Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread.h"
     18 
     19 #if !defined(__APPLE__)
     20 #include <sched.h>
     21 #endif
     22 
     23 #include <pthread.h>
     24 #include <signal.h>
     25 #include <sys/resource.h>
     26 #include <sys/time.h>
     27 
     28 #include <algorithm>
     29 #include <bitset>
     30 #include <cerrno>
     31 #include <iostream>
     32 #include <list>
     33 #include <sstream>
     34 
     35 #include "android-base/stringprintf.h"
     36 
     37 #include "arch/context-inl.h"
     38 #include "arch/context.h"
     39 #include "art_field-inl.h"
     40 #include "art_method-inl.h"
     41 #include "base/bit_utils.h"
     42 #include "base/memory_tool.h"
     43 #include "base/mutex.h"
     44 #include "base/systrace.h"
     45 #include "base/timing_logger.h"
     46 #include "base/to_str.h"
     47 #include "class_linker-inl.h"
     48 #include "debugger.h"
     49 #include "dex_file-inl.h"
     50 #include "dex_file_annotations.h"
     51 #include "entrypoints/entrypoint_utils.h"
     52 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     53 #include "gc/accounting/card_table-inl.h"
     54 #include "gc/accounting/heap_bitmap-inl.h"
     55 #include "gc/allocator/rosalloc.h"
     56 #include "gc/heap.h"
     57 #include "gc/space/space-inl.h"
     58 #include "gc_root.h"
     59 #include "handle_scope-inl.h"
     60 #include "indirect_reference_table-inl.h"
     61 #include "interpreter/interpreter.h"
     62 #include "interpreter/shadow_frame.h"
     63 #include "java_frame_root_info.h"
     64 #include "java_vm_ext.h"
     65 #include "jni_internal.h"
     66 #include "mirror/class-inl.h"
     67 #include "mirror/class_loader.h"
     68 #include "mirror/object_array-inl.h"
     69 #include "mirror/stack_trace_element.h"
     70 #include "monitor.h"
     71 #include "native_stack_dump.h"
     72 #include "nativehelper/ScopedLocalRef.h"
     73 #include "nativehelper/ScopedUtfChars.h"
     74 #include "nth_caller_visitor.h"
     75 #include "oat_quick_method_header.h"
     76 #include "obj_ptr-inl.h"
     77 #include "object_lock.h"
     78 #include "quick/quick_method_frame_info.h"
     79 #include "quick_exception_handler.h"
     80 #include "read_barrier-inl.h"
     81 #include "reflection.h"
     82 #include "runtime.h"
     83 #include "runtime_callbacks.h"
     84 #include "scoped_thread_state_change-inl.h"
     85 #include "stack.h"
     86 #include "stack_map.h"
     87 #include "thread-inl.h"
     88 #include "thread_list.h"
     89 #include "utils.h"
     90 #include "verifier/method_verifier.h"
     91 #include "verify_object.h"
     92 #include "well_known_classes.h"
     93 
     94 #if ART_USE_FUTEXES
     95 #include "linux/futex.h"
     96 #include "sys/syscall.h"
     97 #ifndef SYS_futex
     98 #define SYS_futex __NR_futex
     99 #endif
    100 #endif  // ART_USE_FUTEXES
    101 
    102 namespace art {
    103 
    104 using android::base::StringAppendV;
    105 using android::base::StringPrintf;
    106 
    107 extern "C" NO_RETURN void artDeoptimize(Thread* self);
    108 
    109 bool Thread::is_started_ = false;
    110 pthread_key_t Thread::pthread_key_self_;
    111 ConditionVariable* Thread::resume_cond_ = nullptr;
    112 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
    113 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
    114 Thread* Thread::jit_sensitive_thread_ = nullptr;
    115 
    116 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
    117 
    118 // For implicit overflow checks we reserve an extra piece of memory at the bottom
    119 // of the stack (lowest memory).  The higher portion of the memory
    120 // is protected against reads and the lower is available for use while
    121 // throwing the StackOverflow exception.
    122 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
    123 
    124 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
    125 
    126 void Thread::InitCardTable() {
    127   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
    128 }
    129 
    130 static void UnimplementedEntryPoint() {
    131   UNIMPLEMENTED(FATAL);
    132 }
    133 
    134 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
    135 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
    136 
    137 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
    138   CHECK(kUseReadBarrier);
    139   tls32_.is_gc_marking = is_marking;
    140   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
    141   ResetQuickAllocEntryPointsForThread(is_marking);
    142 }
    143 
    144 void Thread::InitTlsEntryPoints() {
    145   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
    146   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
    147   uintptr_t* end = reinterpret_cast<uintptr_t*>(
    148       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
    149   for (uintptr_t* it = begin; it != end; ++it) {
    150     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
    151   }
    152   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
    153 }
    154 
    155 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
    156   if (kUseReadBarrier && kRuntimeISA != kX86_64) {
    157     // Allocation entrypoint switching is currently only implemented for X86_64.
    158     is_marking = true;
    159   }
    160   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
    161 }
    162 
    163 class DeoptimizationContextRecord {
    164  public:
    165   DeoptimizationContextRecord(const JValue& ret_val,
    166                               bool is_reference,
    167                               bool from_code,
    168                               ObjPtr<mirror::Throwable> pending_exception,
    169                               DeoptimizationContextRecord* link)
    170       : ret_val_(ret_val),
    171         is_reference_(is_reference),
    172         from_code_(from_code),
    173         pending_exception_(pending_exception.Ptr()),
    174         link_(link) {}
    175 
    176   JValue GetReturnValue() const { return ret_val_; }
    177   bool IsReference() const { return is_reference_; }
    178   bool GetFromCode() const { return from_code_; }
    179   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
    180   DeoptimizationContextRecord* GetLink() const { return link_; }
    181   mirror::Object** GetReturnValueAsGCRoot() {
    182     DCHECK(is_reference_);
    183     return ret_val_.GetGCRoot();
    184   }
    185   mirror::Object** GetPendingExceptionAsGCRoot() {
    186     return reinterpret_cast<mirror::Object**>(&pending_exception_);
    187   }
    188 
    189  private:
    190   // The value returned by the method at the top of the stack before deoptimization.
    191   JValue ret_val_;
    192 
    193   // Indicates whether the returned value is a reference. If so, the GC will visit it.
    194   const bool is_reference_;
    195 
    196   // Whether the context was created from an explicit deoptimization in the code.
    197   const bool from_code_;
    198 
    199   // The exception that was pending before deoptimization (or null if there was no pending
    200   // exception).
    201   mirror::Throwable* pending_exception_;
    202 
    203   // A link to the previous DeoptimizationContextRecord.
    204   DeoptimizationContextRecord* const link_;
    205 
    206   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
    207 };
    208 
    209 class StackedShadowFrameRecord {
    210  public:
    211   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
    212                            StackedShadowFrameType type,
    213                            StackedShadowFrameRecord* link)
    214       : shadow_frame_(shadow_frame),
    215         type_(type),
    216         link_(link) {}
    217 
    218   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    219   StackedShadowFrameType GetType() const { return type_; }
    220   StackedShadowFrameRecord* GetLink() const { return link_; }
    221 
    222  private:
    223   ShadowFrame* const shadow_frame_;
    224   const StackedShadowFrameType type_;
    225   StackedShadowFrameRecord* const link_;
    226 
    227   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
    228 };
    229 
    230 void Thread::PushDeoptimizationContext(const JValue& return_value,
    231                                        bool is_reference,
    232                                        bool from_code,
    233                                        ObjPtr<mirror::Throwable> exception) {
    234   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
    235       return_value,
    236       is_reference,
    237       from_code,
    238       exception,
    239       tlsPtr_.deoptimization_context_stack);
    240   tlsPtr_.deoptimization_context_stack = record;
    241 }
    242 
    243 void Thread::PopDeoptimizationContext(JValue* result,
    244                                       ObjPtr<mirror::Throwable>* exception,
    245                                       bool* from_code) {
    246   AssertHasDeoptimizationContext();
    247   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
    248   tlsPtr_.deoptimization_context_stack = record->GetLink();
    249   result->SetJ(record->GetReturnValue().GetJ());
    250   *exception = record->GetPendingException();
    251   *from_code = record->GetFromCode();
    252   delete record;
    253 }
    254 
    255 void Thread::AssertHasDeoptimizationContext() {
    256   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
    257       << "No deoptimization context for thread " << *this;
    258 }
    259 
    260 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
    261   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
    262       sf, type, tlsPtr_.stacked_shadow_frame_record);
    263   tlsPtr_.stacked_shadow_frame_record = record;
    264 }
    265 
    266 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
    267   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
    268   if (must_be_present) {
    269     DCHECK(record != nullptr);
    270   } else {
    271     if (record == nullptr || record->GetType() != type) {
    272       return nullptr;
    273     }
    274   }
    275   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
    276   ShadowFrame* shadow_frame = record->GetShadowFrame();
    277   delete record;
    278   return shadow_frame;
    279 }
    280 
    281 class FrameIdToShadowFrame {
    282  public:
    283   static FrameIdToShadowFrame* Create(size_t frame_id,
    284                                       ShadowFrame* shadow_frame,
    285                                       FrameIdToShadowFrame* next,
    286                                       size_t num_vregs) {
    287     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
    288     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
    289     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
    290   }
    291 
    292   static void Delete(FrameIdToShadowFrame* f) {
    293     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
    294     delete[] memory;
    295   }
    296 
    297   size_t GetFrameId() const { return frame_id_; }
    298   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    299   FrameIdToShadowFrame* GetNext() const { return next_; }
    300   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
    301   bool* GetUpdatedVRegFlags() {
    302     return updated_vreg_flags_;
    303   }
    304 
    305  private:
    306   FrameIdToShadowFrame(size_t frame_id,
    307                        ShadowFrame* shadow_frame,
    308                        FrameIdToShadowFrame* next)
    309       : frame_id_(frame_id),
    310         shadow_frame_(shadow_frame),
    311         next_(next) {}
    312 
    313   const size_t frame_id_;
    314   ShadowFrame* const shadow_frame_;
    315   FrameIdToShadowFrame* next_;
    316   bool updated_vreg_flags_[0];
    317 
    318   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
    319 };
    320 
    321 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
    322                                                       size_t frame_id) {
    323   FrameIdToShadowFrame* found = nullptr;
    324   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
    325     if (record->GetFrameId() == frame_id) {
    326       if (kIsDebugBuild) {
    327         // Sanity check we have at most one record for this frame.
    328         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
    329         found = record;
    330       } else {
    331         return record;
    332       }
    333     }
    334   }
    335   return found;
    336 }
    337 
    338 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
    339   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    340       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    341   if (record != nullptr) {
    342     return record->GetShadowFrame();
    343   }
    344   return nullptr;
    345 }
    346 
    347 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
    348 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
    349   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    350       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    351   CHECK(record != nullptr);
    352   return record->GetUpdatedVRegFlags();
    353 }
    354 
    355 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
    356                                                      uint32_t num_vregs,
    357                                                      ArtMethod* method,
    358                                                      uint32_t dex_pc) {
    359   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
    360   if (shadow_frame != nullptr) {
    361     return shadow_frame;
    362   }
    363   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
    364   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
    365   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
    366                                                               shadow_frame,
    367                                                               tlsPtr_.frame_id_to_shadow_frame,
    368                                                               num_vregs);
    369   for (uint32_t i = 0; i < num_vregs; i++) {
    370     // Do this to clear all references for root visitors.
    371     shadow_frame->SetVRegReference(i, nullptr);
    372     // This flag will be changed to true if the debugger modifies the value.
    373     record->GetUpdatedVRegFlags()[i] = false;
    374   }
    375   tlsPtr_.frame_id_to_shadow_frame = record;
    376   return shadow_frame;
    377 }
    378 
    379 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
    380   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
    381   if (head->GetFrameId() == frame_id) {
    382     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
    383     FrameIdToShadowFrame::Delete(head);
    384     return;
    385   }
    386   FrameIdToShadowFrame* prev = head;
    387   for (FrameIdToShadowFrame* record = head->GetNext();
    388        record != nullptr;
    389        prev = record, record = record->GetNext()) {
    390     if (record->GetFrameId() == frame_id) {
    391       prev->SetNext(record->GetNext());
    392       FrameIdToShadowFrame::Delete(record);
    393       return;
    394     }
    395   }
    396   LOG(FATAL) << "No shadow frame for frame " << frame_id;
    397   UNREACHABLE();
    398 }
    399 
    400 void Thread::InitTid() {
    401   tls32_.tid = ::art::GetTid();
    402 }
    403 
    404 void Thread::InitAfterFork() {
    405   // One thread (us) survived the fork, but we have a new tid so we need to
    406   // update the value stashed in this Thread*.
    407   InitTid();
    408 }
    409 
    410 void* Thread::CreateCallback(void* arg) {
    411   Thread* self = reinterpret_cast<Thread*>(arg);
    412   Runtime* runtime = Runtime::Current();
    413   if (runtime == nullptr) {
    414     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    415     return nullptr;
    416   }
    417   {
    418     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    419     //       after self->Init().
    420     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    421     // Check that if we got here we cannot be shutting down (as shutdown should never have started
    422     // while threads are being born).
    423     CHECK(!runtime->IsShuttingDownLocked());
    424     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
    425     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
    426     //       the runtime in such a case. In case this ever changes, we need to make sure here to
    427     //       delete the tmp_jni_env, as we own it at this point.
    428     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
    429     self->tlsPtr_.tmp_jni_env = nullptr;
    430     Runtime::Current()->EndThreadBirth();
    431   }
    432   {
    433     ScopedObjectAccess soa(self);
    434     self->InitStringEntryPoints();
    435 
    436     // Copy peer into self, deleting global reference when done.
    437     CHECK(self->tlsPtr_.jpeer != nullptr);
    438     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
    439     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    440     self->tlsPtr_.jpeer = nullptr;
    441     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
    442 
    443     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
    444     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
    445 
    446     runtime->GetRuntimeCallbacks()->ThreadStart(self);
    447 
    448     // Invoke the 'run' method of our java.lang.Thread.
    449     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
    450     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    451     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
    452     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
    453   }
    454   // Detach and delete self.
    455   Runtime::Current()->GetThreadList()->Unregister(self);
    456 
    457   return nullptr;
    458 }
    459 
    460 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    461                                   ObjPtr<mirror::Object> thread_peer) {
    462   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
    463   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
    464   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
    465   // to stop it from going away.
    466   if (kIsDebugBuild) {
    467     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    468     if (result != nullptr && !result->IsSuspended()) {
    469       Locks::thread_list_lock_->AssertHeld(soa.Self());
    470     }
    471   }
    472   return result;
    473 }
    474 
    475 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    476                                   jobject java_thread) {
    477   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
    478 }
    479 
    480 static size_t FixStackSize(size_t stack_size) {
    481   // A stack size of zero means "use the default".
    482   if (stack_size == 0) {
    483     stack_size = Runtime::Current()->GetDefaultStackSize();
    484   }
    485 
    486   // Dalvik used the bionic pthread default stack size for native threads,
    487   // so include that here to support apps that expect large native stacks.
