Home | History | Annotate | Download | only in Analysis
      1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements routines for folding instructions into simpler forms
     11 // that do not require creating new instructions.  This does constant folding
     12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
     13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
     14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
     15 // simplified: This is usually true and assuming it simplifies the logic (if
     16 // they have not been simplified then results are correct but maybe suboptimal).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "instsimplify"
     21 #include "llvm/Operator.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/ConstantFolding.h"
     25 #include "llvm/Analysis/Dominators.h"
     26 #include "llvm/Analysis/ValueTracking.h"
     27 #include "llvm/Support/ConstantRange.h"
     28 #include "llvm/Support/PatternMatch.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/Target/TargetData.h"
     31 using namespace llvm;
     32 using namespace llvm::PatternMatch;
     33 
     34 enum { RecursionLimit = 3 };
     35 
     36 STATISTIC(NumExpand,  "Number of expansions");
     37 STATISTIC(NumFactor , "Number of factorizations");
     38 STATISTIC(NumReassoc, "Number of reassociations");
     39 
     40 static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
     41                               const DominatorTree *, unsigned);
     42 static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
     43                             const DominatorTree *, unsigned);
     44 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
     45                               const DominatorTree *, unsigned);
     46 static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
     47                              const DominatorTree *, unsigned);
     48 static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
     49                               const DominatorTree *, unsigned);
     50 
     51 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
     52 /// a vector with every element false, as appropriate for the type.
     53 static Constant *getFalse(Type *Ty) {
     54   assert((Ty->isIntegerTy(1) ||
     55           (Ty->isVectorTy() &&
     56            cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
     57          "Expected i1 type or a vector of i1!");
     58   return Constant::getNullValue(Ty);
     59 }
     60 
     61 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
     62 /// a vector with every element true, as appropriate for the type.
     63 static Constant *getTrue(Type *Ty) {
     64   assert((Ty->isIntegerTy(1) ||
     65           (Ty->isVectorTy() &&
     66            cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
     67          "Expected i1 type or a vector of i1!");
     68   return Constant::getAllOnesValue(Ty);
     69 }
     70 
     71 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
     72 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
     73   Instruction *I = dyn_cast<Instruction>(V);
     74   if (!I)
     75     // Arguments and constants dominate all instructions.
     76     return true;
     77 
     78   // If we have a DominatorTree then do a precise test.
     79   if (DT)
     80     return DT->dominates(I, P);
     81 
     82   // Otherwise, if the instruction is in the entry block, and is not an invoke,
     83   // then it obviously dominates all phi nodes.
     84   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
     85       !isa<InvokeInst>(I))
     86     return true;
     87 
     88   return false;
     89 }
     90 
     91 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
     92 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
     93 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
     94 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
     95 /// Returns the simplified value, or null if no simplification was performed.
     96 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
     97                           unsigned OpcToExpand, const TargetData *TD,
     98                           const DominatorTree *DT, unsigned MaxRecurse) {
     99   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
    100   // Recursion is always used, so bail out at once if we already hit the limit.
    101   if (!MaxRecurse--)
    102     return 0;
    103 
    104   // Check whether the expression has the form "(A op' B) op C".
    105   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    106     if (Op0->getOpcode() == OpcodeToExpand) {
    107       // It does!  Try turning it into "(A op C) op' (B op C)".
    108       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    109       // Do "A op C" and "B op C" both simplify?
    110       if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
    111         if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
    112           // They do! Return "L op' R" if it simplifies or is already available.
    113           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    114           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
    115                                      && L == B && R == A)) {
    116             ++NumExpand;
    117             return LHS;
    118           }
    119           // Otherwise return "L op' R" if it simplifies.
    120           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
    121                                        MaxRecurse)) {
    122             ++NumExpand;
    123             return V;
    124           }
    125         }
    126     }
    127 
    128   // Check whether the expression has the form "A op (B op' C)".
    129   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    130     if (Op1->getOpcode() == OpcodeToExpand) {
    131       // It does!  Try turning it into "(A op B) op' (A op C)".
    132       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    133       // Do "A op B" and "A op C" both simplify?
    134       if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
    135         if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
    136           // They do! Return "L op' R" if it simplifies or is already available.
    137           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    138           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
    139                                      && L == C && R == B)) {
    140             ++NumExpand;
    141             return RHS;
    142           }
    143           // Otherwise return "L op' R" if it simplifies.
    144           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
    145                                        MaxRecurse)) {
    146             ++NumExpand;
    147             return V;
    148           }
    149         }
    150     }
    151 
    152   return 0;
    153 }
    154 
    155 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
    156 /// using the operation OpCodeToExtract.  For example, when Opcode is Add and
    157 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
    158 /// Returns the simplified value, or null if no simplification was performed.
    159 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    160                              unsigned OpcToExtract, const TargetData *TD,
    161                              const DominatorTree *DT, unsigned MaxRecurse) {
    162   Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
    163   // Recursion is always used, so bail out at once if we already hit the limit.
    164   if (!MaxRecurse--)
    165     return 0;
    166 
    167   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    168   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    169 
    170   if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
    171       !Op1 || Op1->getOpcode() != OpcodeToExtract)
    172     return 0;
    173 
    174   // The expression has the form "(A op' B) op (C op' D)".
    175   Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
    176   Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
    177 
    178   // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
    179   // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    180   // commutative case, "(A op' B) op (C op' A)"?
    181   if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
    182     Value *DD = A == C ? D : C;
    183     // Form "A op' (B op DD)" if it simplifies completely.
    184     // Does "B op DD" simplify?
    185     if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
    186       // It does!  Return "A op' V" if it simplifies or is already available.
    187       // If V equals B then "A op' V" is just the LHS.  If V equals DD then
    188       // "A op' V" is just the RHS.
    189       if (V == B || V == DD) {
    190         ++NumFactor;
    191         return V == B ? LHS : RHS;
    192       }
    193       // Otherwise return "A op' V" if it simplifies.
    194       if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
    195         ++NumFactor;
    196         return W;
    197       }
    198     }
    199   }
    200 
    201   // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
    202   // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    203   // commutative case, "(A op' B) op (B op' D)"?
    204   if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
    205     Value *CC = B == D ? C : D;
    206     // Form "(A op CC) op' B" if it simplifies completely..
    207     // Does "A op CC" simplify?
    208     if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
    209       // It does!  Return "V op' B" if it simplifies or is already available.
    210       // If V equals A then "V op' B" is just the LHS.  If V equals CC then
    211       // "V op' B" is just the RHS.
    212       if (V == A || V == CC) {
    213         ++NumFactor;
    214         return V == A ? LHS : RHS;
    215       }
    216       // Otherwise return "V op' B" if it simplifies.
    217       if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
    218         ++NumFactor;
    219         return W;
    220       }
    221     }
    222   }
    223 
    224   return 0;
    225 }
    226 
    227 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
    228 /// operations.  Returns the simpler value, or null if none was found.
    229 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
    230                                        const TargetData *TD,
    231                                        const DominatorTree *DT,
    232                                        unsigned MaxRecurse) {
    233   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
    234   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
    235 
    236   // Recursion is always used, so bail out at once if we already hit the limit.
    237   if (!MaxRecurse--)
    238     return 0;
    239 
    240   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    241   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    242 
    243   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
    244   if (Op0 && Op0->getOpcode() == Opcode) {
    245     Value *A = Op0->getOperand(0);
    246     Value *B = Op0->getOperand(1);
    247     Value *C = RHS;
    248 
    249     // Does "B op C" simplify?
    250     if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
    251       // It does!  Return "A op V" if it simplifies or is already available.
    252       // If V equals B then "A op V" is just the LHS.
    253       if (V == B) return LHS;
    254       // Otherwise return "A op V" if it simplifies.
    255       if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
    256         ++NumReassoc;
    257         return W;
    258       }
    259     }
    260   }
    261 
    262   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
    263   if (Op1 && Op1->getOpcode() == Opcode) {
    264     Value *A = LHS;
    265     Value *B = Op1->getOperand(0);
    266     Value *C = Op1->getOperand(1);
    267 
    268     // Does "A op B" simplify?
    269     if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
    270       // It does!  Return "V op C" if it simplifies or is already available.
    271       // If V equals B then "V op C" is just the RHS.
    272       if (V == B) return RHS;
    273       // Otherwise return "V op C" if it simplifies.
    274       if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
    275         ++NumReassoc;
    276         return W;
    277       }
    278     }
    279   }
    280 
    281   // The remaining transforms require commutativity as well as associativity.
    282   if (!Instruction::isCommutative(Opcode))
    283     return 0;
    284 
    285   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
    286   if (Op0 && Op0->getOpcode() == Opcode) {
    287     Value *A = Op0->getOperand(0);
    288     Value *B = Op0->getOperand(1);
    289     Value *C = RHS;
    290 
    291     // Does "C op A" simplify?
    292     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
    293       // It does!  Return "V op B" if it simplifies or is already available.
    294       // If V equals A then "V op B" is just the LHS.
    295       if (V == A) return LHS;
    296       // Otherwise return "V op B" if it simplifies.
    297       if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
    298         ++NumReassoc;
    299         return W;
    300       }
    301     }
    302   }
    303 
    304   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
    305   if (Op1 && Op1->getOpcode() == Opcode) {
    306     Value *A = LHS;
    307     Value *B = Op1->getOperand(0);
    308     Value *C = Op1->getOperand(1);
    309 
    310     // Does "C op A" simplify?
    311     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
    312       // It does!  Return "B op V" if it simplifies or is already available.
    313       // If V equals C then "B op V" is just the RHS.
    314       if (V == C) return RHS;
    315       // Otherwise return "B op V" if it simplifies.
    316       if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
    317         ++NumReassoc;
    318         return W;
    319       }
    320     }
    321   }
    322 
    323   return 0;
    324 }
    325 
    326 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
    327 /// instruction as an operand, try to simplify the binop by seeing whether
    328 /// evaluating it on both branches of the select results in the same value.
    329 /// Returns the common value if so, otherwise returns null.
    330 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
    331                                     const TargetData *TD,
    332                                     const DominatorTree *DT,
    333                                     unsigned MaxRecurse) {
    334   // Recursion is always used, so bail out at once if we already hit the limit.
    335   if (!MaxRecurse--)
    336     return 0;
    337 
    338   SelectInst *SI;
    339   if (isa<SelectInst>(LHS)) {
    340     SI = cast<SelectInst>(LHS);
    341   } else {
    342     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    343     SI = cast<SelectInst>(RHS);
    344   }
    345 
    346   // Evaluate the BinOp on the true and false branches of the select.
