1 //===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/ADT/MapVector.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Vectorize.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "load-store-vectorizer" 38 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 39 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 40 41 namespace { 42 43 // TODO: Remove this 44 static const unsigned TargetBaseAlign = 4; 45 46 class Vectorizer { 47 typedef SmallVector<Value *, 8> ValueList; 48 typedef MapVector<Value *, ValueList> ValueListMap; 49 50 Function &F; 51 AliasAnalysis &AA; 52 DominatorTree &DT; 53 ScalarEvolution &SE; 54 TargetTransformInfo &TTI; 55 const DataLayout &DL; 56 IRBuilder<> Builder; 57 ValueListMap StoreRefs; 58 ValueListMap LoadRefs; 59 60 public: 61 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 62 ScalarEvolution &SE, TargetTransformInfo &TTI) 63 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 64 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 65 66 bool run(); 67 68 private: 69 Value *getPointerOperand(Value *I); 70 71 unsigned getPointerAddressSpace(Value *I); 72 73 unsigned getAlignment(LoadInst *LI) const { 74 unsigned Align = LI->getAlignment(); 75 if (Align != 0) 76 return Align; 77 78 return DL.getABITypeAlignment(LI->getType()); 79 } 80 81 unsigned getAlignment(StoreInst *SI) const { 82 unsigned Align = SI->getAlignment(); 83 if (Align != 0) 84 return Align; 85 86 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 87 } 88 89 bool isConsecutiveAccess(Value *A, Value *B); 90 91 /// After vectorization, reorder the instructions that I depends on 92 /// (the instructions defining its operands), to ensure they dominate I. 93 void reorder(Instruction *I); 94 95 /// Returns the first and the last instructions in Chain. 96 std::pair<BasicBlock::iterator, BasicBlock::iterator> 97 getBoundaryInstrs(ArrayRef<Value *> Chain); 98 99 /// Erases the original instructions after vectorizing. 100 void eraseInstructions(ArrayRef<Value *> Chain); 101 102 /// "Legalize" the vector type that would be produced by combining \p 103 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 104 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 105 /// expected to have more than 4 elements. 106 std::pair<ArrayRef<Value *>, ArrayRef<Value *>> 107 splitOddVectorElts(ArrayRef<Value *> Chain, unsigned ElementSizeBits); 108 109 /// Checks for instructions which may affect the memory accessed 110 /// in the chain between \p From and \p To. Returns Index, where 111 /// \p Chain[0, Index) is the largest vectorizable chain prefix. 112 /// The elements of \p Chain should be all loads or all stores. 113 unsigned getVectorizablePrefixEndIdx(ArrayRef<Value *> Chain, 114 BasicBlock::iterator From, 115 BasicBlock::iterator To); 116 117 /// Collects load and store instructions to vectorize. 118 void collectInstructions(BasicBlock *BB); 119 120 /// Processes the collected instructions, the \p Map. The elements of \p Map 121 /// should be all loads or all stores. 122 bool vectorizeChains(ValueListMap &Map); 123 124 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 125 bool vectorizeInstructions(ArrayRef<Value *> Instrs); 126 127 /// Vectorizes the load instructions in Chain. 128 bool vectorizeLoadChain(ArrayRef<Value *> Chain, 129 SmallPtrSet<Value *, 16> *InstructionsProcessed); 130 131 /// Vectorizes the store instructions in Chain. 