    488   stack_size += 1 * MB;
    489 
    490   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
    491   if (stack_size < PTHREAD_STACK_MIN) {
    492     stack_size = PTHREAD_STACK_MIN;
    493   }
    494 
    495   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    496     // It's likely that callers are trying to ensure they have at least a certain amount of
    497     // stack space, so we should add our reserved space on top of what they requested, rather
    498     // than implicitly take it away from them.
    499     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
    500   } else {
    501     // If we are going to use implicit stack checks, allocate space for the protected
    502     // region at the bottom of the stack.
    503     stack_size += Thread::kStackOverflowImplicitCheckSize +
    504         GetStackOverflowReservedBytes(kRuntimeISA);
    505   }
    506 
    507   // Some systems require the stack size to be a multiple of the system page size, so round up.
    508   stack_size = RoundUp(stack_size, kPageSize);
    509 
    510   return stack_size;
    511 }
    512 
    513 // Return the nearest page-aligned address below the current stack top.
    514 NO_INLINE
    515 static uint8_t* FindStackTop() {
    516   return reinterpret_cast<uint8_t*>(
    517       AlignDown(__builtin_frame_address(0), kPageSize));
    518 }
    519 
    520 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
    521 // overflow is detected.  It is located right below the stack_begin_.
    522 ATTRIBUTE_NO_SANITIZE_ADDRESS
    523 void Thread::InstallImplicitProtection() {
    524   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
    525   // Page containing current top of stack.
    526   uint8_t* stack_top = FindStackTop();
    527 
    528   // Try to directly protect the stack.
    529   VLOG(threads) << "installing stack protected region at " << std::hex <<
    530         static_cast<void*>(pregion) << " to " <<
    531         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    532   if (ProtectStack(/* fatal_on_error */ false)) {
    533     // Tell the kernel that we won't be needing these pages any more.
    534     // NB. madvise will probably write zeroes into the memory (on linux it does).
    535     uint32_t unwanted_size = stack_top - pregion - kPageSize;
    536     madvise(pregion, unwanted_size, MADV_DONTNEED);
    537     return;
    538   }
    539 
    540   // There is a little complexity here that deserves a special mention.  On some
    541   // architectures, the stack is created using a VM_GROWSDOWN flag
    542   // to prevent memory being allocated when it's not needed.  This flag makes the
    543   // kernel only allocate memory for the stack by growing down in memory.  Because we
    544   // want to put an mprotected region far away from that at the stack top, we need
    545   // to make sure the pages for the stack are mapped in before we call mprotect.
    546   //
    547   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
    548   // with a non-mapped stack (usually only the main thread).
    549   //
    550   // We map in the stack by reading every page from the stack bottom (highest address)
    551   // to the stack top. (We then madvise this away.) This must be done by reading from the
    552   // current stack pointer downwards.
    553   //
    554   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
    555   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
    556   // thus have to move the stack pointer. We do this portably by using a recursive function with a
    557   // large stack frame size.
    558 
    559   // (Defensively) first remove the protection on the protected region as we'll want to read
    560   // and write it. Ignore errors.
    561   UnprotectStack();
    562 
    563   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
    564       static_cast<void*>(pregion);
    565 
    566   struct RecurseDownStack {
    567     // This function has an intentionally large stack size.
    568 #pragma GCC diagnostic push
    569 #pragma GCC diagnostic ignored "-Wframe-larger-than="
    570     NO_INLINE
    571     static void Touch(uintptr_t target) {
    572       volatile size_t zero = 0;
    573       // Use a large local volatile array to ensure a large frame size. Do not use anything close
    574       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
    575       // there is no pragma support for this.
    576       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
    577       constexpr size_t kAsanMultiplier =
    578 #ifdef ADDRESS_SANITIZER
    579           2u;
    580 #else
    581           1u;
    582 #endif
    583       volatile char space[kPageSize - (kAsanMultiplier * 256)];
    584       char sink ATTRIBUTE_UNUSED = space[zero];
    585       if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
    586         Touch(target);
    587       }
    588       zero *= 2;  // Try to avoid tail recursion.
    589     }
    590 #pragma GCC diagnostic pop
    591   };
    592   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
    593 
    594   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
    595       static_cast<void*>(pregion) << " to " <<
    596       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    597 
    598   // Protect the bottom of the stack to prevent read/write to it.
    599   ProtectStack(/* fatal_on_error */ true);
    600 
    601   // Tell the kernel that we won't be needing these pages any more.
    602   // NB. madvise will probably write zeroes into the memory (on linux it does).
    603   uint32_t unwanted_size = stack_top - pregion - kPageSize;
    604   madvise(pregion, unwanted_size, MADV_DONTNEED);
    605 }
    606 
    607 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
    608   CHECK(java_peer != nullptr);
    609   Thread* self = static_cast<JNIEnvExt*>(env)->self;
    610 
    611   if (VLOG_IS_ON(threads)) {
    612     ScopedObjectAccess soa(env);
    613 
    614     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
    615     ObjPtr<mirror::String> java_name =
    616         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
    617     std::string thread_name;
    618     if (java_name != nullptr) {
    619       thread_name = java_name->ToModifiedUtf8();
    620     } else {
    621       thread_name = "(Unnamed)";
    622     }
    623 
    624     VLOG(threads) << "Creating native thread for " << thread_name;
    625     self->Dump(LOG_STREAM(INFO));
    626   }
    627 
    628   Runtime* runtime = Runtime::Current();
    629 
    630   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
    631   bool thread_start_during_shutdown = false;
    632   {
    633     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    634     if (runtime->IsShuttingDownLocked()) {
    635       thread_start_during_shutdown = true;
    636     } else {
    637       runtime->StartThreadBirth();
    638     }
    639   }
    640   if (thread_start_during_shutdown) {
    641     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    642     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    643     return;
    644   }
    645 
    646   Thread* child_thread = new Thread(is_daemon);
    647   // Use global JNI ref to hold peer live while child thread starts.
    648   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
    649   stack_size = FixStackSize(stack_size);
    650 
    651   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
    652   // assign it.
    653   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
    654                     reinterpret_cast<jlong>(child_thread));
    655 
    656   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
    657   // do not have a good way to report this on the child's side.
    658   std::string error_msg;
    659   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
    660       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
    661 
    662   int pthread_create_result = 0;
    663   if (child_jni_env_ext.get() != nullptr) {
    664     pthread_t new_pthread;
    665     pthread_attr_t attr;
    666     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
    667     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    668     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
    669                        "PTHREAD_CREATE_DETACHED");
    670     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    671     pthread_create_result = pthread_create(&new_pthread,
    672                                            &attr,
    673                                            Thread::CreateCallback,
    674                                            child_thread);
    675     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
    676 
    677     if (pthread_create_result == 0) {
    678       // pthread_create started the new thread. The child is now responsible for managing the
    679       // JNIEnvExt we created.
    680       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
    681       //       between the threads.
    682       child_jni_env_ext.release();
    683       return;
    684     }
    685   }
    686 
    687   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
    688   {
    689     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    690     runtime->EndThreadBirth();
    691   }
    692   // Manually delete the global reference since Thread::Init will not have been run.
    693   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
    694   child_thread->tlsPtr_.jpeer = nullptr;
    695   delete child_thread;
    696   child_thread = nullptr;
    697   // TODO: remove from thread group?
    698   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
    699   {
    700     std::string msg(child_jni_env_ext.get() == nullptr ?
    701         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
    702         StringPrintf("pthread_create (%s stack) failed: %s",
    703                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    704     ScopedObjectAccess soa(env);
    705     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
    706   }
    707 }
    708 
    709 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
    710   // This function does all the initialization that must be run by the native thread it applies to.
    711   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
    712   // we can handshake with the corresponding native thread when it's ready.) Check this native
    713   // thread hasn't been through here already...
    714   CHECK(Thread::Current() == nullptr);
    715 
    716   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
    717   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
    718   tlsPtr_.pthread_self = pthread_self();
    719   CHECK(is_started_);
    720 
    721   SetUpAlternateSignalStack();
    722   if (!InitStackHwm()) {
    723     return false;
    724   }
    725   InitCpu();
    726   InitTlsEntryPoints();
    727   RemoveSuspendTrigger();
    728   InitCardTable();
    729   InitTid();
    730   interpreter::InitInterpreterTls(this);
    731 
    732 #ifdef ART_TARGET_ANDROID
    733   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
    734 #else
    735   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
    736 #endif
    737   DCHECK_EQ(Thread::Current(), this);
    738 
    739   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
    740 
    741   if (jni_env_ext != nullptr) {
    742     DCHECK_EQ(jni_env_ext->vm, java_vm);
    743     DCHECK_EQ(jni_env_ext->self, this);
    744     tlsPtr_.jni_env = jni_env_ext;
    745   } else {
    746     std::string error_msg;
    747     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
    748     if (tlsPtr_.jni_env == nullptr) {
    749       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
    750       return false;
    751     }
    752   }
    753 
    754   thread_list->Register(this);
    755   return true;
    756 }
    757 
    758 template <typename PeerAction>
    759 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
    760   Runtime* runtime = Runtime::Current();
    761   if (runtime == nullptr) {
    762     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
    763     return nullptr;
    764   }
    765   Thread* self;
    766   {
    767     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    768     if (runtime->IsShuttingDownLocked()) {
    769       LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
    770       return nullptr;
    771     } else {
    772       Runtime::Current()->StartThreadBirth();
    773       self = new Thread(as_daemon);
    774       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    775       Runtime::Current()->EndThreadBirth();
    776       if (!init_success) {
    777         delete self;
    778         return nullptr;
    779       }
    780     }
    781   }
    782 
    783   self->InitStringEntryPoints();
    784 
    785   CHECK_NE(self->GetState(), kRunnable);
    786   self->SetState(kNative);
    787 
    788   // Run the action that is acting on the peer.
    789   if (!peer_action(self)) {
    790     runtime->GetThreadList()->Unregister(self);
    791     // Unregister deletes self, no need to do this here.
    792     return nullptr;
    793   }
    794 
    795   if (VLOG_IS_ON(threads)) {
    796     if (thread_name != nullptr) {
    797       VLOG(threads) << "Attaching thread " << thread_name;
    798     } else {
    799       VLOG(threads) << "Attaching unnamed thread.";
    800     }
    801     ScopedObjectAccess soa(self);
    802     self->Dump(LOG_STREAM(INFO));
    803   }
    804 
    805   {
    806     ScopedObjectAccess soa(self);
    807     runtime->GetRuntimeCallbacks()->ThreadStart(self);
    808   }
    809 
    810   return self;
    811 }
    812 
    813 Thread* Thread::Attach(const char* thread_name,
    814                        bool as_daemon,
    815                        jobject thread_group,
    816                        bool create_peer) {
    817   auto create_peer_action = [&](Thread* self) {
    818     // If we're the main thread, ClassLinker won't be created until after we're attached,
    819     // so that thread needs a two-stage attach. Regular threads don't need this hack.
    820     // In the compiler, all threads need this hack, because no-one's going to be getting
    821     // a native peer!
    822     if (create_peer) {
    823       self->CreatePeer(thread_name, as_daemon, thread_group);
    824       if (self->IsExceptionPending()) {
    825         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
    826         {
    827           ScopedObjectAccess soa(self);
    828           LOG(ERROR) << "Exception creating thread peer:";
    829           LOG(ERROR) << self->GetException()->Dump();
    830           self->ClearException();
    831         }
    832         return false;
    833       }
    834     } else {
    835       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
    836       if (thread_name != nullptr) {
    837         self->tlsPtr_.name->assign(thread_name);
    838         ::art::SetThreadName(thread_name);
    839       } else if (self->GetJniEnv()->check_jni) {
    840         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
    841       }
    842     }
    843     return true;
    844   };
    845   return Attach(thread_name, as_daemon, create_peer_action);
    846 }
    847 
    848 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
    849   auto set_peer_action = [&](Thread* self) {
    850     // Install the given peer.
    851     {
    852       DCHECK(self == Thread::Current());
    853       ScopedObjectAccess soa(self);
    854       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
    855     }
    856     self->GetJniEnv()->SetLongField(thread_peer,
    857                                     WellKnownClasses::java_lang_Thread_nativePeer,
    858                                     reinterpret_cast<jlong>(self));
    859     return true;
    860   };
    861   return Attach(thread_name, as_daemon, set_peer_action);
    862 }
    863 
    864 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
    865   Runtime* runtime = Runtime::Current();
    866   CHECK(runtime->IsStarted());
    867   JNIEnv* env = tlsPtr_.jni_env;
    868 
    869   if (thread_group == nullptr) {
    870     thread_group = runtime->GetMainThreadGroup();
    871   }
    872   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    873   // Add missing null check in case of OOM b/18297817
    874   if (name != nullptr && thread_name.get() == nullptr) {
    875     CHECK(IsExceptionPending());
    876     return;
    877   }
    878   jint thread_priority = GetNativePriority();
    879   jboolean thread_is_daemon = as_daemon;
    880 
    881   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    882   if (peer.get() == nullptr) {
    883     CHECK(IsExceptionPending());
    884     return;
    885   }
    886   {
    887     ScopedObjectAccess soa(this);
    888     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
    889   }
    890   env->CallNonvirtualVoidMethod(peer.get(),
    891                                 WellKnownClasses::java_lang_Thread,
    892                                 WellKnownClasses::java_lang_Thread_init,
    893                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
    894   if (IsExceptionPending()) {
    895     return;
    896   }
    897 
    898   Thread* self = this;
    899   DCHECK_EQ(self, Thread::Current());
    900   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
    901                     reinterpret_cast<jlong>(self));
    902 
    903   ScopedObjectAccess soa(self);
    904   StackHandleScope<1> hs(self);
    905   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
    906   if (peer_thread_name == nullptr) {
    907     // The Thread constructor should have set the Thread.name to a
    908     // non-null value. However, because we can run without code
    909     // available (in the compiler, in tests), we manually assign the
    910     // fields the constructor should have set.
    911     if (runtime->IsActiveTransaction()) {
    912       InitPeer<true>(soa,
    913                      tlsPtr_.opeer,
    914                      thread_is_daemon,
    915                      thread_group,
    916                      thread_name.get(),
    917                      thread_priority);
    918     } else {
    919       InitPeer<false>(soa,
    920                       tlsPtr_.opeer,
    921                       thread_is_daemon,
    922                       thread_group,
    923                       thread_name.get(),
    924                       thread_priority);
    925     }
    926     peer_thread_name.Assign(GetThreadName());
    927   }
    928   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
    929   if (peer_thread_name != nullptr) {
    930     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
    931   }
    932 }
    933 
    934 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
    935                                       const char* name,
    936                                       bool as_daemon,
    937                                       jobject thread_group) {
    938   Runtime* runtime = Runtime::Current();
    939   CHECK(!runtime->IsStarted());
    940 
    941   if (thread_group == nullptr) {
    942     thread_group = runtime->GetMainThreadGroup();
    943   }
    944   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    945   // Add missing null check in case of OOM b/18297817
    946   if (name != nullptr && thread_name.get() == nullptr) {
    947     CHECK(Thread::Current()->IsExceptionPending());
    948     return nullptr;
    949   }
    950   jint thread_priority = GetNativePriority();
    951   jboolean thread_is_daemon = as_daemon;
    952 
    953   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    954   if (peer.get() == nullptr) {
    955     CHECK(Thread::Current()->IsExceptionPending());
    956     return nullptr;
    957   }
    958 
    959   // We cannot call Thread.init, as it will recursively ask for currentThread.
