Home | History | Annotate | Download | only in Scalar
      1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass munges the code in the input function to better prepare it for
     11 // SelectionDAG-based code generation. This works around limitations in it's
     12 // basic-block-at-a-time approach. It should eventually be removed.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "codegenprepare"
     17 #include "llvm/Transforms/Scalar.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/Function.h"
     21 #include "llvm/InlineAsm.h"
     22 #include "llvm/Instructions.h"
     23 #include "llvm/IntrinsicInst.h"
     24 #include "llvm/Pass.h"
     25 #include "llvm/Analysis/Dominators.h"
     26 #include "llvm/Analysis/InstructionSimplify.h"
     27 #include "llvm/Analysis/ProfileInfo.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/Target/TargetLowering.h"
     30 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
     31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     34 #include "llvm/ADT/DenseMap.h"
     35 #include "llvm/ADT/SmallSet.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/Assembly/Writer.h"
     38 #include "llvm/Support/CallSite.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/GetElementPtrTypeIterator.h"
     42 #include "llvm/Support/PatternMatch.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Support/IRBuilder.h"
     45 #include "llvm/Support/ValueHandle.h"
     46 using namespace llvm;
     47 using namespace llvm::PatternMatch;
     48 
     49 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
     50 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
     51 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
     52 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
     53                       "sunken Cmps");
     54 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
     55                        "of sunken Casts");
     56 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
     57                           "computations were sunk");
     58 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
     59 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
     60 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
     61 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
     62 
     63 static cl::opt<bool> DisableBranchOpts(
     64   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
     65   cl::desc("Disable branch optimizations in CodeGenPrepare"));
     66 
     67 namespace {
     68   class CodeGenPrepare : public FunctionPass {
     69     /// TLI - Keep a pointer of a TargetLowering to consult for determining
     70     /// transformation profitability.
     71     const TargetLowering *TLI;
     72     DominatorTree *DT;
     73     ProfileInfo *PFI;
     74 
     75     /// CurInstIterator - As we scan instructions optimizing them, this is the
     76     /// next instruction to optimize.  Xforms that can invalidate this should
     77     /// update it.
     78     BasicBlock::iterator CurInstIterator;
     79 
     80     /// Keeps track of non-local addresses that have been sunk into a block.
     81     /// This allows us to avoid inserting duplicate code for blocks with
     82     /// multiple load/stores of the same address.
     83     DenseMap<Value*, Value*> SunkAddrs;
     84 
     85     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
     86     /// be updated.
     87     bool ModifiedDT;
     88 
     89   public:
     90     static char ID; // Pass identification, replacement for typeid
     91     explicit CodeGenPrepare(const TargetLowering *tli = 0)
     92       : FunctionPass(ID), TLI(tli) {
     93         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
     94       }
     95     bool runOnFunction(Function &F);
     96 
     97     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     98       AU.addPreserved<DominatorTree>();
     99       AU.addPreserved<ProfileInfo>();
    100     }
    101 
    102   private:
    103     bool EliminateMostlyEmptyBlocks(Function &F);
    104     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    105     void EliminateMostlyEmptyBlock(BasicBlock *BB);
    106     bool OptimizeBlock(BasicBlock &BB);
    107     bool OptimizeInst(Instruction *I);
    108     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
    109     bool OptimizeInlineAsmInst(CallInst *CS);
    110     bool OptimizeCallInst(CallInst *CI);
    111     bool MoveExtToFormExtLoad(Instruction *I);
    112     bool OptimizeExtUses(Instruction *I);
    113     bool DupRetToEnableTailCallOpts(ReturnInst *RI);
    114     bool PlaceDbgValues(Function &F);
    115   };
    116 }
    117 
    118 char CodeGenPrepare::ID = 0;
    119 INITIALIZE_PASS(CodeGenPrepare, "codegenprepare",
    120                 "Optimize for code generation", false, false)
    121 
    122 FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
    123   return new CodeGenPrepare(TLI);
    124 }
    125 
    126 bool CodeGenPrepare::runOnFunction(Function &F) {
    127   bool EverMadeChange = false;
    128 
    129   ModifiedDT = false;
    130   DT = getAnalysisIfAvailable<DominatorTree>();
    131   PFI = getAnalysisIfAvailable<ProfileInfo>();
    132 
    133   // First pass, eliminate blocks that contain only PHI nodes and an
    134   // unconditional branch.
    135   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
    136 
    137   // llvm.dbg.value is far away from the value then iSel may not be able
    138   // handle it properly. iSel will drop llvm.dbg.value if it can not
    139   // find a node corresponding to the value.
