Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
      6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Give alias names to registers for calling conventions.
     17 const Register kReturnRegister0 = {Register::kCode_r0};
     18 const Register kReturnRegister1 = {Register::kCode_r1};
     19 const Register kReturnRegister2 = {Register::kCode_r2};
     20 const Register kJSFunctionRegister = {Register::kCode_r1};
     21 const Register kContextRegister = {Register::kCode_r7};
     22 const Register kAllocateSizeRegister = {Register::kCode_r1};
     23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r0};
     24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r5};
     25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r6};
     26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
     27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r0};
     28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r3};
     29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r1};
     30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r0};
     31 
     32 // ----------------------------------------------------------------------------
     33 // Static helper functions
     34 
     35 // Generate a MemOperand for loading a field from an object.
     36 inline MemOperand FieldMemOperand(Register object, int offset) {
     37   return MemOperand(object, offset - kHeapObjectTag);
     38 }
     39 
     40 
     41 // Give alias names to registers
     42 const Register cp = {Register::kCode_r7};  // JavaScript context pointer.
     43 const Register pp = {Register::kCode_r8};  // Constant pool pointer.
     44 const Register kRootRegister = {Register::kCode_r10};  // Roots array pointer.
     45 
     46 // Flags used for AllocateHeapNumber
     47 enum TaggingMode {
     48   // Tag the result.
     49   TAG_RESULT,
     50   // Don't tag
     51   DONT_TAG_RESULT
     52 };
     53 
     54 
     55 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     56 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     57 enum PointersToHereCheck {
     58   kPointersToHereMaybeInteresting,
     59   kPointersToHereAreAlwaysInteresting
     60 };
     61 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     62 
     63 
     64 Register GetRegisterThatIsNotOneOf(Register reg1,
     65                                    Register reg2 = no_reg,
     66                                    Register reg3 = no_reg,
     67                                    Register reg4 = no_reg,
     68                                    Register reg5 = no_reg,
     69                                    Register reg6 = no_reg);
     70 
     71 
     72 #ifdef DEBUG
     73 bool AreAliased(Register reg1,
     74                 Register reg2,
     75                 Register reg3 = no_reg,
     76                 Register reg4 = no_reg,
     77                 Register reg5 = no_reg,
     78                 Register reg6 = no_reg,
     79                 Register reg7 = no_reg,
     80                 Register reg8 = no_reg);
     81 #endif
     82 
     83 
     84 enum TargetAddressStorageMode {
     85   CAN_INLINE_TARGET_ADDRESS,
     86   NEVER_INLINE_TARGET_ADDRESS
     87 };
     88 
     89 // MacroAssembler implements a collection of frequently used macros.
     90 class MacroAssembler: public Assembler {
     91  public:
     92   MacroAssembler(Isolate* isolate, void* buffer, int size,
     93                  CodeObjectRequired create_code_object);
     94 
     95 
     96   // Returns the size of a call in instructions. Note, the value returned is
     97   // only valid as long as no entries are added to the constant pool between
     98   // checking the call size and emitting the actual call.
     99   static int CallSize(Register target, Condition cond = al);
    100   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
    101   int CallStubSize(CodeStub* stub,
    102                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
    103                    Condition cond = al);
    104 
    105   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    106   void Jump(Register target, Condition cond = al);
    107   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
    108   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
    109   void Call(Register target, Condition cond = al);
    110   void Call(Address target, RelocInfo::Mode rmode,
    111             Condition cond = al,
    112             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
    113   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    114             TypeFeedbackId ast_id = TypeFeedbackId::None(), Condition cond = al,
    115             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
    116   int CallSize(Handle<Code> code,
    117                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    118                TypeFeedbackId ast_id = TypeFeedbackId::None(),
    119                Condition cond = al);
    120   void Ret(Condition cond = al);
    121 
    122   // Used for patching in calls to the deoptimizer.
    123   void CallDeoptimizer(Address target);
    124   static int CallDeoptimizerSize();
    125 
    126   // Emit code that loads |parameter_index|'th parameter from the stack to
    127   // the register according to the CallInterfaceDescriptor definition.
    128   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
    129   // below the caller's sp.
    130   template <class Descriptor>
    131   void LoadParameterFromStack(
    132       Register reg, typename Descriptor::ParameterIndices parameter_index,
    133       int sp_to_ra_offset_in_words = 0) {
    134     DCHECK(Descriptor::kPassLastArgsOnStack);
    135     UNIMPLEMENTED();
    136   }
    137 
    138   // Emit code to discard a non-negative number of pointer-sized elements
    139   // from the stack, clobbering only the sp register.
    140   void Drop(int count, Condition cond = al);
    141   void Drop(Register count, Condition cond = al);
    142 
    143   void Ret(int drop, Condition cond = al);
    144 
    145   // Swap two registers.  If the scratch register is omitted then a slightly
    146   // less efficient form using xor instead of mov is emitted.
    147   void Swap(Register reg1,
    148             Register reg2,
    149             Register scratch = no_reg,
    150             Condition cond = al);
    151 
    152   void Mls(Register dst, Register src1, Register src2, Register srcA,
    153            Condition cond = al);
    154   void And(Register dst, Register src1, const Operand& src2,
    155            Condition cond = al);
    156   void Ubfx(Register dst, Register src, int lsb, int width,
    157             Condition cond = al);
    158   void Sbfx(Register dst, Register src, int lsb, int width,
    159             Condition cond = al);
    160   // The scratch register is not used for ARMv7.
    161   // scratch can be the same register as src (in which case it is trashed), but
    162   // not the same as dst.
    163   void Bfi(Register dst,
    164            Register src,
    165            Register scratch,
    166            int lsb,
    167            int width,
    168            Condition cond = al);
    169   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
    170 
    171   void Call(Label* target);
    172   void Push(Register src) { push(src); }
    173   void Pop(Register dst) { pop(dst); }
    174 
    175   // Register move. May do nothing if the registers are identical.
    176   void Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
    177   void Move(Register dst, Handle<Object> value);
    178   void Move(Register dst, Register src, Condition cond = al);
    179   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
    180             Condition cond = al) {
    181     if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
    182       mov(dst, src, sbit, cond);
    183     }
    184   }
    185   void Move(SwVfpRegister dst, SwVfpRegister src, Condition cond = al);
    186   void Move(DwVfpRegister dst, DwVfpRegister src, Condition cond = al);
    187   void Move(QwNeonRegister dst, QwNeonRegister src);
    188   // Register swap.
    189   void Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1);
    190   void Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1);
    191 
    192   void Load(Register dst, const MemOperand& src, Representation r);
    193   void Store(Register src, const MemOperand& dst, Representation r);
    194 
    195   // Load an object from the root table.
    196   void LoadRoot(Register destination,
    197                 Heap::RootListIndex index,
    198                 Condition cond = al);
    199   // Store an object to the root table.