    960 
    961   // The Thread constructor should have set the Thread.name to a
    962   // non-null value. However, because we can run without code
    963   // available (in the compiler, in tests), we manually assign the
    964   // fields the constructor should have set.
    965   ScopedObjectAccessUnchecked soa(Thread::Current());
    966   if (runtime->IsActiveTransaction()) {
    967     InitPeer<true>(soa,
    968                    soa.Decode<mirror::Object>(peer.get()),
    969                    thread_is_daemon,
    970                    thread_group,
    971                    thread_name.get(),
    972                    thread_priority);
    973   } else {
    974     InitPeer<false>(soa,
    975                     soa.Decode<mirror::Object>(peer.get()),
    976                     thread_is_daemon,
    977                     thread_group,
    978                     thread_name.get(),
    979                     thread_priority);
    980   }
    981 
    982   return peer.release();
    983 }
    984 
    985 template<bool kTransactionActive>
    986 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
    987                       ObjPtr<mirror::Object> peer,
    988                       jboolean thread_is_daemon,
    989                       jobject thread_group,
    990                       jobject thread_name,
    991                       jint thread_priority) {
    992   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
    993       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
    994   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
    995       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
    996   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
    997       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
    998   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
    999       SetInt<kTransactionActive>(peer, thread_priority);
   1000 }
   1001 
   1002 void Thread::SetThreadName(const char* name) {
   1003   tlsPtr_.name->assign(name);
   1004   ::art::SetThreadName(name);
   1005   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
   1006 }
   1007 
   1008 static void GetThreadStack(pthread_t thread,
   1009                            void** stack_base,
   1010                            size_t* stack_size,
   1011                            size_t* guard_size) {
   1012 #if defined(__APPLE__)
   1013   *stack_size = pthread_get_stacksize_np(thread);
   1014   void* stack_addr = pthread_get_stackaddr_np(thread);
   1015 
   1016   // Check whether stack_addr is the base or end of the stack.
   1017   // (On Mac OS 10.7, it's the end.)
   1018   int stack_variable;
   1019   if (stack_addr > &stack_variable) {
   1020     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
   1021   } else {
   1022     *stack_base = stack_addr;
   1023   }
   1024 
   1025   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
   1026   pthread_attr_t attributes;
   1027   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
   1028   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1029   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1030 #else
   1031   pthread_attr_t attributes;
   1032   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
   1033   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
   1034   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1035   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1036 
   1037 #if defined(__GLIBC__)
   1038   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
   1039   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
   1040   // will be broken because we'll die long before we get close to 2GB.
   1041   bool is_main_thread = (::art::GetTid() == getpid());
   1042   if (is_main_thread) {
   1043     rlimit stack_limit;
   1044     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
   1045       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
   1046     }
   1047     if (stack_limit.rlim_cur == RLIM_INFINITY) {
   1048       size_t old_stack_size = *stack_size;
   1049 
   1050       // Use the kernel default limit as our size, and adjust the base to match.
   1051       *stack_size = 8 * MB;
   1052       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
   1053 
   1054       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
   1055                     << " to " << PrettySize(*stack_size)
   1056                     << " with base " << *stack_base;
   1057     }
   1058   }
   1059 #endif
   1060 
   1061 #endif
   1062 }
   1063 
   1064 bool Thread::InitStackHwm() {
   1065   void* read_stack_base;
   1066   size_t read_stack_size;
   1067   size_t read_guard_size;
   1068   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
   1069 
   1070   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
   1071   tlsPtr_.stack_size = read_stack_size;
   1072 
   1073   // The minimum stack size we can cope with is the overflow reserved bytes (typically
   1074   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
   1075   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
   1076   // between 8K and 12K.
   1077   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
   1078     + 4 * KB;
   1079   if (read_stack_size <= min_stack) {
   1080     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
   1081     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
   1082                                __LINE__,
   1083                                ::android::base::ERROR,
   1084                                "Attempt to attach a thread with a too-small stack");
   1085     return false;
   1086   }
   1087 
   1088   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
   1089   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
   1090                                 read_stack_base,
   1091                                 PrettySize(read_stack_size).c_str(),
   1092                                 PrettySize(read_guard_size).c_str());
   1093 
   1094   // Set stack_end_ to the bottom of the stack saving space of stack overflows
   1095 
   1096   Runtime* runtime = Runtime::Current();
   1097   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
   1098 
   1099   // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
   1100   // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
   1101   // stack_begin to 0.
   1102   const bool valgrind_on_arm =
   1103       (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
   1104       kMemoryToolIsValgrind &&
   1105       RUNNING_ON_MEMORY_TOOL != 0;
   1106   if (valgrind_on_arm) {
   1107     tlsPtr_.stack_begin = nullptr;
   1108   }
   1109 
   1110   ResetDefaultStackEnd();
   1111 
   1112   // Install the protected region if we are doing implicit overflow checks.
   1113   if (implicit_stack_check && !valgrind_on_arm) {
   1114     // The thread might have protected region at the bottom.  We need
   1115     // to install our own region so we need to move the limits
   1116     // of the stack to make room for it.
   1117 
   1118     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
   1119     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
   1120     tlsPtr_.stack_size -= read_guard_size;
   1121 
   1122     InstallImplicitProtection();
   1123   }
   1124 
   1125   // Sanity check.
   1126   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
   1127 
   1128   return true;
   1129 }
   1130 
   1131 void Thread::ShortDump(std::ostream& os) const {
   1132   os << "Thread[";
   1133   if (GetThreadId() != 0) {
   1134     // If we're in kStarting, we won't have a thin lock id or tid yet.
   1135     os << GetThreadId()
   1136        << ",tid=" << GetTid() << ',';
   1137   }
   1138   os << GetState()
   1139      << ",Thread*=" << this
   1140      << ",peer=" << tlsPtr_.opeer
   1141      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
   1142      << "]";
   1143 }
   1144 
   1145 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
   1146                   bool force_dump_stack) const {
   1147   DumpState(os);
   1148   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
   1149 }
   1150 
   1151 mirror::String* Thread::GetThreadName() const {
   1152   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
   1153   if (tlsPtr_.opeer == nullptr) {
   1154     return nullptr;
   1155   }
   1156   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
   1157   return name == nullptr ? nullptr : name->AsString();
   1158 }
   1159 
   1160 void Thread::GetThreadName(std::string& name) const {
   1161   name.assign(*tlsPtr_.name);
   1162 }
   1163 
   1164 uint64_t Thread::GetCpuMicroTime() const {
   1165 #if defined(__linux__)
   1166   clockid_t cpu_clock_id;
   1167   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
   1168   timespec now;
   1169   clock_gettime(cpu_clock_id, &now);
   1170   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
   1171 #else  // __APPLE__
   1172   UNIMPLEMENTED(WARNING);
   1173   return -1;
   1174 #endif
   1175 }
   1176 
   1177 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
   1178 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
   1179   LOG(ERROR) << *thread << " suspend count already zero.";
   1180   Locks::thread_suspend_count_lock_->Unlock(self);
   1181   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1182     Locks::mutator_lock_->SharedTryLock(self);
   1183     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1184       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
   1185     }
   1186   }
   1187   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1188     Locks::thread_list_lock_->TryLock(self);
   1189     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1190       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
   1191     }
   1192   }
   1193   std::ostringstream ss;
   1194   Runtime::Current()->GetThreadList()->Dump(ss);
   1195   LOG(FATAL) << ss.str();
   1196 }
   1197 
   1198 bool Thread::ModifySuspendCountInternal(Thread* self,
   1199                                         int delta,
   1200                                         AtomicInteger* suspend_barrier,
   1201                                         SuspendReason reason) {
   1202   if (kIsDebugBuild) {
   1203     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
   1204           << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
   1205     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
   1206     Locks::thread_suspend_count_lock_->AssertHeld(self);
   1207     if (this != self && !IsSuspended()) {
   1208       Locks::thread_list_lock_->AssertHeld(self);
   1209     }
   1210   }
   1211   // User code suspensions need to be checked more closely since they originate from code outside of
   1212   // the runtime's control.
   1213   if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
   1214     Locks::user_code_suspension_lock_->AssertHeld(self);
   1215     if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
   1216       LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
   1217       return false;
   1218     }
   1219   }
   1220   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
   1221     UnsafeLogFatalForSuspendCount(self, this);
   1222     return false;
   1223   }
   1224 
   1225   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
   1226     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
   1227     // deadlock. b/31683379.
   1228     return false;
   1229   }
   1230 
   1231   uint16_t flags = kSuspendRequest;
   1232   if (delta > 0 && suspend_barrier != nullptr) {
   1233     uint32_t available_barrier = kMaxSuspendBarriers;
   1234     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1235       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
   1236         available_barrier = i;
   1237         break;
   1238       }
   1239     }
   1240     if (available_barrier == kMaxSuspendBarriers) {
   1241       // No barrier spaces available, we can't add another.
   1242       return false;
   1243     }
   1244     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
   1245     flags |= kActiveSuspendBarrier;
   1246   }
   1247 
   1248   tls32_.suspend_count += delta;
   1249   switch (reason) {
   1250     case SuspendReason::kForDebugger:
   1251       tls32_.debug_suspend_count += delta;
   1252       break;
   1253     case SuspendReason::kForUserCode:
   1254       tls32_.user_code_suspend_count += delta;
   1255       break;
   1256     case SuspendReason::kInternal:
   1257       break;
   1258   }
   1259 
   1260   if (tls32_.suspend_count == 0) {
   1261     AtomicClearFlag(kSuspendRequest);
   1262   } else {
   1263     // Two bits might be set simultaneously.
   1264     tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
   1265     TriggerSuspend();
   1266   }
   1267   return true;
   1268 }
   1269 
   1270 bool Thread::PassActiveSuspendBarriers(Thread* self) {
   1271   // Grab the suspend_count lock and copy the current set of
   1272   // barriers. Then clear the list and the flag. The ModifySuspendCount
   1273   // function requires the lock so we prevent a race between setting
   1274   // the kActiveSuspendBarrier flag and clearing it.
   1275   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
   1276   {
   1277     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1278     if (!ReadFlag(kActiveSuspendBarrier)) {
   1279       // quick exit test: the barriers have already been claimed - this is
   1280       // possible as there may be a race to claim and it doesn't matter
   1281       // who wins.
   1282       // All of the callers of this function (except the SuspendAllInternal)
   1283       // will first test the kActiveSuspendBarrier flag without lock. Here
   1284       // double-check whether the barrier has been passed with the
   1285       // suspend_count lock.
   1286       return false;
   1287     }
   1288 
   1289     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1290       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
   1291       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1292     }
   1293     AtomicClearFlag(kActiveSuspendBarrier);
   1294   }
   1295 
   1296   uint32_t barrier_count = 0;
   1297   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
   1298     AtomicInteger* pending_threads = pass_barriers[i];
   1299     if (pending_threads != nullptr) {
   1300       bool done = false;
   1301       do {
   1302         int32_t cur_val = pending_threads->LoadRelaxed();
   1303         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
   1304         // Reduce value by 1.
   1305         done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
   1306 #if ART_USE_FUTEXES
   1307         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
   1308           futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
   1309         }
   1310 #endif
   1311       } while (!done);
   1312       ++barrier_count;
   1313     }
   1314   }
   1315   CHECK_GT(barrier_count, 0U);
   1316   return true;
   1317 }
   1318 
   1319 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
   1320   CHECK(ReadFlag(kActiveSuspendBarrier));
   1321   bool clear_flag = true;
   1322   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1323     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
   1324     if (ptr == target) {
   1325       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1326     } else if (ptr != nullptr) {
   1327       clear_flag = false;
   1328     }
   1329   }
   1330   if (LIKELY(clear_flag)) {
   1331     AtomicClearFlag(kActiveSuspendBarrier);
   1332   }
   1333 }
   1334 
   1335 void Thread::RunCheckpointFunction() {
   1336   bool done = false;
   1337   do {
   1338     // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
   1339     // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
   1340     // to prevent a race between setting the kCheckpointRequest flag and clearing it.
   1341     Closure* checkpoint = nullptr;
   1342     {
   1343       MutexLock mu(this, *Locks::thread_suspend_count_lock_);
   1344       if (tlsPtr_.checkpoint_function != nullptr) {
   1345         checkpoint = tlsPtr_.checkpoint_function;
   1346         if (!checkpoint_overflow_.empty()) {
   1347           // Overflow list not empty, copy the first one out and continue.
   1348           tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
   1349           checkpoint_overflow_.pop_front();
   1350         } else {
   1351           // No overflow checkpoints, this means that we are on the last pending checkpoint.
   1352           tlsPtr_.checkpoint_function = nullptr;
   1353           AtomicClearFlag(kCheckpointRequest);
   1354           done = true;
   1355         }
   1356       } else {
   1357         LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
   1358       }
   1359     }
   1360 
   1361     // Outside the lock, run the checkpoint functions that we collected.
   1362     ScopedTrace trace("Run checkpoint function");
   1363     DCHECK(checkpoint != nullptr);
   1364     checkpoint->Run(this);
   1365   } while (!done);
   1366 }
   1367 
   1368 void Thread::RunEmptyCheckpoint() {
   1369   DCHECK_EQ(Thread::Current(), this);
   1370   AtomicClearFlag(kEmptyCheckpointRequest);
   1371   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
   1372 }
   1373 
   1374 bool Thread::RequestCheckpoint(Closure* function) {
   1375   union StateAndFlags old_state_and_flags;
   1376   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1377   if (old_state_and_flags.as_struct.state != kRunnable) {
   1378     return false;  // Fail, thread is suspended and so can't run a checkpoint.
   1379   }
   1380 
   1381   // We must be runnable to request a checkpoint.
   1382   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1383   union StateAndFlags new_state_and_flags;
   1384   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1385   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
   1386   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
   1387       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1388   if (success) {
   1389     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
   1390     if (tlsPtr_.checkpoint_function == nullptr) {
   1391       tlsPtr_.checkpoint_function = function;
   1392     } else {
   1393       checkpoint_overflow_.push_back(function);
   1394     }
   1395     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
   1396     TriggerSuspend();
   1397   }
   1398   return success;
   1399 }
   1400 
   1401 bool Thread::RequestEmptyCheckpoint() {
   1402   union StateAndFlags old_state_and_flags;
   1403   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1404   if (old_state_and_flags.as_struct.state != kRunnable) {
   1405     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
   1406     // heap access (eg. the read barrier).
   1407     return false;
   1408   }
   1409 
   1410   // We must be runnable to request a checkpoint.
