Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_GC_HEAP_H_
     18 #define ART_RUNTIME_GC_HEAP_H_
     19 
     20 #include <iosfwd>
     21 #include <string>
     22 #include <unordered_set>
     23 #include <vector>
     24 
     25 #include "allocator_type.h"
     26 #include "arch/instruction_set.h"
     27 #include "atomic.h"
     28 #include "base/mutex.h"
     29 #include "base/time_utils.h"
     30 #include "gc/gc_cause.h"
     31 #include "gc/collector/gc_type.h"
     32 #include "gc/collector/iteration.h"
     33 #include "gc/collector_type.h"
     34 #include "gc/space/large_object_space.h"
     35 #include "globals.h"
     36 #include "handle.h"
     37 #include "obj_ptr.h"
     38 #include "offsets.h"
     39 #include "process_state.h"
     40 #include "safe_map.h"
     41 #include "verify_object.h"
     42 
     43 namespace art {
     44 
     45 class ConditionVariable;
     46 class IsMarkedVisitor;
     47 class Mutex;
     48 class RootVisitor;
     49 class StackVisitor;
     50 class Thread;
     51 class ThreadPool;
     52 class TimingLogger;
     53 class VariableSizedHandleScope;
     54 
     55 namespace mirror {
     56   class Class;
     57   class Object;
     58 }  // namespace mirror
     59 
     60 namespace gc {
     61 
     62 class AllocationListener;
     63 class AllocRecordObjectMap;
     64 class GcPauseListener;
     65 class ReferenceProcessor;
     66 class TaskProcessor;
     67 class Verification;
     68 
     69 namespace accounting {
     70   template <typename T> class AtomicStack;
     71   typedef AtomicStack<mirror::Object> ObjectStack;
     72   class CardTable;
     73   class HeapBitmap;
     74   class ModUnionTable;
     75   class ReadBarrierTable;
     76   class RememberedSet;
     77 }  // namespace accounting
     78 
     79 namespace collector {
     80   class ConcurrentCopying;
     81   class GarbageCollector;
     82   class MarkCompact;
     83   class MarkSweep;
     84   class SemiSpace;
     85 }  // namespace collector
     86 
     87 namespace allocator {
     88   class RosAlloc;
     89 }  // namespace allocator
     90 
     91 namespace space {
     92   class AllocSpace;
     93   class BumpPointerSpace;
     94   class ContinuousMemMapAllocSpace;
     95   class DiscontinuousSpace;
     96   class DlMallocSpace;
     97   class ImageSpace;
     98   class LargeObjectSpace;
     99   class MallocSpace;
    100   class RegionSpace;
    101   class RosAllocSpace;
    102   class Space;
    103   class ZygoteSpace;
    104 }  // namespace space
    105 
    106 enum HomogeneousSpaceCompactResult {
    107   // Success.
    108   kSuccess,
    109   // Reject due to disabled moving GC.
    110   kErrorReject,
    111   // Unsupported due to the current configuration.
    112   kErrorUnsupported,
    113   // System is shutting down.
    114   kErrorVMShuttingDown,
    115 };
    116 
    117 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
    118 static constexpr bool kUseRosAlloc = true;
    119 
    120 // If true, use thread-local allocation stack.
    121 static constexpr bool kUseThreadLocalAllocationStack = true;
    122 
    123 class Heap {
    124  public:
    125   // If true, measure the total allocation time.
    126   static constexpr size_t kDefaultStartingSize = kPageSize;
    127   static constexpr size_t kDefaultInitialSize = 2 * MB;
    128   static constexpr size_t kDefaultMaximumSize = 256 * MB;
    129   static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
    130   static constexpr size_t kDefaultMaxFree = 2 * MB;
    131   static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
    132   static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
    133   static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
    134   static constexpr size_t kDefaultTLABSize = 32 * KB;
    135   static constexpr double kDefaultTargetUtilization = 0.5;
    136   static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
    137   // Primitive arrays larger than this size are put in the large object space.
    138   static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize;
    139   static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold;
    140   // Whether or not parallel GC is enabled. If not, then we never create the thread pool.
    141   static constexpr bool kDefaultEnableParallelGC = false;
    142 
    143   // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
    144   // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
    145   static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
    146       USE_ART_LOW_4G_ALLOCATOR ?
    147           space::LargeObjectSpaceType::kFreeList
    148         : space::LargeObjectSpaceType::kMap;
    149 
    150   // Used so that we don't overflow the allocation time atomic integer.
    151   static constexpr size_t kTimeAdjust = 1024;
    152 
    153   // How often we allow heap trimming to happen (nanoseconds).
    154   static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
    155   // How long we wait after a transition request to perform a collector transition (nanoseconds).
    156   static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
    157 
    158   // Create a heap with the requested sizes. The possible empty
    159   // image_file_names names specify Spaces to load based on
    160   // ImageWriter output.
    161   Heap(size_t initial_size,
    162        size_t growth_limit,
    163        size_t min_free,
    164        size_t max_free,
    165        double target_utilization,
    166        double foreground_heap_growth_multiplier,
    167        size_t capacity,
    168        size_t non_moving_space_capacity,
    169        const std::string& original_image_file_name,
    170        InstructionSet image_instruction_set,
    171        CollectorType foreground_collector_type,
    172        CollectorType background_collector_type,
    173        space::LargeObjectSpaceType large_object_space_type,
    174        size_t large_object_threshold,
    175        size_t parallel_gc_threads,
    176        size_t conc_gc_threads,
    177        bool low_memory_mode,
    178        size_t long_pause_threshold,
    179        size_t long_gc_threshold,
    180        bool ignore_max_footprint,
    181        bool use_tlab,
    182        bool verify_pre_gc_heap,
    183        bool verify_pre_sweeping_heap,
    184        bool verify_post_gc_heap,
    185        bool verify_pre_gc_rosalloc,
    186        bool verify_pre_sweeping_rosalloc,
    187        bool verify_post_gc_rosalloc,
    188        bool gc_stress_mode,
    189        bool measure_gc_performance,
    190        bool use_homogeneous_space_compaction,
    191        uint64_t min_interval_homogeneous_space_compaction_by_oom);
    192 
    193   ~Heap();
    194 
    195   // Allocates and initializes storage for an object instance.