    140   EverMadeChange |= PlaceDbgValues(F);
    141 
    142   bool MadeChange = true;
    143   while (MadeChange) {
    144     MadeChange = false;
    145     for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    146       BasicBlock *BB = I++;
    147       MadeChange |= OptimizeBlock(*BB);
    148     }
    149     EverMadeChange |= MadeChange;
    150   }
    151 
    152   SunkAddrs.clear();
    153 
    154   if (!DisableBranchOpts) {
    155     MadeChange = false;
    156     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    157       MadeChange |= ConstantFoldTerminator(BB, true);
    158 
    159     if (MadeChange)
    160       ModifiedDT = true;
    161     EverMadeChange |= MadeChange;
    162   }
    163 
    164   if (ModifiedDT && DT)
    165     DT->DT->recalculate(F);
    166 
    167   return EverMadeChange;
    168 }
    169 
    170 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
    171 /// debug info directives, and an unconditional branch.  Passes before isel
    172 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
    173 /// isel.  Start by eliminating these blocks so we can split them the way we
    174 /// want them.
    175 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
    176   bool MadeChange = false;
    177   // Note that this intentionally skips the entry block.
    178   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
    179     BasicBlock *BB = I++;
    180 
    181     // If this block doesn't end with an uncond branch, ignore it.
    182     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    183     if (!BI || !BI->isUnconditional())
    184       continue;
    185 
    186     // If the instruction before the branch (skipping debug info) isn't a phi
    187     // node, then other stuff is happening here.
    188     BasicBlock::iterator BBI = BI;
    189     if (BBI != BB->begin()) {
    190       --BBI;
    191       while (isa<DbgInfoIntrinsic>(BBI)) {
    192         if (BBI == BB->begin())
    193           break;
    194         --BBI;
    195       }
    196       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
    197         continue;
    198     }
    199 
    200     // Do not break infinite loops.
    201     BasicBlock *DestBB = BI->getSuccessor(0);
    202     if (DestBB == BB)
    203       continue;
    204 
    205     if (!CanMergeBlocks(BB, DestBB))
    206       continue;
    207 
    208     EliminateMostlyEmptyBlock(BB);
    209     MadeChange = true;
    210   }
    211   return MadeChange;
    212 }
    213 
    214 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
    215 /// single uncond branch between them, and BB contains no other non-phi
    216 /// instructions.
    217 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
    218                                     const BasicBlock *DestBB) const {
    219   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
    220   // the successor.  If there are more complex condition (e.g. preheaders),
    221   // don't mess around with them.
    222   BasicBlock::const_iterator BBI = BB->begin();
    223   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    224     for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
    225          UI != E; ++UI) {
    226       const Instruction *User = cast<Instruction>(*UI);
    227       if (User->getParent() != DestBB || !isa<PHINode>(User))
    228         return false;
    229       // If User is inside DestBB block and it is a PHINode then check
    230       // incoming value. If incoming value is not from BB then this is
    231       // a complex condition (e.g. preheaders) we want to avoid here.
    232       if (User->getParent() == DestBB) {
    233         if (const PHINode *UPN = dyn_cast<PHINode>(User))
    234           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
    235             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
    236             if (Insn && Insn->getParent() == BB &&
    237                 Insn->getParent() != UPN->getIncomingBlock(I))
    238               return false;
    239           }
    240       }
    241     }
    242   }
    243 
    244   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
    245   // and DestBB may have conflicting incoming values for the block.  If so, we
    246   // can't merge the block.
    247   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
    248   if (!DestBBPN) return true;  // no conflict.
    249 
    250   // Collect the preds of BB.
    251   SmallPtrSet<const BasicBlock*, 16> BBPreds;
    252   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    253     // It is faster to get preds from a PHI than with pred_iterator.
    254     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    255       BBPreds.insert(BBPN->getIncomingBlock(i));
    256   } else {
    257     BBPreds.insert(pred_begin(BB), pred_end(BB));
    258   }
    259 
    260   // Walk the preds of DestBB.
    261   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    262     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    263     if (BBPreds.count(Pred)) {   // Common predecessor?
    264       BBI = DestBB->begin();
    265       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    266         const Value *V1 = PN->getIncomingValueForBlock(Pred);
    267         const Value *V2 = PN->getIncomingValueForBlock(BB);
    268 
    269         // If V2 is a phi node in BB, look up what the mapped value will be.
    270         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
    271           if (V2PN->getParent() == BB)
    272             V2 = V2PN->getIncomingValueForBlock(Pred);
    273 
    274         // If there is a conflict, bail out.
    275         if (V1 != V2) return false;
    276       }
    277     }
    278   }
    279 
    280   return true;
    281 }
    282 
    283 
    284 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
    285 /// an unconditional branch in it.
    286 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
    287   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
    288   BasicBlock *DestBB = BI->getSuccessor(0);
    289 
    290   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
    291 
    292   // If the destination block has a single pred, then this is a trivial edge,
    293   // just collapse it.
    294   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
    295     if (SinglePred != DestBB) {
    296       // Remember if SinglePred was the entry block of the function.  If so, we
    297       // will need to move BB back to the entry position.
