Home | History | Annotate | Download | only in net
      1 /*
      2  * gPXE driver for Marvell Yukon chipset and SysKonnect Gigabit
      3  * Ethernet adapters. Derived from Linux skge driver (v1.13), which was
      4  * based on earlier sk98lin, e100 and FreeBSD if_sk drivers.
      5  *
      6  * This driver intentionally does not support all the features of the
      7  * original driver such as link fail-over and link management because
      8  * those should be done at higher levels.
      9  *
     10  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger (at) osdl.org>
     11  *
     12  * Modified for gPXE, July 2008 by Michael Decker <mrd999 (at) gmail.com>
     13  * Tested and Modified in December 2009 by
     14  *    Thomas Miletich <thomas.miletich (at) gmail.com>
     15  *
     16  * This program is free software; you can redistribute it and/or modify
     17  * it under the terms of the GNU General Public License as published by
     18  * the Free Software Foundation; either version 2 of the License.
     19  *
     20  * This program is distributed in the hope that it will be useful,
     21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     23  * GNU General Public License for more details.
     24  *
     25  * You should have received a copy of the GNU General Public License
     26  * along with this program; if not, write to the Free Software
     27  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     28  */
     29 
     30 FILE_LICENCE ( GPL2_ONLY );
     31 
     32 #include <stdint.h>
     33 #include <errno.h>
     34 #include <stdio.h>
     35 #include <unistd.h>
     36 #include <gpxe/netdevice.h>
     37 #include <gpxe/ethernet.h>
     38 #include <gpxe/if_ether.h>
     39 #include <gpxe/iobuf.h>
     40 #include <gpxe/malloc.h>
     41 #include <gpxe/pci.h>
     42 
     43 #include "skge.h"
     44 
     45 static struct pci_device_id skge_id_table[] = {
     46 	PCI_ROM(0x10b7, 0x1700,     "3C940",     "3COM 3C940", 0),
     47 	PCI_ROM(0x10b7, 0x80eb,     "3C940B",    "3COM 3C940", 0),
     48 	PCI_ROM(0x1148, 0x4300,     "GE",        "Syskonnect GE", 0),
     49 	PCI_ROM(0x1148, 0x4320,     "YU",        "Syskonnect YU", 0),
     50 	PCI_ROM(0x1186, 0x4C00,     "DGE510T",   "DLink DGE-510T", 0),
     51 	PCI_ROM(0x1186, 0x4b01,     "DGE530T",   "DLink DGE-530T", 0),
     52 	PCI_ROM(0x11ab, 0x4320,     "id4320",    "Marvell id4320", 0),
     53 	PCI_ROM(0x11ab, 0x5005,     "id5005",    "Marvell id5005", 0), /* Belkin */
     54 	PCI_ROM(0x1371, 0x434e,     "Gigacard",  "CNET Gigacard", 0),
     55 	PCI_ROM(0x1737, 0x1064,     "EG1064",    "Linksys EG1064", 0),
     56 	PCI_ROM(0x1737, 0xffff,     "id_any",    "Linksys [any]", 0)
     57 };
     58 
     59 static int skge_up(struct net_device *dev);
     60 static void skge_down(struct net_device *dev);
     61 static void skge_tx_clean(struct net_device *dev);
     62 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
     63 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
     64 static void yukon_init(struct skge_hw *hw, int port);
     65 static void genesis_mac_init(struct skge_hw *hw, int port);
     66 static void genesis_link_up(struct skge_port *skge);
     67 
     68 static void skge_phyirq(struct skge_hw *hw);
     69 static void skge_poll(struct net_device *dev);
     70 static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob);
     71 static void skge_net_irq ( struct net_device *dev, int enable );
     72 
     73 static void skge_rx_refill(struct net_device *dev);
     74 
     75 static struct net_device_operations skge_operations = {
     76 	.open     = skge_up,
     77 	.close    = skge_down,
     78 	.transmit = skge_xmit_frame,
     79 	.poll     = skge_poll,
     80 	.irq      = skge_net_irq
     81 };
     82 
     83 /* Avoid conditionals by using array */
     84 static const int txqaddr[] = { Q_XA1, Q_XA2 };
     85 static const int rxqaddr[] = { Q_R1, Q_R2 };
     86 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
     87 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
     88 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
     89 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
     90 
     91 /* Determine supported/advertised modes based on hardware.