    196   template <bool kInstrumented, typename PreFenceVisitor>
    197   mirror::Object* AllocObject(Thread* self,
    198                               ObjPtr<mirror::Class> klass,
    199                               size_t num_bytes,
    200                               const PreFenceVisitor& pre_fence_visitor)
    201       REQUIRES_SHARED(Locks::mutator_lock_)
    202       REQUIRES(!*gc_complete_lock_,
    203                !*pending_task_lock_,
    204                !*backtrace_lock_,
    205                !Roles::uninterruptible_) {
    206     return AllocObjectWithAllocator<kInstrumented, true>(self,
    207                                                          klass,
    208                                                          num_bytes,
    209                                                          GetCurrentAllocator(),
    210                                                          pre_fence_visitor);
    211   }
    212 
    213   template <bool kInstrumented, typename PreFenceVisitor>
    214   mirror::Object* AllocNonMovableObject(Thread* self,
    215                                         ObjPtr<mirror::Class> klass,
    216                                         size_t num_bytes,
    217                                         const PreFenceVisitor& pre_fence_visitor)
    218       REQUIRES_SHARED(Locks::mutator_lock_)
    219       REQUIRES(!*gc_complete_lock_,
    220                !*pending_task_lock_,
    221                !*backtrace_lock_,
    222                !Roles::uninterruptible_) {
    223     return AllocObjectWithAllocator<kInstrumented, true>(self,
    224                                                          klass,
    225                                                          num_bytes,
    226                                                          GetCurrentNonMovingAllocator(),
    227                                                          pre_fence_visitor);
    228   }
    229 
    230   template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
    231   ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
    232                                                          ObjPtr<mirror::Class> klass,
    233                                                          size_t byte_count,
    234                                                          AllocatorType allocator,
    235                                                          const PreFenceVisitor& pre_fence_visitor)
    236       REQUIRES_SHARED(Locks::mutator_lock_)
    237       REQUIRES(!*gc_complete_lock_,
    238                !*pending_task_lock_,
    239                !*backtrace_lock_,
    240                !Roles::uninterruptible_);
    241 
    242   AllocatorType GetCurrentAllocator() const {
    243     return current_allocator_;
    244   }
    245 
    246   AllocatorType GetCurrentNonMovingAllocator() const {
    247     return current_non_moving_allocator_;
    248   }
    249 
    250   // Visit all of the live objects in the heap.
    251   template <typename Visitor>
    252   ALWAYS_INLINE void VisitObjects(Visitor&& visitor)
    253       REQUIRES_SHARED(Locks::mutator_lock_)
    254       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    255   template <typename Visitor>
    256   ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor)
    257       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    258 
    259   void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count)
    260       REQUIRES_SHARED(Locks::mutator_lock_);
    261 
    262   void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
    263       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*native_blocking_gc_lock_);
    264   void RegisterNativeFree(JNIEnv* env, size_t bytes);
    265 
    266   // Change the allocator, updates entrypoints.
    267   void ChangeAllocator(AllocatorType allocator)
    268       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
    269 
    270   // Transition the garbage collector during runtime, may copy objects from one space to another.
    271   void TransitionCollector(CollectorType collector_type) REQUIRES(!*gc_complete_lock_);
    272 
    273   // Change the collector to be one of the possible options (MS, CMS, SS).
    274   void ChangeCollector(CollectorType collector_type)
    275       REQUIRES(Locks::mutator_lock_);
    276 
    277   // The given reference is believed to be to an object in the Java heap, check the soundness of it.
    278   // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
    279   // proper lock ordering for it.
    280   void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS;
    281 
    282   // Check sanity of all live references.
    283   void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
    284   // Returns how many failures occured.
    285   size_t VerifyHeapReferences(bool verify_referents = true)
    286       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
    287   bool VerifyMissingCardMarks()
    288       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
    289 
    290   // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
    291   // and doesn't abort on error, allowing the caller to report more
    292   // meaningful diagnostics.
    293   bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_);
    294 
    295   // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
    296   // very slow.
    297   bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const
    298       REQUIRES_SHARED(Locks::mutator_lock_);
    299 
    300   // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
    301   // Requires the heap lock to be held.
    302   bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
    303                           bool search_allocation_stack = true,
    304                           bool search_live_stack = true,
    305                           bool sorted = false)
    306       REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
    307 
    308   // Returns true if there is any chance that the object (obj) will move.
    309   bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_);
    310 
    311   // Enables us to compacting GC until objects are released.
    312   void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
    313   void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
    314 
    315   // Temporarily disable thread flip for JNI critical calls.
    316   void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
    317   void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
    318   void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
    319   void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
    320 
    321   // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
    322   // Mutator lock is required for GetContinuousSpaces.
    323   void ClearMarkedObjects()
    324       REQUIRES(Locks::heap_bitmap_lock_)
    325       REQUIRES_SHARED(Locks::mutator_lock_);
    326 
    327   // Initiates an explicit garbage collection.
    328   void CollectGarbage(bool clear_soft_references)
    329       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    330 
    331   // Does a concurrent GC, should only be called by the GC daemon thread
    332   // through runtime.
    333   void ConcurrentGC(Thread* self, GcCause cause, bool force_full)
    334       REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, !*pending_task_lock_);
    335 
    336   // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
    337   // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
    338   void CountInstances(const std::vector<Handle<mirror::Class>>& classes,
    339                       bool use_is_assignable_from,
    340                       uint64_t* counts)
    341       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    342       REQUIRES_SHARED(Locks::mutator_lock_);
    343 
    344   // Implements JDWP RT_Instances.
    345   void GetInstances(VariableSizedHandleScope& scope,
    346                     Handle<mirror::Class> c,
    347                     int32_t max_count,
    348                     std::vector<Handle<mirror::Object>>& instances)
    349       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    350       REQUIRES_SHARED(Locks::mutator_lock_);
    351 
    352   // Implements JDWP OR_ReferringObjects.
    353   void GetReferringObjects(VariableSizedHandleScope& scope,
    354                            Handle<mirror::Object> o,
    355                            int32_t max_count,
    356                            std::vector<Handle<mirror::Object>>& referring_objects)
    357       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    358       REQUIRES_SHARED(Locks::mutator_lock_);
    359 
    360   // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
    361   // implement dalvik.system.VMRuntime.clearGrowthLimit.
    362   void ClearGrowthLimit();
    363 
    364   // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
    365   // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
    366   void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
    367 
    368   // Target ideal heap utilization ratio, implements
    369   // dalvik.system.VMRuntime.getTargetHeapUtilization.
    370   double GetTargetHeapUtilization() const {
    371     return target_utilization_;
    372   }
    373 
    374   // Data structure memory usage tracking.
    375   void RegisterGCAllocation(size_t bytes);
    376   void RegisterGCDeAllocation(size_t bytes);
    377 
    378   // Set the heap's private space pointers to be the same as the space based on it's type. Public
    379   // due to usage by tests.
    380   void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
    381       REQUIRES(!Locks::heap_bitmap_lock_);
    382   void AddSpace(space::Space* space)
    383       REQUIRES(!Locks::heap_bitmap_lock_)
    384       REQUIRES(Locks::mutator_lock_);
    385   void RemoveSpace(space::Space* space)
    386     REQUIRES(!Locks::heap_bitmap_lock_)
    387     REQUIRES(Locks::mutator_lock_);
    388 
    389   // Set target ideal heap utilization ratio, implements
    390   // dalvik.system.VMRuntime.setTargetHeapUtilization.
    391   void SetTargetHeapUtilization(float target);
    392 
    393   // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
    394   // from the system. Doesn't allow the space to exceed its growth limit.
    395   void SetIdealFootprint(size_t max_allowed_footprint);
    396 
    397   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
    398   // waited for.