132 bool vectorizeStoreChain(ArrayRef<Value *> Chain, 133 SmallPtrSet<Value *, 16> *InstructionsProcessed); 134 135 /// Check if this load/store access is misaligned accesses 136 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 137 unsigned Alignment); 138 }; 139 140 class LoadStoreVectorizer : public FunctionPass { 141 public: 142 static char ID; 143 144 LoadStoreVectorizer() : FunctionPass(ID) { 145 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); 146 } 147 148 bool runOnFunction(Function &F) override; 149 150 const char *getPassName() const override { 151 return "GPU Load and Store Vectorizer"; 152 } 153 154 void getAnalysisUsage(AnalysisUsage &AU) const override { 155 AU.addRequired<AAResultsWrapperPass>(); 156 AU.addRequired<ScalarEvolutionWrapperPass>(); 157 AU.addRequired<DominatorTreeWrapperPass>(); 158 AU.addRequired<TargetTransformInfoWrapperPass>(); 159 AU.setPreservesCFG(); 160 } 161 }; 162 } 163 164 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, 165 "Vectorize load and Store instructions", false, false) 166 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 171 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, 172 "Vectorize load and store instructions", false, false) 173 174 char LoadStoreVectorizer::ID = 0; 175 176 Pass *llvm::createLoadStoreVectorizerPass() { 177 return new LoadStoreVectorizer(); 178 } 179 180 bool LoadStoreVectorizer::runOnFunction(Function &F) { 181 // Don't vectorize when the attribute NoImplicitFloat is used. 182 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 183 return false; 184 185 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 186 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 187 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 188 TargetTransformInfo &TTI = 189 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 190 191 Vectorizer V(F, AA, DT, SE, TTI); 192 return V.run(); 193 } 194 195 // Vectorizer Implementation 196 bool Vectorizer::run() { 197 bool Changed = false; 198 199 // Scan the blocks in the function in post order. 200 for (BasicBlock *BB : post_order(&F)) { 201 collectInstructions(BB); 202 Changed |= vectorizeChains(LoadRefs); 203 Changed |= vectorizeChains(StoreRefs); 204 } 205 206 return Changed; 207 } 208 209 Value *Vectorizer::getPointerOperand(Value *I) { 210 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 211 return LI->getPointerOperand(); 212 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 213 return SI->getPointerOperand(); 214 return nullptr; 215 } 216 217 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 218 if (LoadInst *L = dyn_cast<LoadInst>(I)) 219 return L->getPointerAddressSpace(); 220 if (StoreInst *S = dyn_cast<StoreInst>(I)) 221 return S->getPointerAddressSpace(); 222 return -1; 223 } 224 225 // FIXME: Merge with llvm::isConsecutiveAccess 226 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 227 Value *PtrA = getPointerOperand(A); 228 Value *PtrB = getPointerOperand(B); 229 unsigned ASA = getPointerAddressSpace(A); 230 unsigned ASB = getPointerAddressSpace(B); 231 232 // Check that the address spaces match and that the pointers are valid. 233 if (!PtrA || !PtrB || (ASA != ASB)) 234 return false; 235 236 // Make sure that A and B are different pointers of the same size type. 237 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 238 Type *PtrATy = PtrA->getType()->getPointerElementType(); 239 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 240 if (PtrA == PtrB || 241 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 242 DL.getTypeStoreSize(PtrATy->getScalarType()) != 243 DL.getTypeStoreSize(PtrBTy->getScalarType())) 244 return false; 245 246 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 247 248 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 249 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 250 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 251 252 APInt OffsetDelta = OffsetB - OffsetA; 253 254 // Check if they are based on the same pointer. That makes the offsets 255 // sufficient. 256 if (PtrA == PtrB) 257 return OffsetDelta == Size; 258 259 // Compute the necessary base pointer delta to have the necessary final delta 260 // equal to the size. 261 APInt BaseDelta = Size - OffsetDelta; 262 263 // Compute the distance with SCEV between the base pointers. 