    347   Value *TV;
    348   Value *FV;
    349   if (SI == LHS) {
    350     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
    351     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
    352   } else {
    353     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
    354     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
    355   }
    356 
    357   // If they simplified to the same value, then return the common value.
    358   // If they both failed to simplify then return null.
    359   if (TV == FV)
    360     return TV;
    361 
    362   // If one branch simplified to undef, return the other one.
    363   if (TV && isa<UndefValue>(TV))
    364     return FV;
    365   if (FV && isa<UndefValue>(FV))
    366     return TV;
    367 
    368   // If applying the operation did not change the true and false select values,
    369   // then the result of the binop is the select itself.
    370   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    371     return SI;
    372 
    373   // If one branch simplified and the other did not, and the simplified
    374   // value is equal to the unsimplified one, return the simplified value.
    375   // For example, select (cond, X, X & Z) & Z -> X & Z.
    376   if ((FV && !TV) || (TV && !FV)) {
    377     // Check that the simplified value has the form "X op Y" where "op" is the
    378     // same as the original operation.
    379     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    380     if (Simplified && Simplified->getOpcode() == Opcode) {
    381       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
    382       // We already know that "op" is the same as for the simplified value.  See
    383       // if the operands match too.  If so, return the simplified value.
    384       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
    385       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
    386       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
    387       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
    388           Simplified->getOperand(1) == UnsimplifiedRHS)
    389         return Simplified;
    390       if (Simplified->isCommutative() &&
    391           Simplified->getOperand(1) == UnsimplifiedLHS &&
    392           Simplified->getOperand(0) == UnsimplifiedRHS)
    393         return Simplified;
    394     }
    395   }
    396 
    397   return 0;
    398 }
    399 
    400 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
    401 /// try to simplify the comparison by seeing whether both branches of the select
    402 /// result in the same value.  Returns the common value if so, otherwise returns
    403 /// null.
    404 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
    405                                   Value *RHS, const TargetData *TD,
    406                                   const DominatorTree *DT,
    407                                   unsigned MaxRecurse) {
    408   // Recursion is always used, so bail out at once if we already hit the limit.
    409   if (!MaxRecurse--)
    410     return 0;
    411 
    412   // Make sure the select is on the LHS.
    413   if (!isa<SelectInst>(LHS)) {
    414     std::swap(LHS, RHS);
    415     Pred = CmpInst::getSwappedPredicate(Pred);
    416   }
    417   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
    418   SelectInst *SI = cast<SelectInst>(LHS);
    419 
    420   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
    421   // Does "cmp TV, RHS" simplify?
    422   if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
    423                                     MaxRecurse)) {
    424     // It does!  Does "cmp FV, RHS" simplify?
    425     if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
    426                                       MaxRecurse)) {
    427       // It does!  If they simplified to the same value, then use it as the
    428       // result of the original comparison.
    429       if (TCmp == FCmp)
    430         return TCmp;
    431       Value *Cond = SI->getCondition();
    432       // If the false value simplified to false, then the result of the compare
    433       // is equal to "Cond && TCmp".  This also catches the case when the false
    434       // value simplified to false and the true value to true, returning "Cond".
    435       if (match(FCmp, m_Zero()))
    436         if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
    437           return V;
    438       // If the true value simplified to true, then the result of the compare
    439       // is equal to "Cond || FCmp".
    440       if (match(TCmp, m_One()))
    441         if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
    442           return V;
    443       // Finally, if the false value simplified to true and the true value to
    444       // false, then the result of the compare is equal to "!Cond".
    445       if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
    446         if (Value *V =
    447             SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
    448                             TD, DT, MaxRecurse))
    449           return V;
    450     }
    451   }
    452 
    453   return 0;
    454 }
    455 
    456 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
    457 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
    458 /// it on the incoming phi values yields the same result for every value.  If so
    459 /// returns the common value, otherwise returns null.
    460 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
    461                                  const TargetData *TD, const DominatorTree *DT,
    462                                  unsigned MaxRecurse) {
    463   // Recursion is always used, so bail out at once if we already hit the limit.
    464   if (!MaxRecurse--)
    465     return 0;
    466 
    467   PHINode *PI;
    468   if (isa<PHINode>(LHS)) {
    469     PI = cast<PHINode>(LHS);
    470     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    471     if (!ValueDominatesPHI(RHS, PI, DT))
    472       return 0;
    473   } else {
    474     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    475     PI = cast<PHINode>(RHS);
    476     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    477     if (!ValueDominatesPHI(LHS, PI, DT))
    478       return 0;
    479   }
    480 
    481   // Evaluate the BinOp on the incoming phi values.
    482   Value *CommonValue = 0;
    483   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    484     Value *Incoming = PI->getIncomingValue(i);
    485     // If the incoming value is the phi node itself, it can safely be skipped.
    486     if (Incoming == PI) continue;
    487     Value *V = PI == LHS ?
    488       SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
    489       SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
    490     // If the operation failed to simplify, or simplified to a different value
    491     // to previously, then give up.
    492     if (!V || (CommonValue && V != CommonValue))
    493       return 0;
    494     CommonValue = V;
    495   }
    496 
    497   return CommonValue;
    498 }
    499 
    500 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
    501 /// try to simplify the comparison by seeing whether comparing with all of the
    502 /// incoming phi values yields the same result every time.  If so returns the
    503 /// common result, otherwise returns null.
    504 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
    505                                const TargetData *TD, const DominatorTree *DT,
    506                                unsigned MaxRecurse) {
    507   // Recursion is always used, so bail out at once if we already hit the limit.
    508   if (!MaxRecurse--)
    509     return 0;
    510 
    511   // Make sure the phi is on the LHS.
    512   if (!isa<PHINode>(LHS)) {
    513     std::swap(LHS, RHS);
    514     Pred = CmpInst::getSwappedPredicate(Pred);
    515   }
    516   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
    517   PHINode *PI = cast<PHINode>(LHS);
    518 
    519   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    520   if (!ValueDominatesPHI(RHS, PI, DT))
    521     return 0;
    522 
    523   // Evaluate the BinOp on the incoming phi values.
    524   Value *CommonValue = 0;
    525   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    526     Value *Incoming = PI->getIncomingValue(i);
    527     // If the incoming value is the phi node itself, it can safely be skipped.
    528     if (Incoming == PI) continue;
    529     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
    530     // If the operation failed to simplify, or simplified to a different value
    531     // to previously, then give up.
    532     if (!V || (CommonValue && V != CommonValue))
    533       return 0;
    534     CommonValue = V;
    535   }
    536 
    537   return CommonValue;
    538 }
    539 
    540 /// SimplifyAddInst - Given operands for an Add, see if we can
    541 /// fold the result.  If not, this returns null.
    542 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    543                               const TargetData *TD, const DominatorTree *DT,
    544                               unsigned MaxRecurse) {
    545   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    546     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    547       Constant *Ops[] = { CLHS, CRHS };
    548       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
    549                                       Ops, TD);
    550     }
    551 
    552     // Canonicalize the constant to the RHS.
    553     std::swap(Op0, Op1);
    554   }
    555 
    556   // X + undef -> undef
    557   if (match(Op1, m_Undef()))
    558     return Op1;
    559 
    560   // X + 0 -> X
    561   if (match(Op1, m_Zero()))
    562     return Op0;
    563 
    564   // X + (Y - X) -> Y
    565   // (Y - X) + X -> Y
    566   // Eg: X + -X -> 0
    567   Value *Y = 0;
    568   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
    569       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
    570     return Y;
    571 
    572   // X + ~X -> -1   since   ~X = -X-1
    573   if (match(Op0, m_Not(m_Specific(Op1))) ||
    574       match(Op1, m_Not(m_Specific(Op0))))
    575     return Constant::getAllOnesValue(Op0->getType());
    576 
    577   /// i1 add -> xor.
    578   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    579     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
    580       return V;
    581 
    582   // Try some generic simplifications for associative operations.
    583   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
    584                                           MaxRecurse))
    585     return V;
    586 
    587   // Mul distributes over Add.  Try some generic simplifications based on this.
    588   if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
    589                                 TD, DT, MaxRecurse))
    590     return V;
    591 
    592   // Threading Add over selects and phi nodes is pointless, so don't bother.
    593   // Threading over the select in "A + select(cond, B, C)" means evaluating
    594   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
    595   // only if B and C are equal.  If B and C are equal then (since we assume
    596   // that operands have already been simplified) "select(cond, B, C)" should
    597   // have been simplified to the common value of B and C already.  Analysing
    598   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
    599   // for threading over phi nodes.
    600 
    601   return 0;
    602 }
    603 
    604 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    605                              const TargetData *TD, const DominatorTree *DT) {
    606   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
    607 }
    608 
    609 /// SimplifySubInst - Given operands for a Sub, see if we can
    610 /// fold the result.  If not, this returns null.
    611 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    612                               const TargetData *TD, const DominatorTree *DT,
    613                               unsigned MaxRecurse) {
    614   if (Constant *CLHS = dyn_cast<Constant>(Op0))
    615     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    616       Constant *Ops[] = { CLHS, CRHS };
    617       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
    618                                       Ops, TD);
    619     }
    620 
    621   // X - undef -> undef
    622   // undef - X -> undef
    623   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
    624     return UndefValue::get(Op0->getType());
    625 
    626   // X - 0 -> X
    627   if (match(Op1, m_Zero()))
    628     return Op0;
    629 
    630   // X - X -> 0
    631   if (Op0 == Op1)
    632     return Constant::getNullValue(Op0->getType());
    633 
    634   // (X*2) - X -> X
    635   // (X<<1) - X -> X
    636   Value *X = 0;
    637   if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
    638       match(Op0, m_Shl(m_Specific(Op1), m_One())))
    639     return Op1;
    640 
    641   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
    642   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
    643   Value *Y = 0, *Z = Op1;
    644   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
    645     // See if "V === Y - Z" simplifies.
    646     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
    647       // It does!  Now see if "X + V" simplifies.
    648       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
    649                                    MaxRecurse-1)) {
    650         // It does, we successfully reassociated!
    651         ++NumReassoc;
    652         return W;
    653       }
    654     // See if "V === X - Z" simplifies.
    655     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
    656       // It does!  Now see if "Y + V" simplifies.