     92  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
     93  */
     94 static u32 skge_supported_modes(const struct skge_hw *hw)
     95 {
     96 	u32 supported;
     97 
     98 	if (hw->copper) {
     99 		supported = SUPPORTED_10baseT_Half
    100 			| SUPPORTED_10baseT_Full
    101 			| SUPPORTED_100baseT_Half
    102 			| SUPPORTED_100baseT_Full
    103 			| SUPPORTED_1000baseT_Half
    104 			| SUPPORTED_1000baseT_Full
    105 			| SUPPORTED_Autoneg| SUPPORTED_TP;
    106 
    107 		if (hw->chip_id == CHIP_ID_GENESIS)
    108 			supported &= ~(SUPPORTED_10baseT_Half
    109 					     | SUPPORTED_10baseT_Full
    110 					     | SUPPORTED_100baseT_Half
    111 					     | SUPPORTED_100baseT_Full);
    112 
    113 		else if (hw->chip_id == CHIP_ID_YUKON)
    114 			supported &= ~SUPPORTED_1000baseT_Half;
    115 	} else
    116 		supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
    117 			| SUPPORTED_FIBRE | SUPPORTED_Autoneg;
    118 
    119 	return supported;
    120 }
    121 
    122 /* Chip internal frequency for clock calculations */
    123 static inline u32 hwkhz(const struct skge_hw *hw)
    124 {
    125 	return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
    126 }
    127 
    128 /* Microseconds to chip HZ */
    129 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
    130 {
    131 	return hwkhz(hw) * usec / 1000;
    132 }
    133 
    134 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
    135 static void skge_led(struct skge_port *skge, enum led_mode mode)
    136 {
    137 	struct skge_hw *hw = skge->hw;
    138 	int port = skge->port;
    139 
    140 	if (hw->chip_id == CHIP_ID_GENESIS) {
    141 		switch (mode) {
    142 		case LED_MODE_OFF:
    143 			if (hw->phy_type == SK_PHY_BCOM)
    144 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
    145 			else {
    146 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
    147 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
    148 			}
    149 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
    150 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
    151 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
    152 			break;
    153 
    154 		case LED_MODE_ON:
    155 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
    156 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
    157 
    158 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
    159 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
    160 
    161 			break;
    162 
    163 		case LED_MODE_TST:
    164 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
    165 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
    166 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
    167 
    168 			if (hw->phy_type == SK_PHY_BCOM)
    169 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
    170 			else {
    171 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
    172 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
    173 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
    174 			}
    175 
    176 		}
    177 	} else {
    178 		switch (mode) {
    179 		case LED_MODE_OFF:
    180 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
    181 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
    182 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
    183 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
    184 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
    185 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
    186 				     PHY_M_LED_MO_RX(MO_LED_OFF));
    187 			break;
    188 		case LED_MODE_ON:
    189 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
    190 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
    191 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
    192 				     PHY_M_LEDC_TX_CTRL |
    193 				     PHY_M_LEDC_DP_CTRL);
    194 
    195 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
    196 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
    197 				     (skge->speed == SPEED_100 ?
    198 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
    199 			break;
    200 		case LED_MODE_TST:
    201 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
    202 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
    203 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
    204 				     PHY_M_LED_MO_10(MO_LED_ON)   |
    205 				     PHY_M_LED_MO_100(MO_LED_ON)  |
    206 				     PHY_M_LED_MO_1000(MO_LED_ON) |
    207 				     PHY_M_LED_MO_RX(MO_LED_ON));
    208 		}
    209 	}
    210 }
    211 
    212 /*
    213  * I've left in these EEPROM and VPD functions, as someone may desire to
    214  * integrate them in the future. -mdeck
    215  *
