Home | History | Annotate | Download | only in input
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "VelocityTracker"
     18 //#define LOG_NDEBUG 0
     19 
     20 // Log debug messages about velocity tracking.
     21 #define DEBUG_VELOCITY 0
     22 
     23 // Log debug messages about the progress of the algorithm itself.
     24 #define DEBUG_STRATEGY 0
     25 
     26 #include <math.h>
     27 #include <limits.h>
     28 
     29 #include <cutils/properties.h>
     30 #include <input/VelocityTracker.h>
     31 #include <utils/BitSet.h>
     32 #include <utils/String8.h>
     33 #include <utils/Timers.h>
     34 
     35 namespace android {
     36 
     37 // Nanoseconds per milliseconds.
     38 static const nsecs_t NANOS_PER_MS = 1000000;
     39 
     40 // Threshold for determining that a pointer has stopped moving.
     41 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
     42 // stopped.  We need to detect this case so that we can accurately predict the
     43 // velocity after the pointer starts moving again.
     44 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
     45 
     46 
     47 static float vectorDot(const float* a, const float* b, uint32_t m) {
     48     float r = 0;
     49     while (m) {
     50         m--;
     51         r += *(a++) * *(b++);
     52     }
     53     return r;
     54 }
     55 
     56 static float vectorNorm(const float* a, uint32_t m) {
     57     float r = 0;
     58     while (m) {
     59         m--;
     60         float t = *(a++);
     61         r += t * t;
     62     }
     63     return sqrtf(r);
     64 }
     65 
     66 #if DEBUG_STRATEGY || DEBUG_VELOCITY
     67 static String8 vectorToString(const float* a, uint32_t m) {
     68     String8 str;
     69     str.append("[");
     70     while (m--) {
     71         str.appendFormat(" %f", *(a++));
     72         if (m) {
     73             str.append(",");
     74         }
     75     }
     76     str.append(" ]");
     77     return str;
     78 }
     79 
     80 static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
     81     String8 str;
     82     str.append("[");
     83     for (size_t i = 0; i < m; i++) {
     84         if (i) {
     85             str.append(",");
     86         }
     87         str.append(" [");
     88         for (size_t j = 0; j < n; j++) {
     89             if (j) {
     90                 str.append(",");
     91             }
     92             str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
     93         }
     94         str.append(" ]");
     95     }
     96     str.append(" ]");
     97     return str;
     98 }
     99 #endif
    100 
    101 
    102 // --- VelocityTracker ---
    103 
    104 // The default velocity tracker strategy.
    105 // Although other strategies are available for testing and comparison purposes,
    106 // this is the strategy that applications will actually use.  Be very careful
    107 // when adjusting the default strategy because it can dramatically affect
    108 // (often in a bad way) the user experience.
    109 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
    110 
    111 VelocityTracker::VelocityTracker(const char* strategy) :
    112         mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
    113     char value[PROPERTY_VALUE_MAX];
    114 
    115     // Allow the default strategy to be overridden using a system property for debugging.
    116     if (!strategy) {
    117         int length = property_get("debug.velocitytracker.strategy", value, NULL);
    118         if (length > 0) {
    119             strategy = value;
    120         } else {
    121             strategy = DEFAULT_STRATEGY;
    122         }
    123     }
    124 
    125     // Configure the strategy.
    126     if (!configureStrategy(strategy)) {
    127         ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
    128         if (!configureStrategy(DEFAULT_STRATEGY)) {
    129             LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
    130                     strategy);
    131         }
    132     }
    133 }
    134 
    135 VelocityTracker::~VelocityTracker() {
    136     delete mStrategy;
    137 }
    138 
    139 bool VelocityTracker::configureStrategy(const char* strategy) {
    140     mStrategy = createStrategy(strategy);
    141     return mStrategy != NULL;
    142 }
    143 
    144 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
    145     if (!strcmp("lsq1", strategy)) {
    146         // 1st order least squares.  Quality: POOR.