264 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 265 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 266 const SCEV *C = SE.getConstant(BaseDelta); 267 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 268 if (X == PtrSCEVB) 269 return true; 270 271 // Sometimes even this doesn't work, because SCEV can't always see through 272 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 273 // things the hard way. 274 275 // Look through GEPs after checking they're the same except for the last 276 // index. 277 GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A)); 278 GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B)); 279 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) 280 return false; 281 unsigned FinalIndex = GEPA->getNumOperands() - 1; 282 for (unsigned i = 0; i < FinalIndex; i++) 283 if (GEPA->getOperand(i) != GEPB->getOperand(i)) 284 return false; 285 286 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); 287 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); 288 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 289 OpA->getType() != OpB->getType()) 290 return false; 291 292 // Only look through a ZExt/SExt. 293 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 294 return false; 295 296 bool Signed = isa<SExtInst>(OpA); 297 298 OpA = dyn_cast<Instruction>(OpA->getOperand(0)); 299 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 300 if (!OpA || !OpB || OpA->getType() != OpB->getType()) 301 return false; 302 303 // Now we need to prove that adding 1 to OpA won't overflow. 304 bool Safe = false; 305 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, 306 // we're okay. 307 if (OpB->getOpcode() == Instruction::Add && 308 isa<ConstantInt>(OpB->getOperand(1)) && 309 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) { 310 if (Signed) 311 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 312 else 313 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 314 } 315 316 unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); 317 318 // Second attempt: 319 // If any bits are known to be zero other than the sign bit in OpA, we can 320 // add 1 to it while guaranteeing no overflow of any sort. 321 if (!Safe) { 322 APInt KnownZero(BitWidth, 0); 323 APInt KnownOne(BitWidth, 0); 324 computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT); 325 KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1); 326 if (KnownZero != 0) 327 Safe = true; 328 } 329 330 if (!Safe) 331 return false; 332 333 const SCEV *OffsetSCEVA = SE.getSCEV(OpA); 334 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 335 const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); 336 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); 337 return X2 == OffsetSCEVB; 338 } 339 340 void Vectorizer::reorder(Instruction *I) { 341 SmallPtrSet<Instruction *, 16> InstructionsToMove; 342 SmallVector<Instruction *, 16> Worklist; 343 344 Worklist.push_back(I); 345 while (!Worklist.empty()) { 346 Instruction *IW = Worklist.pop_back_val(); 347 int NumOperands = IW->getNumOperands(); 348 for (int i = 0; i < NumOperands; i++) { 349 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 350 if (!IM || IM->getOpcode() == Instruction::PHI) 351 continue; 352 353 if (!DT.dominates(IM, I)) { 354 InstructionsToMove.insert(IM); 355 Worklist.push_back(IM); 356 assert(IM->getParent() == IW->getParent() && 357 "Instructions to move should be in the same basic block"); 358 } 359 } 360 } 361 362 // All instructions to move should follow I. Start from I, not from begin(). 363 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 364 ++BBI) { 365 if (!is_contained(InstructionsToMove, &*BBI)) 366 continue; 367 Instruction *IM = &*BBI; 368 --BBI; 369 IM->removeFromParent(); 370 IM->insertBefore(I); 371 } 372 } 373 374 std::pair<BasicBlock::iterator, BasicBlock::iterator> 375 Vectorizer::getBoundaryInstrs(ArrayRef<Value *> Chain) { 376 Instruction *C0 = cast<Instruction>(Chain[0]); 377 BasicBlock::iterator FirstInstr = C0->getIterator(); 378 BasicBlock::iterator LastInstr = C0->getIterator(); 379 380 BasicBlock *BB = C0->getParent(); 381 unsigned NumFound = 0; 382 for (Instruction &I : *BB) { 383 if (!is_contained(Chain, &I)) 384 continue; 385 386 ++NumFound; 387 if (NumFound == 1) { 388 FirstInstr = I.getIterator(); 389 } 390 if (NumFound == Chain.size()) { 391 LastInstr = I.getIterator(); 392 break; 393 } 394 } 395 396 // Range is [first, last). 