    200   void StoreRoot(Register source,
    201                  Heap::RootListIndex index,
    202                  Condition cond = al);
    203 
    204   // ---------------------------------------------------------------------------
    205   // GC Support
    206 
    207   void IncrementalMarkingRecordWriteHelper(Register object,
    208                                            Register value,
    209                                            Register address);
    210 
    211   enum RememberedSetFinalAction {
    212     kReturnAtEnd,
    213     kFallThroughAtEnd
    214   };
    215 
    216   // Record in the remembered set the fact that we have a pointer to new space
    217   // at the address pointed to by the addr register.  Only works if addr is not
    218   // in new space.
    219   void RememberedSetHelper(Register object,  // Used for debug code.
    220                            Register addr,
    221                            Register scratch,
    222                            SaveFPRegsMode save_fp,
    223                            RememberedSetFinalAction and_then);
    224 
    225   void CheckPageFlag(Register object,
    226                      Register scratch,
    227                      int mask,
    228                      Condition cc,
    229                      Label* condition_met);
    230 
    231   // Check if object is in new space.  Jumps if the object is not in new space.
    232   // The register scratch can be object itself, but scratch will be clobbered.
    233   void JumpIfNotInNewSpace(Register object,
    234                            Register scratch,
    235                            Label* branch) {
    236     InNewSpace(object, scratch, eq, branch);
    237   }
    238 
    239   // Check if object is in new space.  Jumps if the object is in new space.
    240   // The register scratch can be object itself, but it will be clobbered.
    241   void JumpIfInNewSpace(Register object,
    242                         Register scratch,
    243                         Label* branch) {
    244     InNewSpace(object, scratch, ne, branch);
    245   }
    246 
    247   // Check if an object has a given incremental marking color.
    248   void HasColor(Register object,
    249                 Register scratch0,
    250                 Register scratch1,
    251                 Label* has_color,
    252                 int first_bit,
    253                 int second_bit);
    254 
    255   void JumpIfBlack(Register object,
    256                    Register scratch0,
    257                    Register scratch1,
    258                    Label* on_black);
    259 
    260   // Checks the color of an object.  If the object is white we jump to the
    261   // incremental marker.
    262   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    263                    Register scratch3, Label* value_is_white);
    264 
    265   // Notify the garbage collector that we wrote a pointer into an object.
    266   // |object| is the object being stored into, |value| is the object being
    267   // stored.  value and scratch registers are clobbered by the operation.
    268   // The offset is the offset from the start of the object, not the offset from
    269   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
    270   void RecordWriteField(
    271       Register object,
    272       int offset,
    273       Register value,
    274       Register scratch,
    275       LinkRegisterStatus lr_status,
    276       SaveFPRegsMode save_fp,
    277       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    278       SmiCheck smi_check = INLINE_SMI_CHECK,
    279       PointersToHereCheck pointers_to_here_check_for_value =
    280           kPointersToHereMaybeInteresting);
    281 
    282   // As above, but the offset has the tag presubtracted.  For use with
    283   // MemOperand(reg, off).
    284   inline void RecordWriteContextSlot(
    285       Register context,
    286       int offset,
    287       Register value,
    288       Register scratch,
    289       LinkRegisterStatus lr_status,
    290       SaveFPRegsMode save_fp,
    291       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    292       SmiCheck smi_check = INLINE_SMI_CHECK,
    293       PointersToHereCheck pointers_to_here_check_for_value =
    294           kPointersToHereMaybeInteresting) {
    295     RecordWriteField(context,
    296                      offset + kHeapObjectTag,
    297                      value,
    298                      scratch,
    299                      lr_status,
    300                      save_fp,
    301                      remembered_set_action,
    302                      smi_check,
    303                      pointers_to_here_check_for_value);
    304   }
    305 
    306   // Notify the garbage collector that we wrote a code entry into a
    307   // JSFunction. Only scratch is clobbered by the operation.
    308   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    309                                  Register scratch);
    310 
    311   void RecordWriteForMap(
    312       Register object,
    313       Register map,
    314       Register dst,
    315       LinkRegisterStatus lr_status,
    316       SaveFPRegsMode save_fp);
    317 
    318   // For a given |object| notify the garbage collector that the slot |address|
    319   // has been written.  |value| is the object being stored. The value and
    320   // address registers are clobbered by the operation.
    321   void RecordWrite(
    322       Register object,
    323       Register address,
    324       Register value,
    325       LinkRegisterStatus lr_status,
    326       SaveFPRegsMode save_fp,
    327       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    328       SmiCheck smi_check = INLINE_SMI_CHECK,
    329       PointersToHereCheck pointers_to_here_check_for_value =
    330           kPointersToHereMaybeInteresting);
    331 
    332   // Push a handle.
    333   void Push(Handle<Object> handle);
    334   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    335 
    336   // Push two registers.  Pushes leftmost register first (to highest address).
    337   void Push(Register src1, Register src2, Condition cond = al) {
    338     if (src1.code() > src2.code()) {
    339       stm(db_w, sp, src1.bit() | src2.bit(), cond);
    340     } else {
    341       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    342       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
    343     }
    344   }
    345 
    346   // Push three registers.  Pushes leftmost register first (to highest address).
    347   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
    348     if (src1.code() > src2.code()) {
    349       if (src2.code() > src3.code()) {
    350         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    351       } else {
    352         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    353         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
    354       }
    355     } else {
    356       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    357       Push(src2, src3, cond);
    358     }
    359   }
    360 
    361   // Push four registers.  Pushes leftmost register first (to highest address).
    362   void Push(Register src1,
    363             Register src2,
    364             Register src3,
    365             Register src4,
    366             Condition cond = al) {
    367     if (src1.code() > src2.code()) {
    368       if (src2.code() > src3.code()) {
    369         if (src3.code() > src4.code()) {
    370           stm(db_w,
    371               sp,
    372               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    373               cond);
    374         } else {
    375           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    376           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
    377         }
    378       } else {
    379         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    380         Push(src3, src4, cond);
    381       }
    382     } else {
    383       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    384       Push(src2, src3, src4, cond);
    385     }
    386   }
    387 
    388   // Push five registers.  Pushes leftmost register first (to highest address).
    389   void Push(Register src1, Register src2, Register src3, Register src4,
    390             Register src5, Condition cond = al) {
    391     if (src1.code() > src2.code()) {
    392       if (src2.code() > src3.code()) {
    393         if (src3.code() > src4.code()) {
    394           if (src4.code() > src5.code()) {
    395             stm(db_w, sp,
    396                 src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
    397                 cond);
    398           } else {
    399             stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    400                 cond);
    401             str(src5, MemOperand(sp, 4, NegPreIndex), cond);
    402           }
    403         } else {
    404           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    405           Push(src4, src5, cond);
    406         }
    407       } else {
    408         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    409         Push(src3, src4, src5, cond);
    410       }
    411     } else {
    412       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    413       Push(src2, src3, src4, src5, cond);
    414     }
    415   }
    416 
    417   // Pop two registers. Pops rightmost register first (from lower address).