   1411   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1412   union StateAndFlags new_state_and_flags;
   1413   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1414   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
   1415   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
   1416       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1417   if (success) {
   1418     TriggerSuspend();
   1419   }
   1420   return success;
   1421 }
   1422 
   1423 class BarrierClosure : public Closure {
   1424  public:
   1425   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
   1426 
   1427   void Run(Thread* self) OVERRIDE {
   1428     wrapped_->Run(self);
   1429     barrier_.Pass(self);
   1430   }
   1431 
   1432   void Wait(Thread* self) {
   1433     barrier_.Increment(self, 1);
   1434   }
   1435 
   1436  private:
   1437   Closure* wrapped_;
   1438   Barrier barrier_;
   1439 };
   1440 
   1441 bool Thread::RequestSynchronousCheckpoint(Closure* function) {
   1442   if (this == Thread::Current()) {
   1443     // Asked to run on this thread. Just run.
   1444     function->Run(this);
   1445     return true;
   1446   }
   1447   Thread* self = Thread::Current();
   1448 
   1449   // The current thread is not this thread.
   1450 
   1451   if (GetState() == ThreadState::kTerminated) {
   1452     return false;
   1453   }
   1454 
   1455   // Note: we're holding the thread-list lock. The thread cannot die at this point.
   1456   struct ScopedThreadListLockUnlock {
   1457     explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
   1458         : self_thread(self_in) {
   1459       Locks::thread_list_lock_->AssertHeld(self_thread);
   1460       Locks::thread_list_lock_->Unlock(self_thread);
   1461     }
   1462 
   1463     ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
   1464       Locks::thread_list_lock_->AssertNotHeld(self_thread);
   1465       Locks::thread_list_lock_->Lock(self_thread);
   1466     }
   1467 
   1468     Thread* self_thread;
   1469   };
   1470 
   1471   for (;;) {
   1472     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
   1473     // suspend-count lock for too long.
   1474     if (GetState() == ThreadState::kRunnable) {
   1475       BarrierClosure barrier_closure(function);
   1476       bool installed = false;
   1477       {
   1478         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1479         installed = RequestCheckpoint(&barrier_closure);
   1480       }
   1481       if (installed) {
   1482         // Relinquish the thread-list lock, temporarily. We should not wait holding any locks.
   1483         ScopedThreadListLockUnlock stllu(self);
   1484         ScopedThreadSuspension sts(self, ThreadState::kWaiting);
   1485         barrier_closure.Wait(self);
   1486         return true;
   1487       }
   1488       // Fall-through.
   1489     }
   1490 
   1491     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
   1492     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
   1493     //       certain situations.
   1494     {
   1495       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1496 
   1497       if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
   1498         // Just retry the loop.
   1499         sched_yield();
   1500         continue;
   1501       }
   1502     }
   1503 
   1504     {
   1505       ScopedThreadListLockUnlock stllu(self);
   1506       {
   1507         ScopedThreadSuspension sts(self, ThreadState::kWaiting);
   1508         while (GetState() == ThreadState::kRunnable) {
   1509           // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
   1510           // moves us to suspended.
   1511           sched_yield();
   1512         }
   1513       }
   1514 
   1515       function->Run(this);
   1516     }
   1517 
   1518     {
   1519       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1520 
   1521       DCHECK_NE(GetState(), ThreadState::kRunnable);
   1522       bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
   1523       DCHECK(updated);
   1524     }
   1525 
   1526     {
   1527       // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
   1528       // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
   1529       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1530       Thread::resume_cond_->Broadcast(self);
   1531     }
   1532 
   1533     return true;  // We're done, break out of the loop.
   1534   }
   1535 }
   1536 
   1537 Closure* Thread::GetFlipFunction() {
   1538   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1539   Closure* func;
   1540   do {
   1541     func = atomic_func->LoadRelaxed();
   1542     if (func == nullptr) {
   1543       return nullptr;
   1544     }
   1545   } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
   1546   DCHECK(func != nullptr);
   1547   return func;
   1548 }
   1549 
   1550 void Thread::SetFlipFunction(Closure* function) {
   1551   CHECK(function != nullptr);
   1552   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1553   atomic_func->StoreSequentiallyConsistent(function);
   1554 }
   1555 
   1556 void Thread::FullSuspendCheck() {
   1557   ScopedTrace trace(__FUNCTION__);
   1558   VLOG(threads) << this << " self-suspending";
   1559   // Make thread appear suspended to other threads, release mutator_lock_.
   1560   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
   1561   ScopedThreadSuspension(this, kSuspended);
   1562   VLOG(threads) << this << " self-reviving";
   1563 }
   1564 
   1565 static std::string GetSchedulerGroupName(pid_t tid) {
   1566   // /proc/<pid>/cgroup looks like this:
   1567   // 2:devices:/
   1568   // 1:cpuacct,cpu:/
   1569   // We want the third field from the line whose second field contains the "cpu" token.
   1570   std::string cgroup_file;
   1571   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
   1572     return "";
   1573   }
   1574   std::vector<std::string> cgroup_lines;
   1575   Split(cgroup_file, '\n', &cgroup_lines);
   1576   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
   1577     std::vector<std::string> cgroup_fields;
   1578     Split(cgroup_lines[i], ':', &cgroup_fields);
   1579     std::vector<std::string> cgroups;
   1580     Split(cgroup_fields[1], ',', &cgroups);
   1581     for (size_t j = 0; j < cgroups.size(); ++j) {
   1582       if (cgroups[j] == "cpu") {
   1583         return cgroup_fields[2].substr(1);  // Skip the leading slash.
   1584       }
   1585     }
   1586   }
   1587   return "";
   1588 }
   1589 
   1590 
   1591 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
   1592   std::string group_name;
   1593   int priority;
   1594   bool is_daemon = false;
   1595   Thread* self = Thread::Current();
   1596 
   1597   // If flip_function is not null, it means we have run a checkpoint
   1598   // before the thread wakes up to execute the flip function and the
   1599   // thread roots haven't been forwarded.  So the following access to
   1600   // the roots (opeer or methods in the frames) would be bad. Run it
   1601   // here. TODO: clean up.
   1602   if (thread != nullptr) {
   1603     ScopedObjectAccessUnchecked soa(self);
   1604     Thread* this_thread = const_cast<Thread*>(thread);
   1605     Closure* flip_func = this_thread->GetFlipFunction();
   1606     if (flip_func != nullptr) {
   1607       flip_func->Run(this_thread);
   1608     }
   1609   }
   1610 
   1611   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
   1612   // cause ScopedObjectAccessUnchecked to deadlock.
   1613   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
   1614     ScopedObjectAccessUnchecked soa(self);
   1615     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
   1616         ->GetInt(thread->tlsPtr_.opeer);
   1617     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
   1618         ->GetBoolean(thread->tlsPtr_.opeer);
   1619 
   1620     ObjPtr<mirror::Object> thread_group =
   1621         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   1622             ->GetObject(thread->tlsPtr_.opeer);
   1623 
   1624     if (thread_group != nullptr) {
   1625       ArtField* group_name_field =
   1626           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
   1627       ObjPtr<mirror::String> group_name_string =
   1628           group_name_field->GetObject(thread_group)->AsString();
   1629       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
   1630     }
   1631   } else {
   1632     priority = GetNativePriority();
   1633   }
   1634 
   1635   std::string scheduler_group_name(GetSchedulerGroupName(tid));
   1636   if (scheduler_group_name.empty()) {
   1637     scheduler_group_name = "default";
   1638   }
   1639 
   1640   if (thread != nullptr) {
   1641     os << '"' << *thread->tlsPtr_.name << '"';
   1642     if (is_daemon) {
   1643       os << " daemon";
   1644     }
   1645     os << " prio=" << priority
   1646        << " tid=" << thread->GetThreadId()
   1647        << " " << thread->GetState();
   1648     if (thread->IsStillStarting()) {
   1649       os << " (still starting up)";
   1650     }
   1651     os << "\n";
   1652   } else {
   1653     os << '"' << ::art::GetThreadName(tid) << '"'
   1654        << " prio=" << priority
   1655        << " (not attached)\n";
   1656   }
   1657 
   1658   if (thread != nullptr) {
   1659     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1660     os << "  | group=\"" << group_name << "\""
   1661        << " sCount=" << thread->tls32_.suspend_count
   1662        << " dsCount=" << thread->tls32_.debug_suspend_count
   1663        << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
   1664        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
   1665        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
   1666   }
   1667 
   1668   os << "  | sysTid=" << tid
   1669      << " nice=" << getpriority(PRIO_PROCESS, tid)
   1670      << " cgrp=" << scheduler_group_name;
   1671   if (thread != nullptr) {
   1672     int policy;
   1673     sched_param sp;
   1674 #if !defined(__APPLE__)
   1675     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
   1676     policy = sched_getscheduler(tid);
   1677     if (policy == -1) {
   1678       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
   1679     }
   1680     int sched_getparam_result = sched_getparam(tid, &sp);
   1681     if (sched_getparam_result == -1) {
   1682       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
   1683       sp.sched_priority = -1;
   1684     }
   1685 #else
   1686     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
   1687                        __FUNCTION__);
   1688 #endif
   1689     os << " sched=" << policy << "/" << sp.sched_priority
   1690        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
   1691   }
   1692   os << "\n";
   1693 
   1694   // Grab the scheduler stats for this thread.
   1695   std::string scheduler_stats;
   1696   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
   1697     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
   1698   } else {
   1699     scheduler_stats = "0 0 0";
   1700   }
   1701 
   1702   char native_thread_state = '?';
   1703   int utime = 0;
   1704   int stime = 0;
   1705   int task_cpu = 0;
   1706   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
   1707 
   1708   os << "  | state=" << native_thread_state
   1709      << " schedstat=( " << scheduler_stats << " )"
   1710      << " utm=" << utime
   1711      << " stm=" << stime
   1712      << " core=" << task_cpu
   1713      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
   1714   if (thread != nullptr) {
   1715     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
   1716         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
   1717         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
   1718     // Dump the held mutexes.
   1719     os << "  | held mutexes=";
   1720     for (size_t i = 0; i < kLockLevelCount; ++i) {
   1721       if (i != kMonitorLock) {
   1722         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
   1723         if (mutex != nullptr) {
   1724           os << " \"" << mutex->GetName() << "\"";
   1725           if (mutex->IsReaderWriterMutex()) {
   1726             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
   1727             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
   1728               os << "(exclusive held)";
   1729             } else {
   1730               os << "(shared held)";
   1731             }
   1732           }
   1733         }
   1734       }
   1735     }
   1736     os << "\n";
   1737   }
   1738 }
   1739 
   1740 void Thread::DumpState(std::ostream& os) const {
   1741   Thread::DumpState(os, this, GetTid());
   1742 }
   1743 
   1744 struct StackDumpVisitor : public StackVisitor {
   1745   StackDumpVisitor(std::ostream& os_in,
   1746                    Thread* thread_in,
   1747                    Context* context,
   1748                    bool can_allocate_in,
   1749                    bool check_suspended = true,
   1750                    bool dump_locks_in = true)
   1751       REQUIRES_SHARED(Locks::mutator_lock_)
   1752       : StackVisitor(thread_in,
   1753                      context,
   1754                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
   1755                      check_suspended),
   1756         os(os_in),
   1757         can_allocate(can_allocate_in),
   1758         last_method(nullptr),
   1759         last_line_number(0),
   1760         repetition_count(0),
   1761         frame_count(0),
   1762         dump_locks(dump_locks_in) {}
   1763 
   1764   virtual ~StackDumpVisitor() {
   1765     if (frame_count == 0) {
   1766       os << "  (no managed stack frames)\n";
   1767     }
   1768   }
   1769 
   1770   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   1771     ArtMethod* m = GetMethod();
   1772     if (m->IsRuntimeMethod()) {
   1773       return true;
   1774     }
   1775     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1776     const int kMaxRepetition = 3;
   1777     ObjPtr<mirror::Class> c = m->GetDeclaringClass();
   1778     ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
   1779     int line_number = -1;
   1780     if (dex_cache != nullptr) {  // be tolerant of bad input
   1781       const DexFile* dex_file = dex_cache->GetDexFile();
   1782       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
   1783     }
   1784     if (line_number == last_line_number && last_method == m) {
   1785       ++repetition_count;
   1786     } else {
   1787       if (repetition_count >= kMaxRepetition) {
   1788         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
   1789       }
   1790       repetition_count = 0;
   1791       last_line_number = line_number;
   1792       last_method = m;
   1793     }
   1794     if (repetition_count < kMaxRepetition) {
   1795       os << "  at " << m->PrettyMethod(false);
   1796       if (m->IsNative()) {
   1797         os << "(Native method)";
   1798       } else {
   1799         const char* source_file(m->GetDeclaringClassSourceFile());
   1800         os << "(" << (source_file != nullptr ? source_file : "unavailable")
   1801            << ":" << line_number << ")";
   1802       }
   1803       os << "\n";
   1804       if (frame_count == 0) {
   1805         Monitor::DescribeWait(os, GetThread());
   1806       }
   1807       if (can_allocate && dump_locks) {
   1808         // Visit locks, but do not abort on errors. This would trigger a nested abort.
   1809         // Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
   1810         // RegTypeCache::RegTypeCache due to thread_list_lock.
   1811         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
   1812       }
   1813     }
   1814 
   1815     ++frame_count;
   1816     return true;
   1817   }
   1818 
   1819   static void DumpLockedObject(mirror::Object* o, void* context)
   1820       REQUIRES_SHARED(Locks::mutator_lock_) {
   1821     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
   1822     os << "  - locked ";
   1823     if (o == nullptr) {
   1824       os << "an unknown object";
   1825     } else {
   1826       if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
   1827         // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
   1828         // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
   1829         // IdentityHashCode call below will crash. So explicitly mark/forward it here.
   1830         o = ReadBarrier::Mark(o);
   1831       }
   1832       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
   1833           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
   1834         // Getting the identity hashcode here would result in lock inflation and suspension of the
   1835         // current thread, which isn't safe if this is the only runnable thread.
   1836         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
   1837                            o->PrettyTypeOf().c_str());
   1838       } else {
   1839         // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
   1840         // we get the pretty type beofre we call IdentityHashCode.
   1841         const std::string pretty_type(o->PrettyTypeOf());
   1842         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
   1843       }
   1844     }
   1845     os << "\n";
   1846   }
   1847 
   1848   std::ostream& os;
   1849   const bool can_allocate;
   1850   ArtMethod* last_method;
   1851   int last_line_number;
   1852   int repetition_count;
   1853   int frame_count;
   1854   const bool dump_locks;
   1855 };
   1856 
   1857 static bool ShouldShowNativeStack(const Thread* thread)
   1858     REQUIRES_SHARED(Locks::mutator_lock_) {
   1859   ThreadState state = thread->GetState();
   1860 
   1861   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
   1862   if (state > kWaiting && state < kStarting) {
   1863     return true;
   1864   }
   1865 
   1866   // In an Object.wait variant or Thread.sleep? That's not interesting.
   1867   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
   1868     return false;
   1869   }
   1870 
   1871   // Threads with no managed stack frames should be shown.
   1872   const ManagedStack* managed_stack = thread->GetManagedStack();
   1873   if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
   1874       managed_stack->GetTopShadowFrame() == nullptr)) {
   1875     return true;
   1876   }
   1877 
   1878   // In some other native method? That's interesting.