    298       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    299       MergeBasicBlockIntoOnlyPred(DestBB, this);
    300 
    301       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    302         BB->moveBefore(&BB->getParent()->getEntryBlock());
    303 
    304       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    305       return;
    306     }
    307   }
    308 
    309   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
    310   // to handle the new incoming edges it is about to have.
    311   PHINode *PN;
    312   for (BasicBlock::iterator BBI = DestBB->begin();
    313        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    314     // Remove the incoming value for BB, and remember it.
    315     Value *InVal = PN->removeIncomingValue(BB, false);
    316 
    317     // Two options: either the InVal is a phi node defined in BB or it is some
    318     // value that dominates BB.
    319     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    320     if (InValPhi && InValPhi->getParent() == BB) {
    321       // Add all of the input values of the input PHI as inputs of this phi.
    322       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
    323         PN->addIncoming(InValPhi->getIncomingValue(i),
    324                         InValPhi->getIncomingBlock(i));
    325     } else {
    326       // Otherwise, add one instance of the dominating value for each edge that
    327       // we will be adding.
    328       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    329         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    330           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
    331       } else {
    332         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    333           PN->addIncoming(InVal, *PI);
    334       }
    335     }
    336   }
    337 
    338   // The PHIs are now updated, change everything that refers to BB to use
    339   // DestBB and remove BB.
    340   BB->replaceAllUsesWith(DestBB);
    341   if (DT && !ModifiedDT) {
    342     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
    343     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
    344     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
    345     DT->changeImmediateDominator(DestBB, NewIDom);
    346     DT->eraseNode(BB);
    347   }
    348   if (PFI) {
    349     PFI->replaceAllUses(BB, DestBB);
    350     PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
    351   }
    352   BB->eraseFromParent();
    353   ++NumBlocksElim;
    354 
    355   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    356 }
    357 
    358 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
    359 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
    360 /// sink it into user blocks to reduce the number of virtual
    361 /// registers that must be created and coalesced.
    362 ///
    363 /// Return true if any changes are made.
    364 ///
    365 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
    366   // If this is a noop copy,
    367   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
    368   EVT DstVT = TLI.getValueType(CI->getType());
    369 
    370   // This is an fp<->int conversion?
    371   if (SrcVT.isInteger() != DstVT.isInteger())
    372     return false;
    373 
    374   // If this is an extension, it will be a zero or sign extension, which
    375   // isn't a noop.
    376   if (SrcVT.bitsLT(DstVT)) return false;
    377 
    378   // If these values will be promoted, find out what they will be promoted
    379   // to.  This helps us consider truncates on PPC as noop copies when they
    380   // are.
    381   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
    382       TargetLowering::TypePromoteInteger)
    383     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
    384   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
    385       TargetLowering::TypePromoteInteger)
    386     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
    387 
    388   // If, after promotion, these are the same types, this is a noop copy.
    389   if (SrcVT != DstVT)
    390     return false;
    391 
    392   BasicBlock *DefBB = CI->getParent();
    393 
    394   /// InsertedCasts - Only insert a cast in each block once.
    395   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
    396 
    397   bool MadeChange = false;
    398   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
    399        UI != E; ) {
    400     Use &TheUse = UI.getUse();
    401     Instruction *User = cast<Instruction>(*UI);
    402 
    403     // Figure out which BB this cast is used in.  For PHI's this is the
    404     // appropriate predecessor block.
    405     BasicBlock *UserBB = User->getParent();
    406     if (PHINode *PN = dyn_cast<PHINode>(User)) {
    407       UserBB = PN->getIncomingBlock(UI);
    408     }
    409 
    410     // Preincrement use iterator so we don't invalidate it.
    411     ++UI;
    412 
    413     // If this user is in the same block as the cast, don't change the cast.
    414     if (UserBB == DefBB) continue;
    415 
    416     // If we have already inserted a cast into this block, use it.
    417     CastInst *&InsertedCast = InsertedCasts[UserBB];
    418 
    419     if (!InsertedCast) {
    420       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    421       InsertedCast =
    422         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
    423                          InsertPt);
    424       MadeChange = true;
    425     }
    426 
    427     // Replace a use of the cast with a use of the new cast.
    428     TheUse = InsertedCast;
    429     ++NumCastUses;
    430   }
    431 
    432   // If we removed all uses, nuke the cast.
    433   if (CI->use_empty()) {
    434     CI->eraseFromParent();
    435     MadeChange = true;
    436   }
    437 
    438   return MadeChange;
    439 }
    440 
    441 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
    442 /// the number of virtual registers that must be created and coalesced.  This is
    443 /// a clear win except on targets with multiple condition code registers
    444 ///  (PowerPC), where it might lose; some adjustment may be wanted there.
    445 ///
    446 /// Return true if any changes are made.
    447 static bool OptimizeCmpExpression(CmpInst *CI) {
    448   BasicBlock *DefBB = CI->getParent();
    449 
    450   /// InsertedCmp - Only insert a cmp in each block once.