    399   collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_);
    400 
    401   // Update the heap's process state to a new value, may cause compaction to occur.
    402   void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
    403       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
    404 
    405   bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
    406     // No lock since vector empty is thread safe.
    407     return !continuous_spaces_.empty();
    408   }
    409 
    410   const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
    411       REQUIRES_SHARED(Locks::mutator_lock_) {
    412     return continuous_spaces_;
    413   }
    414 
    415   const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
    416     return discontinuous_spaces_;
    417   }
    418 
    419   const collector::Iteration* GetCurrentGcIteration() const {
    420     return &current_gc_iteration_;
    421   }
    422   collector::Iteration* GetCurrentGcIteration() {
    423     return &current_gc_iteration_;
    424   }
    425 
    426   // Enable verification of object references when the runtime is sufficiently initialized.
    427   void EnableObjectValidation() {
    428     verify_object_mode_ = kVerifyObjectSupport;
    429     if (verify_object_mode_ > kVerifyObjectModeDisabled) {
    430       VerifyHeap();
    431     }
    432   }
    433 
    434   // Disable object reference verification for image writing.
    435   void DisableObjectValidation() {
    436     verify_object_mode_ = kVerifyObjectModeDisabled;
    437   }
    438 
    439   // Other checks may be performed if we know the heap should be in a sane state.
    440   bool IsObjectValidationEnabled() const {
    441     return verify_object_mode_ > kVerifyObjectModeDisabled;
    442   }
    443 
    444   // Returns true if low memory mode is enabled.
    445   bool IsLowMemoryMode() const {
    446     return low_memory_mode_;
    447   }
    448 
    449   // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
    450   // Scales heap growth, min free, and max free.
    451   double HeapGrowthMultiplier() const;
    452 
    453   // Freed bytes can be negative in cases where we copy objects from a compacted space to a
    454   // free-list backed space.
    455   void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
    456 
    457   // Record the bytes freed by thread-local buffer revoke.
    458   void RecordFreeRevoke();
    459 
    460   // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
    461   // The call is not needed if null is stored in the field.
    462   ALWAYS_INLINE void WriteBarrierField(ObjPtr<mirror::Object> dst,
    463                                        MemberOffset offset,
    464                                        ObjPtr<mirror::Object> new_value)
    465       REQUIRES_SHARED(Locks::mutator_lock_);
    466 
    467   // Write barrier for array operations that update many field positions
    468   ALWAYS_INLINE void WriteBarrierArray(ObjPtr<mirror::Object> dst,
    469                                        int start_offset,
    470                                        // TODO: element_count or byte_count?
    471                                        size_t length)
    472       REQUIRES_SHARED(Locks::mutator_lock_);
    473 
    474   ALWAYS_INLINE void WriteBarrierEveryFieldOf(ObjPtr<mirror::Object> obj)
    475       REQUIRES_SHARED(Locks::mutator_lock_);
    476 
    477   accounting::CardTable* GetCardTable() const {
    478     return card_table_.get();
    479   }
    480 
    481   accounting::ReadBarrierTable* GetReadBarrierTable() const {
    482     return rb_table_.get();
    483   }
    484 
    485   void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object);
    486 
    487   // Returns the number of bytes currently allocated.
    488   size_t GetBytesAllocated() const {
    489     return num_bytes_allocated_.LoadSequentiallyConsistent();
    490   }
    491 
    492   // Returns the number of objects currently allocated.
    493   size_t GetObjectsAllocated() const
    494       REQUIRES(!Locks::heap_bitmap_lock_);
    495 
    496   // Returns the total number of objects allocated since the heap was created.
    497   uint64_t GetObjectsAllocatedEver() const;
    498 
    499   // Returns the total number of bytes allocated since the heap was created.
    500   uint64_t GetBytesAllocatedEver() const;
    501 
    502   // Returns the total number of objects freed since the heap was created.
    503   uint64_t GetObjectsFreedEver() const {
    504     return total_objects_freed_ever_;
    505   }
    506 
    507   // Returns the total number of bytes freed since the heap was created.
    508   uint64_t GetBytesFreedEver() const {
    509     return total_bytes_freed_ever_;
    510   }
    511 
    512   // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
    513   // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
    514   // were specified. Android apps start with a growth limit (small heap size) which is
    515   // cleared/extended for large apps.
    516   size_t GetMaxMemory() const {
    517     // There is some race conditions in the allocation code that can cause bytes allocated to
    518     // become larger than growth_limit_ in rare cases.
    519     return std::max(GetBytesAllocated(), growth_limit_);
    520   }
    521 
    522   // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
    523   // consumed by an application.
    524   size_t GetTotalMemory() const;
    525 
    526   // Returns approximately how much free memory we have until the next GC happens.
    527   size_t GetFreeMemoryUntilGC() const {
    528     return max_allowed_footprint_ - GetBytesAllocated();
    529   }
    530 
    531   // Returns approximately how much free memory we have until the next OOME happens.
    532   size_t GetFreeMemoryUntilOOME() const {
    533     return growth_limit_ - GetBytesAllocated();
    534   }
    535 
    536   // Returns how much free memory we have until we need to grow the heap to perform an allocation.
    537   // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
    538   size_t GetFreeMemory() const {
    539     size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
    540     size_t total_memory = GetTotalMemory();
    541     // Make sure we don't get a negative number.
    542     return total_memory - std::min(total_memory, byte_allocated);
    543   }
    544 
    545   // get the space that corresponds to an object's address. Current implementation searches all
    546   // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
    547   // TODO: consider using faster data structure like binary tree.
    548   space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const
    549       REQUIRES_SHARED(Locks::mutator_lock_);
    550 
    551   space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const
    552       REQUIRES_SHARED(Locks::mutator_lock_);
    553 
    554   space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>,
    555                                                               bool fail_ok) const
    556       REQUIRES_SHARED(Locks::mutator_lock_);
    557 
    558   space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const
    559       REQUIRES_SHARED(Locks::mutator_lock_);
    560 
    561   space::Space* FindSpaceFromAddress(const void* ptr) const
    562       REQUIRES_SHARED(Locks::mutator_lock_);
    563 
    564   void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_);
    565 
    566   // Do a pending collector transition.
    567   void DoPendingCollectorTransition() REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    568 
    569   // Deflate monitors, ... and trim the spaces.
    570   void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
    571 
    572   void RevokeThreadLocalBuffers(Thread* thread);
    573   void RevokeRosAllocThreadLocalBuffers(Thread* thread);
    574   void RevokeAllThreadLocalBuffers();
    575   void AssertThreadLocalBuffersAreRevoked(Thread* thread);
    576   void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
    577   void RosAllocVerification(TimingLogger* timings, const char* name)
    578       REQUIRES(Locks::mutator_lock_);
    579 
    580   accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    581     return live_bitmap_.get();
    582   }
    583 
    584   accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    585     return mark_bitmap_.get();
    586   }
    587 
    588   accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    589     return live_stack_.get();
    590   }
    591 
    592   void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
    593 
    594   // Mark and empty stack.