397 return std::make_pair(FirstInstr, ++LastInstr); 398 } 399 400 void Vectorizer::eraseInstructions(ArrayRef<Value *> Chain) { 401 SmallVector<Instruction *, 16> Instrs; 402 for (Value *V : Chain) { 403 Value *PtrOperand = getPointerOperand(V); 404 assert(PtrOperand && "Instruction must have a pointer operand."); 405 Instrs.push_back(cast<Instruction>(V)); 406 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 407 Instrs.push_back(GEP); 408 } 409 410 // Erase instructions. 411 for (Value *V : Instrs) { 412 Instruction *Instr = cast<Instruction>(V); 413 if (Instr->use_empty()) 414 Instr->eraseFromParent(); 415 } 416 } 417 418 std::pair<ArrayRef<Value *>, ArrayRef<Value *>> 419 Vectorizer::splitOddVectorElts(ArrayRef<Value *> Chain, 420 unsigned ElementSizeBits) { 421 unsigned ElemSizeInBytes = ElementSizeBits / 8; 422 unsigned SizeInBytes = ElemSizeInBytes * Chain.size(); 423 unsigned NumRight = (SizeInBytes % 4) / ElemSizeInBytes; 424 unsigned NumLeft = Chain.size() - NumRight; 425 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 426 } 427 428 unsigned Vectorizer::getVectorizablePrefixEndIdx(ArrayRef<Value *> Chain, 429 BasicBlock::iterator From, 430 BasicBlock::iterator To) { 431 SmallVector<std::pair<Value *, unsigned>, 16> MemoryInstrs; 432 SmallVector<std::pair<Value *, unsigned>, 16> ChainInstrs; 433 434 unsigned InstrIdx = 0; 435 for (auto I = From; I != To; ++I, ++InstrIdx) { 436 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 437 if (!is_contained(Chain, &*I)) 438 MemoryInstrs.push_back({&*I, InstrIdx}); 439 else 440 ChainInstrs.push_back({&*I, InstrIdx}); 441 } else if (I->mayHaveSideEffects()) { 442 DEBUG(dbgs() << "LSV: Found side-effecting operation: " << *I << '\n'); 443 return 0; 444 } 445 } 446 447 assert(Chain.size() == ChainInstrs.size() && 448 "All instructions in the Chain must exist in [From, To)."); 449 450 unsigned ChainIdx = 0; 451 for (auto EntryChain : ChainInstrs) { 452 Value *ChainInstrValue = EntryChain.first; 453 unsigned ChainInstrIdx = EntryChain.second; 454 for (auto EntryMem : MemoryInstrs) { 455 Value *MemInstrValue = EntryMem.first; 456 unsigned MemInstrIdx = EntryMem.second; 457 if (isa<LoadInst>(MemInstrValue) && isa<LoadInst>(ChainInstrValue)) 458 continue; 459 460 // We can ignore the alias as long as the load comes before the store, 461 // because that means we won't be moving the load past the store to 462 // vectorize it (the vectorized load is inserted at the location of the 463 // first load in the chain). 464 if (isa<StoreInst>(MemInstrValue) && isa<LoadInst>(ChainInstrValue) && 465 ChainInstrIdx < MemInstrIdx) 466 continue; 467 468 // Same case, but in reverse. 469 if (isa<LoadInst>(MemInstrValue) && isa<StoreInst>(ChainInstrValue) && 470 ChainInstrIdx > MemInstrIdx) 471 continue; 472 473 Instruction *M0 = cast<Instruction>(MemInstrValue); 474 Instruction *M1 = cast<Instruction>(ChainInstrValue); 475 476 if (!AA.isNoAlias(MemoryLocation::get(M0), MemoryLocation::get(M1))) { 477 DEBUG({ 478 Value *Ptr0 = getPointerOperand(M0); 479 Value *Ptr1 = getPointerOperand(M1); 480 481 dbgs() << "LSV: Found alias.\n" 482 " Aliasing instruction and pointer:\n" 483 << *MemInstrValue << " aliases " << *Ptr0 << '\n' 484 << " Aliased instruction and pointer:\n" 485 << *ChainInstrValue << " aliases " << *Ptr1 << '\n'; 486 }); 487 488 return ChainIdx; 489 } 490 } 491 ChainIdx++; 492 } 493 return Chain.size(); 494 } 495 496 void Vectorizer::collectInstructions(BasicBlock *BB) { 497 LoadRefs.clear(); 498 StoreRefs.clear(); 499 500 for (Instruction &I : *BB) { 501 if (!I.mayReadOrWriteMemory()) 502 continue; 503 504 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 505 if (!LI->isSimple()) 506 continue; 507 508 Type *Ty = LI->getType(); 509 if (!VectorType::isValidElementType(Ty->getScalarType())) 510 continue; 511 512 // Skip weird non-byte sizes. They probably aren't worth the effort of 513 // handling correctly. 