    451   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
    452 
    453   bool MadeChange = false;
    454   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
    455        UI != E; ) {
    456     Use &TheUse = UI.getUse();
    457     Instruction *User = cast<Instruction>(*UI);
    458 
    459     // Preincrement use iterator so we don't invalidate it.
    460     ++UI;
    461 
    462     // Don't bother for PHI nodes.
    463     if (isa<PHINode>(User))
    464       continue;
    465 
    466     // Figure out which BB this cmp is used in.
    467     BasicBlock *UserBB = User->getParent();
    468 
    469     // If this user is in the same block as the cmp, don't change the cmp.
    470     if (UserBB == DefBB) continue;
    471 
    472     // If we have already inserted a cmp into this block, use it.
    473     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
    474 
    475     if (!InsertedCmp) {
    476       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    477       InsertedCmp =
    478         CmpInst::Create(CI->getOpcode(),
    479                         CI->getPredicate(),  CI->getOperand(0),
    480                         CI->getOperand(1), "", InsertPt);
    481       MadeChange = true;
    482     }
    483 
    484     // Replace a use of the cmp with a use of the new cmp.
    485     TheUse = InsertedCmp;
    486     ++NumCmpUses;
    487   }
    488 
    489   // If we removed all uses, nuke the cmp.
    490   if (CI->use_empty())
    491     CI->eraseFromParent();
    492 
    493   return MadeChange;
    494 }
    495 
    496 namespace {
    497 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
    498 protected:
    499   void replaceCall(Value *With) {
    500     CI->replaceAllUsesWith(With);
    501     CI->eraseFromParent();
    502   }
    503   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
    504       if (ConstantInt *SizeCI =
    505                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
    506         return SizeCI->isAllOnesValue();
    507     return false;
    508   }
    509 };
    510 } // end anonymous namespace
    511 
    512 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
    513   BasicBlock *BB = CI->getParent();
    514 
    515   // Lower inline assembly if we can.
    516   // If we found an inline asm expession, and if the target knows how to
    517   // lower it to normal LLVM code, do so now.
    518   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
    519     if (TLI->ExpandInlineAsm(CI)) {
    520       // Avoid invalidating the iterator.
    521       CurInstIterator = BB->begin();
    522       // Avoid processing instructions out of order, which could cause
    523       // reuse before a value is defined.
    524       SunkAddrs.clear();
    525       return true;
    526     }
    527     // Sink address computing for memory operands into the block.
    528     if (OptimizeInlineAsmInst(CI))
    529       return true;
    530   }
    531 
    532   // Lower all uses of llvm.objectsize.*
    533   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
    534   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
    535     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
    536     Type *ReturnTy = CI->getType();
    537     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
    538 
    539     // Substituting this can cause recursive simplifications, which can
    540     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
    541     // happens.
    542     WeakVH IterHandle(CurInstIterator);
    543 
    544     ReplaceAndSimplifyAllUses(CI, RetVal, TLI ? TLI->getTargetData() : 0,
    545                               ModifiedDT ? 0 : DT);
    546 
    547     // If the iterator instruction was recursively deleted, start over at the
    548     // start of the block.
    549     if (IterHandle != CurInstIterator) {
    550       CurInstIterator = BB->begin();
    551       SunkAddrs.clear();
    552     }
    553     return true;
    554   }
    555 
    556   // From here on out we're working with named functions.
    557   if (CI->getCalledFunction() == 0) return false;
    558 
    559   // We'll need TargetData from here on out.
    560   const TargetData *TD = TLI ? TLI->getTargetData() : 0;
    561   if (!TD) return false;
    562 
    563   // Lower all default uses of _chk calls.  This is very similar
    564   // to what InstCombineCalls does, but here we are only lowering calls
    565   // that have the default "don't know" as the objectsize.  Anything else
    566   // should be left alone.
    567   CodeGenPrepareFortifiedLibCalls Simplifier;
    568   return Simplifier.fold(CI, TD);
    569 }
    570 
    571 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
    572 /// instructions to the predecessor to enable tail call optimizations. The
    573 /// case it is currently looking for is:
    574 /// bb0:
    575 ///   %tmp0 = tail call i32 @f0()
    576 ///   br label %return
    577 /// bb1:
    578 ///   %tmp1 = tail call i32 @f1()
    579 ///   br label %return
    580 /// bb2:
    581 ///   %tmp2 = tail call i32 @f2()
    582 ///   br label %return
    583 /// return:
    584 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
    585 ///   ret i32 %retval
    586 ///
    587 /// =>
    588 ///
    589 /// bb0:
    590 ///   %tmp0 = tail call i32 @f0()
    591 ///   ret i32 %tmp0
    592 /// bb1:
    593 ///   %tmp1 = tail call i32 @f1()
    594 ///   ret i32 %tmp1
    595 /// bb2:
    596 ///   %tmp2 = tail call i32 @f2()
    597 ///   ret i32 %tmp2
    598 ///
    599 bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
    600   if (!TLI)
    601     return false;
    602 
    603   Value *V = RI->getReturnValue();
    604   PHINode *PN = V ? dyn_cast<PHINode>(V) : NULL;
    605   if (V && !PN)
    606     return false;
    607 
    608   BasicBlock *BB = RI->getParent();
    609   if (PN && PN->getParent() != BB)
    610     return false;
    611 
    612   // It's not safe to eliminate the sign / zero extension of the return value.