    418   void Pop(Register src1, Register src2, Condition cond = al) {
    419     DCHECK(!src1.is(src2));
    420     if (src1.code() > src2.code()) {
    421       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    422     } else {
    423       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
    424       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    425     }
    426   }
    427 
    428   // Pop three registers.  Pops rightmost register first (from lower address).
    429   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
    430     DCHECK(!AreAliased(src1, src2, src3));
    431     if (src1.code() > src2.code()) {
    432       if (src2.code() > src3.code()) {
    433         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    434       } else {
    435         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
    436         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    437       }
    438     } else {
    439       Pop(src2, src3, cond);
    440       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    441     }
    442   }
    443 
    444   // Pop four registers.  Pops rightmost register first (from lower address).
    445   void Pop(Register src1,
    446            Register src2,
    447            Register src3,
    448            Register src4,
    449            Condition cond = al) {
    450     DCHECK(!AreAliased(src1, src2, src3, src4));
    451     if (src1.code() > src2.code()) {
    452       if (src2.code() > src3.code()) {
    453         if (src3.code() > src4.code()) {
    454           ldm(ia_w,
    455               sp,
    456               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    457               cond);
    458         } else {
    459           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
    460           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    461         }
    462       } else {
    463         Pop(src3, src4, cond);
    464         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    465       }
    466     } else {
    467       Pop(src2, src3, src4, cond);
    468       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    469     }
    470   }
    471 
    472   // Push a fixed frame, consisting of lr, fp, constant pool (if
    473   // FLAG_enable_embedded_constant_pool)
    474   void PushCommonFrame(Register marker_reg = no_reg);
    475 
    476   // Push a standard frame, consisting of lr, fp, constant pool (if
    477   // FLAG_enable_embedded_constant_pool), context and JS function
    478   void PushStandardFrame(Register function_reg);
    479 
    480   void PopCommonFrame(Register marker_reg = no_reg);
    481 
    482   // Push and pop the registers that can hold pointers, as defined by the
    483   // RegList constant kSafepointSavedRegisters.
    484   void PushSafepointRegisters();
    485   void PopSafepointRegisters();
    486   // Store value in register src in the safepoint stack slot for
    487   // register dst.
    488   void StoreToSafepointRegisterSlot(Register src, Register dst);
    489   // Load the value of the src register from its safepoint stack slot
    490   // into register dst.
    491   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    492 
    493   // Load two consecutive registers with two consecutive memory locations.
    494   void Ldrd(Register dst1,
    495             Register dst2,
    496             const MemOperand& src,
    497             Condition cond = al);
    498 
    499   // Store two consecutive registers to two consecutive memory locations.
    500   void Strd(Register src1,
    501             Register src2,
    502             const MemOperand& dst,
    503             Condition cond = al);
    504 
    505   // If the value is a NaN, canonicalize the value else, do nothing.
    506   void VFPCanonicalizeNaN(const DwVfpRegister dst,
    507                           const DwVfpRegister src,
    508                           const Condition cond = al);
    509   void VFPCanonicalizeNaN(const DwVfpRegister value,
    510                           const Condition cond = al) {
    511     VFPCanonicalizeNaN(value, value, cond);
    512   }
    513 
    514   // Compare single values and move the result to the normal condition flags.
    515   void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
    516                              const Condition cond = al);
    517   void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
    518                              const Condition cond = al);
    519 
    520   // Compare double values and move the result to the normal condition flags.
    521   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    522                              const DwVfpRegister src2,
    523                              const Condition cond = al);
    524   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    525                              const double src2,
    526                              const Condition cond = al);
    527 
    528   // Compare single values and then load the fpscr flags to a register.
    529   void VFPCompareAndLoadFlags(const SwVfpRegister src1,
    530                               const SwVfpRegister src2,
    531                               const Register fpscr_flags,
    532                               const Condition cond = al);
    533   void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
    534                               const Register fpscr_flags,
    535                               const Condition cond = al);
    536 
    537   // Compare double values and then load the fpscr flags to a register.
    538   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    539                               const DwVfpRegister src2,
    540                               const Register fpscr_flags,
    541                               const Condition cond = al);
    542   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    543                               const double src2,
    544                               const Register fpscr_flags,
    545                               const Condition cond = al);
    546 
    547   void Vmov(const DwVfpRegister dst,
    548             const double imm,
    549             const Register scratch = no_reg);
    550 
    551   void VmovHigh(Register dst, DwVfpRegister src);
    552   void VmovHigh(DwVfpRegister dst, Register src);
    553   void VmovLow(Register dst, DwVfpRegister src);
    554   void VmovLow(DwVfpRegister dst, Register src);
    555 
    556   // Simulate s-register moves for imaginary s32 - s63 registers.
    557   void VmovExtended(Register dst, int src_code);
    558   void VmovExtended(int dst_code, Register src);
    559   // Move between s-registers and imaginary s-registers.
    560   void VmovExtended(int dst_code, int src_code, Register scratch);
    561   void VmovExtended(int dst_code, const MemOperand& src, Register scratch);
    562   void VmovExtended(const MemOperand& dst, int src_code, Register scratch);
    563 
    564   void ExtractLane(Register dst, QwNeonRegister src, NeonDataType dt, int lane);
    565   void ExtractLane(SwVfpRegister dst, QwNeonRegister src, Register scratch,
    566                    int lane);
    567   void ReplaceLane(QwNeonRegister dst, QwNeonRegister src, Register src_lane,
    568                    NeonDataType dt, int lane);
    569   void ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
    570                    SwVfpRegister src_lane, Register scratch, int lane);
    571   void Swizzle(QwNeonRegister dst, QwNeonRegister src, Register scratch,
    572                NeonSize size, uint32_t lanes);
    573 
    574   void LslPair(Register dst_low, Register dst_high, Register src_low,
    575                Register src_high, Register scratch, Register shift);
    576   void LslPair(Register dst_low, Register dst_high, Register src_low,
    577                Register src_high, uint32_t shift);
    578   void LsrPair(Register dst_low, Register dst_high, Register src_low,
    579                Register src_high, Register scratch, Register shift);
    580   void LsrPair(Register dst_low, Register dst_high, Register src_low,
    581                Register src_high, uint32_t shift);
    582   void AsrPair(Register dst_low, Register dst_high, Register src_low,
    583                Register src_high, Register scratch, Register shift);
    584   void AsrPair(Register dst_low, Register dst_high, Register src_low,
    585                Register src_high, uint32_t shift);
    586 
    587   // Loads the number from object into dst register.
    588   // If |object| is neither smi nor heap number, |not_number| is jumped to
    589   // with |object| still intact.
    590   void LoadNumber(Register object,
    591                   LowDwVfpRegister dst,
    592                   Register heap_number_map,
    593                   Register scratch,
    594                   Label* not_number);
    595 
    596   // Loads the number from object into double_dst in the double format.
    597   // Control will jump to not_int32 if the value cannot be exactly represented
    598   // by a 32-bit integer.
    599   // Floating point value in the 32-bit integer range that are not exact integer
    600   // won't be loaded.