514 unsigned TySize = DL.getTypeSizeInBits(Ty); 515 if (TySize < 8) 516 continue; 517 518 Value *Ptr = LI->getPointerOperand(); 519 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 520 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 521 522 // No point in looking at these if they're too big to vectorize. 523 if (TySize > VecRegSize / 2) 524 continue; 525 526 // Make sure all the users of a vector are constant-index extracts. 527 if (isa<VectorType>(Ty) && !all_of(LI->users(), [LI](const User *U) { 528 const Instruction *UI = cast<Instruction>(U); 529 return isa<ExtractElementInst>(UI) && 530 isa<ConstantInt>(UI->getOperand(1)); 531 })) 532 continue; 533 534 // TODO: Target hook to filter types. 535 536 // Save the load locations. 537 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 538 LoadRefs[ObjPtr].push_back(LI); 539 540 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 541 if (!SI->isSimple()) 542 continue; 543 544 Type *Ty = SI->getValueOperand()->getType(); 545 if (!VectorType::isValidElementType(Ty->getScalarType())) 546 continue; 547 548 // Skip weird non-byte sizes. They probably aren't worth the effort of 549 // handling correctly. 550 unsigned TySize = DL.getTypeSizeInBits(Ty); 551 if (TySize < 8) 552 continue; 553 554 Value *Ptr = SI->getPointerOperand(); 555 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 556 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 557 if (TySize > VecRegSize / 2) 558 continue; 559 560 if (isa<VectorType>(Ty) && !all_of(SI->users(), [SI](const User *U) { 561 const Instruction *UI = cast<Instruction>(U); 562 return isa<ExtractElementInst>(UI) && 563 isa<ConstantInt>(UI->getOperand(1)); 564 })) 565 continue; 566 567 // Save store location. 568 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 569 StoreRefs[ObjPtr].push_back(SI); 570 } 571 } 572 } 573 574 bool Vectorizer::vectorizeChains(ValueListMap &Map) { 575 bool Changed = false; 576 577 for (const std::pair<Value *, ValueList> &Chain : Map) { 578 unsigned Size = Chain.second.size(); 579 if (Size < 2) 580 continue; 581 582 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 583 584 // Process the stores in chunks of 64. 585 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 586 unsigned Len = std::min<unsigned>(CE - CI, 64); 587 ArrayRef<Value *> Chunk(&Chain.second[CI], Len); 588 Changed |= vectorizeInstructions(Chunk); 589 } 590 } 591 592 return Changed; 593 } 594 595 bool Vectorizer::vectorizeInstructions(ArrayRef<Value *> Instrs) { 596 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); 597 SmallSetVector<int, 16> Heads, Tails; 598 int ConsecutiveChain[64]; 599 600 // Do a quadratic search on all of the given stores and find all of the pairs 601 // of stores that follow each other. 602 for (int i = 0, e = Instrs.size(); i < e; ++i) { 603 ConsecutiveChain[i] = -1; 604 for (int j = e - 1; j >= 0; --j) { 605 if (i == j) 606 continue; 607 608 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 609 if (ConsecutiveChain[i] != -1) { 610 int CurDistance = std::abs(ConsecutiveChain[i] - i); 611 int NewDistance = std::abs(ConsecutiveChain[i] - j); 612 if (j < i || NewDistance > CurDistance) 613 continue; // Should not insert. 614 } 615 616 Tails.insert(j); 617 Heads.insert(i); 618 ConsecutiveChain[i] = j; 619 } 620 } 621 } 622 623 bool Changed = false; 624 SmallPtrSet<Value *, 16> InstructionsProcessed; 625 626 for (int Head : Heads) { 627 if (InstructionsProcessed.count(Instrs[Head])) 628 continue; 629 bool longerChainExists = false; 630 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 631 if (Head == Tails[TIt] && 632 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 633 longerChainExists = true; 634 break; 635 } 636 if (longerChainExists) 637 continue; 638 639 // We found an instr that starts a chain. Now follow the chain and try to 640 // vectorize it. 641 