    613   // See llvm::isInTailCallPosition().
    614   const Function *F = BB->getParent();
    615   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
    616   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    617     return false;
    618 
    619   // Make sure there are no instructions between the PHI and return, or that the
    620   // return is the first instruction in the block.
    621   if (PN) {
    622     BasicBlock::iterator BI = BB->begin();
    623     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
    624     if (&*BI != RI)
    625       return false;
    626   } else {
    627     BasicBlock::iterator BI = BB->begin();
    628     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
    629     if (&*BI != RI)
    630       return false;
    631   }
    632 
    633   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
    634   /// call.
    635   SmallVector<CallInst*, 4> TailCalls;
    636   if (PN) {
    637     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
    638       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
    639       // Make sure the phi value is indeed produced by the tail call.
    640       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
    641           TLI->mayBeEmittedAsTailCall(CI))
    642         TailCalls.push_back(CI);
    643     }
    644   } else {
    645     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
    646     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
    647       if (!VisitedBBs.insert(*PI))
    648         continue;
    649 
    650       BasicBlock::InstListType &InstList = (*PI)->getInstList();
    651       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
    652       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
    653       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
    654       if (RI == RE)
    655         continue;
    656 
    657       CallInst *CI = dyn_cast<CallInst>(&*RI);
    658       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
    659         TailCalls.push_back(CI);
    660     }
    661   }
    662 
    663   bool Changed = false;
    664   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
    665     CallInst *CI = TailCalls[i];
    666     CallSite CS(CI);
    667 
    668     // Conservatively require the attributes of the call to match those of the
    669     // return. Ignore noalias because it doesn't affect the call sequence.
    670     unsigned CalleeRetAttr = CS.getAttributes().getRetAttributes();
    671     if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
    672       continue;
    673 
    674     // Make sure the call instruction is followed by an unconditional branch to
    675     // the return block.
    676     BasicBlock *CallBB = CI->getParent();
    677     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
    678     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
    679       continue;
    680 
    681     // Duplicate the return into CallBB.
    682     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
    683     ModifiedDT = Changed = true;
    684     ++NumRetsDup;
    685   }
    686 
    687   // If we eliminated all predecessors of the block, delete the block now.
    688   if (Changed && pred_begin(BB) == pred_end(BB))
    689     BB->eraseFromParent();
    690 
    691   return Changed;
    692 }
    693 
    694 //===----------------------------------------------------------------------===//
    695 // Memory Optimization
    696 //===----------------------------------------------------------------------===//
    697 
    698 /// IsNonLocalValue - Return true if the specified values are defined in a
    699 /// different basic block than BB.
    700 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
    701   if (Instruction *I = dyn_cast<Instruction>(V))
    702     return I->getParent() != BB;
    703   return false;
    704 }
    705 
    706 /// OptimizeMemoryInst - Load and Store Instructions often have
    707 /// addressing modes that can do significant amounts of computation.  As such,
    708 /// instruction selection will try to get the load or store to do as much
    709 /// computation as possible for the program.  The problem is that isel can only
    710 /// see within a single block.  As such, we sink as much legal addressing mode
    711 /// stuff into the block as possible.
    712 ///
    713 /// This method is used to optimize both load/store and inline asms with memory
    714 /// operands.
    715 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
    716                                         Type *AccessTy) {
    717   Value *Repl = Addr;
    718 
    719   // Try to collapse single-value PHI nodes.  This is necessary to undo
    720   // unprofitable PRE transformations.
    721   SmallVector<Value*, 8> worklist;
    722   SmallPtrSet<Value*, 16> Visited;
    723   worklist.push_back(Addr);
    724 
    725   // Use a worklist to iteratively look through PHI nodes, and ensure that
    726   // the addressing mode obtained from the non-PHI roots of the graph
    727   // are equivalent.
    728   Value *Consensus = 0;
    729   unsigned NumUsesConsensus = 0;
    730   bool IsNumUsesConsensusValid = false;
    731   SmallVector<Instruction*, 16> AddrModeInsts;
    732   ExtAddrMode AddrMode;
    733   while (!worklist.empty()) {
    734     Value *V = worklist.back();
    735     worklist.pop_back();
    736 
    737     // Break use-def graph loops.
    738     if (!Visited.insert(V)) {
    739       Consensus = 0;
    740       break;
    741     }
    742 
    743     // For a PHI node, push all of its incoming values.