    601   void LoadNumberAsInt32Double(Register object,
    602                                DwVfpRegister double_dst,
    603                                Register heap_number_map,
    604                                Register scratch,
    605                                LowDwVfpRegister double_scratch,
    606                                Label* not_int32);
    607 
    608   // Loads the number from object into dst as a 32-bit integer.
    609   // Control will jump to not_int32 if the object cannot be exactly represented
    610   // by a 32-bit integer.
    611   // Floating point value in the 32-bit integer range that are not exact integer
    612   // won't be converted.
    613   void LoadNumberAsInt32(Register object,
    614                          Register dst,
    615                          Register heap_number_map,
    616                          Register scratch,
    617                          DwVfpRegister double_scratch0,
    618                          LowDwVfpRegister double_scratch1,
    619                          Label* not_int32);
    620 
    621   // Generates function and stub prologue code.
    622   void StubPrologue(StackFrame::Type type);
    623   void Prologue(bool code_pre_aging);
    624 
    625   // Enter exit frame.
    626   // stack_space - extra stack space, used for alignment before call to C.
    627   void EnterExitFrame(bool save_doubles, int stack_space = 0,
    628                       StackFrame::Type frame_type = StackFrame::EXIT);
    629 
    630   // Leave the current exit frame. Expects the return value in r0.
    631   // Expect the number of values, pushed prior to the exit frame, to
    632   // remove in a register (or no_reg, if there is nothing to remove).
    633   void LeaveExitFrame(bool save_doubles, Register argument_count,
    634                       bool restore_context,
    635                       bool argument_count_is_length = false);
    636 
    637   // Get the actual activation frame alignment for target environment.
    638   static int ActivationFrameAlignment();
    639 
    640   void LoadContext(Register dst, int context_chain_length);
    641 
    642   // Load the global object from the current context.
    643   void LoadGlobalObject(Register dst) {
    644     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
    645   }
    646 
    647   // Load the global proxy from the current context.
    648   void LoadGlobalProxy(Register dst) {
    649     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
    650   }
    651 
    652   void LoadNativeContextSlot(int index, Register dst);
    653 
    654   // Load the initial map from the global function. The registers
    655   // function and map can be the same, function is then overwritten.
    656   void LoadGlobalFunctionInitialMap(Register function,
    657                                     Register map,
    658                                     Register scratch);
    659 
    660   void InitializeRootRegister() {
    661     ExternalReference roots_array_start =
    662         ExternalReference::roots_array_start(isolate());
    663     mov(kRootRegister, Operand(roots_array_start));
    664   }
    665 
    666   // ---------------------------------------------------------------------------
    667   // JavaScript invokes
    668 
    669   // Removes current frame and its arguments from the stack preserving
    670   // the arguments and a return address pushed to the stack for the next call.
    671   // Both |callee_args_count| and |caller_args_count_reg| do not include
    672   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    673   // is trashed.
    674   void PrepareForTailCall(const ParameterCount& callee_args_count,
    675                           Register caller_args_count_reg, Register scratch0,
    676                           Register scratch1);
    677 
    678   // Invoke the JavaScript function code by either calling or jumping.
    679   void InvokeFunctionCode(Register function, Register new_target,
    680                           const ParameterCount& expected,
    681                           const ParameterCount& actual, InvokeFlag flag,
    682                           const CallWrapper& call_wrapper);
    683 
    684   // On function call, call into the debugger if necessary.
    685   void CheckDebugHook(Register fun, Register new_target,
    686                       const ParameterCount& expected,
    687                       const ParameterCount& actual);
    688 
    689   // Invoke the JavaScript function in the given register. Changes the
    690   // current context to the context in the function before invoking.
    691   void InvokeFunction(Register function,
    692                       Register new_target,
    693                       const ParameterCount& actual,
    694                       InvokeFlag flag,
    695                       const CallWrapper& call_wrapper);
    696 
    697   void InvokeFunction(Register function,
    698                       const ParameterCount& expected,
    699                       const ParameterCount& actual,
    700                       InvokeFlag flag,
    701                       const CallWrapper& call_wrapper);
    702 
    703   void InvokeFunction(Handle<JSFunction> function,
    704                       const ParameterCount& expected,
    705                       const ParameterCount& actual,
    706                       InvokeFlag flag,
    707                       const CallWrapper& call_wrapper);
    708 
    709   void IsObjectJSStringType(Register object,
    710                             Register scratch,
    711                             Label* fail);
    712 
    713   void IsObjectNameType(Register object,
    714                         Register scratch,
    715                         Label* fail);
    716 
    717   // Frame restart support
    718   void MaybeDropFrames();
    719 
    720   // Exception handling
    721 
    722   // Push a new stack handler and link into stack handler chain.
    723   void PushStackHandler();
    724 
    725   // Unlink the stack handler on top of the stack from the stack handler chain.
    726   // Must preserve the result register.
    727   void PopStackHandler();
    728 
    729   // ---------------------------------------------------------------------------
    730   // Inline caching support
    731 
    732   void GetNumberHash(Register t0, Register scratch);
    733 
    734   inline void MarkCode(NopMarkerTypes type) {
    735     nop(type);
    736   }
    737 
    738   // Check if the given instruction is a 'type' marker.
    739   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
    740   // These instructions are generated to mark special location in the code,
    741   // like some special IC code.
    742   static inline bool IsMarkedCode(Instr instr, int type) {
    743     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    744     return IsNop(instr, type);
    745   }
    746 
    747 
    748   static inline int GetCodeMarker(Instr instr) {
    749     int dst_reg_offset = 12;
    750     int dst_mask = 0xf << dst_reg_offset;
    751     int src_mask = 0xf;
    752     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    753     int src_reg = instr & src_mask;
    754     uint32_t non_register_mask = ~(dst_mask | src_mask);
    755     uint32_t mov_mask = al | 13 << 21;
    756 
    757     // Return <n> if we have a mov rn rn, else return -1.
    758     int type = ((instr & non_register_mask) == mov_mask) &&
    759                (dst_reg == src_reg) &&
    760                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
    761                    ? src_reg
    762                    : -1;
    763     DCHECK((type == -1) ||
    764            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    765     return type;
    766   }
    767 
    768 
    769   // ---------------------------------------------------------------------------
    770   // Allocation support
    771 
    772   // Allocate an object in new space or old space. The object_size is
    773   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    774   // is passed. If the space is exhausted control continues at the gc_required
    775   // label. The allocated object is returned in result. If the flag
    776   // tag_allocated_object is true the result is tagged as as a heap object.
    777   // All registers are clobbered also when control continues at the gc_required
    778   // label.
    779   void Allocate(int object_size,
    780                 Register result,
    781                 Register scratch1,
    782                 Register scratch2,
    783                 Label* gc_required,
    784                 AllocationFlags flags);
    785 
    786   void Allocate(Register object_size, Register result, Register result_end,
    787                 Register scratch, Label* gc_required, AllocationFlags flags);
    788 
    789   // FastAllocate is right now only used for folded allocations. It just
    790   // increments the top pointer without checking against limit. This can only
    791   // be done if it was proved earlier that the allocation will succeed.