    147         // Frequently underfits the touch data especially when the finger accelerates
    148         // or changes direction.  Often underestimates velocity.  The direction
    149         // is overly influenced by historical touch points.
    150         return new LeastSquaresVelocityTrackerStrategy(1);
    151     }
    152     if (!strcmp("lsq2", strategy)) {
    153         // 2nd order least squares.  Quality: VERY GOOD.
    154         // Pretty much ideal, but can be confused by certain kinds of touch data,
    155         // particularly if the panel has a tendency to generate delayed,
    156         // duplicate or jittery touch coordinates when the finger is released.
    157         return new LeastSquaresVelocityTrackerStrategy(2);
    158     }
    159     if (!strcmp("lsq3", strategy)) {
    160         // 3rd order least squares.  Quality: UNUSABLE.
    161         // Frequently overfits the touch data yielding wildly divergent estimates
    162         // of the velocity when the finger is released.
    163         return new LeastSquaresVelocityTrackerStrategy(3);
    164     }
    165     if (!strcmp("wlsq2-delta", strategy)) {
    166         // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
    167         return new LeastSquaresVelocityTrackerStrategy(2,
    168                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
    169     }
    170     if (!strcmp("wlsq2-central", strategy)) {
    171         // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
    172         return new LeastSquaresVelocityTrackerStrategy(2,
    173                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
    174     }
    175     if (!strcmp("wlsq2-recent", strategy)) {
    176         // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
    177         return new LeastSquaresVelocityTrackerStrategy(2,
    178                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
    179     }
    180     if (!strcmp("int1", strategy)) {
    181         // 1st order integrating filter.  Quality: GOOD.
    182         // Not as good as 'lsq2' because it cannot estimate acceleration but it is
    183         // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
    184         // the velocity of a fling but this strategy tends to respond to changes in
    185         // direction more quickly and accurately.
    186         return new IntegratingVelocityTrackerStrategy(1);
    187     }
    188     if (!strcmp("int2", strategy)) {
    189         // 2nd order integrating filter.  Quality: EXPERIMENTAL.
    190         // For comparison purposes only.  Unlike 'int1' this strategy can compensate
    191         // for acceleration but it typically overestimates the effect.
    192         return new IntegratingVelocityTrackerStrategy(2);
    193     }
    194     if (!strcmp("legacy", strategy)) {
    195         // Legacy velocity tracker algorithm.  Quality: POOR.
    196         // For comparison purposes only.  This algorithm is strongly influenced by
    197         // old data points, consistently underestimates velocity and takes a very long
    198         // time to adjust to changes in direction.
    199         return new LegacyVelocityTrackerStrategy();
    200     }
    201     return NULL;
    202 }
    203 
    204 void VelocityTracker::clear() {
    205     mCurrentPointerIdBits.clear();
    206     mActivePointerId = -1;
    207 
    208     mStrategy->clear();
    209 }
    210 
    211 void VelocityTracker::clearPointers(BitSet32 idBits) {
    212     BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
    213     mCurrentPointerIdBits = remainingIdBits;
    214 
    215     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
    216         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
    217     }
    218 
    219     mStrategy->clearPointers(idBits);
    220 }
    221 
    222 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
    223     while (idBits.count() > MAX_POINTERS) {
    224         idBits.clearLastMarkedBit();
    225     }
    226 
    227     if ((mCurrentPointerIdBits.value & idBits.value)
    228             && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
    229 #if DEBUG_VELOCITY
    230         ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
    231                 (eventTime - mLastEventTime) * 0.000001f);
    232 #endif
    233         // We have not received any movements for too long.  Assume that all pointers
    234         // have stopped.