    657       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
    658                                    MaxRecurse-1)) {
    659         // It does, we successfully reassociated!
    660         ++NumReassoc;
    661         return W;
    662       }
    663   }
    664 
    665   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
    666   // For example, X - (X + 1) -> -1
    667   X = Op0;
    668   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
    669     // See if "V === X - Y" simplifies.
    670     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
    671       // It does!  Now see if "V - Z" simplifies.
    672       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
    673                                    MaxRecurse-1)) {
    674         // It does, we successfully reassociated!
    675         ++NumReassoc;
    676         return W;
    677       }
    678     // See if "V === X - Z" simplifies.
    679     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
    680       // It does!  Now see if "V - Y" simplifies.
    681       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
    682                                    MaxRecurse-1)) {
    683         // It does, we successfully reassociated!
    684         ++NumReassoc;
    685         return W;
    686       }
    687   }
    688 
    689   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
    690   // For example, X - (X - Y) -> Y.
    691   Z = Op0;
    692   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
    693     // See if "V === Z - X" simplifies.
    694     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
    695       // It does!  Now see if "V + Y" simplifies.
    696       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
    697                                    MaxRecurse-1)) {
    698         // It does, we successfully reassociated!
    699         ++NumReassoc;
    700         return W;
    701       }
    702 
    703   // Mul distributes over Sub.  Try some generic simplifications based on this.
    704   if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
    705                                 TD, DT, MaxRecurse))
    706     return V;
    707 
    708   // i1 sub -> xor.
    709   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    710     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
    711       return V;
    712 
    713   // Threading Sub over selects and phi nodes is pointless, so don't bother.
    714   // Threading over the select in "A - select(cond, B, C)" means evaluating
    715   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
    716   // only if B and C are equal.  If B and C are equal then (since we assume
    717   // that operands have already been simplified) "select(cond, B, C)" should
    718   // have been simplified to the common value of B and C already.  Analysing
    719   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
    720   // for threading over phi nodes.
    721 
    722   return 0;
    723 }
    724 
    725 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    726                              const TargetData *TD, const DominatorTree *DT) {
    727   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
    728 }
    729 
    730 /// SimplifyMulInst - Given operands for a Mul, see if we can
    731 /// fold the result.  If not, this returns null.
    732 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
    733                               const DominatorTree *DT, unsigned MaxRecurse) {
    734   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    735     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    736       Constant *Ops[] = { CLHS, CRHS };
    737       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
    738                                       Ops, TD);
    739     }
    740 
    741     // Canonicalize the constant to the RHS.
    742     std::swap(Op0, Op1);
    743   }
    744 
    745   // X * undef -> 0
    746   if (match(Op1, m_Undef()))
    747     return Constant::getNullValue(Op0->getType());
    748 
    749   // X * 0 -> 0
    750   if (match(Op1, m_Zero()))
    751     return Op1;
    752 
    753   // X * 1 -> X
    754   if (match(Op1, m_One()))
    755     return Op0;
    756 
    757   // (X / Y) * Y -> X if the division is exact.
    758   Value *X = 0, *Y = 0;
    759   if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
    760       (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
    761     BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
    762     if (Div->isExact())
    763       return X;
    764   }
    765 
    766   // i1 mul -> and.
    767   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    768     if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
    769       return V;
    770 
    771   // Try some generic simplifications for associative operations.
    772   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
    773                                           MaxRecurse))
    774     return V;
    775 
    776   // Mul distributes over Add.  Try some generic simplifications based on this.
    777   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
    778                              TD, DT, MaxRecurse))
    779     return V;
    780 
    781   // If the operation is with the result of a select instruction, check whether
    782   // operating on either branch of the select always yields the same value.
    783   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    784     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
    785                                          MaxRecurse))
    786       return V;
    787 
    788   // If the operation is with the result of a phi instruction, check whether
    789   // operating on all incoming values of the phi always yields the same value.
    790   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    791     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
    792                                       MaxRecurse))
    793       return V;
    794 
    795   return 0;
    796 }
    797 
    798 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
    799                              const DominatorTree *DT) {
    800   return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
    801 }
    802 
    803 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
    804 /// fold the result.  If not, this returns null.
    805 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    806                           const TargetData *TD, const DominatorTree *DT,
    807                           unsigned MaxRecurse) {
    808   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
    809     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
    810       Constant *Ops[] = { C0, C1 };
    811       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
    812     }
    813   }
    814 
    815   bool isSigned = Opcode == Instruction::SDiv;
    816 
    817   // X / undef -> undef
    818   if (match(Op1, m_Undef()))
    819     return Op1;
    820 
    821   // undef / X -> 0
    822   if (match(Op0, m_Undef()))
    823     return Constant::getNullValue(Op0->getType());
    824 
    825   // 0 / X -> 0, we don't need to preserve faults!
    826   if (match(Op0, m_Zero()))
    827     return Op0;
    828 
    829   // X / 1 -> X
    830   if (match(Op1, m_One()))
    831     return Op0;
    832 
    833   if (Op0->getType()->isIntegerTy(1))
    834     // It can't be division by zero, hence it must be division by one.
    835     return Op0;
    836 
    837   // X / X -> 1
    838   if (Op0 == Op1)
    839     return ConstantInt::get(Op0->getType(), 1);
    840 
    841   // (X * Y) / Y -> X if the multiplication does not overflow.
    842   Value *X = 0, *Y = 0;
    843   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
    844     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
    845     BinaryOperator *Mul = cast<BinaryOperator>(Op0);
    846     // If the Mul knows it does not overflow, then we are good to go.
    847     if ((isSigned && Mul->hasNoSignedWrap()) ||
    848         (!isSigned && Mul->hasNoUnsignedWrap()))
    849       return X;
    850     // If X has the form X = A / Y then X * Y cannot overflow.
    851     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
    852       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
    853         return X;
    854   }
    855 
    856   // (X rem Y) / Y -> 0
    857   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
    858       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
    859     return Constant::getNullValue(Op0->getType());
    860 
    861   // If the operation is with the result of a select instruction, check whether
    862   // operating on either branch of the select always yields the same value.
    863   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    864     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
    865       return V;
    866 
    867   // If the operation is with the result of a phi instruction, check whether
    868   // operating on all incoming values of the phi always yields the same value.
    869   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    870     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
    871       return V;
    872 
    873   return 0;
    874 }
    875 
    876 /// SimplifySDivInst - Given operands for an SDiv, see if we can
    877 /// fold the result.  If not, this returns null.
    878 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
    879                                const DominatorTree *DT, unsigned MaxRecurse) {
    880   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
    881     return V;
    882 
    883   return 0;
    884 }
    885 
    886 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
    887                               const DominatorTree *DT) {
    888   return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
    889 }
    890 
    891 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
    892 /// fold the result.  If not, this returns null.
    893 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
    894                                const DominatorTree *DT, unsigned MaxRecurse) {
    895   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
    896     return V;
    897 
    898   return 0;
    899 }
    900 
    901 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
    902                               const DominatorTree *DT) {
    903   return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
    904 }
    905 
    906 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
    907                                const DominatorTree *, unsigned) {
    908   // undef / X -> undef    (the undef could be a snan).
    909   if (match(Op0, m_Undef()))
    910     return Op0;
    911 
    912   // X / undef -> undef
    913   if (match(Op1, m_Undef()))
    914     return Op1;
    915 
    916   return 0;
    917 }
    918 
    919 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
    920                               const DominatorTree *DT) {
    921   return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
    922 }
    923 
    924 /// SimplifyRem - Given operands for an SRem or URem, see if we can
    925 /// fold the result.  If not, this returns null.
    926 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    927                           const TargetData *TD, const DominatorTree *DT,
    928                           unsigned MaxRecurse) {
    929   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
    930     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
    931       Constant *Ops[] = { C0, C1 };
    932       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
    933     }
    934   }
    935 
    936   // X % undef -> undef
    937   if (match(Op1, m_Undef()))
    938     return Op1;
    939 
    940   // undef % X -> 0
    941   if (match(Op0, m_Undef()))
    942     return Constant::getNullValue(Op0->getType());
    943 
    944   // 0 % X -> 0, we don't need to preserve faults!
    945   if (match(Op0, m_Zero()))
    946     return Op0;
    947 
    948   // X % 0 -> undef, we don't need to preserve faults!
    949   if (match(Op1, m_Zero()))
    950     return UndefValue::get(Op0->getType());
    951 
    952   // X % 1 -> 0
    953   if (match(Op1, m_One()))
    954     return Constant::getNullValue(Op0->getType());
    955 
    956   if (Op0->getType()->isIntegerTy(1))
    957     // It can't be remainder by zero, hence it must be remainder by one.
    958     return Constant::getNullValue(Op0->getType());
    959 
    960   // X % X -> 0
    961   if (Op0 == Op1)
    962     return Constant::getNullValue(Op0->getType());
    963 
    964   // If the operation is with the result of a select instruction, check whether
    965   // operating on either branch of the select always yields the same value.
    966   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    967     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
    968       return V;
    969 
    970   // If the operation is with the result of a phi instruction, check whether
    971   // operating on all incoming values of the phi always yields the same value.
    972   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    973     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
    974       return V;
    975 
    976   return 0;
    977 }
    978 
    979 /// SimplifySRemInst - Given operands for an SRem, see if we can
    980 /// fold the result.  If not, this returns null.
    981 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
    982                                const DominatorTree *DT, unsigned MaxRecurse) {
    983   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
    984     return V;
    985 
    986   return 0;
    987 }
    988 
    989 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
    990                               const DominatorTree *DT) {
    991   return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
    992 }
    993 
    994 /// SimplifyURemInst - Given operands for a URem, see if we can
    995 /// fold the result.  If not, this returns null.
    996 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
    997                                const DominatorTree *DT, unsigned MaxRecurse) {
    998   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
    999     return V;
   1000 
   1001   return 0;
   1002 }
   1003 
   1004 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
   1005                               const DominatorTree *DT) {
   1006   return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
   1007 }
   1008 
   1009 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
   1010                                const DominatorTree *, unsigned) {
   1011   // undef % X -> undef    (the undef could be a snan).
   1012   if (match(Op0, m_Undef()))
   1013     return Op0;
   1014 
   1015   // X % undef -> undef
   1016   if (match(Op1, m_Undef()))
   1017     return Op1;
   1018 
   1019   return 0;
   1020 }
   1021 
   1022 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
   1023                               const DominatorTree *DT) {
   1024   return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
   1025 }
   1026 
   1027 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
   1028 /// fold the result.  If not, this returns null.