    595   void FlushAllocStack()
    596       REQUIRES_SHARED(Locks::mutator_lock_)
    597       REQUIRES(Locks::heap_bitmap_lock_);
    598 
    599   // Revoke all the thread-local allocation stacks.
    600   void RevokeAllThreadLocalAllocationStacks(Thread* self)
    601       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
    602 
    603   // Mark all the objects in the allocation stack in the specified bitmap.
    604   // TODO: Refactor?
    605   void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
    606                       accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
    607                       accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
    608                       accounting::ObjectStack* stack)
    609       REQUIRES_SHARED(Locks::mutator_lock_)
    610       REQUIRES(Locks::heap_bitmap_lock_);
    611 
    612   // Mark the specified allocation stack as live.
    613   void MarkAllocStackAsLive(accounting::ObjectStack* stack)
    614       REQUIRES_SHARED(Locks::mutator_lock_)
    615       REQUIRES(Locks::heap_bitmap_lock_);
    616 
    617   // Unbind any bound bitmaps.
    618   void UnBindBitmaps()
    619       REQUIRES(Locks::heap_bitmap_lock_)
    620       REQUIRES_SHARED(Locks::mutator_lock_);
    621 
    622   // Returns the boot image spaces. There may be multiple boot image spaces.
    623   const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
    624     return boot_image_spaces_;
    625   }
    626 
    627   bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const
    628       REQUIRES_SHARED(Locks::mutator_lock_);
    629 
    630   bool IsInBootImageOatFile(const void* p) const
    631       REQUIRES_SHARED(Locks::mutator_lock_);
    632 
    633   void GetBootImagesSize(uint32_t* boot_image_begin,
    634                          uint32_t* boot_image_end,
    635                          uint32_t* boot_oat_begin,
    636                          uint32_t* boot_oat_end);
    637 
    638   // Permenantly disable moving garbage collection.
    639   void DisableMovingGc() REQUIRES(!*gc_complete_lock_);
    640 
    641   space::DlMallocSpace* GetDlMallocSpace() const {
    642     return dlmalloc_space_;
    643   }
    644 
    645   space::RosAllocSpace* GetRosAllocSpace() const {
    646     return rosalloc_space_;
    647   }
    648 
    649   // Return the corresponding rosalloc space.
    650   space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
    651       REQUIRES_SHARED(Locks::mutator_lock_);
    652 
    653   space::MallocSpace* GetNonMovingSpace() const {
    654     return non_moving_space_;
    655   }
    656 
    657   space::LargeObjectSpace* GetLargeObjectsSpace() const {
    658     return large_object_space_;
    659   }
    660 
    661   // Returns the free list space that may contain movable objects (the
    662   // one that's not the non-moving space), either rosalloc_space_ or
    663   // dlmalloc_space_.
    664   space::MallocSpace* GetPrimaryFreeListSpace() {
    665     if (kUseRosAlloc) {
    666       DCHECK(rosalloc_space_ != nullptr);
    667       // reinterpret_cast is necessary as the space class hierarchy
    668       // isn't known (#included) yet here.
    669       return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
    670     } else {
    671       DCHECK(dlmalloc_space_ != nullptr);
    672       return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
    673     }
    674   }
    675 
    676   void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_);
    677   std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_);
    678 
    679   // GC performance measuring
    680   void DumpGcPerformanceInfo(std::ostream& os)
    681       REQUIRES(!*gc_complete_lock_);
    682   void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
    683 
    684   // Thread pool.
    685   void CreateThreadPool();
    686   void DeleteThreadPool();
    687   ThreadPool* GetThreadPool() {
    688     return thread_pool_.get();
    689   }
    690   size_t GetParallelGCThreadCount() const {
    691     return parallel_gc_threads_;
    692   }
    693   size_t GetConcGCThreadCount() const {
    694     return conc_gc_threads_;
    695   }
    696   accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
    697   void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
    698 
    699   accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
    700   void AddRememberedSet(accounting::RememberedSet* remembered_set);
    701   // Also deletes the remebered set.
    702   void RemoveRememberedSet(space::Space* space);
    703 
    704   bool IsCompilingBoot() const;
    705   bool HasBootImageSpace() const {
    706     return !boot_image_spaces_.empty();
    707   }
    708 
    709   ReferenceProcessor* GetReferenceProcessor() {
    710     return reference_processor_.get();
    711   }
    712   TaskProcessor* GetTaskProcessor() {
    713     return task_processor_.get();
    714   }
    715 
    716   bool HasZygoteSpace() const {
    717     return zygote_space_ != nullptr;
    718   }
    719 
    720   collector::ConcurrentCopying* ConcurrentCopyingCollector() {
    721     return concurrent_copying_collector_;
    722   }
    723 
    724   CollectorType CurrentCollectorType() {
    725     return collector_type_;
    726   }
    727 
    728   bool IsGcConcurrentAndMoving() const {
    729     if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
    730       // Assume no transition when a concurrent moving collector is used.
    731       DCHECK_EQ(collector_type_, foreground_collector_type_);
    732       return true;
    733     }
    734     return false;
    735   }
    736 
    737   bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
    738     MutexLock mu(self, *gc_complete_lock_);
    739     return disable_moving_gc_count_ > 0;
    740   }
    741 
    742   // Request an asynchronous trim.
    743   void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
    744 
    745   // Request asynchronous GC.
    746   void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full)
    747       REQUIRES(!*pending_task_lock_);
    748 
    749   // Whether or not we may use a garbage collector, used so that we only create collectors we need.
    750   bool MayUseCollector(CollectorType type) const;
    751 
    752   // Used by tests to reduce timinig-dependent flakiness in OOME behavior.
    753   void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
    754     min_interval_homogeneous_space_compaction_by_oom_ = interval;
    755   }
    756 
    757   // Helpers for android.os.Debug.getRuntimeStat().
    758   uint64_t GetGcCount() const;
    759   uint64_t GetGcTime() const;
    760   uint64_t GetBlockingGcCount() const;
    761   uint64_t GetBlockingGcTime() const;
    762   void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
    763   void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
    764 
    765   // Allocation tracking support
    766   // Callers to this function use double-checked locking to ensure safety on allocation_records_
    767   bool IsAllocTrackingEnabled() const {
    768     return alloc_tracking_enabled_.LoadRelaxed();
    769   }
    770 
    771   void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
    772     alloc_tracking_enabled_.StoreRelaxed(enabled);
    773   }
    774 
    775   AllocRecordObjectMap* GetAllocationRecords() const
    776       REQUIRES(Locks::alloc_tracker_lock_) {
    777     return allocation_records_.get();
    778   }
    779 
    780   void SetAllocationRecords(AllocRecordObjectMap* records)
    781       REQUIRES(Locks::alloc_tracker_lock_);
    782 
    783   void VisitAllocationRecords(RootVisitor* visitor) const
    784       REQUIRES_SHARED(Locks::mutator_lock_)
    785       REQUIRES(!Locks::alloc_tracker_lock_);
    786 
    787   void SweepAllocationRecords(IsMarkedVisitor* visitor) const
    788       REQUIRES_SHARED(Locks::mutator_lock_)
    789       REQUIRES(!Locks::alloc_tracker_lock_);
    790 
    791   void DisallowNewAllocationRecords() const
    792       REQUIRES_SHARED(Locks::mutator_lock_)
    793       REQUIRES(!Locks::alloc_tracker_lock_);
    794 
    795   void AllowNewAllocationRecords() const
    796       REQUIRES_SHARED(Locks::mutator_lock_)
    797       REQUIRES(!Locks::alloc_tracker_lock_);
    798 
    799   void BroadcastForNewAllocationRecords() const
    800       REQUIRES(!Locks::alloc_tracker_lock_);
    801 
    802   void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
    803 
    804   // Create a new alloc space and compact default alloc space to it.