SmallVector<Value *, 16> Operands; 642 int I = Head; 643 while (I != -1 && (Tails.count(I) || Heads.count(I))) { 644 if (InstructionsProcessed.count(Instrs[I])) 645 break; 646 647 Operands.push_back(Instrs[I]); 648 I = ConsecutiveChain[I]; 649 } 650 651 bool Vectorized = false; 652 if (isa<LoadInst>(*Operands.begin())) 653 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 654 else 655 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 656 657 Changed |= Vectorized; 658 } 659 660 return Changed; 661 } 662 663 bool Vectorizer::vectorizeStoreChain( 664 ArrayRef<Value *> Chain, SmallPtrSet<Value *, 16> *InstructionsProcessed) { 665 StoreInst *S0 = cast<StoreInst>(Chain[0]); 666 667 // If the vector has an int element, default to int for the whole load. 668 Type *StoreTy; 669 for (const auto &V : Chain) { 670 StoreTy = cast<StoreInst>(V)->getValueOperand()->getType(); 671 if (StoreTy->isIntOrIntVectorTy()) 672 break; 673 674 if (StoreTy->isPtrOrPtrVectorTy()) { 675 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 676 DL.getTypeSizeInBits(StoreTy)); 677 break; 678 } 679 } 680 681 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 682 unsigned AS = S0->getPointerAddressSpace(); 683 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 684 unsigned VF = VecRegSize / Sz; 685 unsigned ChainSize = Chain.size(); 686 687 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 688 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 689 return false; 690 } 691 692 BasicBlock::iterator First, Last; 693 std::tie(First, Last) = getBoundaryInstrs(Chain); 694 unsigned StopChain = getVectorizablePrefixEndIdx(Chain, First, Last); 695 if (StopChain == 0) { 696 // There exists a side effect instruction, no vectorization possible. 697 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 698 return false; 699 } 700 if (StopChain == 1) { 701 // Failed after the first instruction. Discard it and try the smaller chain. 702 InstructionsProcessed->insert(Chain.front()); 703 return false; 704 } 705 706 // Update Chain to the valid vectorizable subchain. 707 Chain = Chain.slice(0, StopChain); 708 ChainSize = Chain.size(); 709 710 // Store size should be 1B, 2B or multiple of 4B. 711 // TODO: Target hook for size constraint? 712 unsigned SzInBytes = (Sz / 8) * ChainSize; 713 if (SzInBytes > 2 && SzInBytes % 4 != 0) { 714 DEBUG(dbgs() << "LSV: Size should be 1B, 2B " 715 "or multiple of 4B. Splitting.\n"); 716 if (SzInBytes == 3) 717 return vectorizeStoreChain(Chain.slice(0, ChainSize - 1), 718 InstructionsProcessed); 719 720 auto Chains = splitOddVectorElts(Chain, Sz); 721 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 722 vectorizeStoreChain(Chains.second, InstructionsProcessed); 723 } 724 725 VectorType *VecTy; 726 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 727 if (VecStoreTy) 728 VecTy = VectorType::get(StoreTy->getScalarType(), 729 Chain.size() * VecStoreTy->getNumElements()); 730 else 731 VecTy = VectorType::get(StoreTy, Chain.size()); 732 733 // If it's more than the max vector size, break it into two pieces. 734 // TODO: Target hook to control types to split to. 735 if (ChainSize > VF) { 736 DEBUG(dbgs() << "LSV: Vector factor is too big." 737 " Creating two separate arrays.\n"); 738 return vectorizeStoreChain(Chain.slice(0, VF), InstructionsProcessed) | 739 vectorizeStoreChain(Chain.slice(VF), InstructionsProcessed); 740 } 741 742 DEBUG({ 743 dbgs() << "LSV: Stores to vectorize:\n"; 744 for (Value *V : Chain) 745 V->dump(); 746 }); 747 748 // We won't try again to vectorize the elements of the chain, regardless of 749 // whether we succeed below. 750 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 751 752 // Check alignment restrictions. 