   1029 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
   1030                             const TargetData *TD, const DominatorTree *DT,
   1031                             unsigned MaxRecurse) {
   1032   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
   1033     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
   1034       Constant *Ops[] = { C0, C1 };
   1035       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
   1036     }
   1037   }
   1038 
   1039   // 0 shift by X -> 0
   1040   if (match(Op0, m_Zero()))
   1041     return Op0;
   1042 
   1043   // X shift by 0 -> X
   1044   if (match(Op1, m_Zero()))
   1045     return Op0;
   1046 
   1047   // X shift by undef -> undef because it may shift by the bitwidth.
   1048   if (match(Op1, m_Undef()))
   1049     return Op1;
   1050 
   1051   // Shifting by the bitwidth or more is undefined.
   1052   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
   1053     if (CI->getValue().getLimitedValue() >=
   1054         Op0->getType()->getScalarSizeInBits())
   1055       return UndefValue::get(Op0->getType());
   1056 
   1057   // If the operation is with the result of a select instruction, check whether
   1058   // operating on either branch of the select always yields the same value.
   1059   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1060     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
   1061       return V;
   1062 
   1063   // If the operation is with the result of a phi instruction, check whether
   1064   // operating on all incoming values of the phi always yields the same value.
   1065   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1066     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
   1067       return V;
   1068 
   1069   return 0;
   1070 }
   1071 
   1072 /// SimplifyShlInst - Given operands for an Shl, see if we can
   1073 /// fold the result.  If not, this returns null.
   1074 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1075                               const TargetData *TD, const DominatorTree *DT,
   1076                               unsigned MaxRecurse) {
   1077   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
   1078     return V;
   1079 
   1080   // undef << X -> 0
   1081   if (match(Op0, m_Undef()))
   1082     return Constant::getNullValue(Op0->getType());
   1083 
   1084   // (X >> A) << A -> X
   1085   Value *X;
   1086   if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
   1087       cast<PossiblyExactOperator>(Op0)->isExact())
   1088     return X;
   1089   return 0;
   1090 }
   1091 
   1092 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1093                              const TargetData *TD, const DominatorTree *DT) {
   1094   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
   1095 }
   1096 
   1097 /// SimplifyLShrInst - Given operands for an LShr, see if we can
   1098 /// fold the result.  If not, this returns null.
   1099 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1100                                const TargetData *TD, const DominatorTree *DT,
   1101                                unsigned MaxRecurse) {
   1102   if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
   1103     return V;
   1104 
   1105   // undef >>l X -> 0
   1106   if (match(Op0, m_Undef()))
   1107     return Constant::getNullValue(Op0->getType());
   1108 
   1109   // (X << A) >> A -> X
   1110   Value *X;
   1111   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
   1112       cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
   1113     return X;
   1114 
   1115   return 0;
   1116 }
   1117 
   1118 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1119                               const TargetData *TD, const DominatorTree *DT) {
   1120   return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
   1121 }
   1122 
   1123 /// SimplifyAShrInst - Given operands for an AShr, see if we can
   1124 /// fold the result.  If not, this returns null.
   1125 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1126                                const TargetData *TD, const DominatorTree *DT,
   1127                                unsigned MaxRecurse) {
   1128   if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
   1129     return V;
   1130 
   1131   // all ones >>a X -> all ones
   1132   if (match(Op0, m_AllOnes()))
   1133     return Op0;
   1134 
   1135   // undef >>a X -> all ones
   1136   if (match(Op0, m_Undef()))
   1137     return Constant::getAllOnesValue(Op0->getType());
   1138 
   1139   // (X << A) >> A -> X
   1140   Value *X;
   1141   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
   1142       cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
   1143     return X;
   1144 
   1145   return 0;
   1146 }
   1147 
   1148 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1149                               const TargetData *TD, const DominatorTree *DT) {
   1150   return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
   1151 }
   1152 
   1153 /// SimplifyAndInst - Given operands for an And, see if we can
   1154 /// fold the result.  If not, this returns null.
   1155 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
   1156                               const DominatorTree *DT, unsigned MaxRecurse) {
   1157   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1158     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1159       Constant *Ops[] = { CLHS, CRHS };
   1160       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
   1161                                       Ops, TD);
   1162     }
   1163 
   1164     // Canonicalize the constant to the RHS.
   1165     std::swap(Op0, Op1);
   1166   }
   1167 
   1168   // X & undef -> 0
   1169   if (match(Op1, m_Undef()))
   1170     return Constant::getNullValue(Op0->getType());
   1171 
   1172   // X & X = X
   1173   if (Op0 == Op1)
   1174     return Op0;
   1175 
   1176   // X & 0 = 0
   1177   if (match(Op1, m_Zero()))
   1178     return Op1;
   1179 
   1180   // X & -1 = X
   1181   if (match(Op1, m_AllOnes()))
   1182     return Op0;
   1183 
   1184   // A & ~A  =  ~A & A  =  0
   1185   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1186       match(Op1, m_Not(m_Specific(Op0))))
   1187     return Constant::getNullValue(Op0->getType());
   1188 
   1189   // (A | ?) & A = A
   1190   Value *A = 0, *B = 0;
   1191   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1192       (A == Op1 || B == Op1))
   1193     return Op1;
   1194 
   1195   // A & (A | ?) = A
   1196   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1197       (A == Op0 || B == Op0))
   1198     return Op0;
   1199 
   1200   // Try some generic simplifications for associative operations.
   1201   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
   1202                                           MaxRecurse))
   1203     return V;
   1204 
   1205   // And distributes over Or.  Try some generic simplifications based on this.
   1206   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1207                              TD, DT, MaxRecurse))
   1208     return V;
   1209 
   1210   // And distributes over Xor.  Try some generic simplifications based on this.
   1211   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
   1212                              TD, DT, MaxRecurse))
   1213     return V;
   1214 
   1215   // Or distributes over And.  Try some generic simplifications based on this.
   1216   if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1217                                 TD, DT, MaxRecurse))
   1218     return V;
   1219 
   1220   // If the operation is with the result of a select instruction, check whether
   1221   // operating on either branch of the select always yields the same value.
   1222   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1223     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
   1224                                          MaxRecurse))
   1225       return V;
   1226 
   1227   // If the operation is with the result of a phi instruction, check whether
   1228   // operating on all incoming values of the phi always yields the same value.
   1229   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1230     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
   1231                                       MaxRecurse))
   1232       return V;
   1233 
   1234   return 0;
   1235 }
   1236 
   1237 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
   1238                              const DominatorTree *DT) {
   1239   return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
   1240 }
   1241 
   1242 /// SimplifyOrInst - Given operands for an Or, see if we can
   1243 /// fold the result.  If not, this returns null.
   1244 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
   1245                              const DominatorTree *DT, unsigned MaxRecurse) {
   1246   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1247     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1248       Constant *Ops[] = { CLHS, CRHS };
   1249       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
   1250                                       Ops, TD);
   1251     }
   1252 
   1253     // Canonicalize the constant to the RHS.
   1254     std::swap(Op0, Op1);
   1255   }
   1256 
   1257   // X | undef -> -1
   1258   if (match(Op1, m_Undef()))
   1259     return Constant::getAllOnesValue(Op0->getType());
   1260 
   1261   // X | X = X
   1262   if (Op0 == Op1)
   1263     return Op0;
   1264 
   1265   // X | 0 = X
   1266   if (match(Op1, m_Zero()))
   1267     return Op0;
   1268 
   1269   // X | -1 = -1
   1270   if (match(Op1, m_AllOnes()))
   1271     return Op1;
   1272 
   1273   // A | ~A  =  ~A | A  =  -1
   1274   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1275       match(Op1, m_Not(m_Specific(Op0))))
   1276     return Constant::getAllOnesValue(Op0->getType());
   1277 
   1278   // (A & ?) | A = A
   1279   Value *A = 0, *B = 0;
   1280   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   1281       (A == Op1 || B == Op1))
   1282     return Op1;
   1283 
   1284   // A | (A & ?) = A
   1285   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
   1286       (A == Op0 || B == Op0))
   1287     return Op0;
   1288 
   1289   // ~(A & ?) | A = -1
   1290   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1291       (A == Op1 || B == Op1))
   1292     return Constant::getAllOnesValue(Op1->getType());
   1293 
   1294   // A | ~(A & ?) = -1
   1295   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1296       (A == Op0 || B == Op0))
   1297     return Constant::getAllOnesValue(Op0->getType());
   1298 
   1299   // Try some generic simplifications for associative operations.
   1300   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
   1301                                           MaxRecurse))
   1302     return V;
   1303 
   1304   // Or distributes over And.  Try some generic simplifications based on this.
   1305   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
   1306                              TD, DT, MaxRecurse))
   1307     return V;
   1308 
   1309   // And distributes over Or.  Try some generic simplifications based on this.
   1310   if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
   1311                                 TD, DT, MaxRecurse))
   1312     return V;
   1313 
   1314   // If the operation is with the result of a select instruction, check whether
   1315   // operating on either branch of the select always yields the same value.
   1316   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1317     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
   1318                                          MaxRecurse))
   1319       return V;
   1320 
   1321   // If the operation is with the result of a phi instruction, check whether
   1322   // operating on all incoming values of the phi always yields the same value.
   1323   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1324     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
   1325                                       MaxRecurse))
   1326       return V;
   1327 
   1328   return 0;
   1329 }
   1330 
   1331 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
   1332                             const DominatorTree *DT) {
   1333   return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
   1334 }
   1335 
   1336 /// SimplifyXorInst - Given operands for a Xor, see if we can
   1337 /// fold the result.  If not, this returns null.
   1338 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
   1339                               const DominatorTree *DT, unsigned MaxRecurse) {
   1340   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1341     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1342       Constant *Ops[] = { CLHS, CRHS };
   1343       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
   1344                                       Ops, TD);
   1345     }
   1346 
   1347     // Canonicalize the constant to the RHS.
   1348     std::swap(Op0, Op1);
   1349   }
   1350 
   1351   // A ^ undef -> undef
   1352   if (match(Op1, m_Undef()))
   1353     return Op1;
   1354 
   1355   // A ^ 0 = A
   1356   if (match(Op1, m_Zero()))
   1357     return Op0;
   1358 
   1359   // A ^ A = 0
   1360   if (Op0 == Op1)
   1361     return Constant::getNullValue(Op0->getType());
   1362 
   1363   // A ^ ~A  =  ~A ^ A  =  -1
   1364   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1365       match(Op1, m_Not(m_Specific(Op0))))
   1366     return Constant::getAllOnesValue(Op0->getType());
   1367 
   1368   // Try some generic simplifications for associative operations.