    235         mStrategy->clear();
    236     }
    237     mLastEventTime = eventTime;
    238 
    239     mCurrentPointerIdBits = idBits;
    240     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
    241         mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
    242     }
    243 
    244     mStrategy->addMovement(eventTime, idBits, positions);
    245 
    246 #if DEBUG_VELOCITY
    247     ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
    248             eventTime, idBits.value, mActivePointerId);
    249     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
    250         uint32_t id = iterBits.firstMarkedBit();
    251         uint32_t index = idBits.getIndexOfBit(id);
    252         iterBits.clearBit(id);
    253         Estimator estimator;
    254         getEstimator(id, &estimator);
    255         ALOGD("  %d: position (%0.3f, %0.3f), "
    256                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
    257                 id, positions[index].x, positions[index].y,
    258                 int(estimator.degree),
    259                 vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
    260                 vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
    261                 estimator.confidence);
    262     }
    263 #endif
    264 }
    265 
    266 void VelocityTracker::addMovement(const MotionEvent* event) {
    267     int32_t actionMasked = event->getActionMasked();
    268 
    269     switch (actionMasked) {
    270     case AMOTION_EVENT_ACTION_DOWN:
    271     case AMOTION_EVENT_ACTION_HOVER_ENTER:
    272         // Clear all pointers on down before adding the new movement.
    273         clear();
    274         break;
    275     case AMOTION_EVENT_ACTION_POINTER_DOWN: {
    276         // Start a new movement trace for a pointer that just went down.
    277         // We do this on down instead of on up because the client may want to query the
    278         // final velocity for a pointer that just went up.
    279         BitSet32 downIdBits;
    280         downIdBits.markBit(event->getPointerId(event->getActionIndex()));
    281         clearPointers(downIdBits);
    282         break;
    283     }
    284     case AMOTION_EVENT_ACTION_MOVE:
    285     case AMOTION_EVENT_ACTION_HOVER_MOVE:
    286         break;
    287     default:
    288         // Ignore all other actions because they do not convey any new information about
    289         // pointer movement.  We also want to preserve the last known velocity of the pointers.
    290         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
    291         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
    292         // pointers that remained down but we will also receive an ACTION_MOVE with this
    293         // information if any of them actually moved.  Since we don't know how many pointers
    294         // will be going up at once it makes sense to just wait for the following ACTION_MOVE
    295         // before adding the movement.
    296         return;
    297     }
    298 
    299     size_t pointerCount = event->getPointerCount();
    300     if (pointerCount > MAX_POINTERS) {
    301         pointerCount = MAX_POINTERS;
    302     }
    303 
    304     BitSet32 idBits;
    305     for (size_t i = 0; i < pointerCount; i++) {
    306         idBits.markBit(event->getPointerId(i));
    307     }
    308 
    309     uint32_t pointerIndex[MAX_POINTERS];
    310     for (size_t i = 0; i < pointerCount; i++) {
    311         pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
    312     }
    313 
    314     nsecs_t eventTime;
    315     Position positions[pointerCount];
    316 
    317     size_t historySize = event->getHistorySize();
    318     for (size_t h = 0; h < historySize; h++) {
    319         eventTime = event->getHistoricalEventTime(h);
    320         for (size_t i = 0; i < pointerCount; i++) {
    321             uint32_t index = pointerIndex[i];
    322             positions[index].x = event->getHistoricalX(i, h);
    323             positions[index].y = event->getHistoricalY(i, h);
    324         }
    325         addMovement(eventTime, idBits, positions);
    326     }
    327 
    328     eventTime = event->getEventTime();
    329     for (size_t i = 0; i < pointerCount; i++) {
    330         uint32_t index = pointerIndex[i];
    331         positions[index].x = event->getX(i);
    332         positions[index].y = event->getY(i);
    333     }
    334     addMovement(eventTime, idBits, positions);
    335 }
    336 
    337 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
    338     Estimator estimator;
    339     if (getEstimator(id, &estimator) && estimator.degree >= 1) {
    340         *outVx = estimator.xCoeff[1];
    341         *outVy = estimator.yCoeff[1];
    342         return true;
    343     }
    344     *outVx = 0;
    345     *outVy = 0;
    346     return false;
    347 }
    348 
    349 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
    350     return mStrategy->getEstimator(id, outEstimator);
    351 }
    352 
    353 
    354 // --- LeastSquaresVelocityTrackerStrategy ---
    355 
    356 const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
    357 const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
    358 
    359 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
    360         uint32_t degree, Weighting weighting) :
    361         mDegree(degree), mWeighting(weighting) {
    362     clear();
    363 }
    364 
    365 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
    366 }
    367 
    368 void LeastSquaresVelocityTrackerStrategy::clear() {
    369     mIndex = 0;
    370     mMovements[0].idBits.clear();
    371 }
    372 
    373 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    374     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    375     mMovements[mIndex].idBits = remainingIdBits;
    376 }
    377 
    378 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    379         const VelocityTracker::Position* positions) {
    380     if (++mIndex == HISTORY_SIZE) {
    381         mIndex = 0;
    382     }
    383 
    384     Movement& movement = mMovements[mIndex];
    385     movement.eventTime = eventTime;
    386     movement.idBits = idBits;
    387     uint32_t count = idBits.count();
    388     for (uint32_t i = 0; i < count; i++) {
    389         movement.positions[i] = positions[i];
    390     }
    391 }
    392 
    393 /**
    394  * Solves a linear least squares problem to obtain a N degree polynomial that fits
    395  * the specified input data as nearly as possible.