    792   void FastAllocate(int object_size, Register result, Register scratch1,
    793                     Register scratch2, AllocationFlags flags);
    794 
    795   void FastAllocate(Register object_size, Register result, Register result_end,
    796                     Register scratch, AllocationFlags flags);
    797 
    798   // Allocates a heap number or jumps to the gc_required label if the young
    799   // space is full and a scavenge is needed. All registers are clobbered also
    800   // when control continues at the gc_required label.
    801   void AllocateHeapNumber(Register result,
    802                           Register scratch1,
    803                           Register scratch2,
    804                           Register heap_number_map,
    805                           Label* gc_required,
    806                           MutableMode mode = IMMUTABLE);
    807   void AllocateHeapNumberWithValue(Register result,
    808                                    DwVfpRegister value,
    809                                    Register scratch1,
    810                                    Register scratch2,
    811                                    Register heap_number_map,
    812                                    Label* gc_required);
    813 
    814   // Allocate and initialize a JSValue wrapper with the specified {constructor}
    815   // and {value}.
    816   void AllocateJSValue(Register result, Register constructor, Register value,
    817                        Register scratch1, Register scratch2,
    818                        Label* gc_required);
    819 
    820   // Initialize fields with filler values.  Fields starting at |current_address|
    821   // not including |end_address| are overwritten with the value in |filler|.  At
    822   // the end the loop, |current_address| takes the value of |end_address|.
    823   void InitializeFieldsWithFiller(Register current_address,
    824                                   Register end_address, Register filler);
    825 
    826   // ---------------------------------------------------------------------------
    827   // Support functions.
    828 
    829   // Machine code version of Map::GetConstructor().
    830   // |temp| holds |result|'s map when done, and |temp2| its instance type.
    831   void GetMapConstructor(Register result, Register map, Register temp,
    832                          Register temp2);
    833 
    834   // Compare object type for heap object.  heap_object contains a non-Smi
    835   // whose object type should be compared with the given type.  This both
    836   // sets the flags and leaves the object type in the type_reg register.
    837   // It leaves the map in the map register (unless the type_reg and map register
    838   // are the same register).  It leaves the heap object in the heap_object
    839   // register unless the heap_object register is the same register as one of the
    840   // other registers.
    841   // Type_reg can be no_reg. In that case ip is used.
    842   void CompareObjectType(Register heap_object,
    843                          Register map,
    844                          Register type_reg,
    845                          InstanceType type);
    846 
    847   // Compare instance type in a map.  map contains a valid map object whose
    848   // object type should be compared with the given type.  This both
    849   // sets the flags and leaves the object type in the type_reg register.
    850   void CompareInstanceType(Register map,
    851                            Register type_reg,
    852                            InstanceType type);
    853 
    854   // Compare an object's map with the specified map and its transitioned
    855   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
    856   // set with result of map compare. If multiple map compares are required, the
    857   // compare sequences branches to early_success.
    858   void CompareMap(Register obj,
    859                   Register scratch,
    860                   Handle<Map> map,
    861                   Label* early_success);
    862 
    863   // As above, but the map of the object is already loaded into the register
    864   // which is preserved by the code generated.
    865   void CompareMap(Register obj_map,
    866                   Handle<Map> map,
    867                   Label* early_success);
    868 
    869   // Check if the map of an object is equal to a specified map and branch to
    870   // label if not. Skip the smi check if not required (object is known to be a
    871   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    872   // against maps that are ElementsKind transition maps of the specified map.
    873   void CheckMap(Register obj,
    874                 Register scratch,
    875                 Handle<Map> map,
    876                 Label* fail,
    877                 SmiCheckType smi_check_type);
    878 
    879 
    880   void CheckMap(Register obj,
    881                 Register scratch,
    882                 Heap::RootListIndex index,
    883                 Label* fail,
    884                 SmiCheckType smi_check_type);
    885 
    886 
    887   // Check if the map of an object is equal to a specified weak map and branch
    888   // to a specified target if equal. Skip the smi check if not required
    889   // (object is known to be a heap object)
    890   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
    891                        Handle<WeakCell> cell, Handle<Code> success,
    892                        SmiCheckType smi_check_type);
    893 
    894   // Compare the given value and the value of weak cell.
    895   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
    896 
    897   void GetWeakValue(Register value, Handle<WeakCell> cell);
    898 
    899   // Load the value of the weak cell in the value register. Branch to the given
    900   // miss label if the weak cell was cleared.
    901   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    902 
    903   // Compare the object in a register to a value from the root list.
    904   // Uses the ip register as scratch.
    905   void CompareRoot(Register obj, Heap::RootListIndex index);
    906   void PushRoot(Heap::RootListIndex index) {
    907     LoadRoot(ip, index);
    908     Push(ip);
    909   }
    910 
    911   // Compare the object in a register to a value and jump if they are equal.
    912   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    913     CompareRoot(with, index);
    914     b(eq, if_equal);
    915   }
    916 
    917   // Compare the object in a register to a value and jump if they are not equal.
    918   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    919                      Label* if_not_equal) {
    920     CompareRoot(with, index);
    921     b(ne, if_not_equal);
    922   }
    923 
    924   // Load and check the instance type of an object for being a string.
    925   // Loads the type into the second argument register.
    926   // Returns a condition that will be enabled if the object was a string
    927   // and the passed-in condition passed. If the passed-in condition failed
    928   // then flags remain unchanged.
    929   Condition IsObjectStringType(Register obj,
    930                                Register type,
    931                                Condition cond = al) {
    932     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
    933     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
    934     tst(type, Operand(kIsNotStringMask), cond);
    935     DCHECK_EQ(0u, kStringTag);
    936     return eq;
    937   }
    938 
    939 
    940   // Get the number of least significant bits from a register
    941   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
    942   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
    943 
    944   // Load the value of a smi object into a double register.
    945   // The register value must be between d0 and d15.
    946   void SmiToDouble(LowDwVfpRegister value, Register smi);
    947 
    948   // Check if a double can be exactly represented as a signed 32-bit integer.
    949   // Z flag set to one if true.
    950   void TestDoubleIsInt32(DwVfpRegister double_input,
    951                          LowDwVfpRegister double_scratch);
    952 
    953   // Try to convert a double to a signed 32-bit integer.
    954   // Z flag set to one and result assigned if the conversion is exact.
    955   void TryDoubleToInt32Exact(Register result,
    956                              DwVfpRegister double_input,
    957                              LowDwVfpRegister double_scratch);
    958 
    959   // Floor a double and writes the value to the result register.
    960   // Go to exact if the conversion is exact (to be able to test -0),
    961   // fall through calling code if an overflow occurred, else go to done.
    962   // In return, input_high is loaded with high bits of input.