753 unsigned Alignment = getAlignment(S0); 754 755 // If the store is going to be misaligned, don't vectorize it. 756 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 757 if (S0->getPointerAddressSpace() != 0) 758 return false; 759 760 // If we're storing to an object on the stack, we control its alignment, 761 // so we can cheat and change it! 762 Value *V = GetUnderlyingObject(S0->getPointerOperand(), DL); 763 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) { 764 AI->setAlignment(TargetBaseAlign); 765 Alignment = TargetBaseAlign; 766 } else { 767 return false; 768 } 769 } 770 771 // Set insert point. 772 Builder.SetInsertPoint(&*Last); 773 774 Value *Vec = UndefValue::get(VecTy); 775 776 if (VecStoreTy) { 777 unsigned VecWidth = VecStoreTy->getNumElements(); 778 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 779 StoreInst *Store = cast<StoreInst>(Chain[I]); 780 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 781 unsigned NewIdx = J + I * VecWidth; 782 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 783 Builder.getInt32(J)); 784 if (Extract->getType() != StoreTy->getScalarType()) 785 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 786 787 Value *Insert = 788 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 789 Vec = Insert; 790 } 791 } 792 } else { 793 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 794 StoreInst *Store = cast<StoreInst>(Chain[I]); 795 Value *Extract = Store->getValueOperand(); 796 if (Extract->getType() != StoreTy->getScalarType()) 797 Extract = 798 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 799 800 Value *Insert = 801 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 802 Vec = Insert; 803 } 804 } 805 806 Value *Bitcast = 807 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)); 808 StoreInst *SI = cast<StoreInst>(Builder.CreateStore(Vec, Bitcast)); 809 propagateMetadata(SI, Chain); 810 SI->setAlignment(Alignment); 811 812 eraseInstructions(Chain); 813 ++NumVectorInstructions; 814 NumScalarsVectorized += Chain.size(); 815 return true; 816 } 817 818 bool Vectorizer::vectorizeLoadChain( 819 ArrayRef<Value *> Chain, SmallPtrSet<Value *, 16> *InstructionsProcessed) { 820 LoadInst *L0 = cast<LoadInst>(Chain[0]); 821 822 // If the vector has an int element, default to int for the whole load. 823 Type *LoadTy; 824 for (const auto &V : Chain) { 825 LoadTy = cast<LoadInst>(V)->getType(); 826 if (LoadTy->isIntOrIntVectorTy()) 827 break; 828 829 if (LoadTy->isPtrOrPtrVectorTy()) { 830 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 831 DL.getTypeSizeInBits(LoadTy)); 832 break; 833 } 834 } 835 836 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 837 unsigned AS = L0->getPointerAddressSpace(); 838 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 839 unsigned VF = VecRegSize / Sz; 840 unsigned ChainSize = Chain.size(); 841 842 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 843 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 844 return false; 845 } 846 847 BasicBlock::iterator First, Last; 848 std::tie(First, Last) = getBoundaryInstrs(Chain); 849 unsigned StopChain = getVectorizablePrefixEndIdx(Chain, First, Last); 850 if (StopChain == 0) { 851 // There exists a side effect instruction, no vectorization possible. 852 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 853 return false; 854 } 855 if (StopChain == 1) { 856 // Failed after the first instruction. Discard it and try the smaller chain. 857 InstructionsProcessed->insert(Chain.front()); 858 return false; 859 } 860 861 // Update Chain to the valid vectorizable subchain. 862 Chain = Chain.slice(0, StopChain); 863 ChainSize = Chain.size(); 864 865 // Load size should be 1B, 2B or multiple of 4B. 866 // TODO: Should size constraint be a target hook? 867 unsigned SzInBytes = (Sz / 8) * ChainSize; 868 if (SzInBytes > 2 && SzInBytes % 4 != 0) { 869 DEBUG(dbgs() << "LSV: Size should be 1B, 2B " 870 "or multiple of 4B. Splitting.\n"); 871 if (SzInBytes == 3) 872 return vectorizeLoadChain(Chain.slice(0, ChainSize - 1), 873 InstructionsProcessed); 874 auto Chains = splitOddVectorElts(Chain, Sz); 875 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 876 vectorizeLoadChain(Chains.second, InstructionsProcessed); 877 } 878 879 VectorType *VecTy; 880 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 881 if (VecLoadTy) 882 VecTy = VectorType::get(LoadTy->getScalarType(), 883 Chain.size() * VecLoadTy->getNumElements()); 884 else 885 VecTy = VectorType::get(LoadTy, Chain.size()); 886 887 // If it's more than the max vector size, break it into two pieces. 