   1879   // We don't just check kNative because native methods will be in state kSuspended if they're
   1880   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
   1881   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
   1882   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
   1883   return current_method != nullptr && current_method->IsNative();
   1884 }
   1885 
   1886 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
   1887   // If flip_function is not null, it means we have run a checkpoint
   1888   // before the thread wakes up to execute the flip function and the
   1889   // thread roots haven't been forwarded.  So the following access to
   1890   // the roots (locks or methods in the frames) would be bad. Run it
   1891   // here. TODO: clean up.
   1892   {
   1893     Thread* this_thread = const_cast<Thread*>(this);
   1894     Closure* flip_func = this_thread->GetFlipFunction();
   1895     if (flip_func != nullptr) {
   1896       flip_func->Run(this_thread);
   1897     }
   1898   }
   1899 
   1900   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
   1901   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
   1902   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
   1903   // thread.
   1904   StackHandleScope<1> scope(Thread::Current());
   1905   Handle<mirror::Throwable> exc;
   1906   bool have_exception = false;
   1907   if (IsExceptionPending()) {
   1908     exc = scope.NewHandle(GetException());
   1909     const_cast<Thread*>(this)->ClearException();
   1910     have_exception = true;
   1911   }
   1912 
   1913   std::unique_ptr<Context> context(Context::Create());
   1914   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
   1915                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
   1916   dumper.WalkStack();
   1917 
   1918   if (have_exception) {
   1919     const_cast<Thread*>(this)->SetException(exc.Get());
   1920   }
   1921 }
   1922 
   1923 void Thread::DumpStack(std::ostream& os,
   1924                        bool dump_native_stack,
   1925                        BacktraceMap* backtrace_map,
   1926                        bool force_dump_stack) const {
   1927   // TODO: we call this code when dying but may not have suspended the thread ourself. The
   1928   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
   1929   //       the race with the thread_suspend_count_lock_).
   1930   bool dump_for_abort = (gAborting > 0);
   1931   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
   1932   if (!kIsDebugBuild) {
   1933     // We always want to dump the stack for an abort, however, there is no point dumping another
   1934     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
   1935     safe_to_dump = (safe_to_dump || dump_for_abort);
   1936   }
   1937   if (safe_to_dump || force_dump_stack) {
   1938     // If we're currently in native code, dump that stack before dumping the managed stack.
   1939     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
   1940       DumpKernelStack(os, GetTid(), "  kernel: ", false);
   1941       ArtMethod* method =
   1942           GetCurrentMethod(nullptr,
   1943                            /*check_suspended*/ !force_dump_stack,
   1944                            /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
   1945       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
   1946     }
   1947     DumpJavaStack(os,
   1948                   /*check_suspended*/ !force_dump_stack,
   1949                   /*dump_locks*/ !force_dump_stack);
   1950   } else {
   1951     os << "Not able to dump stack of thread that isn't suspended";
   1952   }
   1953 }
   1954 
   1955 void Thread::ThreadExitCallback(void* arg) {
   1956   Thread* self = reinterpret_cast<Thread*>(arg);
   1957   if (self->tls32_.thread_exit_check_count == 0) {
   1958     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
   1959         "going to use a pthread_key_create destructor?): " << *self;
   1960     CHECK(is_started_);
   1961 #ifdef ART_TARGET_ANDROID
   1962     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
   1963 #else
   1964     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
   1965 #endif
   1966     self->tls32_.thread_exit_check_count = 1;
   1967   } else {
   1968     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
   1969   }
   1970 }
   1971 
   1972 void Thread::Startup() {
   1973   CHECK(!is_started_);
   1974   is_started_ = true;
   1975   {
   1976     // MutexLock to keep annotalysis happy.
   1977     //
   1978     // Note we use null for the thread because Thread::Current can
   1979     // return garbage since (is_started_ == true) and
   1980     // Thread::pthread_key_self_ is not yet initialized.
   1981     // This was seen on glibc.
   1982     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
   1983     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
   1984                                          *Locks::thread_suspend_count_lock_);
   1985   }
   1986 
   1987   // Allocate a TLS slot.
   1988   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
   1989                      "self key");
   1990 
   1991   // Double-check the TLS slot allocation.
   1992   if (pthread_getspecific(pthread_key_self_) != nullptr) {
   1993     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
   1994   }
   1995 }
   1996 
   1997 void Thread::FinishStartup() {
   1998   Runtime* runtime = Runtime::Current();
   1999   CHECK(runtime->IsStarted());
   2000 
   2001   // Finish attaching the main thread.
   2002   ScopedObjectAccess soa(Thread::Current());
   2003   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
   2004   Thread::Current()->AssertNoPendingException();
   2005 
   2006   Runtime::Current()->GetClassLinker()->RunRootClinits();
   2007 
   2008   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
   2009   // threads, this is done in Thread.start() on the Java side.
   2010   {
   2011     // This is only ever done once. There's no benefit in caching the method.
   2012     jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
   2013                                                         "add",
   2014                                                         "(Ljava/lang/Thread;)V");
   2015     CHECK(thread_group_add != nullptr);
   2016     ScopedLocalRef<jobject> thread_jobject(
   2017         soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
   2018     soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
   2019                                         WellKnownClasses::java_lang_ThreadGroup,
   2020                                         thread_group_add,
   2021                                         thread_jobject.get());
   2022     Thread::Current()->AssertNoPendingException();
   2023   }
   2024 }
   2025 
   2026 void Thread::Shutdown() {
   2027   CHECK(is_started_);
   2028   is_started_ = false;
   2029   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
   2030   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   2031   if (resume_cond_ != nullptr) {
   2032     delete resume_cond_;
   2033     resume_cond_ = nullptr;
   2034   }
   2035 }
   2036 
   2037 Thread::Thread(bool daemon)
   2038     : tls32_(daemon),
   2039       wait_monitor_(nullptr),
   2040       custom_tls_(nullptr),
   2041       can_call_into_java_(true) {
   2042   wait_mutex_ = new Mutex("a thread wait mutex");
   2043   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
   2044   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
   2045   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
   2046 
   2047   static_assert((sizeof(Thread) % 4) == 0U,
   2048                 "art::Thread has a size which is not a multiple of 4.");
   2049   tls32_.state_and_flags.as_struct.flags = 0;
   2050   tls32_.state_and_flags.as_struct.state = kNative;
   2051   tls32_.interrupted.StoreRelaxed(false);
   2052   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
   2053   std::fill(tlsPtr_.rosalloc_runs,
   2054             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
   2055             gc::allocator::RosAlloc::GetDedicatedFullRun());
   2056   tlsPtr_.checkpoint_function = nullptr;
   2057   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   2058     tlsPtr_.active_suspend_barriers[i] = nullptr;
   2059   }
   2060   tlsPtr_.flip_function = nullptr;
   2061   tlsPtr_.thread_local_mark_stack = nullptr;
   2062   tls32_.is_transitioning_to_runnable = false;
   2063 }
   2064 
   2065 bool Thread::IsStillStarting() const {
   2066   // You might think you can check whether the state is kStarting, but for much of thread startup,
   2067   // the thread is in kNative; it might also be in kVmWait.
   2068   // You might think you can check whether the peer is null, but the peer is actually created and
   2069   // assigned fairly early on, and needs to be.
   2070   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
   2071   // this thread _ever_ entered kRunnable".
   2072   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
   2073       (*tlsPtr_.name == kThreadNameDuringStartup);
   2074 }
   2075 
   2076 void Thread::AssertPendingException() const {
   2077   CHECK(IsExceptionPending()) << "Pending exception expected.";
   2078 }
   2079 
   2080 void Thread::AssertPendingOOMException() const {
   2081   AssertPendingException();
   2082   auto* e = GetException();
   2083   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
   2084       << e->Dump();
   2085 }
   2086 
   2087 void Thread::AssertNoPendingException() const {
   2088   if (UNLIKELY(IsExceptionPending())) {
   2089     ScopedObjectAccess soa(Thread::Current());
   2090     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
   2091   }
   2092 }
   2093 
   2094 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
   2095   if (UNLIKELY(IsExceptionPending())) {
   2096     ScopedObjectAccess soa(Thread::Current());
   2097     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
   2098         << GetException()->Dump();
   2099   }
   2100 }
   2101 
   2102 class MonitorExitVisitor : public SingleRootVisitor {
   2103  public:
   2104   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
   2105 
   2106   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
   2107   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
   2108       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   2109     if (self_->HoldsLock(entered_monitor)) {
   2110       LOG(WARNING) << "Calling MonitorExit on object "
   2111                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
   2112                    << " left locked by native thread "
   2113                    << *Thread::Current() << " which is detaching";
   2114       entered_monitor->MonitorExit(self_);
   2115     }
   2116   }
   2117 
   2118  private:
   2119   Thread* const self_;
   2120 };
   2121 
   2122 void Thread::Destroy() {
   2123   Thread* self = this;
   2124   DCHECK_EQ(self, Thread::Current());
   2125 
   2126   if (tlsPtr_.jni_env != nullptr) {
   2127     {
   2128       ScopedObjectAccess soa(self);
   2129       MonitorExitVisitor visitor(self);
   2130       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
   2131       tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
   2132     }
   2133     // Release locally held global references which releasing may require the mutator lock.
   2134     if (tlsPtr_.jpeer != nullptr) {
   2135       // If pthread_create fails we don't have a jni env here.
   2136       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
   2137       tlsPtr_.jpeer = nullptr;
   2138     }
   2139     if (tlsPtr_.class_loader_override != nullptr) {
   2140       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2141       tlsPtr_.class_loader_override = nullptr;
   2142     }
   2143   }
   2144 
   2145   if (tlsPtr_.opeer != nullptr) {
   2146     ScopedObjectAccess soa(self);
   2147     // We may need to call user-supplied managed code, do this before final clean-up.
   2148     HandleUncaughtExceptions(soa);
   2149     Runtime* runtime = Runtime::Current();
   2150     if (runtime != nullptr) {
   2151       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
   2152     }
   2153     RemoveFromThreadGroup(soa);
   2154 
   2155     // this.nativePeer = 0;
   2156     if (Runtime::Current()->IsActiveTransaction()) {
   2157       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2158           ->SetLong<true>(tlsPtr_.opeer, 0);
   2159     } else {
   2160       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2161           ->SetLong<false>(tlsPtr_.opeer, 0);
   2162     }
   2163 
   2164     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
   2165     // who is waiting.
   2166     ObjPtr<mirror::Object> lock =
   2167         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
   2168     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
   2169     if (lock != nullptr) {
   2170       StackHandleScope<1> hs(self);
   2171       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
   2172       ObjectLock<mirror::Object> locker(self, h_obj);
   2173       locker.NotifyAll();
   2174     }
   2175     tlsPtr_.opeer = nullptr;
   2176   }
   2177 
   2178   {
   2179     ScopedObjectAccess soa(self);
   2180     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
   2181     if (kUseReadBarrier) {
   2182       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
   2183     }
   2184   }
   2185 }
   2186 
   2187 Thread::~Thread() {
   2188   CHECK(tlsPtr_.class_loader_override == nullptr);
   2189   CHECK(tlsPtr_.jpeer == nullptr);
   2190   CHECK(tlsPtr_.opeer == nullptr);
   2191   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
   2192   if (initialized) {
   2193     delete tlsPtr_.jni_env;
   2194     tlsPtr_.jni_env = nullptr;
   2195   }
   2196   CHECK_NE(GetState(), kRunnable);
   2197   CHECK(!ReadFlag(kCheckpointRequest));
   2198   CHECK(!ReadFlag(kEmptyCheckpointRequest));
   2199   CHECK(tlsPtr_.checkpoint_function == nullptr);
   2200   CHECK_EQ(checkpoint_overflow_.size(), 0u);
   2201   CHECK(tlsPtr_.flip_function == nullptr);
   2202   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
   2203 
   2204   // Make sure we processed all deoptimization requests.
   2205   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
   2206   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
   2207       "Not all deoptimized frames have been consumed by the debugger.";
   2208 
   2209   // We may be deleting a still born thread.
   2210   SetStateUnsafe(kTerminated);
   2211 
   2212   delete wait_cond_;
   2213   delete wait_mutex_;
   2214 
   2215   if (tlsPtr_.long_jump_context != nullptr) {
   2216     delete tlsPtr_.long_jump_context;
   2217   }
   2218 
   2219   if (initialized) {
   2220     CleanupCpu();
   2221   }
   2222 
   2223   if (tlsPtr_.single_step_control != nullptr) {
   2224     delete tlsPtr_.single_step_control;
   2225   }
   2226   delete tlsPtr_.instrumentation_stack;
   2227   delete tlsPtr_.name;
   2228   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
   2229 
   2230   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
   2231 
   2232   TearDownAlternateSignalStack();
   2233 }
   2234 
   2235 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
   2236   if (!IsExceptionPending()) {
   2237     return;
   2238   }
   2239   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2240   ScopedThreadStateChange tsc(this, kNative);
   2241 
   2242   // Get and clear the exception.
   2243   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
   2244   tlsPtr_.jni_env->ExceptionClear();
   2245 
   2246   // Call the Thread instance's dispatchUncaughtException(Throwable)
   2247   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
   2248       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
   2249       exception.get());
   2250 
   2251   // If the dispatchUncaughtException threw, clear that exception too.
   2252   tlsPtr_.jni_env->ExceptionClear();
   2253 }
   2254 
   2255 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
   2256   // this.group.removeThread(this);
   2257   // group can be null if we're in the compiler or a test.
   2258   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   2259       ->GetObject(tlsPtr_.opeer);
   2260   if (ogroup != nullptr) {
   2261     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
   2262     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2263     ScopedThreadStateChange tsc(soa.Self(), kNative);
   2264     tlsPtr_.jni_env->CallVoidMethod(group.get(),
   2265                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
   2266                                     peer.get());
   2267   }
   2268 }
   2269 
   2270 bool Thread::HandleScopeContains(jobject obj) const {
   2271   StackReference<mirror::Object>* hs_entry =
   2272       reinterpret_cast<StackReference<mirror::Object>*>(obj);
   2273   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
   2274     if (cur->Contains(hs_entry)) {
   2275       return true;
   2276     }
   2277   }
   2278   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
   2279   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
   2280 }
   2281 
   2282 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
   2283   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
   2284       visitor, RootInfo(kRootNativeStack, thread_id));
   2285   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   2286     cur->VisitRoots(buffered_visitor);
   2287   }
   2288 }
   2289 
   2290 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
   2291   if (obj == nullptr) {
   2292     return nullptr;
   2293   }
   2294   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2295   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2296   ObjPtr<mirror::Object> result;
   2297   bool expect_null = false;
   2298   // The "kinds" below are sorted by the frequency we expect to encounter them.
   2299   if (kind == kLocal) {
   2300     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
   2301     // Local references do not need a read barrier.
   2302     result = locals.Get<kWithoutReadBarrier>(ref);
   2303   } else if (kind == kHandleScopeOrInvalid) {
   2304     // TODO: make stack indirect reference table lookup more efficient.
   2305     // Check if this is a local reference in the handle scope.
   2306     if (LIKELY(HandleScopeContains(obj))) {
   2307       // Read from handle scope.