    744     if (PHINode *P = dyn_cast<PHINode>(V)) {
    745       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
    746         worklist.push_back(P->getIncomingValue(i));
    747       continue;
    748     }
    749 
    750     // For non-PHIs, determine the addressing mode being computed.
    751     SmallVector<Instruction*, 16> NewAddrModeInsts;
    752     ExtAddrMode NewAddrMode =
    753       AddressingModeMatcher::Match(V, AccessTy, MemoryInst,
    754                                    NewAddrModeInsts, *TLI);
    755 
    756     // This check is broken into two cases with very similar code to avoid using
    757     // getNumUses() as much as possible. Some values have a lot of uses, so
    758     // calling getNumUses() unconditionally caused a significant compile-time
    759     // regression.
    760     if (!Consensus) {
    761       Consensus = V;
    762       AddrMode = NewAddrMode;
    763       AddrModeInsts = NewAddrModeInsts;
    764       continue;
    765     } else if (NewAddrMode == AddrMode) {
    766       if (!IsNumUsesConsensusValid) {
    767         NumUsesConsensus = Consensus->getNumUses();
    768         IsNumUsesConsensusValid = true;
    769       }
    770 
    771       // Ensure that the obtained addressing mode is equivalent to that obtained
    772       // for all other roots of the PHI traversal.  Also, when choosing one
    773       // such root as representative, select the one with the most uses in order
    774       // to keep the cost modeling heuristics in AddressingModeMatcher
    775       // applicable.
    776       unsigned NumUses = V->getNumUses();
    777       if (NumUses > NumUsesConsensus) {
    778         Consensus = V;
    779         NumUsesConsensus = NumUses;
    780         AddrModeInsts = NewAddrModeInsts;
    781       }
    782       continue;
    783     }
    784 
    785     Consensus = 0;
    786     break;
    787   }
    788 
    789   // If the addressing mode couldn't be determined, or if multiple different
    790   // ones were determined, bail out now.
    791   if (!Consensus) return false;
    792 
    793   // Check to see if any of the instructions supersumed by this addr mode are
    794   // non-local to I's BB.
    795   bool AnyNonLocal = false;
    796   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
    797     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
    798       AnyNonLocal = true;
    799       break;
    800     }
    801   }
    802 
    803   // If all the instructions matched are already in this BB, don't do anything.
    804   if (!AnyNonLocal) {
    805     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
    806     return false;
    807   }
    808 
    809   // Insert this computation right after this user.  Since our caller is
    810   // scanning from the top of the BB to the bottom, reuse of the expr are
    811   // guaranteed to happen later.
    812   IRBuilder<> Builder(MemoryInst);
    813 
    814   // Now that we determined the addressing expression we want to use and know
    815   // that we have to sink it into this block.  Check to see if we have already
    816   // done this for some other load/store instr in this block.  If so, reuse the
    817   // computation.
    818   Value *&SunkAddr = SunkAddrs[Addr];
    819   if (SunkAddr) {
    820     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
    821                  << *MemoryInst);
    822     if (SunkAddr->getType() != Addr->getType())
    823       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
    824   } else {
    825     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
    826                  << *MemoryInst);
    827     Type *IntPtrTy =
    828           TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
    829 
    830     Value *Result = 0;
    831 
    832     // Start with the base register. Do this first so that subsequent address
    833     // matching finds it last, which will prevent it from trying to match it
    834     // as the scaled value in case it happens to be a mul. That would be
    835     // problematic if we've sunk a different mul for the scale, because then
    836     // we'd end up sinking both muls.
    837     if (AddrMode.BaseReg) {
    838       Value *V = AddrMode.BaseReg;
    839       if (V->getType()->isPointerTy())
    840         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
    841       if (V->getType() != IntPtrTy)
    842         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
    843       Result = V;
    844     }
    845 
    846     // Add the scale value.
    847     if (AddrMode.Scale) {
    848       Value *V = AddrMode.ScaledReg;
    849       if (V->getType() == IntPtrTy) {
    850         // done.
    851       } else if (V->getType()->isPointerTy()) {
    852         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
    853       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
    854                  cast<IntegerType>(V->getType())->getBitWidth()) {
    855         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
    856       } else {
    857         V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
    858       }
    859       if (AddrMode.Scale != 1)
    860         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
    861                               "sunkaddr");
    862       if (Result)
    863         Result = Builder.CreateAdd(Result, V, "sunkaddr");
    864       else
    865         Result = V;
    866     }
    867 
    868     // Add in the BaseGV if present.
    869     if (AddrMode.BaseGV) {
    870       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
    871       if (Result)
    872         Result = Builder.CreateAdd(Result, V, "sunkaddr");
    873       else
    874         Result = V;
    875     }
    876 
    877     // Add in the Base Offset if present.