    805   HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() REQUIRES(!*gc_complete_lock_);
    806   bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
    807 
    808   // Install an allocation listener.
    809   void SetAllocationListener(AllocationListener* l);
    810   // Remove an allocation listener. Note: the listener must not be deleted, as for performance
    811   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
    812   void RemoveAllocationListener();
    813 
    814   // Install a gc pause listener.
    815   void SetGcPauseListener(GcPauseListener* l);
    816   // Get the currently installed gc pause listener, or null.
    817   GcPauseListener* GetGcPauseListener() {
    818     return gc_pause_listener_.LoadAcquire();
    819   }
    820   // Remove a gc pause listener. Note: the listener must not be deleted, as for performance
    821   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
    822   void RemoveGcPauseListener();
    823 
    824   const Verification* GetVerification() const;
    825 
    826  private:
    827   class ConcurrentGCTask;
    828   class CollectorTransitionTask;
    829   class HeapTrimTask;
    830 
    831   // Compact source space to target space. Returns the collector used.
    832   collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
    833                                        space::ContinuousMemMapAllocSpace* source_space,
    834                                        GcCause gc_cause)
    835       REQUIRES(Locks::mutator_lock_);
    836 
    837   void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
    838   void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
    839       REQUIRES(!*gc_complete_lock_);
    840   void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
    841 
    842   // Create a mem map with a preferred base address.
    843   static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
    844                                               size_t capacity, std::string* out_error_str);
    845 
    846   bool SupportHSpaceCompaction() const {
    847     // Returns true if we can do hspace compaction
    848     return main_space_backup_ != nullptr;
    849   }
    850 
    851   static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
    852     return
    853         allocator_type != kAllocatorTypeBumpPointer &&
    854         allocator_type != kAllocatorTypeTLAB &&
    855         allocator_type != kAllocatorTypeRegion &&
    856         allocator_type != kAllocatorTypeRegionTLAB;
    857   }
    858   static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
    859     if (kUseReadBarrier) {
    860       // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up.
    861       return true;
    862     }
    863     return
    864         allocator_type != kAllocatorTypeBumpPointer &&
    865         allocator_type != kAllocatorTypeTLAB;
    866   }
    867   static bool IsMovingGc(CollectorType collector_type) {
    868     return
    869         collector_type == kCollectorTypeSS ||
    870         collector_type == kCollectorTypeGSS ||
    871         collector_type == kCollectorTypeCC ||
    872         collector_type == kCollectorTypeCCBackground ||
    873         collector_type == kCollectorTypeMC ||
    874         collector_type == kCollectorTypeHomogeneousSpaceCompact;
    875   }
    876   bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const
    877       REQUIRES_SHARED(Locks::mutator_lock_);
    878   ALWAYS_INLINE void CheckConcurrentGC(Thread* self,
    879                                        size_t new_num_bytes_allocated,
    880                                        ObjPtr<mirror::Object>* obj)
    881       REQUIRES_SHARED(Locks::mutator_lock_)
    882       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
    883 
    884   accounting::ObjectStack* GetMarkStack() {
    885     return mark_stack_.get();
    886   }
    887 
    888   // We don't force this to be inlined since it is a slow path.
    889   template <bool kInstrumented, typename PreFenceVisitor>
    890   mirror::Object* AllocLargeObject(Thread* self,
    891                                    ObjPtr<mirror::Class>* klass,
    892                                    size_t byte_count,
    893                                    const PreFenceVisitor& pre_fence_visitor)
    894       REQUIRES_SHARED(Locks::mutator_lock_)
    895       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
    896 
    897   // Handles Allocate()'s slow allocation path with GC involved after
    898   // an initial allocation attempt failed.
    899   mirror::Object* AllocateInternalWithGc(Thread* self,
    900                                          AllocatorType allocator,
    901                                          bool instrumented,
    902                                          size_t num_bytes,
    903                                          size_t* bytes_allocated,
    904                                          size_t* usable_size,
    905                                          size_t* bytes_tl_bulk_allocated,
    906                                          ObjPtr<mirror::Class>* klass)
    907       REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
    908       REQUIRES_SHARED(Locks::mutator_lock_);
    909 
    910   // Allocate into a specific space.
    911   mirror::Object* AllocateInto(Thread* self,
    912                                space::AllocSpace* space,
    913                                ObjPtr<mirror::Class> c,
    914                                size_t bytes)
    915       REQUIRES_SHARED(Locks::mutator_lock_);
    916 
    917   // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
    918   // wrong space.
    919   void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
    920 
    921   // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
    922   // that the switch statement is constant optimized in the entrypoints.
    923   template <const bool kInstrumented, const bool kGrow>
    924   ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
    925                                               AllocatorType allocator_type,
    926                                               size_t alloc_size,
    927                                               size_t* bytes_allocated,
    928                                               size_t* usable_size,
    929                                               size_t* bytes_tl_bulk_allocated)
    930       REQUIRES_SHARED(Locks::mutator_lock_);
    931 
    932   mirror::Object* AllocWithNewTLAB(Thread* self,
    933                                    size_t alloc_size,
    934                                    bool grow,
    935                                    size_t* bytes_allocated,
    936                                    size_t* usable_size,
    937                                    size_t* bytes_tl_bulk_allocated)
    938       REQUIRES_SHARED(Locks::mutator_lock_);
    939 
    940   void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
    941       REQUIRES_SHARED(Locks::mutator_lock_);
    942 
    943   ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
    944                                                size_t alloc_size,
    945                                                bool grow);
    946 
    947   // Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
    948   void RunFinalization(JNIEnv* env, uint64_t timeout);
    949 
    950   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
    951   // waited for.
    952   collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
    953       REQUIRES(gc_complete_lock_);
    954 
    955   void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
    956       REQUIRES(!*pending_task_lock_);
    957 
    958   void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj)
    959       REQUIRES_SHARED(Locks::mutator_lock_)
    960       REQUIRES(!*pending_task_lock_);
    961   bool IsGCRequestPending() const;
    962 
    963   // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
    964   // which type of Gc was actually ran.