   1369   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
   1370                                           MaxRecurse))
   1371     return V;
   1372 
   1373   // And distributes over Xor.  Try some generic simplifications based on this.
   1374   if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
   1375                                 TD, DT, MaxRecurse))
   1376     return V;
   1377 
   1378   // Threading Xor over selects and phi nodes is pointless, so don't bother.
   1379   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
   1380   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
   1381   // only if B and C are equal.  If B and C are equal then (since we assume
   1382   // that operands have already been simplified) "select(cond, B, C)" should
   1383   // have been simplified to the common value of B and C already.  Analysing
   1384   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
   1385   // for threading over phi nodes.
   1386 
   1387   return 0;
   1388 }
   1389 
   1390 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
   1391                              const DominatorTree *DT) {
   1392   return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
   1393 }
   1394 
   1395 static Type *GetCompareTy(Value *Op) {
   1396   return CmpInst::makeCmpResultType(Op->getType());
   1397 }
   1398 
   1399 /// ExtractEquivalentCondition - Rummage around inside V looking for something
   1400 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
   1401 /// otherwise return null.  Helper function for analyzing max/min idioms.
   1402 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
   1403                                          Value *LHS, Value *RHS) {
   1404   SelectInst *SI = dyn_cast<SelectInst>(V);
   1405   if (!SI)
   1406     return 0;
   1407   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   1408   if (!Cmp)
   1409     return 0;
   1410   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
   1411   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
   1412     return Cmp;
   1413   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
   1414       LHS == CmpRHS && RHS == CmpLHS)
   1415     return Cmp;
   1416   return 0;
   1417 }
   1418 
   1419 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
   1420 /// fold the result.  If not, this returns null.
   1421 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   1422                                const TargetData *TD, const DominatorTree *DT,
   1423                                unsigned MaxRecurse) {
   1424   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   1425   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
   1426 
   1427   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   1428     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   1429       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
   1430 
   1431     // If we have a constant, make sure it is on the RHS.
   1432     std::swap(LHS, RHS);
   1433     Pred = CmpInst::getSwappedPredicate(Pred);
   1434   }
   1435 
   1436   Type *ITy = GetCompareTy(LHS); // The return type.
   1437   Type *OpTy = LHS->getType();   // The operand type.
   1438 
   1439   // icmp X, X -> true/false
   1440   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
   1441   // because X could be 0.
   1442   if (LHS == RHS || isa<UndefValue>(RHS))
   1443     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
   1444 
   1445   // Special case logic when the operands have i1 type.
   1446   if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
   1447        cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
   1448     switch (Pred) {
   1449     default: break;
   1450     case ICmpInst::ICMP_EQ:
   1451       // X == 1 -> X
   1452       if (match(RHS, m_One()))
   1453         return LHS;
   1454       break;
   1455     case ICmpInst::ICMP_NE:
   1456       // X != 0 -> X
   1457       if (match(RHS, m_Zero()))
   1458         return LHS;
   1459       break;
   1460     case ICmpInst::ICMP_UGT:
   1461       // X >u 0 -> X
   1462       if (match(RHS, m_Zero()))
   1463         return LHS;
   1464       break;
   1465     case ICmpInst::ICMP_UGE:
   1466       // X >=u 1 -> X
   1467       if (match(RHS, m_One()))
   1468         return LHS;
   1469       break;
   1470     case ICmpInst::ICMP_SLT:
   1471       // X <s 0 -> X
   1472       if (match(RHS, m_Zero()))
   1473         return LHS;
   1474       break;
   1475     case ICmpInst::ICMP_SLE:
   1476       // X <=s -1 -> X
   1477       if (match(RHS, m_One()))
   1478         return LHS;
   1479       break;
   1480     }
   1481   }
   1482 
   1483   // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
   1484   // different addresses, and what's more the address of a stack variable is
   1485   // never null or equal to the address of a global.  Note that generalizing
   1486   // to the case where LHS is a global variable address or null is pointless,
   1487   // since if both LHS and RHS are constants then we already constant folded
   1488   // the compare, and if only one of them is then we moved it to RHS already.
   1489   if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
   1490                                isa<ConstantPointerNull>(RHS)))
   1491     // We already know that LHS != RHS.
   1492     return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
   1493 
   1494   // If we are comparing with zero then try hard since this is a common case.
   1495   if (match(RHS, m_Zero())) {
   1496     bool LHSKnownNonNegative, LHSKnownNegative;
   1497     switch (Pred) {
   1498     default:
   1499       assert(false && "Unknown ICmp predicate!");
   1500     case ICmpInst::ICMP_ULT:
   1501       return getFalse(ITy);
   1502     case ICmpInst::ICMP_UGE:
   1503       return getTrue(ITy);
   1504     case ICmpInst::ICMP_EQ:
   1505     case ICmpInst::ICMP_ULE:
   1506       if (isKnownNonZero(LHS, TD))
   1507         return getFalse(ITy);
   1508       break;
   1509     case ICmpInst::ICMP_NE:
   1510     case ICmpInst::ICMP_UGT:
   1511       if (isKnownNonZero(LHS, TD))
   1512         return getTrue(ITy);
   1513       break;
   1514     case ICmpInst::ICMP_SLT:
   1515       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
   1516       if (LHSKnownNegative)
   1517         return getTrue(ITy);
   1518       if (LHSKnownNonNegative)
   1519         return getFalse(ITy);
   1520       break;
   1521     case ICmpInst::ICMP_SLE:
   1522       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
   1523       if (LHSKnownNegative)
   1524         return getTrue(ITy);
   1525       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
   1526         return getFalse(ITy);
   1527       break;
   1528     case ICmpInst::ICMP_SGE:
   1529       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
   1530       if (LHSKnownNegative)
   1531         return getFalse(ITy);
   1532       if (LHSKnownNonNegative)
   1533         return getTrue(ITy);
   1534       break;
   1535     case ICmpInst::ICMP_SGT:
   1536       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
   1537       if (LHSKnownNegative)
   1538         return getFalse(ITy);
   1539       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
   1540         return getTrue(ITy);
   1541       break;
   1542     }
   1543   }
   1544 
   1545   // See if we are doing a comparison with a constant integer.
   1546   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1547     // Rule out tautological comparisons (eg., ult 0 or uge 0).
   1548     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
   1549     if (RHS_CR.isEmptySet())
   1550       return ConstantInt::getFalse(CI->getContext());
   1551     if (RHS_CR.isFullSet())
   1552       return ConstantInt::getTrue(CI->getContext());
   1553 
   1554     // Many binary operators with constant RHS have easy to compute constant
   1555     // range.  Use them to check whether the comparison is a tautology.
   1556     uint32_t Width = CI->getBitWidth();
   1557     APInt Lower = APInt(Width, 0);
   1558     APInt Upper = APInt(Width, 0);
   1559     ConstantInt *CI2;
   1560     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
   1561       // 'urem x, CI2' produces [0, CI2).
   1562       Upper = CI2->getValue();
   1563     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
   1564       // 'srem x, CI2' produces (-|CI2|, |CI2|).
   1565       Upper = CI2->getValue().abs();
   1566       Lower = (-Upper) + 1;
   1567     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
   1568       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
   1569       APInt NegOne = APInt::getAllOnesValue(Width);
   1570       if (!CI2->isZero())
   1571         Upper = NegOne.udiv(CI2->getValue()) + 1;
   1572     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
   1573       // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
   1574       APInt IntMin = APInt::getSignedMinValue(Width);
   1575       APInt IntMax = APInt::getSignedMaxValue(Width);
   1576       APInt Val = CI2->getValue().abs();
   1577       if (!Val.isMinValue()) {
   1578         Lower = IntMin.sdiv(Val);
   1579         Upper = IntMax.sdiv(Val) + 1;
   1580       }
   1581     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
   1582       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
   1583       APInt NegOne = APInt::getAllOnesValue(Width);
   1584       if (CI2->getValue().ult(Width))
   1585         Upper = NegOne.lshr(CI2->getValue()) + 1;
   1586     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
   1587       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
   1588       APInt IntMin = APInt::getSignedMinValue(Width);
   1589       APInt IntMax = APInt::getSignedMaxValue(Width);
   1590       if (CI2->getValue().ult(Width)) {
   1591         Lower = IntMin.ashr(CI2->getValue());
   1592         Upper = IntMax.ashr(CI2->getValue()) + 1;
   1593       }
   1594     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
   1595       // 'or x, CI2' produces [CI2, UINT_MAX].
   1596       Lower = CI2->getValue();
   1597     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
   1598       // 'and x, CI2' produces [0, CI2].
   1599       Upper = CI2->getValue() + 1;
   1600     }
   1601     if (Lower != Upper) {
   1602       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
   1603       if (RHS_CR.contains(LHS_CR))
   1604         return ConstantInt::getTrue(RHS->getContext());
   1605       if (RHS_CR.inverse().contains(LHS_CR))
   1606         return ConstantInt::getFalse(RHS->getContext());
   1607     }
   1608   }
   1609 
   1610   // Compare of cast, for example (zext X) != 0 -> X != 0
   1611   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
   1612     Instruction *LI = cast<CastInst>(LHS);
   1613     Value *SrcOp = LI->getOperand(0);
   1614     Type *SrcTy = SrcOp->getType();
   1615     Type *DstTy = LI->getType();
   1616 
   1617     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
   1618     // if the integer type is the same size as the pointer type.
   1619     if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
   1620         TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
   1621       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   1622         // Transfer the cast to the constant.
   1623         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
   1624                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
   1625                                         TD, DT, MaxRecurse-1))
   1626           return V;
   1627       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
   1628         if (RI->getOperand(0)->getType() == SrcTy)
   1629           // Compare without the cast.
   1630           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   1631                                           TD, DT, MaxRecurse-1))
   1632             return V;
   1633       }
   1634     }
   1635 
   1636     if (isa<ZExtInst>(LHS)) {
   1637       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
   1638       // same type.
   1639       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
   1640         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   1641           // Compare X and Y.  Note that signed predicates become unsigned.
   1642           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   1643                                           SrcOp, RI->getOperand(0), TD, DT,
   1644                                           MaxRecurse-1))
   1645             return V;
   1646       }
   1647       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
   1648       // too.  If not, then try to deduce the result of the comparison.