    878     if (AddrMode.BaseOffs) {
    879       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
    880       if (Result)
    881         Result = Builder.CreateAdd(Result, V, "sunkaddr");
    882       else
    883         Result = V;
    884     }
    885 
    886     if (Result == 0)
    887       SunkAddr = Constant::getNullValue(Addr->getType());
    888     else
    889       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
    890   }
    891 
    892   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
    893 
    894   // If we have no uses, recursively delete the value and all dead instructions
    895   // using it.
    896   if (Repl->use_empty()) {
    897     // This can cause recursive deletion, which can invalidate our iterator.
    898     // Use a WeakVH to hold onto it in case this happens.
    899     WeakVH IterHandle(CurInstIterator);
    900     BasicBlock *BB = CurInstIterator->getParent();
    901 
    902     RecursivelyDeleteTriviallyDeadInstructions(Repl);
    903 
    904     if (IterHandle != CurInstIterator) {
    905       // If the iterator instruction was recursively deleted, start over at the
    906       // start of the block.
    907       CurInstIterator = BB->begin();
    908       SunkAddrs.clear();
    909     } else {
    910       // This address is now available for reassignment, so erase the table
    911       // entry; we don't want to match some completely different instruction.
    912       SunkAddrs[Addr] = 0;
    913     }
    914   }
    915   ++NumMemoryInsts;
    916   return true;
    917 }
    918 
    919 /// OptimizeInlineAsmInst - If there are any memory operands, use
    920 /// OptimizeMemoryInst to sink their address computing into the block when
    921 /// possible / profitable.
    922 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
    923   bool MadeChange = false;
    924 
    925   TargetLowering::AsmOperandInfoVector
    926     TargetConstraints = TLI->ParseConstraints(CS);
    927   unsigned ArgNo = 0;
    928   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
    929     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
    930 
    931     // Compute the constraint code and ConstraintType to use.
    932     TLI->ComputeConstraintToUse(OpInfo, SDValue());
    933 
    934     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
    935         OpInfo.isIndirect) {
    936       Value *OpVal = CS->getArgOperand(ArgNo++);
    937       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
    938     } else if (OpInfo.Type == InlineAsm::isInput)
    939       ArgNo++;
    940   }
    941 
    942   return MadeChange;
    943 }
    944 
    945 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
    946 /// basic block as the load, unless conditions are unfavorable. This allows
    947 /// SelectionDAG to fold the extend into the load.
    948 ///
    949 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
    950   // Look for a load being extended.
    951   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
    952   if (!LI) return false;
    953 
    954   // If they're already in the same block, there's nothing to do.
    955   if (LI->getParent() == I->getParent())
    956     return false;
    957 
    958   // If the load has other users and the truncate is not free, this probably
    959   // isn't worthwhile.
    960   if (!LI->hasOneUse() &&
    961       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
    962               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
    963       !TLI->isTruncateFree(I->getType(), LI->getType()))
    964     return false;
    965 
    966   // Check whether the target supports casts folded into loads.
    967   unsigned LType;
    968   if (isa<ZExtInst>(I))
    969     LType = ISD::ZEXTLOAD;
    970   else {
    971     assert(isa<SExtInst>(I) && "Unexpected ext type!");
    972     LType = ISD::SEXTLOAD;
    973   }
    974   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
    975     return false;
    976 
    977   // Move the extend into the same block as the load, so that SelectionDAG
    978   // can fold it.
    979   I->removeFromParent();
    980   I->insertAfter(LI);
    981   ++NumExtsMoved;
    982   return true;
    983 }
    984 
    985 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
    986   BasicBlock *DefBB = I->getParent();
    987 
    988   // If the result of a {s|z}ext and its source are both live out, rewrite all
    989   // other uses of the source with result of extension.
    990   Value *Src = I->getOperand(0);
    991   if (Src->hasOneUse())
    992     return false;
    993 
    994   // Only do this xform if truncating is free.
    995   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
    996     return false;
    997 
    998   // Only safe to perform the optimization if the source is also defined in
    999   // this block.
   1000   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
   1001     return false;
   1002 
   1003   bool DefIsLiveOut = false;
   1004   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1005        UI != E; ++UI) {
   1006     Instruction *User = cast<Instruction>(*UI);
   1007 
   1008     // Figure out which BB this ext is used in.
   1009     BasicBlock *UserBB = User->getParent();
   1010     if (UserBB == DefBB) continue;
   1011     DefIsLiveOut = true;
   1012     break;
   1013   }
   1014   if (!DefIsLiveOut)
   1015     return false;
   1016 
   1017   // Make sure non of the uses are PHI nodes.
   1018   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
   1019        UI != E; ++UI) {
   1020     Instruction *User = cast<Instruction>(*UI);
   1021     BasicBlock *UserBB = User->getParent();
   1022     if (UserBB == DefBB) continue;
   1023     // Be conservative. We don't want this xform to end up introducing
   1024     // reloads just before load / store instructions.
   1025     if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
   1026       return false;
   1027   }
   1028 
   1029   // InsertedTruncs - Only insert one trunc in each block once.