    965   collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
    966                                            GcCause gc_cause,
    967                                            bool clear_soft_references)
    968       REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
    969                !*pending_task_lock_);
    970 
    971   void PreGcVerification(collector::GarbageCollector* gc)
    972       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
    973   void PreGcVerificationPaused(collector::GarbageCollector* gc)
    974       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
    975   void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
    976       REQUIRES(Locks::mutator_lock_);
    977   void PreSweepingGcVerification(collector::GarbageCollector* gc)
    978       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    979   void PostGcVerification(collector::GarbageCollector* gc)
    980       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
    981   void PostGcVerificationPaused(collector::GarbageCollector* gc)
    982       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
    983 
    984   // Find a collector based on GC type.
    985   collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
    986 
    987   // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
    988   void CreateMainMallocSpace(MemMap* mem_map,
    989                              size_t initial_size,
    990                              size_t growth_limit,
    991                              size_t capacity);
    992 
    993   // Create a malloc space based on a mem map. Does not set the space as default.
    994   space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map,
    995                                                   size_t initial_size,
    996                                                   size_t growth_limit,
    997                                                   size_t capacity,
    998                                                   const char* name,
    999                                                   bool can_move_objects);
   1000 
   1001   // Given the current contents of the alloc space, increase the allowed heap footprint to match
   1002   // the target utilization ratio.  This should only be called immediately after a full garbage
   1003   // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
   1004   // the GC was run.
   1005   void GrowForUtilization(collector::GarbageCollector* collector_ran,
   1006                           uint64_t bytes_allocated_before_gc = 0);
   1007 
   1008   size_t GetPercentFree();
   1009 
   1010   // Swap the allocation stack with the live stack.
   1011   void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_);
   1012 
   1013   // Clear cards and update the mod union table. When process_alloc_space_cards is true,
   1014   // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
   1015   // not process the alloc space if process_alloc_space_cards is false.
   1016   void ProcessCards(TimingLogger* timings,
   1017                     bool use_rem_sets,
   1018                     bool process_alloc_space_cards,
   1019                     bool clear_alloc_space_cards)
   1020       REQUIRES_SHARED(Locks::mutator_lock_);
   1021 
   1022   // Push an object onto the allocation stack.
   1023   void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj)
   1024       REQUIRES_SHARED(Locks::mutator_lock_)
   1025       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
   1026   void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj)
   1027       REQUIRES_SHARED(Locks::mutator_lock_)
   1028       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
   1029   void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj)
   1030       REQUIRES_SHARED(Locks::mutator_lock_)
   1031       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
   1032 
   1033   void ClearConcurrentGCRequest();
   1034   void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
   1035   void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
   1036 
   1037   // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
   1038   // sweep GC, false for other GC types.
   1039   bool IsGcConcurrent() const ALWAYS_INLINE {
   1040     return collector_type_ == kCollectorTypeCMS ||
   1041         collector_type_ == kCollectorTypeCC ||
   1042         collector_type_ == kCollectorTypeCCBackground;
   1043   }
   1044 
   1045   // Trim the managed and native spaces by releasing unused memory back to the OS.
   1046   void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
   1047 
   1048   // Trim 0 pages at the end of reference tables.
   1049   void TrimIndirectReferenceTables(Thread* self);
   1050 
   1051   template <typename Visitor>
   1052   ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor)
   1053       REQUIRES_SHARED(Locks::mutator_lock_)
   1054       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
   1055   template <typename Visitor>
   1056   ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor)
   1057       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
   1058 
   1059   void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
   1060 
   1061   // GC stress mode attempts to do one GC per unique backtrace.
   1062   void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj)
   1063       REQUIRES_SHARED(Locks::mutator_lock_)
   1064       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
   1065 
   1066   collector::GcType NonStickyGcType() const {
   1067     return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
   1068   }
   1069 
   1070   // How large new_native_bytes_allocated_ can grow before we trigger a new
   1071   // GC.
   1072   ALWAYS_INLINE size_t NativeAllocationGcWatermark() const {
   1073     // Reuse max_free_ for the native allocation gc watermark, so that the
   1074     // native heap is treated in the same way as the Java heap in the case
   1075     // where the gc watermark update would exceed max_free_. Using max_free_
   1076     // instead of the target utilization means the watermark doesn't depend on
   1077     // the current number of registered native allocations.
   1078     return max_free_;
   1079   }
   1080 
   1081   // How large new_native_bytes_allocated_ can grow while GC is in progress
   1082   // before we block the allocating thread to allow GC to catch up.
   1083   ALWAYS_INLINE size_t NativeAllocationBlockingGcWatermark() const {
   1084     // Historically the native allocations were bounded by growth_limit_. This
   1085     // uses that same value, dividing growth_limit_ by 2 to account for
   1086     // the fact that now the bound is relative to the number of retained
   1087     // registered native allocations rather than absolute.
   1088     return growth_limit_ / 2;
   1089   }
   1090 
   1091   void TraceHeapSize(size_t heap_size);
   1092 
   1093   // All-known continuous spaces, where objects lie within fixed bounds.
   1094   std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
   1095 
   1096   // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
   1097   std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
   1098 
   1099   // All-known alloc spaces, where objects may be or have been allocated.
   1100   std::vector<space::AllocSpace*> alloc_spaces_;
   1101 
   1102   // A space where non-movable objects are allocated, when compaction is enabled it contains
   1103   // Classes, ArtMethods, ArtFields, and non moving objects.
   1104   space::MallocSpace* non_moving_space_;
   1105 
   1106   // Space which we use for the kAllocatorTypeROSAlloc.
   1107   space::RosAllocSpace* rosalloc_space_;
   1108 
   1109   // Space which we use for the kAllocatorTypeDlMalloc.
   1110   space::DlMallocSpace* dlmalloc_space_;
   1111 
   1112   // The main space is the space which the GC copies to and from on process state updates. This
   1113   // space is typically either the dlmalloc_space_ or the rosalloc_space_.
   1114   space::MallocSpace* main_space_;
   1115 
   1116   // The large object space we are currently allocating into.
   1117   space::LargeObjectSpace* large_object_space_;
   1118 
   1119   // The card table, dirtied by the write barrier.
   1120   std::unique_ptr<accounting::CardTable> card_table_;
   1121 
   1122   std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
   1123 
   1124   // A mod-union table remembers all of the references from the it's space to other spaces.
   1125   AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
   1126       mod_union_tables_;
   1127 
   1128   // A remembered set remembers all of the references from the it's space to the target space.
   1129   AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
   1130       remembered_sets_;
   1131 
   1132   // The current collector type.
   1133   CollectorType collector_type_;
   1134   // Which collector we use when the app is in the foreground.
   1135   CollectorType foreground_collector_type_;
   1136   // Which collector we will use when the app is notified of a transition to background.
   1137   CollectorType background_collector_type_;
   1138   // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
   1139   CollectorType desired_collector_type_;
   1140 
   1141   // Lock which guards pending tasks.