   1649       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1650         // Compute the constant that would happen if we truncated to SrcTy then
   1651         // reextended to DstTy.
   1652         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   1653         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
   1654 
   1655         // If the re-extended constant didn't change then this is effectively
   1656         // also a case of comparing two zero-extended values.
   1657         if (RExt == CI && MaxRecurse)
   1658           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   1659                                           SrcOp, Trunc, TD, DT, MaxRecurse-1))
   1660             return V;
   1661 
   1662         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
   1663         // there.  Use this to work out the result of the comparison.
   1664         if (RExt != CI) {
   1665           switch (Pred) {
   1666           default:
   1667             assert(false && "Unknown ICmp predicate!");
   1668           // LHS <u RHS.
   1669           case ICmpInst::ICMP_EQ:
   1670           case ICmpInst::ICMP_UGT:
   1671           case ICmpInst::ICMP_UGE:
   1672             return ConstantInt::getFalse(CI->getContext());
   1673 
   1674           case ICmpInst::ICMP_NE:
   1675           case ICmpInst::ICMP_ULT:
   1676           case ICmpInst::ICMP_ULE:
   1677             return ConstantInt::getTrue(CI->getContext());
   1678 
   1679           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
   1680           // is non-negative then LHS <s RHS.
   1681           case ICmpInst::ICMP_SGT:
   1682           case ICmpInst::ICMP_SGE:
   1683             return CI->getValue().isNegative() ?
   1684               ConstantInt::getTrue(CI->getContext()) :
   1685               ConstantInt::getFalse(CI->getContext());
   1686 
   1687           case ICmpInst::ICMP_SLT:
   1688           case ICmpInst::ICMP_SLE:
   1689             return CI->getValue().isNegative() ?
   1690               ConstantInt::getFalse(CI->getContext()) :
   1691               ConstantInt::getTrue(CI->getContext());
   1692           }
   1693         }
   1694       }
   1695     }
   1696 
   1697     if (isa<SExtInst>(LHS)) {
   1698       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
   1699       // same type.
   1700       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
   1701         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   1702           // Compare X and Y.  Note that the predicate does not change.
   1703           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   1704                                           TD, DT, MaxRecurse-1))
   1705             return V;
   1706       }
   1707       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
   1708       // too.  If not, then try to deduce the result of the comparison.
   1709       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1710         // Compute the constant that would happen if we truncated to SrcTy then
   1711         // reextended to DstTy.
   1712         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   1713         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
   1714 
   1715         // If the re-extended constant didn't change then this is effectively
   1716         // also a case of comparing two sign-extended values.
   1717         if (RExt == CI && MaxRecurse)
   1718           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
   1719                                           MaxRecurse-1))
   1720             return V;
   1721 
   1722         // Otherwise the upper bits of LHS are all equal, while RHS has varying
   1723         // bits there.  Use this to work out the result of the comparison.
   1724         if (RExt != CI) {
   1725           switch (Pred) {
   1726           default:
   1727             assert(false && "Unknown ICmp predicate!");
   1728           case ICmpInst::ICMP_EQ:
   1729             return ConstantInt::getFalse(CI->getContext());
   1730           case ICmpInst::ICMP_NE:
   1731             return ConstantInt::getTrue(CI->getContext());
   1732 
   1733           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
   1734           // LHS >s RHS.
   1735           case ICmpInst::ICMP_SGT:
   1736           case ICmpInst::ICMP_SGE:
   1737             return CI->getValue().isNegative() ?
   1738               ConstantInt::getTrue(CI->getContext()) :
   1739               ConstantInt::getFalse(CI->getContext());
   1740           case ICmpInst::ICMP_SLT:
   1741           case ICmpInst::ICMP_SLE:
   1742             return CI->getValue().isNegative() ?
   1743               ConstantInt::getFalse(CI->getContext()) :
   1744               ConstantInt::getTrue(CI->getContext());
   1745 
   1746           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
   1747           // LHS >u RHS.
   1748           case ICmpInst::ICMP_UGT:
   1749           case ICmpInst::ICMP_UGE:
   1750             // Comparison is true iff the LHS <s 0.
   1751             if (MaxRecurse)
   1752               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
   1753                                               Constant::getNullValue(SrcTy),
   1754                                               TD, DT, MaxRecurse-1))
   1755                 return V;
   1756             break;
   1757           case ICmpInst::ICMP_ULT:
   1758           case ICmpInst::ICMP_ULE:
   1759             // Comparison is true iff the LHS >=s 0.
   1760             if (MaxRecurse)
   1761               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
   1762                                               Constant::getNullValue(SrcTy),
   1763                                               TD, DT, MaxRecurse-1))
   1764                 return V;
   1765             break;
   1766           }
   1767         }
   1768       }
   1769     }
   1770   }
   1771 
   1772   // Special logic for binary operators.
   1773   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
   1774   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
   1775   if (MaxRecurse && (LBO || RBO)) {
   1776     // Analyze the case when either LHS or RHS is an add instruction.
   1777     Value *A = 0, *B = 0, *C = 0, *D = 0;
   1778     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
   1779     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
   1780     if (LBO && LBO->getOpcode() == Instruction::Add) {
   1781       A = LBO->getOperand(0); B = LBO->getOperand(1);
   1782       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
   1783         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
   1784         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
   1785     }
   1786     if (RBO && RBO->getOpcode() == Instruction::Add) {
   1787       C = RBO->getOperand(0); D = RBO->getOperand(1);
   1788       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
   1789         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
   1790         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
   1791     }
   1792 
   1793     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   1794     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
   1795       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
   1796                                       Constant::getNullValue(RHS->getType()),
   1797                                       TD, DT, MaxRecurse-1))
   1798         return V;
   1799 
   1800     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   1801     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
   1802       if (Value *V = SimplifyICmpInst(Pred,
   1803                                       Constant::getNullValue(LHS->getType()),
   1804                                       C == LHS ? D : C, TD, DT, MaxRecurse-1))
   1805         return V;
   1806 
   1807     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
   1808     if (A && C && (A == C || A == D || B == C || B == D) &&
   1809         NoLHSWrapProblem && NoRHSWrapProblem) {
   1810       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   1811       Value *Y = (A == C || A == D) ? B : A;
   1812       Value *Z = (C == A || C == B) ? D : C;
   1813       if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
   1814         return V;
   1815     }
   1816   }
   1817 
   1818   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
   1819     bool KnownNonNegative, KnownNegative;
   1820     switch (Pred) {
   1821     default:
   1822       break;
   1823     case ICmpInst::ICMP_SGT:
   1824     case ICmpInst::ICMP_SGE:
   1825       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
   1826       if (!KnownNonNegative)
   1827         break;
   1828       // fall-through
   1829     case ICmpInst::ICMP_EQ:
   1830     case ICmpInst::ICMP_UGT:
   1831     case ICmpInst::ICMP_UGE:
   1832       return getFalse(ITy);
   1833     case ICmpInst::ICMP_SLT:
   1834     case ICmpInst::ICMP_SLE:
   1835       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
   1836       if (!KnownNonNegative)
   1837         break;
   1838       // fall-through
   1839     case ICmpInst::ICMP_NE:
   1840     case ICmpInst::ICMP_ULT:
   1841     case ICmpInst::ICMP_ULE:
   1842       return getTrue(ITy);
   1843     }
   1844   }
   1845   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
   1846     bool KnownNonNegative, KnownNegative;
   1847     switch (Pred) {
   1848     default:
   1849       break;
   1850     case ICmpInst::ICMP_SGT:
   1851     case ICmpInst::ICMP_SGE:
   1852       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
   1853       if (!KnownNonNegative)
   1854         break;
   1855       // fall-through
   1856     case ICmpInst::ICMP_NE:
   1857     case ICmpInst::ICMP_UGT:
   1858     case ICmpInst::ICMP_UGE:
   1859       return getTrue(ITy);
   1860     case ICmpInst::ICMP_SLT:
   1861     case ICmpInst::ICMP_SLE:
   1862       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
   1863       if (!KnownNonNegative)
   1864         break;
   1865       // fall-through
   1866     case ICmpInst::ICMP_EQ:
   1867     case ICmpInst::ICMP_ULT:
   1868     case ICmpInst::ICMP_ULE:
   1869       return getFalse(ITy);
   1870     }
   1871   }
   1872 
   1873   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
   1874       LBO->getOperand(1) == RBO->getOperand(1)) {
   1875     switch (LBO->getOpcode()) {
   1876     default: break;
   1877     case Instruction::UDiv:
   1878     case Instruction::LShr:
   1879       if (ICmpInst::isSigned(Pred))
   1880         break;
   1881       // fall-through
   1882     case Instruction::SDiv:
   1883     case Instruction::AShr:
   1884       if (!LBO->isExact() || !RBO->isExact())
   1885         break;
   1886       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   1887                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
   1888         return V;
   1889       break;
   1890     case Instruction::Shl: {
   1891       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
   1892       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
   1893       if (!NUW && !NSW)
   1894         break;
   1895       if (!NSW && ICmpInst::isSigned(Pred))
   1896         break;
   1897       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   1898                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
   1899         return V;
   1900       break;
   1901     }
   1902     }
   1903   }
   1904 
   1905   // Simplify comparisons involving max/min.
   1906   Value *A, *B;
   1907   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
   1908   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
   1909 
   1910   // Signed variants on "max(a,b)>=a -> true".
   1911   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   1912     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
   1913     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   1914     // We analyze this as smax(A, B) pred A.
   1915     P = Pred;
   1916   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
   1917              (A == LHS || B == LHS)) {
   1918     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
   1919     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   1920     // We analyze this as smax(A, B) swapped-pred A.
   1921     P = CmpInst::getSwappedPredicate(Pred);
   1922   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   1923              (A == RHS || B == RHS)) {
   1924     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
   1925     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   1926     // We analyze this as smax(-A, -B) swapped-pred -A.
   1927     // Note that we do not need to actually form -A or -B thanks to EqP.
   1928     P = CmpInst::getSwappedPredicate(Pred);
   1929   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
   1930              (A == LHS || B == LHS)) {
   1931     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
   1932     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   1933     // We analyze this as smax(-A, -B) pred -A.
   1934     // Note that we do not need to actually form -A or -B thanks to EqP.
   1935     P = Pred;
   1936   }
   1937   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   1938     // Cases correspond to "max(A, B) p A".