   2308       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
   2309       VerifyObject(result);
   2310     } else {
   2311       tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
   2312       expect_null = true;
   2313       result = nullptr;
   2314     }
   2315   } else if (kind == kGlobal) {
   2316     result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
   2317   } else {
   2318     DCHECK_EQ(kind, kWeakGlobal);
   2319     result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
   2320     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
   2321       // This is a special case where it's okay to return null.
   2322       expect_null = true;
   2323       result = nullptr;
   2324     }
   2325   }
   2326 
   2327   if (UNLIKELY(!expect_null && result == nullptr)) {
   2328     tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
   2329                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
   2330   }
   2331   return result;
   2332 }
   2333 
   2334 bool Thread::IsJWeakCleared(jweak obj) const {
   2335   CHECK(obj != nullptr);
   2336   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2337   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2338   CHECK_EQ(kind, kWeakGlobal);
   2339   return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
   2340 }
   2341 
   2342 // Implements java.lang.Thread.interrupted.
   2343 bool Thread::Interrupted() {
   2344   DCHECK_EQ(Thread::Current(), this);
   2345   // No other thread can concurrently reset the interrupted flag.
   2346   bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
   2347   if (interrupted) {
   2348     tls32_.interrupted.StoreSequentiallyConsistent(false);
   2349   }
   2350   return interrupted;
   2351 }
   2352 
   2353 // Implements java.lang.Thread.isInterrupted.
   2354 bool Thread::IsInterrupted() {
   2355   return tls32_.interrupted.LoadSequentiallyConsistent();
   2356 }
   2357 
   2358 void Thread::Interrupt(Thread* self) {
   2359   MutexLock mu(self, *wait_mutex_);
   2360   if (tls32_.interrupted.LoadSequentiallyConsistent()) {
   2361     return;
   2362   }
   2363   tls32_.interrupted.StoreSequentiallyConsistent(true);
   2364   NotifyLocked(self);
   2365 }
   2366 
   2367 void Thread::Notify() {
   2368   Thread* self = Thread::Current();
   2369   MutexLock mu(self, *wait_mutex_);
   2370   NotifyLocked(self);
   2371 }
   2372 
   2373 void Thread::NotifyLocked(Thread* self) {
   2374   if (wait_monitor_ != nullptr) {
   2375     wait_cond_->Signal(self);
   2376   }
   2377 }
   2378 
   2379 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
   2380   if (tlsPtr_.class_loader_override != nullptr) {
   2381     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2382   }
   2383   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
   2384 }
   2385 
   2386 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
   2387 
   2388 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
   2389 class FetchStackTraceVisitor : public StackVisitor {
   2390  public:
   2391   explicit FetchStackTraceVisitor(Thread* thread,
   2392                                   ArtMethodDexPcPair* saved_frames = nullptr,
   2393                                   size_t max_saved_frames = 0)
   2394       REQUIRES_SHARED(Locks::mutator_lock_)
   2395       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2396         saved_frames_(saved_frames),
   2397         max_saved_frames_(max_saved_frames) {}
   2398 
   2399   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   2400     // We want to skip frames up to and including the exception's constructor.
   2401     // Note we also skip the frame if it doesn't have a method (namely the callee
   2402     // save frame)
   2403     ArtMethod* m = GetMethod();
   2404     if (skipping_ && !m->IsRuntimeMethod() &&
   2405         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
   2406       skipping_ = false;
   2407     }
   2408     if (!skipping_) {
   2409       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
   2410         if (depth_ < max_saved_frames_) {
   2411           saved_frames_[depth_].first = m;
   2412           saved_frames_[depth_].second = m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc();
   2413         }
   2414         ++depth_;
   2415       }
   2416     } else {
   2417       ++skip_depth_;
   2418     }
   2419     return true;
   2420   }
   2421 
   2422   uint32_t GetDepth() const {
   2423     return depth_;
   2424   }
   2425 
   2426   uint32_t GetSkipDepth() const {
   2427     return skip_depth_;
   2428   }
   2429 
   2430  private:
   2431   uint32_t depth_ = 0;
   2432   uint32_t skip_depth_ = 0;
   2433   bool skipping_ = true;
   2434   ArtMethodDexPcPair* saved_frames_;
   2435   const size_t max_saved_frames_;
   2436 
   2437   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
   2438 };
   2439 
   2440 template<bool kTransactionActive>
   2441 class BuildInternalStackTraceVisitor : public StackVisitor {
   2442  public:
   2443   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
   2444       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2445         self_(self),
   2446         skip_depth_(skip_depth),
   2447         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
   2448 
   2449   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
   2450     // Allocate method trace as an object array where the first element is a pointer array that
   2451     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
   2452     // class of the ArtMethod pointers.
   2453     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2454     StackHandleScope<1> hs(self_);
   2455     ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
   2456     // The first element is the methods and dex pc array, the other elements are declaring classes
   2457     // for the methods to ensure classes in the stack trace don't get unloaded.
   2458     Handle<mirror::ObjectArray<mirror::Object>> trace(
   2459         hs.NewHandle(
   2460             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
   2461     if (trace == nullptr) {
   2462       // Acquire uninterruptible_ in all paths.
   2463       self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2464       self_->AssertPendingOOMException();
   2465       return false;
   2466     }
   2467     ObjPtr<mirror::PointerArray> methods_and_pcs =
   2468         class_linker->AllocPointerArray(self_, depth * 2);
   2469     const char* last_no_suspend_cause =
   2470         self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2471     if (methods_and_pcs == nullptr) {
   2472       self_->AssertPendingOOMException();
   2473       return false;
   2474     }
   2475     trace->Set(0, methods_and_pcs);
   2476     trace_ = trace.Get();
   2477     // If We are called from native, use non-transactional mode.
   2478     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
   2479     return true;
   2480   }
   2481 
   2482   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
   2483     self_->EndAssertNoThreadSuspension(nullptr);
   2484   }
   2485 
   2486   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   2487     if (trace_ == nullptr) {
   2488       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
   2489     }
   2490     if (skip_depth_ > 0) {
   2491       skip_depth_--;
   2492       return true;
   2493     }
   2494     ArtMethod* m = GetMethod();
   2495     if (m->IsRuntimeMethod()) {
   2496       return true;  // Ignore runtime frames (in particular callee save).
   2497     }
   2498     AddFrame(m, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
   2499     return true;
   2500   }
   2501 
   2502   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
   2503     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
   2504     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
   2505     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
   2506         trace_methods_and_pcs->GetLength() / 2 + count_,
   2507         dex_pc,
   2508         pointer_size_);
   2509     // Save the declaring class of the method to ensure that the declaring classes of the methods
   2510     // do not get unloaded while the stack trace is live.
   2511     trace_->Set(count_ + 1, method->GetDeclaringClass());
   2512     ++count_;
   2513   }
   2514 
   2515   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
   2516     return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
   2517   }
   2518 
   2519   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
   2520     return trace_;
   2521   }
   2522 
   2523  private:
   2524   Thread* const self_;
   2525   // How many more frames to skip.
   2526   int32_t skip_depth_;
   2527   // Current position down stack trace.
   2528   uint32_t count_ = 0;
   2529   // An object array where the first element is a pointer array that contains the ArtMethod
   2530   // pointers on the stack and dex PCs. The rest of the elements are the declaring
   2531   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
   2532   // the i'th frame.
   2533   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
   2534   // For cross compilation.
   2535   const PointerSize pointer_size_;
   2536 
   2537   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
   2538 };
   2539 
   2540 template<bool kTransactionActive>
   2541 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   2542   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
   2543   constexpr size_t kMaxSavedFrames = 256;
   2544   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
   2545   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
   2546                                        &saved_frames[0],
   2547                                        kMaxSavedFrames);
   2548   count_visitor.WalkStack();
   2549   const uint32_t depth = count_visitor.GetDepth();
   2550   const uint32_t skip_depth = count_visitor.GetSkipDepth();
   2551 
   2552   // Build internal stack trace.
   2553   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
   2554                                                                          const_cast<Thread*>(this),
   2555                                                                          skip_depth);
   2556   if (!build_trace_visitor.Init(depth)) {
   2557     return nullptr;  // Allocation failed.
   2558   }
   2559   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
   2560   // than doing the stack walk twice.
   2561   if (depth < kMaxSavedFrames) {
   2562     for (size_t i = 0; i < depth; ++i) {
   2563       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
   2564     }
   2565   } else {
   2566     build_trace_visitor.WalkStack();
   2567   }
   2568 
   2569   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
   2570   if (kIsDebugBuild) {
   2571     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
   2572     // Second half of trace_methods is dex PCs.
   2573     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
   2574       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
   2575           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
   2576       CHECK(method != nullptr);
   2577     }
   2578   }
   2579   return soa.AddLocalReference<jobject>(trace);
   2580 }
   2581 template jobject Thread::CreateInternalStackTrace<false>(
   2582     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2583 template jobject Thread::CreateInternalStackTrace<true>(
   2584     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2585 
   2586 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
   2587   // Only count the depth since we do not pass a stack frame array as an argument.
   2588   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
   2589   count_visitor.WalkStack();
   2590   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
   2591 }
   2592 
   2593 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
   2594     const ScopedObjectAccessAlreadyRunnable& soa,
   2595     jobject internal,
   2596     jobjectArray output_array,
   2597     int* stack_depth) {
   2598   // Decode the internal stack trace into the depth, method trace and PC trace.
   2599   // Subtract one for the methods and PC trace.
   2600   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
   2601   DCHECK_GE(depth, 0);
   2602 
   2603   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
   2604 
   2605   jobjectArray result;
   2606 
   2607   if (output_array != nullptr) {
   2608     // Reuse the array we were given.
   2609     result = output_array;
   2610     // ...adjusting the number of frames we'll write to not exceed the array length.
   2611     const int32_t traces_length =
   2612         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
   2613     depth = std::min(depth, traces_length);
   2614   } else {
   2615     // Create java_trace array and place in local reference table
   2616     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
   2617         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
   2618     if (java_traces == nullptr) {
   2619       return nullptr;
   2620     }
   2621     result = soa.AddLocalReference<jobjectArray>(java_traces);
   2622   }
   2623 
   2624   if (stack_depth != nullptr) {
   2625     *stack_depth = depth;
   2626   }
   2627 
   2628   for (int32_t i = 0; i < depth; ++i) {
   2629     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
   2630         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
   2631     // Methods and dex PC trace is element 0.
   2632     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
   2633     ObjPtr<mirror::PointerArray> const method_trace =
   2634         ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
   2635     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
   2636     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
   2637     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
   2638         i + method_trace->GetLength() / 2, kRuntimePointerSize);
   2639     int32_t line_number;
   2640     StackHandleScope<3> hs(soa.Self());
   2641     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
   2642     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
   2643     if (method->IsProxyMethod()) {
   2644       line_number = -1;
   2645       class_name_object.Assign(method->GetDeclaringClass()->GetName());
   2646       // source_name_object intentionally left null for proxy methods
   2647     } else {
   2648       line_number = method->GetLineNumFromDexPC(dex_pc);
   2649       // Allocate element, potentially triggering GC
   2650       // TODO: reuse class_name_object via Class::name_?
   2651       const char* descriptor = method->GetDeclaringClassDescriptor();
   2652       CHECK(descriptor != nullptr);
   2653       std::string class_name(PrettyDescriptor(descriptor));
   2654       class_name_object.Assign(
   2655           mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
   2656       if (class_name_object == nullptr) {
   2657         soa.Self()->AssertPendingOOMException();
   2658         return nullptr;
   2659       }
   2660       const char* source_file = method->GetDeclaringClassSourceFile();
   2661       if (line_number == -1) {
   2662         // Make the line_number field of StackTraceElement hold the dex pc.
   2663         // source_name_object is intentionally left null if we failed to map the dex pc to
   2664         // a line number (most probably because there is no debug info). See b/30183883.
   2665         line_number = dex_pc;
   2666       } else {
   2667         if (source_file != nullptr) {
   2668           source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
   2669           if (source_name_object == nullptr) {
   2670             soa.Self()->AssertPendingOOMException();
   2671             return nullptr;
   2672           }
   2673         }
   2674       }
   2675     }
   2676     const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
   2677     CHECK(method_name != nullptr);
   2678     Handle<mirror::String> method_name_object(
   2679         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
   2680     if (method_name_object == nullptr) {
   2681       return nullptr;
   2682     }
   2683     ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
   2684                                                                              class_name_object,
   2685                                                                              method_name_object,
   2686                                                                              source_name_object,
   2687                                                                              line_number);
   2688     if (obj == nullptr) {
   2689       return nullptr;
   2690     }
   2691     // We are called from native: use non-transactional mode.
   2692     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
   2693   }
   2694   return result;
   2695 }
   2696 
   2697 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
   2698   va_list args;
   2699   va_start(args, fmt);
   2700   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
   2701   va_end(args);
   2702 }
   2703 
   2704 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
   2705                                 const char* fmt, va_list ap) {
   2706   std::string msg;
   2707   StringAppendV(&msg, fmt, ap);
   2708   ThrowNewException(exception_class_descriptor, msg.c_str());
   2709 }
   2710 
   2711 void Thread::ThrowNewException(const char* exception_class_descriptor,
   2712                                const char* msg) {
   2713   // Callers should either clear or call ThrowNewWrappedException.
   2714   AssertNoPendingExceptionForNewException(msg);
   2715   ThrowNewWrappedException(exception_class_descriptor, msg);
   2716 }
   2717 
   2718 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
   2719     REQUIRES_SHARED(Locks::mutator_lock_) {
   2720   ArtMethod* method = self->GetCurrentMethod(nullptr);
   2721   return method != nullptr
   2722       ? method->GetDeclaringClass()->GetClassLoader()
   2723       : nullptr;
   2724 }
   2725 
   2726 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
   2727                                       const char* msg) {
   2728   DCHECK_EQ(this, Thread::Current());
   2729   ScopedObjectAccessUnchecked soa(this);
   2730   StackHandleScope<3> hs(soa.Self());
   2731   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
   2732   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
   2733   ClearException();
   2734   Runtime* runtime = Runtime::Current();
   2735   auto* cl = runtime->GetClassLinker();
   2736   Handle<mirror::Class> exception_class(
   2737       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
   2738   if (UNLIKELY(exception_class == nullptr)) {
   2739     CHECK(IsExceptionPending());
   2740     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
   2741     return;
   2742   }
   2743 
   2744   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
   2745                                                              true))) {
   2746     DCHECK(IsExceptionPending());
   2747     return;
   2748   }
   2749   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
   2750   Handle<mirror::Throwable> exception(
   2751       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
   2752 
   2753   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
   2754   if (exception == nullptr) {
   2755     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   2756     return;
   2757   }
   2758 
   2759   // Choose an appropriate constructor and set up the arguments.
   2760   const char* signature;
   2761   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
   2762   if (msg != nullptr) {
   2763     // Ensure we remember this and the method over the String allocation.