    396  *
    397  * Returns true if a solution is found, false otherwise.
    398  *
    399  * The input consists of two vectors of data points X and Y with indices 0..m-1
    400  * along with a weight vector W of the same size.
    401  *
    402  * The output is a vector B with indices 0..n that describes a polynomial
    403  * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
    404  * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
    405  *
    406  * Accordingly, the weight vector W should be initialized by the caller with the
    407  * reciprocal square root of the variance of the error in each input data point.
    408  * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
    409  * The weights express the relative importance of each data point.  If the weights are
    410  * all 1, then the data points are considered to be of equal importance when fitting
    411  * the polynomial.  It is a good idea to choose weights that diminish the importance
    412  * of data points that may have higher than usual error margins.
    413  *
    414  * Errors among data points are assumed to be independent.  W is represented here
    415  * as a vector although in the literature it is typically taken to be a diagonal matrix.
    416  *
    417  * That is to say, the function that generated the input data can be approximated
    418  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
    419  *
    420  * The coefficient of determination (R^2) is also returned to describe the goodness
    421  * of fit of the model for the given data.  It is a value between 0 and 1, where 1
    422  * indicates perfect correspondence.
    423  *
    424  * This function first expands the X vector to a m by n matrix A such that
    425  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
    426  * multiplies it by w[i]./
    427  *
    428  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
    429  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
    430  * part is all zeroes), we can simplify the decomposition into an m by n matrix
    431  * Q1 and a n by n matrix R1 such that A = Q1 R1.
    432  *
    433  * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
    434  * to find B.
    435  *
    436  * For efficiency, we lay out A and Q column-wise in memory because we frequently
    437  * operate on the column vectors.  Conversely, we lay out R row-wise.
    438  *
    439  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
    440  * http://en.wikipedia.org/wiki/Gram-Schmidt
    441  */
    442 static bool solveLeastSquares(const float* x, const float* y,
    443         const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
    444 #if DEBUG_STRATEGY
    445     ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
    446             vectorToString(x, m).string(), vectorToString(y, m).string(),
    447             vectorToString(w, m).string());
    448 #endif
    449 
    450     // Expand the X vector to a matrix A, pre-multiplied by the weights.
