Remove all but one incoming entries from the cluster 340 uint64_t Range = Leaf.High->getSExtValue() - 341 Leaf.Low->getSExtValue(); 342 for (uint64_t j = 0; j < Range; ++j) { 343 PN->removeIncomingValue(OrigBlock); 344 } 345 346 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 347 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 348 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 349 } 350 351 return NewLeaf; 352 } 353 354 /// Transform simple list of Cases into list of CaseRange's. 355 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { 356 unsigned numCmps = 0; 357 358 // Start with "simple" cases 359 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 360 Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(), 361 i.getCaseSuccessor())); 362 363 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 364 365 // Merge case into clusters 366 if (Cases.size() >= 2) { 367 CaseItr I = Cases.begin(); 368 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { 369 int64_t nextValue = J->Low->getSExtValue(); 370 int64_t currentValue = I->High->getSExtValue(); 371 BasicBlock* nextBB = J->BB; 372 BasicBlock* currentBB = I->BB; 373 374 // If the two neighboring cases go to the same destination, merge them 375 // into a single case. 376 assert(nextValue > currentValue && "Cases should be strictly ascending"); 377 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { 378 I->High = J->High; 379 // FIXME: Combine branch weights. 380 } else if (++I != J) { 381 *I = *J; 382 } 383 } 384 Cases.erase(std::next(I), Cases.end()); 385 } 386 387 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 388 if (I->Low != I->High) 389 // A range counts double, since it requires two compares. 390 ++numCmps; 391 } 392 393 return numCmps; 394 } 395 396 /// Replace the specified switch instruction with a sequence of chained if-then 397 /// insts in a balanced binary search. 398 void LowerSwitch::processSwitchInst(SwitchInst *SI, 399 SmallPtrSetImpl<BasicBlock*> &DeleteList) { 400 BasicBlock *CurBlock = SI->getParent(); 401 BasicBlock *OrigBlock = CurBlock; 402 Function *F = CurBlock->getParent(); 403 Value *Val = SI->getCondition(); // The value we are switching on... 404 BasicBlock* Default = SI->getDefaultDest(); 405 406 // If there is only the default destination, just branch. 407 if (!SI->getNumCases()) { 408 BranchInst::Create(Default, CurBlock); 409 SI->eraseFromParent(); 410 return; 411 } 412 413 // Prepare cases vector. 414 CaseVector Cases; 415 unsigned numCmps = Clusterify(Cases, SI); 416 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 417 << ". Total compares: " << numCmps << "\n"); 418 DEBUG(dbgs() << "Cases: " << Cases << "\n"); 419 (void)numCmps; 420 421 ConstantInt *LowerBound = nullptr; 422 ConstantInt *UpperBound = nullptr; 423 std::vector<IntRange> UnreachableRanges; 424 425 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 426 // Make the bounds tightly fitted around the case value range, because we 427 // know that the value passed to the switch must be exactly one of the case 428 // values. 429 assert(!Cases.empty()); 430 LowerBound = Cases.front().Low; 431 UpperBound = Cases.back().High; 432 433 DenseMap<BasicBlock *, unsigned> Popularity; 434 unsigned MaxPop = 0; 435 BasicBlock *PopSucc = nullptr; 436 437 IntRange R = { INT64_MIN, INT64_MAX }; 438 UnreachableRanges.push_back(R); 439 for (const auto &I : Cases) { 440 int64_t Low = I.Low->getSExtValue(); 441 int64_t High = I.High->getSExtValue(); 442 443 IntRange &LastRange = UnreachableRanges.back(); 444 if (LastRange.Low == Low) { 445 // There is nothing left of the previous range. 446 UnreachableRanges.pop_back(); 447 } else { 448 // Terminate the previous range. 449 assert(Low > LastRange.Low); 450 LastRange.High = Low - 1; 451 } 452 if (High != INT64_MAX) { 453 IntRange R = { High + 1, INT64_MAX }; 454 UnreachableRanges.push_back(R); 455 } 456 457 // Count popularity. 458 int64_t N = High - Low + 1; 459 unsigned &Pop = Popularity[I.BB]; 460 if ((Pop += N) > MaxPop) { 461 MaxPop = Pop; 462 PopSucc = I.BB; 463 } 464 } 465 #ifndef NDEBUG 466 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 467 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 468 I != E; ++I) { 469 assert(I->Low <= I->High); 470 auto Next = I + 1; 471 if (Next != E) { 472 assert(Next->Low > I->High); 473 } 474 } 475 #endif 476 477 // Use the most popular block as the new default, reducing the number of 478 // cases. 479 assert(MaxPop > 0 && PopSucc); 480 Default = PopSucc; 481 Cases.erase(std::remove_if( 482 Cases.begin(), Cases.end(), 483 [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }), 484 Cases.end()); 485 486 // If there are no cases left, just branch. 487 if (Cases.empty()) { 488 BranchInst::Create(Default, CurBlock); 489 SI->eraseFromParent(); 490 return; 491 } 492 } 493 494 // Create a new, empty default block so that the new hierarchy of 495 // if-then statements go to this and the PHI nodes are happy. 496 BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); 497 F->getBasicBlockList().insert(Default->getIterator(), NewDefault); 498 BranchInst::Create(Default, NewDefault); 499 500 // If there is an entry in any PHI nodes for the default edge, make sure 501 // to update them as well. 502 for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) { 503 PHINode *PN = cast<PHINode>(I); 504 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 505 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 506 PN->setIncomingBlock((unsigned)BlockIdx, NewDefault); 507 } 508 509 BasicBlock *SwitchBlock = 510 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 511 OrigBlock, OrigBlock, NewDefault, UnreachableRanges); 512 513 // Branch to our shiny new if-then stuff... 514 BranchInst::Create(SwitchBlock, OrigBlock); 515 516 // We are now done with the switch instruction, delete it. 517 BasicBlock *OldDefault = SI->getDefaultDest(); 518 CurBlock->getInstList().erase(SI); 519 520 // If the Default block has no more predecessors just add it to DeleteList. 521 if (pred_begin(OldDefault) == pred_end(OldDefault)) 522 DeleteList.insert(OldDefault); 523 } 524