   2764     msg_string.reset(
   2765         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
   2766     if (UNLIKELY(msg_string.get() == nullptr)) {
   2767       CHECK(IsExceptionPending());  // OOME.
   2768       return;
   2769     }
   2770     if (cause.get() == nullptr) {
   2771       signature = "(Ljava/lang/String;)V";
   2772     } else {
   2773       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
   2774     }
   2775   } else {
   2776     if (cause.get() == nullptr) {
   2777       signature = "()V";
   2778     } else {
   2779       signature = "(Ljava/lang/Throwable;)V";
   2780     }
   2781   }
   2782   ArtMethod* exception_init_method =
   2783       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
   2784 
   2785   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
   2786       << PrettyDescriptor(exception_class_descriptor);
   2787 
   2788   if (UNLIKELY(!runtime->IsStarted())) {
   2789     // Something is trying to throw an exception without a started runtime, which is the common
   2790     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
   2791     // the exception fields directly.
   2792     if (msg != nullptr) {
   2793       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
   2794     }
   2795     if (cause.get() != nullptr) {
   2796       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
   2797     }
   2798     ScopedLocalRef<jobject> trace(GetJniEnv(),
   2799                                   Runtime::Current()->IsActiveTransaction()
   2800                                       ? CreateInternalStackTrace<true>(soa)
   2801                                       : CreateInternalStackTrace<false>(soa));
   2802     if (trace.get() != nullptr) {
   2803       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
   2804     }
   2805     SetException(exception.Get());
   2806   } else {
   2807     jvalue jv_args[2];
   2808     size_t i = 0;
   2809 
   2810     if (msg != nullptr) {
   2811       jv_args[i].l = msg_string.get();
   2812       ++i;
   2813     }
   2814     if (cause.get() != nullptr) {
   2815       jv_args[i].l = cause.get();
   2816       ++i;
   2817     }
   2818     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
   2819     InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
   2820     if (LIKELY(!IsExceptionPending())) {
   2821       SetException(exception.Get());
   2822     }
   2823   }
   2824 }
   2825 
   2826 void Thread::ThrowOutOfMemoryError(const char* msg) {
   2827   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
   2828       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
   2829   if (!tls32_.throwing_OutOfMemoryError) {
   2830     tls32_.throwing_OutOfMemoryError = true;
   2831     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
   2832     tls32_.throwing_OutOfMemoryError = false;
   2833   } else {
   2834     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
   2835     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   2836   }
   2837 }
   2838 
   2839 Thread* Thread::CurrentFromGdb() {
   2840   return Thread::Current();
   2841 }
   2842 
   2843 void Thread::DumpFromGdb() const {
   2844   std::ostringstream ss;
   2845   Dump(ss);
   2846   std::string str(ss.str());
   2847   // log to stderr for debugging command line processes
   2848   std::cerr << str;
   2849 #ifdef ART_TARGET_ANDROID
   2850   // log to logcat for debugging frameworks processes
   2851   LOG(INFO) << str;
   2852 #endif
   2853 }
   2854 
   2855 // Explicitly instantiate 32 and 64bit thread offset dumping support.
   2856 template
   2857 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
   2858 template
   2859 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
   2860 
   2861 template<PointerSize ptr_size>
   2862 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
   2863 #define DO_THREAD_OFFSET(x, y) \
   2864     if (offset == (x).Uint32Value()) { \
   2865       os << (y); \
   2866       return; \
   2867     }
   2868   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
   2869   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
   2870   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
   2871   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
   2872   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
   2873   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
   2874   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
   2875   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
   2876   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
   2877   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
   2878   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
   2879   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
   2880   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
   2881 #undef DO_THREAD_OFFSET
   2882 
   2883 #define JNI_ENTRY_POINT_INFO(x) \
   2884     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   2885       os << #x; \
   2886       return; \
   2887     }
   2888   JNI_ENTRY_POINT_INFO(pDlsymLookup)
   2889 #undef JNI_ENTRY_POINT_INFO
   2890 
   2891 #define QUICK_ENTRY_POINT_INFO(x) \
   2892     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   2893       os << #x; \
   2894       return; \
   2895     }
   2896   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
   2897   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
   2898   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
   2899   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
   2900   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
   2901   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
   2902   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
   2903   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
   2904   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
   2905   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
   2906   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
   2907   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
   2908   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
   2909   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
   2910   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
   2911   QUICK_ENTRY_POINT_INFO(pInitializeType)
   2912   QUICK_ENTRY_POINT_INFO(pResolveString)
   2913   QUICK_ENTRY_POINT_INFO(pSet8Instance)
   2914   QUICK_ENTRY_POINT_INFO(pSet8Static)
   2915   QUICK_ENTRY_POINT_INFO(pSet16Instance)
   2916   QUICK_ENTRY_POINT_INFO(pSet16Static)
   2917   QUICK_ENTRY_POINT_INFO(pSet32Instance)
   2918   QUICK_ENTRY_POINT_INFO(pSet32Static)
   2919   QUICK_ENTRY_POINT_INFO(pSet64Instance)
   2920   QUICK_ENTRY_POINT_INFO(pSet64Static)
   2921   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
   2922   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
   2923   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
   2924   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
   2925   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
   2926   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
   2927   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
   2928   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
   2929   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
   2930   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
   2931   QUICK_ENTRY_POINT_INFO(pGet32Instance)
   2932   QUICK_ENTRY_POINT_INFO(pGet32Static)
   2933   QUICK_ENTRY_POINT_INFO(pGet64Instance)
   2934   QUICK_ENTRY_POINT_INFO(pGet64Static)
   2935   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
   2936   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
   2937   QUICK_ENTRY_POINT_INFO(pAputObject)
   2938   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
   2939   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
   2940   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
   2941   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
   2942   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
   2943   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
   2944   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
   2945   QUICK_ENTRY_POINT_INFO(pLockObject)
   2946   QUICK_ENTRY_POINT_INFO(pUnlockObject)
   2947   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
   2948   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
   2949   QUICK_ENTRY_POINT_INFO(pCmplDouble)
   2950   QUICK_ENTRY_POINT_INFO(pCmplFloat)
   2951   QUICK_ENTRY_POINT_INFO(pCos)
   2952   QUICK_ENTRY_POINT_INFO(pSin)
   2953   QUICK_ENTRY_POINT_INFO(pAcos)
   2954   QUICK_ENTRY_POINT_INFO(pAsin)
   2955   QUICK_ENTRY_POINT_INFO(pAtan)
   2956   QUICK_ENTRY_POINT_INFO(pAtan2)
   2957   QUICK_ENTRY_POINT_INFO(pCbrt)
   2958   QUICK_ENTRY_POINT_INFO(pCosh)
   2959   QUICK_ENTRY_POINT_INFO(pExp)
   2960   QUICK_ENTRY_POINT_INFO(pExpm1)
   2961   QUICK_ENTRY_POINT_INFO(pHypot)
   2962   QUICK_ENTRY_POINT_INFO(pLog)
   2963   QUICK_ENTRY_POINT_INFO(pLog10)
   2964   QUICK_ENTRY_POINT_INFO(pNextAfter)
   2965   QUICK_ENTRY_POINT_INFO(pSinh)
   2966   QUICK_ENTRY_POINT_INFO(pTan)
   2967   QUICK_ENTRY_POINT_INFO(pTanh)
   2968   QUICK_ENTRY_POINT_INFO(pFmod)
   2969   QUICK_ENTRY_POINT_INFO(pL2d)
   2970   QUICK_ENTRY_POINT_INFO(pFmodf)
   2971   QUICK_ENTRY_POINT_INFO(pL2f)
   2972   QUICK_ENTRY_POINT_INFO(pD2iz)
   2973   QUICK_ENTRY_POINT_INFO(pF2iz)
   2974   QUICK_ENTRY_POINT_INFO(pIdivmod)
   2975   QUICK_ENTRY_POINT_INFO(pD2l)
   2976   QUICK_ENTRY_POINT_INFO(pF2l)
   2977   QUICK_ENTRY_POINT_INFO(pLdiv)
   2978   QUICK_ENTRY_POINT_INFO(pLmod)
   2979   QUICK_ENTRY_POINT_INFO(pLmul)
   2980   QUICK_ENTRY_POINT_INFO(pShlLong)
   2981   QUICK_ENTRY_POINT_INFO(pShrLong)
   2982   QUICK_ENTRY_POINT_INFO(pUshrLong)
   2983   QUICK_ENTRY_POINT_INFO(pIndexOf)
   2984   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
   2985   QUICK_ENTRY_POINT_INFO(pMemcpy)
   2986   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
   2987   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
   2988   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
   2989   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
   2990   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
   2991   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
   2992   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
   2993   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
   2994   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
   2995   QUICK_ENTRY_POINT_INFO(pTestSuspend)
   2996   QUICK_ENTRY_POINT_INFO(pDeliverException)
   2997   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
   2998   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
   2999   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
   3000   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
   3001   QUICK_ENTRY_POINT_INFO(pDeoptimize)
   3002   QUICK_ENTRY_POINT_INFO(pA64Load)
   3003   QUICK_ENTRY_POINT_INFO(pA64Store)
   3004   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
   3005   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
   3006   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
   3007   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
   3008   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
   3009   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
   3010   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
   3011   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
   3012   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
   3013   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
   3014   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
   3015   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
   3016   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
   3017   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
   3018   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
   3019   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
   3020   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
   3021   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
   3022   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
   3023   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
   3024   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
   3025   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
   3026   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
   3027   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
   3028   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
   3029   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
   3030   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
   3031   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
   3032   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
   3033   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
   3034   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
   3035   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
   3036   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
   3037   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
   3038   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
   3039   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
   3040   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
   3041   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
   3042   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
   3043   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
   3044   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
   3045   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
   3046   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
   3047   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
   3048   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
   3049   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
   3050   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
   3051   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
   3052   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
   3053 
   3054   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
   3055   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
   3056 #undef QUICK_ENTRY_POINT_INFO
   3057 
   3058   os << offset;
   3059 }
   3060 
   3061 void Thread::QuickDeliverException() {
   3062   // Get exception from thread.
   3063   ObjPtr<mirror::Throwable> exception = GetException();
   3064   CHECK(exception != nullptr);
   3065   if (exception == GetDeoptimizationException()) {
   3066     artDeoptimize(this);
   3067     UNREACHABLE();
   3068   }
   3069 
   3070   // This is a real exception: let the instrumentation know about it.
   3071   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   3072   if (instrumentation->HasExceptionCaughtListeners() &&
   3073       IsExceptionThrownByCurrentMethod(exception)) {
   3074     // Instrumentation may cause GC so keep the exception object safe.
   3075     StackHandleScope<1> hs(this);
   3076     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
   3077     instrumentation->ExceptionCaughtEvent(this, exception.Ptr());
   3078   }
   3079   // Does instrumentation need to deoptimize the stack?
   3080   // Note: we do this *after* reporting the exception to instrumentation in case it
   3081   // now requires deoptimization. It may happen if a debugger is attached and requests
   3082   // new events (single-step, breakpoint, ...) when the exception is reported.
   3083   if (Dbg::IsForcedInterpreterNeededForException(this)) {
   3084     NthCallerVisitor visitor(this, 0, false);
   3085     visitor.WalkStack();
   3086     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
   3087       // Save the exception into the deoptimization context so it can be restored
   3088       // before entering the interpreter.
   3089       PushDeoptimizationContext(
   3090           JValue(), /*is_reference */ false, /* from_code */ false, exception);
   3091       artDeoptimize(this);
   3092       UNREACHABLE();
   3093     } else {
   3094       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
   3095                    << visitor.caller->PrettyMethod();
   3096     }
   3097   }
   3098 
   3099   // Don't leave exception visible while we try to find the handler, which may cause class
   3100   // resolution.
   3101   ClearException();
   3102   QuickExceptionHandler exception_handler(this, false);
   3103   exception_handler.FindCatch(exception);
   3104   exception_handler.UpdateInstrumentationStack();
   3105   exception_handler.DoLongJump();
   3106 }
   3107 
   3108 Context* Thread::GetLongJumpContext() {
   3109   Context* result = tlsPtr_.long_jump_context;
   3110   if (result == nullptr) {
   3111     result = Context::Create();
   3112   } else {
   3113     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
   3114     result->Reset();
   3115   }
   3116   return result;
   3117 }
   3118 
   3119 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
   3120 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
   3121 struct CurrentMethodVisitor FINAL : public StackVisitor {
   3122   CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
   3123       REQUIRES_SHARED(Locks::mutator_lock_)
   3124       : StackVisitor(thread,
   3125                      context,
   3126                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
   3127                      check_suspended),
   3128         this_object_(nullptr),
   3129         method_(nullptr),
   3130         dex_pc_(0),
   3131         abort_on_error_(abort_on_error) {}
   3132   bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   3133     ArtMethod* m = GetMethod();
   3134     if (m->IsRuntimeMethod()) {
   3135       // Continue if this is a runtime method.
   3136       return true;
   3137     }
   3138     if (context_ != nullptr) {
   3139       this_object_ = GetThisObject();
   3140     }
   3141     method_ = m;
   3142     dex_pc_ = GetDexPc(abort_on_error_);
   3143     return false;
   3144   }
   3145   ObjPtr<mirror::Object> this_object_;
   3146   ArtMethod* method_;
   3147   uint32_t dex_pc_;
   3148   const bool abort_on_error_;
   3149 };
   3150 
   3151 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
   3152                                     bool check_suspended,
   3153                                     bool abort_on_error) const {
   3154   CurrentMethodVisitor visitor(const_cast<Thread*>(this),
   3155                                nullptr,
   3156                                check_suspended,
   3157                                abort_on_error);
   3158   visitor.WalkStack(false);
   3159   if (dex_pc != nullptr) {
   3160     *dex_pc = visitor.dex_pc_;
   3161   }
   3162   return visitor.method_;
   3163 }
   3164 
   3165 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
   3166   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
   3167 }
   3168 
   3169 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
   3170 template <typename RootVisitor, bool kPrecise = false>
   3171 class ReferenceMapVisitor : public StackVisitor {
   3172  public:
   3173   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
   3174       REQUIRES_SHARED(Locks::mutator_lock_)
   3175         // We are visiting the references in compiled frames, so we do not need
   3176         // to know the inlined frames.
   3177       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
   3178         visitor_(visitor) {}
   3179 
   3180   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   3181     if (false) {
   3182       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
   3183                 << StringPrintf("@ PC:%04x", GetDexPc());
   3184     }
   3185     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
   3186     if (shadow_frame != nullptr) {
   3187       VisitShadowFrame(shadow_frame);
   3188     } else {
   3189       VisitQuickFrame();
   3190     }
   3191     return true;
   3192   }
   3193 
   3194   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
   3195     ArtMethod* m = shadow_frame->GetMethod();
   3196     VisitDeclaringClass(m);
   3197     DCHECK(m != nullptr);
   3198     size_t num_regs = shadow_frame->NumberOfVRegs();
   3199     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
   3200     // handle scope for JNI or References for interpreter.
   3201     for (size_t reg = 0; reg < num_regs; ++reg) {
   3202       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   3203       if (ref != nullptr) {
   3204         mirror::Object* new_ref = ref;
   3205         visitor_(&new_ref, reg, this);
   3206         if (new_ref != ref) {
   3207           shadow_frame->SetVRegReference(reg, new_ref);
   3208         }
   3209       }
   3210     }
   3211     // Mark lock count map required for structured locking checks.