    451     float a[n][m]; // column-major order
    452     for (uint32_t h = 0; h < m; h++) {
    453         a[0][h] = w[h];
    454         for (uint32_t i = 1; i < n; i++) {
    455             a[i][h] = a[i - 1][h] * x[h];
    456         }
    457     }
    458 #if DEBUG_STRATEGY
    459     ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
    460 #endif
    461 
    462     // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
    463     float q[n][m]; // orthonormal basis, column-major order
    464     float r[n][n]; // upper triangular matrix, row-major order
    465     for (uint32_t j = 0; j < n; j++) {
    466         for (uint32_t h = 0; h < m; h++) {
    467             q[j][h] = a[j][h];
    468         }
    469         for (uint32_t i = 0; i < j; i++) {
    470             float dot = vectorDot(&q[j][0], &q[i][0], m);
    471             for (uint32_t h = 0; h < m; h++) {
    472                 q[j][h] -= dot * q[i][h];
    473             }
    474         }
    475 
    476         float norm = vectorNorm(&q[j][0], m);
    477         if (norm < 0.000001f) {
    478             // vectors are linearly dependent or zero so no solution
    479 #if DEBUG_STRATEGY
    480             ALOGD("  - no solution, norm=%f", norm);
    481 #endif
    482             return false;
    483         }
    484 
    485         float invNorm = 1.0f / norm;
    486         for (uint32_t h = 0; h < m; h++) {
    487             q[j][h] *= invNorm;
    488         }
    489         for (uint32_t i = 0; i < n; i++) {
    490             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
    491         }
    492     }
    493 #if DEBUG_STRATEGY
    494     ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
    495     ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
    496 
    497     // calculate QR, if we factored A correctly then QR should equal A
    498     float qr[n][m];
    499     for (uint32_t h = 0; h < m; h++) {
    500         for (uint32_t i = 0; i < n; i++) {
    501             qr[i][h] = 0;
    502             for (uint32_t j = 0; j < n; j++) {
    503                 qr[i][h] += q[j][h] * r[j][i];
    504             }
    505         }
    506     }
    507     ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
    508 #endif
    509 
    510     // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
    511     // We just work from bottom-right to top-left calculating B's coefficients.
    512     float wy[m];
    513     for (uint32_t h = 0; h < m; h++) {
    514         wy[h] = y[h] * w[h];
    515     }
    516     for (uint32_t i = n; i != 0; ) {
    517         i--;
    518         outB[i] = vectorDot(&q[i][0], wy, m);
    519         for (uint32_t j = n - 1; j > i; j--) {
    520             outB[i] -= r[i][j] * outB[j];
    521         }
    522         outB[i] /= r[i][i];
    523     }
    524 #if DEBUG_STRATEGY
    525     ALOGD("  - b=%s", vectorToString(outB, n).string());
    526 #endif
    527 
    528     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
    529     // SSerr is the residual sum of squares (variance of the error),
    530     // and SStot is the total sum of squares (variance of the data) where each
    531     // has been weighted.
    532     float ymean = 0;
    533     for (uint32_t h = 0; h < m; h++) {
    534         ymean += y[h];
    535     }
    536     ymean /= m;
    537 
    538     float sserr = 0;
    539     float sstot = 0;
    540     for (uint32_t h = 0; h < m; h++) {
    541         float err = y[h] - outB[0];
    542         float term = 1;
    543         for (uint32_t i = 1; i < n; i++) {
    544             term *= x[h];
    545             err -= term * outB[i];
    546         }
    547         sserr += w[h] * w[h] * err * err;
    548         float var = y[h] - ymean;
    549         sstot += w[h] * w[h] * var * var;
    550     }
    551     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
    552 #if DEBUG_STRATEGY
    553     ALOGD("  - sserr=%f", sserr);
    554     ALOGD("  - sstot=%f", sstot);
    555     ALOGD("  - det=%f", *outDet);
    556 #endif
    557     return true;
    558 }
    559 
    560 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
    561         VelocityTracker::Estimator* outEstimator) const {
    562     outEstimator->clear();
    563 
    564     // Iterate over movement samples in reverse time order and collect samples.
    565     float x[HISTORY_SIZE];
    566     float y[HISTORY_SIZE];
    567     float w[HISTORY_SIZE];
    568     float time[HISTORY_SIZE];
    569     uint32_t m = 0;
    570     uint32_t index = mIndex;
    571     const Movement& newestMovement = mMovements[mIndex];
    572     do {
    573         const Movement& movement = mMovements[index];
    574         if (!movement.idBits.hasBit(id)) {
    575             break;
    576         }
    577 
    578         nsecs_t age = newestMovement.eventTime - movement.eventTime;
    579         if (age > HORIZON) {
    580             break;
    581         }
    582 
    583         const VelocityTracker::Position& position = movement.getPosition(id);
    584         x[m] = position.x;
    585         y[m] = position.y;
    586         w[m] = chooseWeight(index);
    587         time[m] = -age * 0.000000001f;
    588         index = (index == 0 ? HISTORY_SIZE : index) - 1;
    589     } while (++m < HISTORY_SIZE);
    590 
    591     if (m == 0) {
    592         return false; // no data
    593     }
    594 
    595     // Calculate a least squares polynomial fit.