    963   void TryInt32Floor(Register result,
    964                      DwVfpRegister double_input,
    965                      Register input_high,
    966                      LowDwVfpRegister double_scratch,
    967                      Label* done,
    968                      Label* exact);
    969 
    970   // Performs a truncating conversion of a floating point number as used by
    971   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
    972   // succeeds, otherwise falls through if result is saturated. On return
    973   // 'result' either holds answer, or is clobbered on fall through.
    974   //
    975   // Only public for the test code in test-code-stubs-arm.cc.
    976   void TryInlineTruncateDoubleToI(Register result,
    977                                   DwVfpRegister input,
    978                                   Label* done);
    979 
    980   // Performs a truncating conversion of a floating point number as used by
    981   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
    982   // Exits with 'result' holding the answer.
    983   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
    984 
    985   // Performs a truncating conversion of a heap number as used by
    986   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
    987   // must be different registers.  Exits with 'result' holding the answer.
    988   void TruncateHeapNumberToI(Register result, Register object);
    989 
    990   // Converts the smi or heap number in object to an int32 using the rules
    991   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
    992   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
    993   // different registers.
    994   void TruncateNumberToI(Register object,
    995                          Register result,
    996                          Register heap_number_map,
    997                          Register scratch1,
    998                          Label* not_int32);
    999 
   1000   // Check whether d16-d31 are available on the CPU. The result is given by the
   1001   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
   1002   void CheckFor32DRegs(Register scratch);
   1003 
   1004   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
   1005   // values to location, saving [d0..(d15|d31)].
   1006   void SaveFPRegs(Register location, Register scratch);
   1007 
   1008   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
   1009   // values to location, restoring [d0..(d15|d31)].
   1010   void RestoreFPRegs(Register location, Register scratch);
   1011 
   1012   // Perform a floating-point min or max operation with the
   1013   // (IEEE-754-compatible) semantics of ARM64's fmin/fmax. Some cases, typically
   1014   // NaNs or +/-0.0, are expected to be rare and are handled in out-of-line
   1015   // code. The specific behaviour depends on supported instructions.
   1016   //
   1017   // These functions assume (and assert) that !left.is(right). It is permitted
   1018   // for the result to alias either input register.
   1019   void FloatMax(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
   1020                 Label* out_of_line);
   1021   void FloatMin(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
   1022                 Label* out_of_line);
   1023   void FloatMax(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
   1024                 Label* out_of_line);
   1025   void FloatMin(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
   1026                 Label* out_of_line);
   1027 
   1028   // Generate out-of-line cases for the macros above.
   1029   void FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left,
   1030                          SwVfpRegister right);
   1031   void FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left,
   1032                          SwVfpRegister right);
   1033   void FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left,
   1034                          DwVfpRegister right);
   1035   void FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left,
   1036                          DwVfpRegister right);
   1037 
   1038   // ---------------------------------------------------------------------------
   1039   // Runtime calls
   1040 
   1041   // Call a code stub.
   1042   void CallStub(CodeStub* stub,
   1043                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
   1044                 Condition cond = al);
   1045 
   1046   // Call a code stub.
   1047   void TailCallStub(CodeStub* stub, Condition cond = al);
   1048 
   1049   // Call a runtime routine.
   1050   void CallRuntime(const Runtime::Function* f,
   1051                    int num_arguments,
   1052                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1053   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1054     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1055     CallRuntime(function, function->nargs, kSaveFPRegs);
   1056   }
   1057 
   1058   // Convenience function: Same as above, but takes the fid instead.
   1059   void CallRuntime(Runtime::FunctionId fid,
   1060                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1061     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1062     CallRuntime(function, function->nargs, save_doubles);
   1063   }
   1064 
   1065   // Convenience function: Same as above, but takes the fid instead.
   1066   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1067                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1068     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1069   }
   1070 
   1071   // Convenience function: call an external reference.
   1072   void CallExternalReference(const ExternalReference& ext,
   1073                              int num_arguments);
   1074 
   1075   // Convenience function: tail call a runtime routine (jump).
   1076   void TailCallRuntime(Runtime::FunctionId fid);
   1077 
   1078   int CalculateStackPassedWords(int num_reg_arguments,
   1079                                 int num_double_arguments);
   1080 
   1081   // Before calling a C-function from generated code, align arguments on stack.
   1082   // After aligning the frame, non-register arguments must be stored in
   1083   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
   1084   // are word sized. If double arguments are used, this function assumes that
   1085   // all double arguments are stored before core registers; otherwise the
   1086   // correct alignment of the double values is not guaranteed.
   1087   // Some compilers/platforms require the stack to be aligned when calling
   1088   // C++ code.
   1089   // Needs a scratch register to do some arithmetic. This register will be
   1090   // trashed.
   1091   void PrepareCallCFunction(int num_reg_arguments,
   1092                             int num_double_registers,
   1093                             Register scratch);
   1094   void PrepareCallCFunction(int num_reg_arguments,
   1095                             Register scratch);
   1096 
   1097   // There are two ways of passing double arguments on ARM, depending on
   1098   // whether soft or hard floating point ABI is used. These functions
   1099   // abstract parameter passing for the three different ways we call
   1100   // C functions from generated code.
   1101   void MovToFloatParameter(DwVfpRegister src);
   1102   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
   1103   void MovToFloatResult(DwVfpRegister src);
   1104 
   1105   // Calls a C function and cleans up the space for arguments allocated
   1106   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1107   // garbage collection, since that might move the code and invalidate the
   1108   // return address (unless this is somehow accounted for by the called
   1109   // function).
   1110   void CallCFunction(ExternalReference function, int num_arguments);
   1111   void CallCFunction(Register function, int num_arguments);
   1112   void CallCFunction(ExternalReference function,
   1113                      int num_reg_arguments,
   1114                      int num_double_arguments);
   1115   void CallCFunction(Register function,
   1116                      int num_reg_arguments,
   1117                      int num_double_arguments);
   1118 
   1119   void MovFromFloatParameter(DwVfpRegister dst);
   1120   void MovFromFloatResult(DwVfpRegister dst);
   1121 
   1122   // Jump to a runtime routine.
   1123   void JumpToExternalReference(const ExternalReference& builtin,
   1124                                bool builtin_exit_frame = false);
   1125 
   1126   Handle<Object> CodeObject() {
   1127     DCHECK(!code_object_.is_null());
   1128     return code_object_;
   1129   }
   1130 
   1131 
   1132   // Emit code for a truncating division by a constant. The dividend register is
   1133   // unchanged and ip gets clobbered. Dividend and result must be different.
   1134   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1135 
   1136   // ---------------------------------------------------------------------------
   1137   // StatsCounter support
   1138 
   1139   void SetCounter(StatsCounter* counter, int value,
   1140                   Register scratch1, Register scratch2);
   1141   void IncrementCounter(StatsCounter* counter, int value,
   1142                         Register scratch1, Register scratch2);
   1143   void DecrementCounter(StatsCounter* counter, int value,
   1144                         Register scratch1, Register scratch2);
   1145 
   1146 
   1147   // ---------------------------------------------------------------------------
   1148   // Debugging
   1149 
   1150   // Calls Abort(msg) if the condition cond is not satisfied.