   3212     shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
   3213   }
   3214 
   3215  private:
   3216   // Visiting the declaring class is necessary so that we don't unload the class of a method that
   3217   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
   3218   // the threads do not all hold the heap bitmap lock for parallel GC.
   3219   void VisitDeclaringClass(ArtMethod* method)
   3220       REQUIRES_SHARED(Locks::mutator_lock_)
   3221       NO_THREAD_SAFETY_ANALYSIS {
   3222     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
   3223     // klass can be null for runtime methods.
   3224     if (klass != nullptr) {
   3225       if (kVerifyImageObjectsMarked) {
   3226         gc::Heap* const heap = Runtime::Current()->GetHeap();
   3227         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
   3228                                                                                 /*fail_ok*/true);
   3229         if (space != nullptr && space->IsImageSpace()) {
   3230           bool failed = false;
   3231           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
   3232             failed = true;
   3233             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
   3234           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
   3235             failed = true;
   3236             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
   3237           }
   3238           if (failed) {
   3239             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3240             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3241             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
   3242                                      << " klass@" << klass.Ptr();
   3243             // Pretty info last in case it crashes.
   3244             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
   3245                        << klass->PrettyClass();
   3246           }
   3247         }
   3248       }
   3249       mirror::Object* new_ref = klass.Ptr();
   3250       visitor_(&new_ref, -1, this);
   3251       if (new_ref != klass) {
   3252         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
   3253       }
   3254     }
   3255   }
   3256 
   3257   template <typename T>
   3258   ALWAYS_INLINE
   3259   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
   3260     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
   3261     DCHECK(cur_quick_frame != nullptr);
   3262     ArtMethod* m = *cur_quick_frame;
   3263     VisitDeclaringClass(m);
   3264 
   3265     // Process register map (which native and runtime methods don't have)
   3266     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
   3267       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
   3268       DCHECK(method_header->IsOptimized());
   3269       auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
   3270           reinterpret_cast<uintptr_t>(cur_quick_frame));
   3271       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
   3272       CodeInfo code_info = method_header->GetOptimizedCodeInfo();
   3273       CodeInfoEncoding encoding = code_info.ExtractEncoding();
   3274       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
   3275       DCHECK(map.IsValid());
   3276 
   3277       T vreg_info(m, code_info, encoding, map, visitor_);
   3278 
   3279       // Visit stack entries that hold pointers.
   3280       const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
   3281       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
   3282       for (size_t i = 0; i < number_of_bits; ++i) {
   3283         if (stack_mask.LoadBit(i)) {
   3284           auto* ref_addr = vreg_base + i;
   3285           mirror::Object* ref = ref_addr->AsMirrorPtr();
   3286           if (ref != nullptr) {
   3287             mirror::Object* new_ref = ref;
   3288             vreg_info.VisitStack(&new_ref, i, this);
   3289             if (ref != new_ref) {
   3290               ref_addr->Assign(new_ref);
   3291            }
   3292           }
   3293         }
   3294       }
   3295       // Visit callee-save registers that hold pointers.
   3296       uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
   3297       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
   3298         if (register_mask & (1 << i)) {
   3299           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
   3300           if (kIsDebugBuild && ref_addr == nullptr) {
   3301             std::string thread_name;
   3302             GetThread()->GetThreadName(thread_name);
   3303             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
   3304             DescribeStack(GetThread());
   3305             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
   3306                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
   3307           }
   3308           if (*ref_addr != nullptr) {
   3309             vreg_info.VisitRegister(ref_addr, i, this);
   3310           }
   3311         }
   3312       }
   3313     }
   3314   }
   3315 
   3316   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   3317     if (kPrecise) {
   3318       VisitQuickFramePrecise();
   3319     } else {
   3320       VisitQuickFrameNonPrecise();
   3321     }
   3322   }
   3323 
   3324   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3325     struct UndefinedVRegInfo {
   3326       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
   3327                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
   3328                         const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
   3329                         const StackMap& map ATTRIBUTE_UNUSED,
   3330                         RootVisitor& _visitor)
   3331           : visitor(_visitor) {
   3332       }
   3333 
   3334       ALWAYS_INLINE
   3335       void VisitStack(mirror::Object** ref,
   3336                       size_t stack_index ATTRIBUTE_UNUSED,
   3337                       const StackVisitor* stack_visitor)
   3338           REQUIRES_SHARED(Locks::mutator_lock_) {
   3339         visitor(ref, -1, stack_visitor);
   3340       }
   3341 
   3342       ALWAYS_INLINE
   3343       void VisitRegister(mirror::Object** ref,
   3344                          size_t register_index ATTRIBUTE_UNUSED,
   3345                          const StackVisitor* stack_visitor)
   3346           REQUIRES_SHARED(Locks::mutator_lock_) {
   3347         visitor(ref, -1, stack_visitor);
   3348       }
   3349 
   3350       RootVisitor& visitor;
   3351     };
   3352     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
   3353   }
   3354 
   3355   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3356     struct StackMapVRegInfo {
   3357       StackMapVRegInfo(ArtMethod* method,
   3358                        const CodeInfo& _code_info,
   3359                        const CodeInfoEncoding& _encoding,
   3360                        const StackMap& map,
   3361                        RootVisitor& _visitor)
   3362           : number_of_dex_registers(method->GetCodeItem()->registers_size_),
   3363             code_info(_code_info),
   3364             encoding(_encoding),
   3365             dex_register_map(code_info.GetDexRegisterMapOf(map,
   3366                                                            encoding,
   3367                                                            number_of_dex_registers)),
   3368             visitor(_visitor) {
   3369       }
   3370 
   3371       // TODO: If necessary, we should consider caching a reverse map instead of the linear
   3372       //       lookups for each location.
   3373       void FindWithType(const size_t index,
   3374                         const DexRegisterLocation::Kind kind,
   3375                         mirror::Object** ref,
   3376                         const StackVisitor* stack_visitor)
   3377           REQUIRES_SHARED(Locks::mutator_lock_) {
   3378         bool found = false;
   3379         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
   3380           DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
   3381               dex_reg, number_of_dex_registers, code_info, encoding);
   3382           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
   3383             visitor(ref, dex_reg, stack_visitor);
   3384             found = true;
   3385           }
   3386         }
   3387 
   3388         if (!found) {
   3389           // If nothing found, report with -1.
   3390           visitor(ref, -1, stack_visitor);
   3391         }
   3392       }
   3393 
   3394       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
   3395           REQUIRES_SHARED(Locks::mutator_lock_) {
   3396         const size_t stack_offset = stack_index * kFrameSlotSize;
   3397         FindWithType(stack_offset,
   3398                      DexRegisterLocation::Kind::kInStack,
   3399                      ref,
   3400                      stack_visitor);
   3401       }
   3402 
   3403       void VisitRegister(mirror::Object** ref,
   3404                          size_t register_index,
   3405                          const StackVisitor* stack_visitor)
   3406           REQUIRES_SHARED(Locks::mutator_lock_) {
   3407         FindWithType(register_index,
   3408                      DexRegisterLocation::Kind::kInRegister,
   3409                      ref,
   3410                      stack_visitor);
   3411       }
   3412 
   3413       size_t number_of_dex_registers;
   3414       const CodeInfo& code_info;
   3415       const CodeInfoEncoding& encoding;
   3416       DexRegisterMap dex_register_map;
   3417       RootVisitor& visitor;
   3418     };
   3419     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
   3420   }
   3421 
   3422   // Visitor for when we visit a root.
   3423   RootVisitor& visitor_;
   3424 };
   3425 
   3426 class RootCallbackVisitor {
   3427  public:
   3428   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
   3429 
   3430   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
   3431       REQUIRES_SHARED(Locks::mutator_lock_) {
   3432     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
   3433   }
   3434 
   3435  private:
   3436   RootVisitor* const visitor_;
   3437   const uint32_t tid_;
   3438 };
   3439 
   3440 template <bool kPrecise>
   3441 void Thread::VisitRoots(RootVisitor* visitor) {
   3442   const uint32_t thread_id = GetThreadId();
   3443   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
   3444   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
   3445     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
   3446                        RootInfo(kRootNativeStack, thread_id));
   3447   }
   3448   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
   3449   tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
   3450   tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
   3451   HandleScopeVisitRoots(visitor, thread_id);
   3452   if (tlsPtr_.debug_invoke_req != nullptr) {
   3453     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
   3454   }
   3455   // Visit roots for deoptimization.
   3456   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
   3457     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3458     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   3459     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
   3460          record != nullptr;
   3461          record = record->GetLink()) {
   3462       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
   3463            shadow_frame != nullptr;
   3464            shadow_frame = shadow_frame->GetLink()) {
   3465         mapper.VisitShadowFrame(shadow_frame);
   3466       }
   3467     }
   3468   }
   3469   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
   3470        record != nullptr;
   3471        record = record->GetLink()) {
   3472     if (record->IsReference()) {
   3473       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
   3474                                   RootInfo(kRootThreadObject, thread_id));
   3475     }
   3476     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
   3477                                 RootInfo(kRootThreadObject, thread_id));
   3478   }
   3479   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
   3480     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3481     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   3482     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
   3483          record != nullptr;
   3484          record = record->GetNext()) {
   3485       mapper.VisitShadowFrame(record->GetShadowFrame());
   3486     }
   3487   }
   3488   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
   3489     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
   3490   }
   3491   // Visit roots on this thread's stack
   3492   RuntimeContextType context;
   3493   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3494   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
   3495   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
   3496   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
   3497     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
   3498   }
   3499 }
   3500 
   3501 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
   3502   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
   3503     VisitRoots<true>(visitor);
   3504   } else {
   3505     VisitRoots<false>(visitor);
   3506   }
   3507 }
   3508 
   3509 class VerifyRootVisitor : public SingleRootVisitor {
   3510  public:
   3511   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
   3512       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   3513     VerifyObject(root);
   3514   }
   3515 };
   3516 
   3517 void Thread::VerifyStackImpl() {
   3518   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
   3519     VerifyRootVisitor visitor;
   3520     std::unique_ptr<Context> context(Context::Create());
   3521     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
   3522     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
   3523     mapper.WalkStack();
   3524   }
   3525 }
   3526 
   3527 // Set the stack end to that to be used during a stack overflow
   3528 void Thread::SetStackEndForStackOverflow() {
   3529   // During stack overflow we allow use of the full stack.
   3530   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
   3531     // However, we seem to have already extended to use the full stack.
   3532     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
   3533                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
   3534     DumpStack(LOG_STREAM(ERROR));
   3535     LOG(FATAL) << "Recursive stack overflow.";
   3536   }
   3537 
   3538   tlsPtr_.stack_end = tlsPtr_.stack_begin;
   3539 
   3540   // Remove the stack overflow protection if is it set up.
   3541   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
   3542   if (implicit_stack_check) {
   3543     if (!UnprotectStack()) {
   3544       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
   3545     }
   3546   }
   3547 }
   3548 
   3549 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
   3550   DCHECK_LE(start, end);
   3551   DCHECK_LE(end, limit);
   3552   tlsPtr_.thread_local_start = start;
   3553   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
   3554   tlsPtr_.thread_local_end = end;
   3555   tlsPtr_.thread_local_limit = limit;
   3556   tlsPtr_.thread_local_objects = 0;
   3557 }
   3558 
   3559 bool Thread::HasTlab() const {
   3560   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
   3561   if (has_tlab) {
   3562     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
   3563   } else {
   3564     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
   3565   }
   3566   return has_tlab;
   3567 }
   3568 
   3569 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
   3570   thread.ShortDump(os);
   3571   return os;
   3572 }
   3573 
   3574 bool Thread::ProtectStack(bool fatal_on_error) {
   3575   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   3576   VLOG(threads) << "Protecting stack at " << pregion;
   3577   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
   3578     if (fatal_on_error) {
   3579       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
   3580           "Reason: "
   3581           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
   3582     }
   3583     return false;
   3584   }
   3585   return true;
   3586 }
   3587 
   3588 bool Thread::UnprotectStack() {
   3589   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   3590   VLOG(threads) << "Unprotecting stack at " << pregion;
   3591   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
   3592 }
   3593 
   3594 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
   3595   CHECK(Dbg::IsDebuggerActive());
   3596   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
   3597   CHECK(ssc != nullptr);
   3598   tlsPtr_.single_step_control = ssc;
   3599 }
   3600 
   3601 void Thread::DeactivateSingleStepControl() {
   3602   CHECK(Dbg::IsDebuggerActive());
   3603   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
   3604   SingleStepControl* ssc = GetSingleStepControl();
   3605   tlsPtr_.single_step_control = nullptr;
   3606   delete ssc;
   3607 }
   3608 
   3609 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
   3610   CHECK(Dbg::IsDebuggerActive());
   3611   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
   3612   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
   3613   CHECK(req != nullptr);
   3614   tlsPtr_.debug_invoke_req = req;
   3615 }
   3616 
   3617 void Thread::ClearDebugInvokeReq() {
   3618   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
   3619   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
   3620   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
   3621   tlsPtr_.debug_invoke_req = nullptr;
   3622   delete req;
   3623 }
   3624 
   3625 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
   3626   verifier->link_ = tlsPtr_.method_verifier;
   3627   tlsPtr_.method_verifier = verifier;
   3628 }
   3629 
   3630 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
   3631   CHECK_EQ(tlsPtr_.method_verifier, verifier);
   3632   tlsPtr_.method_verifier = verifier->link_;
   3633 }
   3634 
   3635 size_t Thread::NumberOfHeldMutexes() const {
   3636   size_t count = 0;
   3637   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
   3638     count += mu != nullptr ? 1 : 0;
   3639   }
   3640   return count;
   3641 }
   3642 
   3643 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
   3644   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
   3645   ClearException();
   3646   ShadowFrame* shadow_frame =
   3647       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
   3648   ObjPtr<mirror::Throwable> pending_exception;
   3649   bool from_code = false;
   3650   PopDeoptimizationContext(result, &pending_exception, &from_code);
   3651   SetTopOfStack(nullptr);
   3652   SetTopOfShadowStack(shadow_frame);
   3653 
   3654   // Restore the exception that was pending before deoptimization then interpret the
   3655   // deoptimized frames.
   3656   if (pending_exception != nullptr) {
   3657     SetException(pending_exception);
   3658   }
   3659   interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
   3660 }
   3661 
   3662 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
   3663   CHECK(new_exception != nullptr);
   3664   // TODO: DCHECK(!IsExceptionPending());
   3665   tlsPtr_.exception = new_exception.Ptr();
   3666 }
   3667 
   3668 bool Thread::IsAotCompiler() {
   3669   return Runtime::Current()->IsAotCompiler();
   3670 }
   3671 
   3672 mirror::Object* Thread::GetPeerFromOtherThread() const {
   3673   DCHECK(tlsPtr_.jpeer == nullptr);
   3674   mirror::Object* peer = tlsPtr_.opeer;
   3675   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
   3676     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
   3677     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
   3678     // mark/forward it here.
   3679     peer = art::ReadBarrier::Mark(peer);
   3680   }
   3681   return peer;
   3682 }
   3683 
   3684 void Thread::SetReadBarrierEntrypoints() {
   3685   // Make sure entrypoints aren't null.
   3686   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
   3687 }
   3688 
   3689 }  // namespace art
   3690