   1030   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
   1031 
   1032   bool MadeChange = false;
   1033   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
   1034        UI != E; ++UI) {
   1035     Use &TheUse = UI.getUse();
   1036     Instruction *User = cast<Instruction>(*UI);
   1037 
   1038     // Figure out which BB this ext is used in.
   1039     BasicBlock *UserBB = User->getParent();
   1040     if (UserBB == DefBB) continue;
   1041 
   1042     // Both src and def are live in this block. Rewrite the use.
   1043     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
   1044 
   1045     if (!InsertedTrunc) {
   1046       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   1047       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
   1048     }
   1049 
   1050     // Replace a use of the {s|z}ext source with a use of the result.
   1051     TheUse = InsertedTrunc;
   1052     ++NumExtUses;
   1053     MadeChange = true;
   1054   }
   1055 
   1056   return MadeChange;
   1057 }
   1058 
   1059 bool CodeGenPrepare::OptimizeInst(Instruction *I) {
   1060   if (PHINode *P = dyn_cast<PHINode>(I)) {
   1061     // It is possible for very late stage optimizations (such as SimplifyCFG)
   1062     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
   1063     // trivial PHI, go ahead and zap it here.
   1064     if (Value *V = SimplifyInstruction(P)) {
   1065       P->replaceAllUsesWith(V);
   1066       P->eraseFromParent();
   1067       ++NumPHIsElim;
   1068       return true;
   1069     }
   1070     return false;
   1071   }
   1072 
   1073   if (CastInst *CI = dyn_cast<CastInst>(I)) {
   1074     // If the source of the cast is a constant, then this should have
   1075     // already been constant folded.  The only reason NOT to constant fold
   1076     // it is if something (e.g. LSR) was careful to place the constant
   1077     // evaluation in a block other than then one that uses it (e.g. to hoist
   1078     // the address of globals out of a loop).  If this is the case, we don't
   1079     // want to forward-subst the cast.
   1080     if (isa<Constant>(CI->getOperand(0)))
   1081       return false;
   1082 
   1083     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
   1084       return true;
   1085 
   1086     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
   1087       bool MadeChange = MoveExtToFormExtLoad(I);
   1088       return MadeChange | OptimizeExtUses(I);
   1089     }
   1090     return false;
   1091   }
   1092 
   1093   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   1094     return OptimizeCmpExpression(CI);
   1095 
   1096   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1097     if (TLI)
   1098       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
   1099     return false;
   1100   }
   1101 
   1102   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1103     if (TLI)
   1104       return OptimizeMemoryInst(I, SI->getOperand(1),
   1105                                 SI->getOperand(0)->getType());
   1106     return false;
   1107   }
   1108 
   1109   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
   1110     if (GEPI->hasAllZeroIndices()) {
   1111       /// The GEP operand must be a pointer, so must its result -> BitCast
   1112       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
   1113                                         GEPI->getName(), GEPI);
   1114       GEPI->replaceAllUsesWith(NC);
   1115       GEPI->eraseFromParent();
   1116       ++NumGEPsElim;
   1117       OptimizeInst(NC);
   1118       return true;
   1119     }
   1120     return false;
   1121   }
   1122 
   1123   if (CallInst *CI = dyn_cast<CallInst>(I))
   1124     return OptimizeCallInst(CI);
   1125 
   1126   if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
   1127     return DupRetToEnableTailCallOpts(RI);
   1128 
   1129   return false;
   1130 }
   1131 
   1132 // In this pass we look for GEP and cast instructions that are used
   1133 // across basic blocks and rewrite them to improve basic-block-at-a-time
   1134 // selection.
   1135 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
   1136   SunkAddrs.clear();
   1137   bool MadeChange = false;
   1138 
   1139   CurInstIterator = BB.begin();
   1140   for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; )
   1141     MadeChange |= OptimizeInst(CurInstIterator++);
   1142 
   1143   return MadeChange;
   1144 }
   1145 
   1146 // llvm.dbg.value is far away from the value then iSel may not be able
   1147 // handle it properly. iSel will drop llvm.dbg.value if it can not
   1148 // find a node corresponding to the value.
   1149 bool CodeGenPrepare::PlaceDbgValues(Function &F) {
   1150   bool MadeChange = false;
   1151   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   1152     Instruction *PrevNonDbgInst = NULL;
   1153     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
   1154       Instruction *Insn = BI; ++BI;
   1155       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
   1156       if (!DVI) {
   1157         PrevNonDbgInst = Insn;
   1158         continue;
   1159       }
   1160 
   1161       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
   1162       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
   1163         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
   1164         DVI->removeFromParent();
   1165         if (isa<PHINode>(VI))
   1166           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
   1167         else
   1168           DVI->insertAfter(VI);
   1169         MadeChange = true;
   1170         ++NumDbgValueMoved;
   1171       }
   1172     }
   1173   }
   1174   return MadeChange;
   1175 }
   1176