   1151   // Use --debug_code to enable.
   1152   void Assert(Condition cond, BailoutReason reason);
   1153   void AssertFastElements(Register elements);
   1154 
   1155   // Like Assert(), but always enabled.
   1156   void Check(Condition cond, BailoutReason reason);
   1157 
   1158   // Print a message to stdout and abort execution.
   1159   void Abort(BailoutReason msg);
   1160 
   1161   // Verify restrictions about code generated in stubs.
   1162   void set_generating_stub(bool value) { generating_stub_ = value; }
   1163   bool generating_stub() { return generating_stub_; }
   1164   void set_has_frame(bool value) { has_frame_ = value; }
   1165   bool has_frame() { return has_frame_; }
   1166   inline bool AllowThisStubCall(CodeStub* stub);
   1167 
   1168   // EABI variant for double arguments in use.
   1169   bool use_eabi_hardfloat() {
   1170 #ifdef __arm__
   1171     return base::OS::ArmUsingHardFloat();
   1172 #elif USE_EABI_HARDFLOAT
   1173     return true;
   1174 #else
   1175     return false;
   1176 #endif
   1177   }
   1178 
   1179   // ---------------------------------------------------------------------------
   1180   // Number utilities
   1181 
   1182   // Check whether the value of reg is a power of two and not zero. If not
   1183   // control continues at the label not_power_of_two. If reg is a power of two
   1184   // the register scratch contains the value of (reg - 1) when control falls
   1185   // through.
   1186   void JumpIfNotPowerOfTwoOrZero(Register reg,
   1187                                  Register scratch,
   1188                                  Label* not_power_of_two_or_zero);
   1189   // Check whether the value of reg is a power of two and not zero.
   1190   // Control falls through if it is, with scratch containing the mask
   1191   // value (reg - 1).
   1192   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
   1193   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
   1194   // strictly positive but not a power of two.
   1195   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
   1196                                        Register scratch,
   1197                                        Label* zero_and_neg,
   1198                                        Label* not_power_of_two);
   1199 
   1200   // ---------------------------------------------------------------------------
   1201   // Smi utilities
   1202 
   1203   void SmiTag(Register reg, SBit s = LeaveCC) {
   1204     add(reg, reg, Operand(reg), s);
   1205   }
   1206   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
   1207     add(dst, src, Operand(src), s);
   1208   }
   1209 
   1210   // Try to convert int32 to smi. If the value is to large, preserve
   1211   // the original value and jump to not_a_smi. Destroys scratch and
   1212   // sets flags.
   1213   void TrySmiTag(Register reg, Label* not_a_smi) {
   1214     TrySmiTag(reg, reg, not_a_smi);
   1215   }
   1216   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
   1217     SmiTag(ip, src, SetCC);
   1218     b(vs, not_a_smi);
   1219     mov(reg, ip);
   1220   }
   1221 
   1222 
   1223   void SmiUntag(Register reg, SBit s = LeaveCC) {
   1224     mov(reg, Operand::SmiUntag(reg), s);
   1225   }
   1226   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
   1227     mov(dst, Operand::SmiUntag(src), s);
   1228   }
   1229 
   1230   // Untag the source value into destination and jump if source is a smi.
   1231   // Souce and destination can be the same register.
   1232   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1233 
   1234   // Test if the register contains a smi (Z == 0 (eq) if true).
   1235   inline void SmiTst(Register value) {
   1236     tst(value, Operand(kSmiTagMask));
   1237   }
   1238   inline void NonNegativeSmiTst(Register value) {
   1239     tst(value, Operand(kSmiTagMask | kSmiSignMask));
   1240   }
   1241   // Jump if the register contains a smi.
   1242   inline void JumpIfSmi(Register value, Label* smi_label) {
   1243     tst(value, Operand(kSmiTagMask));
   1244     b(eq, smi_label);
   1245   }
   1246   // Jump if either of the registers contain a non-smi.
   1247   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
   1248     tst(value, Operand(kSmiTagMask));
   1249     b(ne, not_smi_label);
   1250   }
   1251   // Jump if either of the registers contain a non-smi.
   1252   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1253   // Jump if either of the registers contain a smi.
   1254   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1255 
   1256   // Abort execution if argument is a number, enabled via --debug-code.
   1257   void AssertNotNumber(Register object);
   1258 
   1259   // Abort execution if argument is a smi, enabled via --debug-code.
   1260   void AssertNotSmi(Register object);
   1261   void AssertSmi(Register object);
   1262 
   1263   // Abort execution if argument is not a string, enabled via --debug-code.
   1264   void AssertString(Register object);
   1265 
   1266   // Abort execution if argument is not a name, enabled via --debug-code.
   1267   void AssertName(Register object);
   1268 
   1269   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
   1270   void AssertFunction(Register object);
   1271 
   1272   // Abort execution if argument is not a JSBoundFunction,
   1273   // enabled via --debug-code.
   1274   void AssertBoundFunction(Register object);
   1275 
   1276   // Abort execution if argument is not a JSGeneratorObject,
   1277   // enabled via --debug-code.
   1278   void AssertGeneratorObject(Register object);
   1279 
   1280   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1281   void AssertReceiver(Register object);
   1282 
   1283   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1284   // via --debug-code.
   1285   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1286 
   1287   // Abort execution if reg is not the root value with the given index,
   1288   // enabled via --debug-code.
   1289   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1290 
   1291   // ---------------------------------------------------------------------------
   1292   // HeapNumber utilities
   1293 
   1294   void JumpIfNotHeapNumber(Register object,
   1295                            Register heap_number_map,
   1296                            Register scratch,
   1297                            Label* on_not_heap_number);
   1298 
   1299   // ---------------------------------------------------------------------------
   1300   // String utilities
   1301 
   1302   // Checks if both objects are sequential one-byte strings and jumps to label
   1303   // if either is not. Assumes that neither object is a smi.
   1304   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
   1305                                                     Register object2,
   1306                                                     Register scratch1,
   1307                                                     Register scratch2,
   1308                                                     Label* failure);
   1309 
   1310   // Checks if both objects are sequential one-byte strings and jumps to label
   1311   // if either is not.
   1312   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
   1313                                              Register scratch1,
   1314                                              Register scratch2,
   1315                                              Label* not_flat_one_byte_strings);
   1316 
   1317   // Checks if both instance types are sequential one-byte strings and jumps to
   1318   // label if either is not.