    216  * static int skge_get_eeprom_len(struct net_device *dev)
    217  * {
    218  * 	struct skge_port *skge = netdev_priv(dev);
    219  * 	u32 reg2;
    220  *
    221  * 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
    222  * 	return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
    223  * }
    224  *
    225  * static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
    226  * {
    227  * 	u32 val;
    228  *
    229  * 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
    230  *
    231  * 	do {
    232  * 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
    233  * 	} while (!(offset & PCI_VPD_ADDR_F));
    234  *
    235  * 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
    236  * 	return val;
    237  * }
    238  *
    239  * static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
    240  * {
    241  * 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
    242  * 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
    243  * 			      offset | PCI_VPD_ADDR_F);
    244  *
    245  * 	do {
    246  * 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
    247  * 	} while (offset & PCI_VPD_ADDR_F);
    248  * }
    249  *
    250  * static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
    251  * 			   u8 *data)
    252  * {
    253  * 	struct skge_port *skge = netdev_priv(dev);
    254  * 	struct pci_dev *pdev = skge->hw->pdev;
    255  * 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
    256  * 	int length = eeprom->len;
    257  * 	u16 offset = eeprom->offset;
    258  *
    259  * 	if (!cap)
    260  * 		return -EINVAL;
    261  *
    262  * 	eeprom->magic = SKGE_EEPROM_MAGIC;
    263  *
    264  * 	while (length > 0) {
    265  * 		u32 val = skge_vpd_read(pdev, cap, offset);
    266  * 		int n = min_t(int, length, sizeof(val));
    267  *
    268  * 		memcpy(data, &val, n);
    269  * 		length -= n;
    270  * 		data += n;
    271  * 		offset += n;
    272  * 	}
    273  * 	return 0;
    274  * }
    275  *
    276  * static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
    277  * 			   u8 *data)
    278  * {
    279  * 	struct skge_port *skge = netdev_priv(dev);
    280  * 	struct pci_dev *pdev = skge->hw->pdev;
    281  * 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
    282  * 	int length = eeprom->len;
    283  * 	u16 offset = eeprom->offset;
    284  *
    285  * 	if (!cap)
    286  * 		return -EINVAL;
    287  *
    288  * 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
    289  * 		return -EINVAL;
    290  *
    291  * 	while (length > 0) {
    292  * 		u32 val;
    293  * 		int n = min_t(int, length, sizeof(val));
    294  *
    295  * 		if (n < sizeof(val))
    296  * 			val = skge_vpd_read(pdev, cap, offset);
    297  * 		memcpy(&val, data, n);
    298  *
    299  * 		skge_vpd_write(pdev, cap, offset, val);
    300  *
    301  * 		length -= n;
    302  * 		data += n;
    303  * 		offset += n;
    304  * 	}
    305  * 	return 0;
    306  * }
    307  */
    308 
    309 /*
    310  * Allocate ring elements and chain them together
    311  * One-to-one association of board descriptors with ring elements
    312  */
    313 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base,
    314                            size_t num)
    315 {
    316 	struct skge_tx_desc *d;
    317 	struct skge_element *e;
    318 	unsigned int i;
    319 
    320 	ring->start = zalloc(num*sizeof(*e));
    321 	if (!ring->start)
    322 		return -ENOMEM;
    323 
    324 	for (i = 0, e = ring->start, d = vaddr; i < num; i++, e++, d++) {
    325 		e->desc = d;
    326 		if (i == num - 1) {
    327 			e->next = ring->start;
    328 			d->next_offset = base;
    329 		} else {
    330 			e->next = e + 1;
    331 			d->next_offset = base + (i+1) * sizeof(*d);
    332 		}
    333 	}
    334 	ring->to_use = ring->to_clean = ring->start;
    335 
    336 	return 0;
    337 }
    338 
    339 /* Allocate and setup a new buffer for receiving */
    340 static void skge_rx_setup(struct skge_port *skge __unused,
    341 			  struct skge_element *e,
    342 			  struct io_buffer *iob, unsigned int bufsize)
    343 {
    344 	struct skge_rx_desc *rd = e->desc;
    345 	u64 map;
    346 
    347 	map = ( iob != NULL ) ? virt_to_bus(iob->data) : 0;
    348 
    349 	rd->dma_lo = map;
    350 	rd->dma_hi = map >> 32;
    351 	e->iob = iob;
    352 	rd->csum1_start = ETH_HLEN;
    353 	rd->csum2_start = ETH_HLEN;
    354 	rd->csum1 = 0;
    355 	rd->csum2 = 0;
    356 
    357 	wmb();
    358 
    359 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
    360 }
    361 
    362 /* Resume receiving using existing skb,
    363  * Note: DMA address is not changed by chip.
    364  * 	 MTU not changed while receiver active.