888 // TODO: Target hook to control types to split to. 889 if (ChainSize > VF) { 890 DEBUG(dbgs() << "LSV: Vector factor is too big. " 891 "Creating two separate arrays.\n"); 892 return vectorizeLoadChain(Chain.slice(0, VF), InstructionsProcessed) | 893 vectorizeLoadChain(Chain.slice(VF), InstructionsProcessed); 894 } 895 896 // We won't try again to vectorize the elements of the chain, regardless of 897 // whether we succeed below. 898 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 899 900 // Check alignment restrictions. 901 unsigned Alignment = getAlignment(L0); 902 903 // If the load is going to be misaligned, don't vectorize it. 904 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 905 if (L0->getPointerAddressSpace() != 0) 906 return false; 907 908 // If we're loading from an object on the stack, we control its alignment, 909 // so we can cheat and change it! 910 Value *V = GetUnderlyingObject(L0->getPointerOperand(), DL); 911 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) { 912 AI->setAlignment(TargetBaseAlign); 913 Alignment = TargetBaseAlign; 914 } else { 915 return false; 916 } 917 } 918 919 DEBUG({ 920 dbgs() << "LSV: Loads to vectorize:\n"; 921 for (Value *V : Chain) 922 V->dump(); 923 }); 924 925 // Set insert point. 926 Builder.SetInsertPoint(&*First); 927 928 Value *Bitcast = 929 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 930 931 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); 932 propagateMetadata(LI, Chain); 933 LI->setAlignment(Alignment); 934 935 if (VecLoadTy) { 936 SmallVector<Instruction *, 16> InstrsToErase; 937 SmallVector<Instruction *, 16> InstrsToReorder; 938 InstrsToReorder.push_back(cast<Instruction>(Bitcast)); 939 940 unsigned VecWidth = VecLoadTy->getNumElements(); 941 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 942 for (auto Use : Chain[I]->users()) { 943 Instruction *UI = cast<Instruction>(Use); 944 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 945 unsigned NewIdx = Idx + I * VecWidth; 946 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx)); 947 Instruction *Extracted = cast<Instruction>(V); 948 if (Extracted->getType() != UI->getType()) 949 Extracted = cast<Instruction>( 950 Builder.CreateBitCast(Extracted, UI->getType())); 951 952 // Replace the old instruction. 953 UI->replaceAllUsesWith(Extracted); 954 InstrsToErase.push_back(UI); 955 } 956 } 957 958 for (Instruction *ModUser : InstrsToReorder) 959 reorder(ModUser); 960 961 for (auto I : InstrsToErase) 962 I->eraseFromParent(); 963 } else { 964 SmallVector<Instruction *, 16> InstrsToReorder; 965 InstrsToReorder.push_back(cast<Instruction>(Bitcast)); 966 967 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 968 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I)); 969 Instruction *Extracted = cast<Instruction>(V); 970 Instruction *UI = cast<Instruction>(Chain[I]); 971 if (Extracted->getType() != UI->getType()) { 972 Extracted = cast<Instruction>( 973 Builder.CreateBitOrPointerCast(Extracted, UI->getType())); 974 } 975 976 // Replace the old instruction. 977 UI->replaceAllUsesWith(Extracted); 978 } 979 980 for (Instruction *ModUser : InstrsToReorder) 981 reorder(ModUser); 982 } 983 984 eraseInstructions(Chain); 985 986 ++NumVectorInstructions; 987 NumScalarsVectorized += Chain.size(); 988 return true; 989 } 990 991 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 992 unsigned Alignment) { 993 bool Fast = false; 994 bool Allows = TTI.allowsMisalignedMemoryAccesses(SzInBytes * 8, AddressSpace, 995 Alignment, &Fast); 996 // TODO: Remove TargetBaseAlign 997 return !(Allows && Fast) && (Alignment % SzInBytes) != 0 && 998 (Alignment % TargetBaseAlign) != 0; 999 } 1000