    596     uint32_t degree = mDegree;
    597     if (degree > m - 1) {
    598         degree = m - 1;
    599     }
    600     if (degree >= 1) {
    601         float xdet, ydet;
    602         uint32_t n = degree + 1;
    603         if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
    604                 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
    605             outEstimator->time = newestMovement.eventTime;
    606             outEstimator->degree = degree;
    607             outEstimator->confidence = xdet * ydet;
    608 #if DEBUG_STRATEGY
    609             ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
    610                     int(outEstimator->degree),
    611                     vectorToString(outEstimator->xCoeff, n).string(),
    612                     vectorToString(outEstimator->yCoeff, n).string(),
    613                     outEstimator->confidence);
    614 #endif
    615             return true;
    616         }
    617     }
    618 
    619     // No velocity data available for this pointer, but we do have its current position.
    620     outEstimator->xCoeff[0] = x[0];
    621     outEstimator->yCoeff[0] = y[0];
    622     outEstimator->time = newestMovement.eventTime;
    623     outEstimator->degree = 0;
    624     outEstimator->confidence = 1;
    625     return true;
    626 }
    627 
    628 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
    629     switch (mWeighting) {
    630     case WEIGHTING_DELTA: {
    631         // Weight points based on how much time elapsed between them and the next
    632         // point so that points that "cover" a shorter time span are weighed less.
    633         //   delta  0ms: 0.5
    634         //   delta 10ms: 1.0
    635         if (index == mIndex) {
    636             return 1.0f;
    637         }
    638         uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
    639         float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
    640                 * 0.000001f;
    641         if (deltaMillis < 0) {
    642             return 0.5f;
    643         }
    644         if (deltaMillis < 10) {
    645             return 0.5f + deltaMillis * 0.05;
    646         }
    647         return 1.0f;
    648     }
    649 
    650     case WEIGHTING_CENTRAL: {
    651         // Weight points based on their age, weighing very recent and very old points less.
    652         //   age  0ms: 0.5
    653         //   age 10ms: 1.0
    654         //   age 50ms: 1.0
    655         //   age 60ms: 0.5
    656         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    657                 * 0.000001f;
    658         if (ageMillis < 0) {
    659             return 0.5f;
    660         }
    661         if (ageMillis < 10) {
    662             return 0.5f + ageMillis * 0.05;
    663         }
    664         if (ageMillis < 50) {
    665             return 1.0f;
    666         }
    667         if (ageMillis < 60) {
    668             return 0.5f + (60 - ageMillis) * 0.05;
    669         }
    670         return 0.5f;
    671     }
    672 
    673     case WEIGHTING_RECENT: {
    674         // Weight points based on their age, weighing older points less.