    365  */
    366 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
    367 {
    368 	struct skge_rx_desc *rd = e->desc;
    369 
    370 	rd->csum2 = 0;
    371 	rd->csum2_start = ETH_HLEN;
    372 
    373 	wmb();
    374 
    375 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
    376 }
    377 
    378 
    379 /* Free all  buffers in receive ring, assumes receiver stopped */
    380 static void skge_rx_clean(struct skge_port *skge)
    381 {
    382 	struct skge_ring *ring = &skge->rx_ring;
    383 	struct skge_element *e;
    384 
    385 	e = ring->start;
    386 	do {
    387 		struct skge_rx_desc *rd = e->desc;
    388 		rd->control = 0;
    389 		if (e->iob) {
    390 			free_iob(e->iob);
    391 			e->iob = NULL;
    392 		}
    393 	} while ((e = e->next) != ring->start);
    394 }
    395 
    396 static void skge_link_up(struct skge_port *skge)
    397 {
    398 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
    399 		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
    400 
    401 	netdev_link_up(skge->netdev);
    402 
    403 	DBG2(PFX "%s: Link is up at %d Mbps, %s duplex\n",
    404 	     skge->netdev->name, skge->speed,
    405 	     skge->duplex == DUPLEX_FULL ? "full" : "half");
    406 }
    407 
    408 static void skge_link_down(struct skge_port *skge)
    409 {
    410 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
    411 	netdev_link_down(skge->netdev);
    412 
    413 	DBG2(PFX "%s: Link is down.\n", skge->netdev->name);
    414 }
    415 
    416 
    417 static void xm_link_down(struct skge_hw *hw, int port)
    418 {
    419 	struct net_device *dev = hw->dev[port];
    420 	struct skge_port *skge = netdev_priv(dev);
    421 
    422 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
    423 
    424 	if (netdev_link_ok(dev))
    425 		skge_link_down(skge);
    426 }
    427 
    428 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
    429 {
    430 	int i;
    431 
    432 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
    433 	*val = xm_read16(hw, port, XM_PHY_DATA);
    434 
    435 	if (hw->phy_type == SK_PHY_XMAC)
    436 		goto ready;
    437 
    438 	for (i = 0; i < PHY_RETRIES; i++) {
    439 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
    440 			goto ready;
    441 		udelay(1);
    442 	}
    443 
    444 	return -ETIMEDOUT;
    445  ready:
    446 	*val = xm_read16(hw, port, XM_PHY_DATA);
    447 
    448 	return 0;
    449 }
    450 
    451 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
    452 {
    453 	u16 v = 0;
    454 	if (__xm_phy_read(hw, port, reg, &v))
    455 		DBG(PFX "%s: phy read timed out\n",
    456 		       hw->dev[port]->name);
    457 	return v;
    458 }
    459 
    460 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
    461 {
    462 	int i;
    463 
    464 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
    465 	for (i = 0; i < PHY_RETRIES; i++) {
    466 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
    467 			goto ready;
    468 		udelay(1);
    469 	}
    470 	return -EIO;
    471 
    472  ready:
    473 	xm_write16(hw, port, XM_PHY_DATA, val);
    474 	for (i = 0; i < PHY_RETRIES; i++) {
    475 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
    476 			return 0;
    477 		udelay(1);
    478 	}
    479 	return -ETIMEDOUT;
    480 }
    481 
    482 static void genesis_init(struct skge_hw *hw)
    483 {
    484 	/* set blink source counter */
    485 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
    486 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
    487 
    488 	/* configure mac arbiter */
    489 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
    490 
    491 	/* configure mac arbiter timeout values */
    492 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
    493 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
    494 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
    495 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
    496 
    497 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
    498 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
    499 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
    500 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
    501 
    502 	/* configure packet arbiter timeout */
    503 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
    504 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
    505 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
    506 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
    507 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
    508 }
    509 
    510 static void genesis_reset(struct skge_hw *hw, int port)
    511 {
    512 	const u8 zero[8]  = { 0 };
    513 	u32 reg;
    514 
    515 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
    516 
    517 	/* reset the statistics module */
    518 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
    519 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
    520 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
    521 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
    522 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