   1939     switch (P) {
   1940     default:
   1941       break;
   1942     case CmpInst::ICMP_EQ:
   1943     case CmpInst::ICMP_SLE:
   1944       // Equivalent to "A EqP B".  This may be the same as the condition tested
   1945       // in the max/min; if so, we can just return that.
   1946       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   1947         return V;
   1948       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   1949         return V;
   1950       // Otherwise, see if "A EqP B" simplifies.
   1951       if (MaxRecurse)
   1952         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
   1953           return V;
   1954       break;
   1955     case CmpInst::ICMP_NE:
   1956     case CmpInst::ICMP_SGT: {
   1957       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   1958       // Equivalent to "A InvEqP B".  This may be the same as the condition
   1959       // tested in the max/min; if so, we can just return that.
   1960       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   1961         return V;
   1962       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   1963         return V;
   1964       // Otherwise, see if "A InvEqP B" simplifies.
   1965       if (MaxRecurse)
   1966         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
   1967           return V;
   1968       break;
   1969     }
   1970     case CmpInst::ICMP_SGE:
   1971       // Always true.
   1972       return getTrue(ITy);
   1973     case CmpInst::ICMP_SLT:
   1974       // Always false.
   1975       return getFalse(ITy);
   1976     }
   1977   }
   1978 
   1979   // Unsigned variants on "max(a,b)>=a -> true".
   1980   P = CmpInst::BAD_ICMP_PREDICATE;
   1981   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   1982     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
   1983     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   1984     // We analyze this as umax(A, B) pred A.
   1985     P = Pred;
   1986   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
   1987              (A == LHS || B == LHS)) {
   1988     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
   1989     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   1990     // We analyze this as umax(A, B) swapped-pred A.
   1991     P = CmpInst::getSwappedPredicate(Pred);
   1992   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   1993              (A == RHS || B == RHS)) {
   1994     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
   1995     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   1996     // We analyze this as umax(-A, -B) swapped-pred -A.
   1997     // Note that we do not need to actually form -A or -B thanks to EqP.
   1998     P = CmpInst::getSwappedPredicate(Pred);
   1999   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
   2000              (A == LHS || B == LHS)) {
   2001     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
   2002     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2003     // We analyze this as umax(-A, -B) pred -A.
   2004     // Note that we do not need to actually form -A or -B thanks to EqP.
   2005     P = Pred;
   2006   }
   2007   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2008     // Cases correspond to "max(A, B) p A".
   2009     switch (P) {
   2010     default:
   2011       break;
   2012     case CmpInst::ICMP_EQ:
   2013     case CmpInst::ICMP_ULE:
   2014       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2015       // in the max/min; if so, we can just return that.
   2016       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2017         return V;
   2018       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2019         return V;
   2020       // Otherwise, see if "A EqP B" simplifies.
   2021       if (MaxRecurse)
   2022         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
   2023           return V;
   2024       break;
   2025     case CmpInst::ICMP_NE:
   2026     case CmpInst::ICMP_UGT: {
   2027       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2028       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2029       // tested in the max/min; if so, we can just return that.
   2030       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2031         return V;
   2032       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2033         return V;
   2034       // Otherwise, see if "A InvEqP B" simplifies.
   2035       if (MaxRecurse)
   2036         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
   2037           return V;
   2038       break;
   2039     }
   2040     case CmpInst::ICMP_UGE:
   2041       // Always true.
   2042       return getTrue(ITy);
   2043     case CmpInst::ICMP_ULT:
   2044       // Always false.
   2045       return getFalse(ITy);
   2046     }
   2047   }
   2048 
   2049   // Variants on "max(x,y) >= min(x,z)".
   2050   Value *C, *D;
   2051   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
   2052       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
   2053       (A == C || A == D || B == C || B == D)) {
   2054     // max(x, ?) pred min(x, ?).
   2055     if (Pred == CmpInst::ICMP_SGE)
   2056       // Always true.
   2057       return getTrue(ITy);
   2058     if (Pred == CmpInst::ICMP_SLT)
   2059       // Always false.
   2060       return getFalse(ITy);
   2061   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   2062              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
   2063              (A == C || A == D || B == C || B == D)) {
   2064     // min(x, ?) pred max(x, ?).
   2065     if (Pred == CmpInst::ICMP_SLE)
   2066       // Always true.
   2067       return getTrue(ITy);
   2068     if (Pred == CmpInst::ICMP_SGT)
   2069       // Always false.
   2070       return getFalse(ITy);
   2071   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
   2072              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
   2073              (A == C || A == D || B == C || B == D)) {
   2074     // max(x, ?) pred min(x, ?).
   2075     if (Pred == CmpInst::ICMP_UGE)
   2076       // Always true.
   2077       return getTrue(ITy);
   2078     if (Pred == CmpInst::ICMP_ULT)
   2079       // Always false.
   2080       return getFalse(ITy);
   2081   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   2082              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
   2083              (A == C || A == D || B == C || B == D)) {
   2084     // min(x, ?) pred max(x, ?).
   2085     if (Pred == CmpInst::ICMP_ULE)
   2086       // Always true.
   2087       return getTrue(ITy);
   2088     if (Pred == CmpInst::ICMP_UGT)
   2089       // Always false.
   2090       return getFalse(ITy);
   2091   }
   2092 
   2093   // If the comparison is with the result of a select instruction, check whether
   2094   // comparing with either branch of the select always yields the same value.
   2095   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2096     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
   2097       return V;
   2098 
   2099   // If the comparison is with the result of a phi instruction, check whether
   2100   // doing the compare with each incoming phi value yields a common result.
   2101   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2102     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
   2103       return V;
   2104 
   2105   return 0;
   2106 }
   2107 
   2108 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2109                               const TargetData *TD, const DominatorTree *DT) {
   2110   return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
   2111 }
   2112 
   2113 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
   2114 /// fold the result.  If not, this returns null.
   2115 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2116                                const TargetData *TD, const DominatorTree *DT,
   2117                                unsigned MaxRecurse) {
   2118   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   2119   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
   2120 
   2121   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   2122     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   2123       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
   2124 
   2125     // If we have a constant, make sure it is on the RHS.
   2126     std::swap(LHS, RHS);
   2127     Pred = CmpInst::getSwappedPredicate(Pred);
   2128   }
   2129 
   2130   // Fold trivial predicates.
   2131   if (Pred == FCmpInst::FCMP_FALSE)
   2132     return ConstantInt::get(GetCompareTy(LHS), 0);
   2133   if (Pred == FCmpInst::FCMP_TRUE)
   2134     return ConstantInt::get(GetCompareTy(LHS), 1);
   2135 
   2136   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
   2137     return UndefValue::get(GetCompareTy(LHS));
   2138 
   2139   // fcmp x,x -> true/false.  Not all compares are foldable.
   2140   if (LHS == RHS) {
   2141     if (CmpInst::isTrueWhenEqual(Pred))
   2142       return ConstantInt::get(GetCompareTy(LHS), 1);
   2143     if (CmpInst::isFalseWhenEqual(Pred))
   2144       return ConstantInt::get(GetCompareTy(LHS), 0);
   2145   }
   2146 
   2147   // Handle fcmp with constant RHS
   2148   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   2149     // If the constant is a nan, see if we can fold the comparison based on it.
   2150     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
   2151       if (CFP->getValueAPF().isNaN()) {
   2152         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
   2153           return ConstantInt::getFalse(CFP->getContext());
   2154         assert(FCmpInst::isUnordered(Pred) &&
   2155                "Comparison must be either ordered or unordered!");
   2156         // True if unordered.
   2157         return ConstantInt::getTrue(CFP->getContext());
   2158       }
   2159       // Check whether the constant is an infinity.
   2160       if (CFP->getValueAPF().isInfinity()) {
   2161         if (CFP->getValueAPF().isNegative()) {
   2162           switch (Pred) {
   2163           case FCmpInst::FCMP_OLT:
   2164             // No value is ordered and less than negative infinity.
   2165             return ConstantInt::getFalse(CFP->getContext());
   2166           case FCmpInst::FCMP_UGE:
   2167             // All values are unordered with or at least negative infinity.
   2168             return ConstantInt::getTrue(CFP->getContext());
   2169           default:
   2170             break;
   2171           }
   2172         } else {
   2173           switch (Pred) {
   2174           case FCmpInst::FCMP_OGT:
   2175             // No value is ordered and greater than infinity.
   2176             return ConstantInt::getFalse(CFP->getContext());
   2177           case FCmpInst::FCMP_ULE:
   2178             // All values are unordered with and at most infinity.
   2179             return ConstantInt::getTrue(CFP->getContext());
   2180           default:
   2181             break;
   2182           }
   2183         }
   2184       }
   2185     }
   2186   }
   2187 
   2188   // If the comparison is with the result of a select instruction, check whether
   2189   // comparing with either branch of the select always yields the same value.
   2190   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2191     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
   2192       return V;
   2193 
   2194   // If the comparison is with the result of a phi instruction, check whether
   2195   // doing the compare with each incoming phi value yields a common result.
   2196   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2197     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
   2198       return V;
   2199 
   2200   return 0;
   2201 }
   2202 
   2203 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2204                               const TargetData *TD, const DominatorTree *DT) {
   2205   return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
   2206 }
   2207 
   2208 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
   2209 /// the result.  If not, this returns null.
   2210 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
   2211                                 const TargetData *TD, const DominatorTree *) {
   2212   // select true, X, Y  -> X
   2213   // select false, X, Y -> Y
   2214   if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
   2215     return CB->getZExtValue() ? TrueVal : FalseVal;
   2216 
   2217   // select C, X, X -> X
   2218   if (TrueVal == FalseVal)
   2219     return TrueVal;
   2220 
   2221   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
   2222     if (isa<Constant>(TrueVal))
   2223       return TrueVal;
   2224     return FalseVal;
   2225   }
   2226   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
   2227     return FalseVal;
   2228   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
   2229     return TrueVal;
   2230 
   2231   return 0;
   2232 }
   2233 
   2234 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
   2235 /// fold the result.  If not, this returns null.
   2236 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops,
   2237                              const TargetData *TD, const DominatorTree *) {
   2238   // The type of the GEP pointer operand.
   2239   PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
   2240 
   2241   // getelementptr P -> P.
   2242   if (Ops.size() == 1)
   2243     return Ops[0];
   2244 
   2245   if (isa<UndefValue>(Ops[0])) {
   2246     // Compute the (pointer) type returned by the GEP instruction.