    675         //   age   0ms: 1.0
    676         //   age  50ms: 1.0
    677         //   age 100ms: 0.5
    678         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    679                 * 0.000001f;
    680         if (ageMillis < 50) {
    681             return 1.0f;
    682         }
    683         if (ageMillis < 100) {
    684             return 0.5f + (100 - ageMillis) * 0.01f;
    685         }
    686         return 0.5f;
    687     }
    688 
    689     case WEIGHTING_NONE:
    690     default:
    691         return 1.0f;
    692     }
    693 }
    694 
    695 
    696 // --- IntegratingVelocityTrackerStrategy ---
    697 
    698 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
    699         mDegree(degree) {
    700 }
    701 
    702 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
    703 }
    704 
    705 void IntegratingVelocityTrackerStrategy::clear() {
    706     mPointerIdBits.clear();
    707 }
    708 
    709 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    710     mPointerIdBits.value &= ~idBits.value;
    711 }
    712 
    713 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    714         const VelocityTracker::Position* positions) {
    715     uint32_t index = 0;
    716     for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
    717         uint32_t id = iterIdBits.clearFirstMarkedBit();
    718         State& state = mPointerState[id];
    719         const VelocityTracker::Position& position = positions[index++];
    720         if (mPointerIdBits.hasBit(id)) {
    721             updateState(state, eventTime, position.x, position.y);
    722         } else {
    723             initState(state, eventTime, position.x, position.y);
    724         }
    725     }
    726 
    727     mPointerIdBits = idBits;
    728 }
    729 
    730 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
    731         VelocityTracker::Estimator* outEstimator) const {
    732     outEstimator->clear();
    733 
    734     if (mPointerIdBits.hasBit(id)) {
    735         const State& state = mPointerState[id];
    736         populateEstimator(state, outEstimator);
    737         return true;
    738     }
    739 
    740     return false;
    741 }
    742 
    743 void IntegratingVelocityTrackerStrategy::initState(State& state,
    744         nsecs_t eventTime, float xpos, float ypos) const {
    745     state.updateTime = eventTime;
    746     state.degree = 0;
    747 
    748     state.xpos = xpos;
    749     state.xvel = 0;
    750     state.xaccel = 0;
    751     state.ypos = ypos;
    752     state.yvel = 0;
    753     state.yaccel = 0;
    754 }
    755 
    756 void IntegratingVelocityTrackerStrategy::updateState(State& state,
    757         nsecs_t eventTime, float xpos, float ypos) const {
    758     const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
    759     const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
    760 
    761     if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
    762         return;
    763     }
    764 
    765     float dt = (eventTime - state.updateTime) * 0.000000001f;
    766     state.updateTime = eventTime;
    767 
    768     float xvel = (xpos - state.xpos) / dt;
    769     float yvel = (ypos - state.ypos) / dt;
    770     if (state.degree == 0) {
    771         state.xvel = xvel;
    772         state.yvel = yvel;
    773         state.degree = 1;
    774     } else {
    775         float alpha = dt / (FILTER_TIME_CONSTANT + dt);
    776         if (mDegree == 1) {
    777             state.xvel += (xvel - state.xvel) * alpha;
    778             state.yvel += (yvel - state.yvel) * alpha;
    779         } else {
    780             float xaccel = (xvel - state.xvel) / dt;
    781             float yaccel = (yvel - state.yvel) / dt;
    782             if (state.degree == 1) {
    783                 state.xaccel = xaccel;
    784                 state.yaccel = yaccel;
    785                 state.degree = 2;
    786             } else {
    787                 state.xaccel += (xaccel - state.xaccel) * alpha;
    788                 state.yaccel += (yaccel - state.yaccel) * alpha;
    789             }
    790             state.xvel += (state.xaccel * dt) * alpha;
    791             state.yvel += (state.yaccel * dt) * alpha;
    792         }
    793     }
    794     state.xpos = xpos;
    795     state.ypos = ypos;
    796 }
    797 
    798 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
    799         VelocityTracker::Estimator* outEstimator) const {
    800     outEstimator->time = state.updateTime;
    801     outEstimator->confidence = 1.0f;
    802     outEstimator->degree = state.degree;
    803     outEstimator->xCoeff[0] = state.xpos;
    804     outEstimator->xCoeff[1] = state.xvel;
    805     outEstimator->xCoeff[2] = state.xaccel / 2;
    806     outEstimator->yCoeff[0] = state.ypos;
    807     outEstimator->yCoeff[1] = state.yvel;
    808     outEstimator->yCoeff[2] = state.yaccel / 2;
    809 }
    810 
    811 
    812 // --- LegacyVelocityTrackerStrategy ---
    813 
    814 const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
    815 const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
    816 const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
    817 
    818 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
    819     clear();
    820 }
    821 
    822 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
    823 }
    824 
    825 void LegacyVelocityTrackerStrategy::clear() {
    826     mIndex = 0;
    827     mMovements[0].idBits.clear();
    828 }
    829 
    830 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    831     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    832     mMovements[mIndex].idBits = remainingIdBits;
    833 }
    834 
    835 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    836         const VelocityTracker::Position* positions) {
    837     if (++mIndex == HISTORY_SIZE) {
    838         mIndex = 0;
    839     }
    840 
    841     Movement& movement = mMovements[mIndex];
    842     movement.eventTime = eventTime;
    843     movement.idBits = idBits;
    844     uint32_t count = idBits.count();
    845     for (uint32_t i = 0; i < count; i++) {
    846         movement.positions[i] = positions[i];
    847     }
    848 }
    849 
    850 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
    851         VelocityTracker::Estimator* outEstimator) const {
    852     outEstimator->clear();
    853 
    854     const Movement& newestMovement = mMovements[mIndex];
    855     if (!newestMovement.idBits.hasBit(id)) {
    856         return false; // no data
    857     }
    858 
    859     // Find the oldest sample that contains the pointer and that is not older than HORIZON.