    523 
    524 	/* disable Broadcom PHY IRQ */
    525 	if (hw->phy_type == SK_PHY_BCOM)
    526 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
    527 
    528 	xm_outhash(hw, port, XM_HSM, zero);
    529 
    530 	/* Flush TX and RX fifo */
    531 	reg = xm_read32(hw, port, XM_MODE);
    532 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
    533 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
    534 }
    535 
    536 
    537 /* Convert mode to MII values  */
    538 static const u16 phy_pause_map[] = {
    539 	[FLOW_MODE_NONE] =	0,
    540 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
    541 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
    542 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
    543 };
    544 
    545 /* special defines for FIBER (88E1011S only) */
    546 static const u16 fiber_pause_map[] = {
    547 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
    548 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
    549 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
    550 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
    551 };
    552 
    553 
    554 /* Check status of Broadcom phy link */
    555 static void bcom_check_link(struct skge_hw *hw, int port)
    556 {
    557 	struct net_device *dev = hw->dev[port];
    558 	struct skge_port *skge = netdev_priv(dev);
    559 	u16 status;
    560 
    561 	/* read twice because of latch */
    562 	xm_phy_read(hw, port, PHY_BCOM_STAT);
    563 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
    564 
    565 	if ((status & PHY_ST_LSYNC) == 0) {
    566 		xm_link_down(hw, port);
    567 		return;
    568 	}
    569 
    570 	if (skge->autoneg == AUTONEG_ENABLE) {
    571 		u16 lpa, aux;
    572 
    573 		if (!(status & PHY_ST_AN_OVER))
    574 			return;
    575 
    576 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
    577 		if (lpa & PHY_B_AN_RF) {
    578 			DBG(PFX "%s: remote fault\n",
    579 			       dev->name);
    580 			return;
    581 		}
    582 
    583 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
    584 
    585 		/* Check Duplex mismatch */
    586 		switch (aux & PHY_B_AS_AN_RES_MSK) {
    587 		case PHY_B_RES_1000FD:
    588 			skge->duplex = DUPLEX_FULL;
    589 			break;
    590 		case PHY_B_RES_1000HD:
    591 			skge->duplex = DUPLEX_HALF;
    592 			break;
    593 		default:
    594 			DBG(PFX "%s: duplex mismatch\n",
    595 			       dev->name);
    596 			return;
    597 		}
    598 
    599 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
    600 		switch (aux & PHY_B_AS_PAUSE_MSK) {
    601 		case PHY_B_AS_PAUSE_MSK:
    602 			skge->flow_status = FLOW_STAT_SYMMETRIC;
    603 			break;
    604 		case PHY_B_AS_PRR:
    605 			skge->flow_status = FLOW_STAT_REM_SEND;
    606 			break;
    607 		case PHY_B_AS_PRT:
    608 			skge->flow_status = FLOW_STAT_LOC_SEND;
    609 			break;
    610 		default:
    611 			skge->flow_status = FLOW_STAT_NONE;
    612 		}
    613 		skge->speed = SPEED_1000;
    614 	}
    615 
    616 	if (!netdev_link_ok(dev))
    617 		genesis_link_up(skge);
    618 }
    619 
    620 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
    621  * Phy on for 100 or 10Mbit operation
    622  */
    623 static void bcom_phy_init(struct skge_port *skge)
    624 {
    625 	struct skge_hw *hw = skge->hw;
    626 	int port = skge->port;
    627 	unsigned int i;
    628 	u16 id1, r, ext, ctl;
    629 
    630 	/* magic workaround patterns for Broadcom */
    631 	static const struct {
    632 		u16 reg;
    633 		u16 val;
    634 	} A1hack[] = {
    635 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
    636 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
    637 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
    638 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
    639 	}, C0hack[] = {
    640 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
    641 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
    642 	};
    643 
    644 	/* read Id from external PHY (all have the same address) */
    645 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
    646 
    647 	/* Optimize MDIO transfer by suppressing preamble. */
    648 	r = xm_read16(hw, port, XM_MMU_CMD);
    649 	r |=  XM_MMU_NO_PRE;
    650 	xm_write16(hw, port, XM_MMU_CMD,r);
    651 
    652 	switch (id1) {
    653 	case PHY_BCOM_ID1_C0:
    654 		/*
    655 		 * Workaround BCOM Errata for the C0 type.
    656 		 * Write magic patterns to reserved registers.
    657 		 */
    658 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
    659 			xm_phy_write(hw, port,
    660 				     C0hack[i].reg, C0hack[i].val);
    661 
    662 		break;
    663 	case PHY_BCOM_ID1_A1:
    664 		/*
    665 		 * Workaround BCOM Errata for the A1 type.
    666 		 * Write magic patterns to reserved registers.
    667 		 */
    668 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
    669 			xm_phy_write(hw, port,
    670 				     A1hack[i].reg, A1hack[i].val);
    671 		break;
    672 	}
    673 
    674 	/*
    675 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
    676 	 * Disable Power Management after reset.