   2247     Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
   2248     Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
   2249     return UndefValue::get(GEPTy);
   2250   }
   2251 
   2252   if (Ops.size() == 2) {
   2253     // getelementptr P, 0 -> P.
   2254     if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
   2255       if (C->isZero())
   2256         return Ops[0];
   2257     // getelementptr P, N -> P if P points to a type of zero size.
   2258     if (TD) {
   2259       Type *Ty = PtrTy->getElementType();
   2260       if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
   2261         return Ops[0];
   2262     }
   2263   }
   2264 
   2265   // Check to see if this is constant foldable.
   2266   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2267     if (!isa<Constant>(Ops[i]))
   2268       return 0;
   2269 
   2270   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
   2271 }
   2272 
   2273 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
   2274 /// can fold the result.  If not, this returns null.
   2275 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
   2276                                      ArrayRef<unsigned> Idxs,
   2277                                      const TargetData *,
   2278                                      const DominatorTree *) {
   2279   if (Constant *CAgg = dyn_cast<Constant>(Agg))
   2280     if (Constant *CVal = dyn_cast<Constant>(Val))
   2281       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
   2282 
   2283   // insertvalue x, undef, n -> x
   2284   if (match(Val, m_Undef()))
   2285     return Agg;
   2286 
   2287   // insertvalue x, (extractvalue y, n), n
   2288   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
   2289     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
   2290         EV->getIndices() == Idxs) {
   2291       // insertvalue undef, (extractvalue y, n), n -> y
   2292       if (match(Agg, m_Undef()))
   2293         return EV->getAggregateOperand();
   2294 
   2295       // insertvalue y, (extractvalue y, n), n -> y
   2296       if (Agg == EV->getAggregateOperand())
   2297         return Agg;
   2298     }
   2299 
   2300   return 0;
   2301 }
   2302 
   2303 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
   2304 static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
   2305   // If all of the PHI's incoming values are the same then replace the PHI node
   2306   // with the common value.
   2307   Value *CommonValue = 0;
   2308   bool HasUndefInput = false;
   2309   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2310     Value *Incoming = PN->getIncomingValue(i);
   2311     // If the incoming value is the phi node itself, it can safely be skipped.
   2312     if (Incoming == PN) continue;
   2313     if (isa<UndefValue>(Incoming)) {
   2314       // Remember that we saw an undef value, but otherwise ignore them.
   2315       HasUndefInput = true;
   2316       continue;
   2317     }
   2318     if (CommonValue && Incoming != CommonValue)
   2319       return 0;  // Not the same, bail out.
   2320     CommonValue = Incoming;
   2321   }
   2322 
   2323   // If CommonValue is null then all of the incoming values were either undef or
   2324   // equal to the phi node itself.
   2325   if (!CommonValue)
   2326     return UndefValue::get(PN->getType());
   2327 
   2328   // If we have a PHI node like phi(X, undef, X), where X is defined by some
   2329   // instruction, we cannot return X as the result of the PHI node unless it
   2330   // dominates the PHI block.
   2331   if (HasUndefInput)
   2332     return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
   2333 
   2334   return CommonValue;
   2335 }
   2336 
   2337 
   2338 //=== Helper functions for higher up the class hierarchy.
   2339 
   2340 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
   2341 /// fold the result.  If not, this returns null.
   2342 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   2343                             const TargetData *TD, const DominatorTree *DT,
   2344                             unsigned MaxRecurse) {
   2345   switch (Opcode) {
   2346   case Instruction::Add:
   2347     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2348                            TD, DT, MaxRecurse);
   2349   case Instruction::Sub:
   2350     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2351                            TD, DT, MaxRecurse);
   2352   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
   2353   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
   2354   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
   2355   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
   2356   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
   2357   case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
   2358   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
   2359   case Instruction::Shl:
   2360     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2361                            TD, DT, MaxRecurse);
   2362   case Instruction::LShr:
   2363     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
   2364   case Instruction::AShr:
   2365     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
   2366   case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
   2367   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
   2368   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
   2369   default:
   2370     if (Constant *CLHS = dyn_cast<Constant>(LHS))
   2371       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
   2372         Constant *COps[] = {CLHS, CRHS};
   2373         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD);
   2374       }
   2375 
   2376     // If the operation is associative, try some generic simplifications.
   2377     if (Instruction::isAssociative(Opcode))
   2378       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
   2379                                               MaxRecurse))
   2380         return V;
   2381 
   2382     // If the operation is with the result of a select instruction, check whether
   2383     // operating on either branch of the select always yields the same value.
   2384     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2385       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
   2386                                            MaxRecurse))
   2387         return V;
   2388 
   2389     // If the operation is with the result of a phi instruction, check whether
   2390     // operating on all incoming values of the phi always yields the same value.
   2391     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2392       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
   2393         return V;
   2394 
   2395     return 0;
   2396   }
   2397 }
   2398 
   2399 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   2400                            const TargetData *TD, const DominatorTree *DT) {
   2401   return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
   2402 }
   2403 
   2404 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
   2405 /// fold the result.
   2406 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2407                               const TargetData *TD, const DominatorTree *DT,
   2408                               unsigned MaxRecurse) {
   2409   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
   2410     return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
   2411   return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
   2412 }
   2413 
   2414 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2415                              const TargetData *TD, const DominatorTree *DT) {
   2416   return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
   2417 }
   2418 
   2419 /// SimplifyInstruction - See if we can compute a simplified version of this
   2420 /// instruction.  If not, this returns null.
   2421 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
   2422                                  const DominatorTree *DT) {
   2423   Value *Result;
   2424 
   2425   switch (I->getOpcode()) {
   2426   default:
   2427     Result = ConstantFoldInstruction(I, TD);
   2428     break;
   2429   case Instruction::Add:
   2430     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
   2431                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   2432                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   2433                              TD, DT);
   2434     break;
   2435   case Instruction::Sub:
   2436     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
   2437                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   2438                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   2439                              TD, DT);
   2440     break;
   2441   case Instruction::Mul:
   2442     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2443     break;
   2444   case Instruction::SDiv:
   2445     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2446     break;
   2447   case Instruction::UDiv:
   2448     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2449     break;
   2450   case Instruction::FDiv:
   2451     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2452     break;
   2453   case Instruction::SRem:
   2454     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2455     break;
   2456   case Instruction::URem:
   2457     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2458     break;
   2459   case Instruction::FRem:
   2460     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2461     break;
   2462   case Instruction::Shl:
   2463     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
   2464                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   2465                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   2466                              TD, DT);
   2467     break;
   2468   case Instruction::LShr:
   2469     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
   2470                               cast<BinaryOperator>(I)->isExact(),
   2471                               TD, DT);
   2472     break;
   2473   case Instruction::AShr:
   2474     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
   2475                               cast<BinaryOperator>(I)->isExact(),
   2476                               TD, DT);
   2477     break;
   2478   case Instruction::And:
   2479     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2480     break;
   2481   case Instruction::Or:
   2482     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2483     break;
   2484   case Instruction::Xor:
   2485     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
   2486     break;
   2487   case Instruction::ICmp:
   2488     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
   2489                               I->getOperand(0), I->getOperand(1), TD, DT);
   2490     break;
   2491   case Instruction::FCmp:
   2492     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
   2493                               I->getOperand(0), I->getOperand(1), TD, DT);
   2494     break;
   2495   case Instruction::Select:
   2496     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
   2497                                 I->getOperand(2), TD, DT);
   2498     break;
   2499   case Instruction::GetElementPtr: {
   2500     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   2501     Result = SimplifyGEPInst(Ops, TD, DT);
   2502     break;
   2503   }
   2504   case Instruction::InsertValue: {
   2505     InsertValueInst *IV = cast<InsertValueInst>(I);
   2506     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
   2507                                      IV->getInsertedValueOperand(),
   2508                                      IV->getIndices(), TD, DT);
   2509     break;
   2510   }
   2511   case Instruction::PHI:
   2512     Result = SimplifyPHINode(cast<PHINode>(I), DT);
   2513     break;
   2514   }
   2515 
   2516   /// If called on unreachable code, the above logic may report that the
   2517   /// instruction simplified to itself.  Make life easier for users by
   2518   /// detecting that case here, returning a safe value instead.
   2519   return Result == I ? UndefValue::get(I->getType()) : Result;
   2520 }
   2521 
   2522 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
   2523 /// delete the From instruction.  In addition to a basic RAUW, this does a
   2524 /// recursive simplification of the newly formed instructions.  This catches
   2525 /// things where one simplification exposes other opportunities.  This only
   2526 /// simplifies and deletes scalar operations, it does not change the CFG.
   2527 ///
   2528 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
   2529                                      const TargetData *TD,
   2530                                      const DominatorTree *DT) {
   2531   assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
   2532 
   2533   // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
   2534   // we can know if it gets deleted out from under us or replaced in a
   2535   // recursive simplification.
   2536   WeakVH FromHandle(From);
   2537   WeakVH ToHandle(To);
   2538 
   2539   while (!From->use_empty()) {
   2540     // Update the instruction to use the new value.
   2541     Use &TheUse = From->use_begin().getUse();
   2542     Instruction *User = cast<Instruction>(TheUse.getUser());
   2543     TheUse = To;
   2544 
   2545     // Check to see if the instruction can be folded due to the operand
   2546     // replacement.  For example changing (or X, Y) into (or X, -1) can replace
   2547     // the 'or' with -1.
   2548     Value *SimplifiedVal;
   2549     {
   2550       // Sanity check to make sure 'User' doesn't dangle across
   2551       // SimplifyInstruction.
   2552       AssertingVH<> UserHandle(User);
   2553 
   2554       SimplifiedVal = SimplifyInstruction(User, TD, DT);
   2555       if (SimplifiedVal == 0) continue;
   2556     }
   2557 
   2558     // Recursively simplify this user to the new value.
   2559     ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
   2560     From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
   2561     To = ToHandle;
   2562 
   2563     assert(ToHandle && "To value deleted by recursive simplification?");
   2564 
   2565     // If the recursive simplification ended up revisiting and deleting
   2566     // 'From' then we're done.
   2567     if (From == 0)
   2568       return;
   2569   }
   2570 
   2571   // If 'From' has value handles referring to it, do a real RAUW to update them.
   2572   From->replaceAllUsesWith(To);
   2573 
   2574   From->eraseFromParent();
   2575 }
   2576