    860     nsecs_t minTime = newestMovement.eventTime - HORIZON;
    861     uint32_t oldestIndex = mIndex;
    862     uint32_t numTouches = 1;
    863     do {
    864         uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
    865         const Movement& nextOldestMovement = mMovements[nextOldestIndex];
    866         if (!nextOldestMovement.idBits.hasBit(id)
    867                 || nextOldestMovement.eventTime < minTime) {
    868             break;
    869         }
    870         oldestIndex = nextOldestIndex;
    871     } while (++numTouches < HISTORY_SIZE);
    872 
    873     // Calculate an exponentially weighted moving average of the velocity estimate
    874     // at different points in time measured relative to the oldest sample.
    875     // This is essentially an IIR filter.  Newer samples are weighted more heavily
    876     // than older samples.  Samples at equal time points are weighted more or less
    877     // equally.
    878     //
    879     // One tricky problem is that the sample data may be poorly conditioned.
    880     // Sometimes samples arrive very close together in time which can cause us to
    881     // overestimate the velocity at that time point.  Most samples might be measured
    882     // 16ms apart but some consecutive samples could be only 0.5sm apart because
    883     // the hardware or driver reports them irregularly or in bursts.
    884     float accumVx = 0;
    885     float accumVy = 0;
    886     uint32_t index = oldestIndex;
    887     uint32_t samplesUsed = 0;
    888     const Movement& oldestMovement = mMovements[oldestIndex];
    889     const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
    890     nsecs_t lastDuration = 0;
    891 
    892     while (numTouches-- > 1) {
    893         if (++index == HISTORY_SIZE) {
    894             index = 0;
    895         }
    896         const Movement& movement = mMovements[index];
    897         nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
    898 
    899         // If the duration between samples is small, we may significantly overestimate
    900         // the velocity.  Consequently, we impose a minimum duration constraint on the
    901         // samples that we include in the calculation.
    902         if (duration >= MIN_DURATION) {
    903             const VelocityTracker::Position& position = movement.getPosition(id);
    904             float scale = 1000000000.0f / duration; // one over time delta in seconds
    905             float vx = (position.x - oldestPosition.x) * scale;
    906             float vy = (position.y - oldestPosition.y) * scale;
    907             accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
    908             accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
    909             lastDuration = duration;
    910             samplesUsed += 1;
    911         }
    912     }
    913 
    914     // Report velocity.
    915     const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
    916     outEstimator->time = newestMovement.eventTime;
    917     outEstimator->confidence = 1;
    918     outEstimator->xCoeff[0] = newestPosition.x;
    919     outEstimator->yCoeff[0] = newestPosition.y;
    920     if (samplesUsed) {
    921         outEstimator->xCoeff[1] = accumVx;
    922         outEstimator->yCoeff[1] = accumVy;
    923         outEstimator->degree = 1;
    924     } else {
    925         outEstimator->degree = 0;
    926     }
    927     return true;
    928 }
    929 
    930 } // namespace android
    931