   1142   Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1143 
   1144   // How many GC threads we may use for paused parts of garbage collection.
   1145   const size_t parallel_gc_threads_;
   1146 
   1147   // How many GC threads we may use for unpaused parts of garbage collection.
   1148   const size_t conc_gc_threads_;
   1149 
   1150   // Boolean for if we are in low memory mode.
   1151   const bool low_memory_mode_;
   1152 
   1153   // If we get a pause longer than long pause log threshold, then we print out the GC after it
   1154   // finishes.
   1155   const size_t long_pause_log_threshold_;
   1156 
   1157   // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
   1158   const size_t long_gc_log_threshold_;
   1159 
   1160   // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
   1161   // useful for benchmarking since it reduces time spent in GC to a low %.
   1162   const bool ignore_max_footprint_;
   1163 
   1164   // Lock which guards zygote space creation.
   1165   Mutex zygote_creation_lock_;
   1166 
   1167   // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
   1168   // zygote space creation.
   1169   space::ZygoteSpace* zygote_space_;
   1170 
   1171   // Minimum allocation size of large object.
   1172   size_t large_object_threshold_;
   1173 
   1174   // Guards access to the state of GC, associated conditional variable is used to signal when a GC
   1175   // completes.
   1176   Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1177   std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
   1178 
   1179   // Used to synchronize between JNI critical calls and the thread flip of the CC collector.
   1180   Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1181   std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
   1182   // This counter keeps track of how many threads are currently in a JNI critical section. This is
   1183   // incremented once per thread even with nested enters.
   1184   size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
   1185   bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
   1186 
   1187   // Reference processor;
   1188   std::unique_ptr<ReferenceProcessor> reference_processor_;
   1189 
   1190   // Task processor, proxies heap trim requests to the daemon threads.
   1191   std::unique_ptr<TaskProcessor> task_processor_;
   1192 
   1193   // Collector type of the running GC.
   1194   volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
   1195 
   1196   // Cause of the last running GC.
   1197   volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_);
   1198 
   1199   // The thread currently running the GC.
   1200   volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_);
   1201 
   1202   // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
   1203   volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
   1204   collector::GcType next_gc_type_;
   1205 
   1206   // Maximum size that the heap can reach.
   1207   size_t capacity_;
   1208 
   1209   // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
   1210   // programs it is "cleared" making it the same as capacity.
   1211   size_t growth_limit_;
   1212 
   1213   // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating
   1214   // a GC should be triggered.
   1215   size_t max_allowed_footprint_;
   1216 
   1217   // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
   1218   // it completes ahead of an allocation failing.
   1219   size_t concurrent_start_bytes_;
   1220 
   1221   // Since the heap was created, how many bytes have been freed.
   1222   uint64_t total_bytes_freed_ever_;
   1223 
   1224   // Since the heap was created, how many objects have been freed.
   1225   uint64_t total_objects_freed_ever_;
   1226 
   1227   // Number of bytes allocated.  Adjusted after each allocation and free.
   1228   Atomic<size_t> num_bytes_allocated_;
   1229 
   1230   // Number of registered native bytes allocated since the last time GC was
   1231   // triggered. Adjusted after each RegisterNativeAllocation and
   1232   // RegisterNativeFree. Used to determine when to trigger GC for native
   1233   // allocations.
   1234   // See the REDESIGN section of go/understanding-register-native-allocation.
   1235   Atomic<size_t> new_native_bytes_allocated_;
   1236 
   1237   // Number of registered native bytes allocated prior to the last time GC was
   1238   // triggered, for debugging purposes. The current number of registered
   1239   // native bytes is determined by taking the sum of
   1240   // old_native_bytes_allocated_ and new_native_bytes_allocated_.
   1241   Atomic<size_t> old_native_bytes_allocated_;
   1242 
   1243   // Used for synchronization when multiple threads call into
   1244   // RegisterNativeAllocation and require blocking GC.
   1245   // * If a previous blocking GC is in progress, all threads will wait for
   1246   // that GC to complete, then wait for one of the threads to complete another
   1247   // blocking GC.
   1248   // * If a blocking GC is assigned but not in progress, a thread has been
   1249   // assigned to run a blocking GC but has not started yet. Threads will wait
   1250   // for the assigned blocking GC to complete.
   1251   // * If a blocking GC is not assigned nor in progress, the first thread will
   1252   // run a blocking GC and signal to other threads that blocking GC has been
   1253   // assigned.
   1254   Mutex* native_blocking_gc_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1255   std::unique_ptr<ConditionVariable> native_blocking_gc_cond_ GUARDED_BY(native_blocking_gc_lock_);
   1256   bool native_blocking_gc_is_assigned_ GUARDED_BY(native_blocking_gc_lock_);
   1257   bool native_blocking_gc_in_progress_ GUARDED_BY(native_blocking_gc_lock_);
   1258   uint32_t native_blocking_gcs_finished_ GUARDED_BY(native_blocking_gc_lock_);
   1259 
   1260   // Number of bytes freed by thread local buffer revokes. This will
   1261   // cancel out the ahead-of-time bulk counting of bytes allocated in
   1262   // rosalloc thread-local buffers.  It is temporarily accumulated
   1263   // here to be subtracted from num_bytes_allocated_ later at the next
   1264   // GC.
   1265   Atomic<size_t> num_bytes_freed_revoke_;
   1266 
   1267   // Info related to the current or previous GC iteration.
   1268   collector::Iteration current_gc_iteration_;
   1269 
   1270   // Heap verification flags.
   1271   const bool verify_missing_card_marks_;
   1272   const bool verify_system_weaks_;
   1273   const bool verify_pre_gc_heap_;
   1274   const bool verify_pre_sweeping_heap_;
   1275   const bool verify_post_gc_heap_;
   1276   const bool verify_mod_union_table_;
   1277   bool verify_pre_gc_rosalloc_;
   1278   bool verify_pre_sweeping_rosalloc_;
   1279   bool verify_post_gc_rosalloc_;
   1280   const bool gc_stress_mode_;
   1281 
   1282   // RAII that temporarily disables the rosalloc verification during
   1283   // the zygote fork.
   1284   class ScopedDisableRosAllocVerification {
   1285    private:
   1286     Heap* const heap_;
   1287     const bool orig_verify_pre_gc_;
   1288     const bool orig_verify_pre_sweeping_;
   1289     const bool orig_verify_post_gc_;
   1290 
   1291    public:
   1292     explicit ScopedDisableRosAllocVerification(Heap* heap)
   1293         : heap_(heap),
   1294           orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
   1295           orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
   1296           orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
   1297       heap_->verify_pre_gc_rosalloc_ = false;
   1298       heap_->verify_pre_sweeping_rosalloc_ = false;
   1299       heap_->verify_post_gc_rosalloc_ = false;
   1300     }
   1301     ~ScopedDisableRosAllocVerification() {
   1302       heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
   1303       heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
   1304       heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
   1305     }
   1306   };
   1307 
   1308   // Parallel GC data structures.