   1319   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
   1320       Register first_object_instance_type, Register second_object_instance_type,
   1321       Register scratch1, Register scratch2, Label* failure);
   1322 
   1323   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
   1324 
   1325   void EmitSeqStringSetCharCheck(Register string,
   1326                                  Register index,
   1327                                  Register value,
   1328                                  uint32_t encoding_mask);
   1329 
   1330 
   1331   void ClampUint8(Register output_reg, Register input_reg);
   1332 
   1333   void ClampDoubleToUint8(Register result_reg,
   1334                           DwVfpRegister input_reg,
   1335                           LowDwVfpRegister double_scratch);
   1336 
   1337 
   1338   void LoadInstanceDescriptors(Register map, Register descriptors);
   1339   void EnumLength(Register dst, Register map);
   1340   void NumberOfOwnDescriptors(Register dst, Register map);
   1341   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1342                     AccessorComponent accessor);
   1343 
   1344   template<typename Field>
   1345   void DecodeField(Register dst, Register src) {
   1346     Ubfx(dst, src, Field::kShift, Field::kSize);
   1347   }
   1348 
   1349   template<typename Field>
   1350   void DecodeField(Register reg) {
   1351     DecodeField<Field>(reg, reg);
   1352   }
   1353 
   1354   template<typename Field>
   1355   void DecodeFieldToSmi(Register dst, Register src) {
   1356     static const int shift = Field::kShift;
   1357     static const int mask = Field::kMask >> shift << kSmiTagSize;
   1358     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
   1359     STATIC_ASSERT(kSmiTag == 0);
   1360     if (shift < kSmiTagSize) {
   1361       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
   1362       and_(dst, dst, Operand(mask));
   1363     } else if (shift > kSmiTagSize) {
   1364       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
   1365       and_(dst, dst, Operand(mask));
   1366     } else {
   1367       and_(dst, src, Operand(mask));
   1368     }
   1369   }
   1370 
   1371   template<typename Field>
   1372   void DecodeFieldToSmi(Register reg) {
   1373     DecodeField<Field>(reg, reg);
   1374   }
   1375 
   1376   // Load the type feedback vector from a JavaScript frame.
   1377   void EmitLoadFeedbackVector(Register vector);
   1378 
   1379   // Activation support.
   1380   void EnterFrame(StackFrame::Type type,
   1381                   bool load_constant_pool_pointer_reg = false);
   1382   // Returns the pc offset at which the frame ends.
   1383   int LeaveFrame(StackFrame::Type type);
   1384 
   1385   void EnterBuiltinFrame(Register context, Register target, Register argc);
   1386   void LeaveBuiltinFrame(Register context, Register target, Register argc);
   1387 
   1388   // Expects object in r0 and returns map with validated enum cache
   1389   // in r0.  Assumes that any other register can be used as a scratch.
   1390   void CheckEnumCache(Label* call_runtime);
   1391 
   1392   // AllocationMemento support. Arrays may have an associated
   1393   // AllocationMemento object that can be checked for in order to pretransition
   1394   // to another type.
   1395   // On entry, receiver_reg should point to the array object.
   1396   // scratch_reg gets clobbered.
   1397   // If allocation info is present, condition flags are set to eq.
   1398   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1399                                        Register scratch_reg,
   1400                                        Label* no_memento_found);
   1401 
   1402   // Loads the constant pool pointer (pp) register.
   1403   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
   1404       Register code_target_address);
   1405   void LoadConstantPoolPointerRegister();
   1406 
   1407  private:
   1408   void CallCFunctionHelper(Register function,
   1409                            int num_reg_arguments,
   1410                            int num_double_arguments);
   1411 
   1412   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
   1413 
   1414   // Helper functions for generating invokes.
   1415   void InvokePrologue(const ParameterCount& expected,
   1416                       const ParameterCount& actual,
   1417                       Label* done,
   1418                       bool* definitely_mismatches,
   1419                       InvokeFlag flag,
   1420                       const CallWrapper& call_wrapper);
   1421 
   1422   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1423   void InNewSpace(Register object,
   1424                   Register scratch,
   1425                   Condition cond,  // eq for new space, ne otherwise.
   1426                   Label* branch);
   1427 
   1428   // Helper for finding the mark bits for an address.  Afterwards, the
   1429   // bitmap register points at the word with the mark bits and the mask
   1430   // the position of the first bit.  Leaves addr_reg unchanged.
   1431   inline void GetMarkBits(Register addr_reg,
   1432                           Register bitmap_reg,
   1433                           Register mask_reg);
   1434 
   1435   // Compute memory operands for safepoint stack slots.
   1436   static int SafepointRegisterStackIndex(int reg_code);
   1437   MemOperand SafepointRegisterSlot(Register reg);
   1438   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1439 
   1440   // Implementation helpers for FloatMin and FloatMax.
   1441   template <typename T>
   1442   void FloatMaxHelper(T result, T left, T right, Label* out_of_line);
   1443   template <typename T>
   1444   void FloatMinHelper(T result, T left, T right, Label* out_of_line);
   1445   template <typename T>
   1446   void FloatMaxOutOfLineHelper(T result, T left, T right);
   1447   template <typename T>
   1448   void FloatMinOutOfLineHelper(T result, T left, T right);
   1449 
   1450   bool generating_stub_;
   1451   bool has_frame_;
   1452   // This handle will be patched with the code object on installation.
   1453   Handle<Object> code_object_;
   1454 
   1455   // Needs access to SafepointRegisterStackIndex for compiled frame
   1456   // traversal.
   1457   friend class StandardFrame;
   1458 };
   1459 
   1460 
   1461 // The code patcher is used to patch (typically) small parts of code e.g. for
   1462 // debugging and other types of instrumentation. When using the code patcher
   1463 // the exact number of bytes specified must be emitted. It is not legal to emit
   1464 // relocation information. If any of these constraints are violated it causes
   1465 // an assertion to fail.
   1466 class CodePatcher {
   1467  public:
   1468   enum FlushICache {
   1469     FLUSH,
   1470     DONT_FLUSH
   1471   };
   1472 
   1473   CodePatcher(Isolate* isolate, byte* address, int instructions,
   1474               FlushICache flush_cache = FLUSH);
   1475   ~CodePatcher();
   1476 
   1477   // Macro assembler to emit code.
   1478   MacroAssembler* masm() { return &masm_; }
   1479 
   1480   // Emit an instruction directly.
   1481   void Emit(Instr instr);
   1482 
   1483   // Emit an address directly.
   1484   void Emit(Address addr);
   1485 
   1486   // Emit the condition part of an instruction leaving the rest of the current
   1487   // instruction unchanged.
   1488   void EmitCondition(Condition cond);
   1489 
   1490  private:
   1491   byte* address_;  // The address of the code being patched.
   1492   int size_;  // Number of bytes of the expected patch size.
   1493   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1494   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1495 };
   1496 
   1497 
   1498 // -----------------------------------------------------------------------------
   1499 // Static helper functions.
   1500 
   1501 inline MemOperand ContextMemOperand(Register context, int index = 0) {
   1502   return MemOperand(context, Context::SlotOffset(index));
   1503 }
   1504 
   1505 
   1506 inline MemOperand NativeContextMemOperand() {
   1507   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
   1508 }
   1509 
   1510 #define ACCESS_MASM(masm) masm->
   1511 
   1512 }  // namespace internal
   1513 }  // namespace v8
   1514 
   1515 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
   1516