   1309   std::unique_ptr<ThreadPool> thread_pool_;
   1310 
   1311   // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
   1312   // and the start of the current one.
   1313   uint64_t allocation_rate_;
   1314 
   1315   // For a GC cycle, a bitmap that is set corresponding to the
   1316   std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
   1317   std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
   1318 
   1319   // Mark stack that we reuse to avoid re-allocating the mark stack.
   1320   std::unique_ptr<accounting::ObjectStack> mark_stack_;
   1321 
   1322   // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
   1323   // to use the live bitmap as the old mark bitmap.
   1324   const size_t max_allocation_stack_size_;
   1325   std::unique_ptr<accounting::ObjectStack> allocation_stack_;
   1326 
   1327   // Second allocation stack so that we can process allocation with the heap unlocked.
   1328   std::unique_ptr<accounting::ObjectStack> live_stack_;
   1329 
   1330   // Allocator type.
   1331   AllocatorType current_allocator_;
   1332   const AllocatorType current_non_moving_allocator_;
   1333 
   1334   // Which GCs we run in order when we an allocation fails.
   1335   std::vector<collector::GcType> gc_plan_;
   1336 
   1337   // Bump pointer spaces.
   1338   space::BumpPointerSpace* bump_pointer_space_;
   1339   // Temp space is the space which the semispace collector copies to.
   1340   space::BumpPointerSpace* temp_space_;
   1341 
   1342   space::RegionSpace* region_space_;
   1343 
   1344   // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
   1345   // utilization, regardless of target utilization ratio.
   1346   size_t min_free_;
   1347 
   1348   // The ideal maximum free size, when we grow the heap for utilization.
   1349   size_t max_free_;
   1350 
   1351   // Target ideal heap utilization ratio
   1352   double target_utilization_;
   1353 
   1354   // How much more we grow the heap when we are a foreground app instead of background.
   1355   double foreground_heap_growth_multiplier_;
   1356 
   1357   // Total time which mutators are paused or waiting for GC to complete.
   1358   uint64_t total_wait_time_;
   1359 
   1360   // The current state of heap verification, may be enabled or disabled.
   1361   VerifyObjectMode verify_object_mode_;
   1362 
   1363   // Compacting GC disable count, prevents compacting GC from running iff > 0.
   1364   size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
   1365 
   1366   std::vector<collector::GarbageCollector*> garbage_collectors_;
   1367   collector::SemiSpace* semi_space_collector_;
   1368   collector::MarkCompact* mark_compact_collector_;
   1369   collector::ConcurrentCopying* concurrent_copying_collector_;
   1370 
   1371   const bool is_running_on_memory_tool_;
   1372   const bool use_tlab_;
   1373 
   1374   // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
   1375   // Use unique_ptr since the space is only added during the homogeneous compaction phase.
   1376   std::unique_ptr<space::MallocSpace> main_space_backup_;
   1377 
   1378   // Minimal interval allowed between two homogeneous space compactions caused by OOM.
   1379   uint64_t min_interval_homogeneous_space_compaction_by_oom_;
   1380 
   1381   // Times of the last homogeneous space compaction caused by OOM.
   1382   uint64_t last_time_homogeneous_space_compaction_by_oom_;
   1383 
   1384   // Saved OOMs by homogeneous space compaction.
   1385   Atomic<size_t> count_delayed_oom_;
   1386 
   1387   // Count for requested homogeneous space compaction.
   1388   Atomic<size_t> count_requested_homogeneous_space_compaction_;
   1389 
   1390   // Count for ignored homogeneous space compaction.
   1391   Atomic<size_t> count_ignored_homogeneous_space_compaction_;
   1392 
   1393   // Count for performed homogeneous space compaction.
   1394   Atomic<size_t> count_performed_homogeneous_space_compaction_;
   1395 
   1396   // Whether or not a concurrent GC is pending.
   1397   Atomic<bool> concurrent_gc_pending_;
   1398 
   1399   // Active tasks which we can modify (change target time, desired collector type, etc..).
   1400   CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
   1401   HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
   1402 
   1403   // Whether or not we use homogeneous space compaction to avoid OOM errors.
   1404   bool use_homogeneous_space_compaction_for_oom_;
   1405 
   1406   // True if the currently running collection has made some thread wait.
   1407   bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
   1408   // The number of blocking GC runs.
   1409   uint64_t blocking_gc_count_;
   1410   // The total duration of blocking GC runs.
   1411   uint64_t blocking_gc_time_;
   1412   // The duration of the window for the GC count rate histograms.
   1413   static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000);  // 10s.
   1414   // The last time when the GC count rate histograms were updated.
   1415   // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
   1416   uint64_t last_update_time_gc_count_rate_histograms_;
   1417   // The running count of GC runs in the last window.
   1418   uint64_t gc_count_last_window_;
   1419   // The running count of blocking GC runs in the last window.
   1420   uint64_t blocking_gc_count_last_window_;
   1421   // The maximum number of buckets in the GC count rate histograms.
   1422   static constexpr size_t kGcCountRateMaxBucketCount = 200;
   1423   // The histogram of the number of GC invocations per window duration.
   1424   Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
   1425   // The histogram of the number of blocking GC invocations per window duration.
   1426   Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
   1427 
   1428   // Allocation tracking support
   1429   Atomic<bool> alloc_tracking_enabled_;
   1430   std::unique_ptr<AllocRecordObjectMap> allocation_records_;
   1431 
   1432   // GC stress related data structures.
   1433   Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1434   // Debugging variables, seen backtraces vs unique backtraces.
   1435   Atomic<uint64_t> seen_backtrace_count_;
   1436   Atomic<uint64_t> unique_backtrace_count_;
   1437   // Stack trace hashes that we already saw,
   1438   std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
   1439 
   1440   // We disable GC when we are shutting down the runtime in case there are daemon threads still
   1441   // allocating.
   1442   bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
   1443 
   1444   // Boot image spaces.
   1445   std::vector<space::ImageSpace*> boot_image_spaces_;
   1446 
   1447   // An installed allocation listener.
   1448   Atomic<AllocationListener*> alloc_listener_;
   1449   // An installed GC Pause listener.
   1450   Atomic<GcPauseListener*> gc_pause_listener_;
   1451 
   1452   std::unique_ptr<Verification> verification_;
   1453 
   1454   friend class CollectorTransitionTask;
   1455   friend class collector::GarbageCollector;
   1456   friend class collector::MarkCompact;
   1457   friend class collector::ConcurrentCopying;
   1458   friend class collector::MarkSweep;
   1459   friend class collector::SemiSpace;
   1460   friend class ReferenceQueue;
   1461   friend class ScopedGCCriticalSection;
   1462   friend class VerifyReferenceCardVisitor;
   1463   friend class VerifyReferenceVisitor;
   1464   friend class VerifyObjectVisitor;
   1465 
   1466   DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
   1467 };
   1468 
   1469 }  // namespace gc
   1470 }  // namespace art
   1471 
   1472 #endif  // ART_RUNTIME_GC_HEAP_H_
   1473