    677 	 */
    678 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
    679 	r |= PHY_B_AC_DIS_PM;
    680 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
    681 
    682 	/* Dummy read */
    683 	xm_read16(hw, port, XM_ISRC);
    684 
    685 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
    686 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
    687 
    688 	if (skge->autoneg == AUTONEG_ENABLE) {
    689 		/*
    690 		 * Workaround BCOM Errata #1 for the C5 type.
    691 		 * 1000Base-T Link Acquisition Failure in Slave Mode
    692 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
    693 		 */
    694 		u16 adv = PHY_B_1000C_RD;
    695 		if (skge->advertising & ADVERTISED_1000baseT_Half)
    696 			adv |= PHY_B_1000C_AHD;
    697 		if (skge->advertising & ADVERTISED_1000baseT_Full)
    698 			adv |= PHY_B_1000C_AFD;
    699 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
    700 
    701 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
    702 	} else {
    703 		if (skge->duplex == DUPLEX_FULL)
    704 			ctl |= PHY_CT_DUP_MD;
    705 		/* Force to slave */
    706 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
    707 	}
    708 
    709 	/* Set autonegotiation pause parameters */
    710 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
    711 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
    712 
    713 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
    714 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
    715 
    716 	/* Use link status change interrupt */
    717 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
    718 }
    719 
    720 static void xm_phy_init(struct skge_port *skge)
    721 {
    722 	struct skge_hw *hw = skge->hw;
    723 	int port = skge->port;
    724 	u16 ctrl = 0;
    725 
    726 	if (skge->autoneg == AUTONEG_ENABLE) {
    727 		if (skge->advertising & ADVERTISED_1000baseT_Half)
    728 			ctrl |= PHY_X_AN_HD;
    729 		if (skge->advertising & ADVERTISED_1000baseT_Full)
    730 			ctrl |= PHY_X_AN_FD;
    731 
    732 		ctrl |= fiber_pause_map[skge->flow_control];
    733 
    734 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
    735 
    736 		/* Restart Auto-negotiation */
    737 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
    738 	} else {
    739 		/* Set DuplexMode in Config register */
    740 		if (skge->duplex == DUPLEX_FULL)
    741 			ctrl |= PHY_CT_DUP_MD;
    742 		/*
    743 		 * Do NOT enable Auto-negotiation here. This would hold
    744 		 * the link down because no IDLEs are transmitted
    745 		 */
    746 	}
    747 
    748 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
    749 
    750 	/* Poll PHY for status changes */
    751 	skge->use_xm_link_timer = 1;
    752 }
    753 
    754 static int xm_check_link(struct net_device *dev)
    755 {
    756 	struct skge_port *skge = netdev_priv(dev);
    757 	struct skge_hw *hw = skge->hw;
    758 	int port = skge->port;
    759 	u16 status;
    760 
    761 	/* read twice because of latch */
    762 	xm_phy_read(hw, port, PHY_XMAC_STAT);
    763 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
    764 
    765 	if ((status & PHY_ST_LSYNC) == 0) {
    766 		xm_link_down(hw, port);
    767 		return 0;
    768 	}
    769 
    770 	if (skge->autoneg == AUTONEG_ENABLE) {
    771 		u16 lpa, res;
    772 
    773 		if (!(status & PHY_ST_AN_OVER))
    774 			return 0;
    775 
    776 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
    777 		if (lpa & PHY_B_AN_RF) {
    778 			DBG(PFX "%s: remote fault\n",
    779 			       dev->name);
    780 			return 0;
    781 		}
    782 
    783 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
    784 
    785 		/* Check Duplex mismatch */
    786 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
    787 		case PHY_X_RS_FD:
    788 			skge->duplex = DUPLEX_FULL;
    789 			break;
    790 		case PHY_X_RS_HD:
    791 			skge->duplex = DUPLEX_HALF;
    792 			break;
    793 		default:
    794 			DBG(PFX "%s: duplex mismatch\n",
    795 			       dev->name);
    796 			return 0;
    797 		}
    798 
    799 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
    800 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
    801 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
    802 		    (lpa & PHY_X_P_SYM_MD))
    803 			skge->flow_status = FLOW_STAT_SYMMETRIC;
    804 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
    805 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
    806 			/* Enable PAUSE receive, disable PAUSE transmit */
    807 			skge->flow_status  = FLOW_STAT_REM_SEND;
    808 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
    809 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
    810 			/* Disable PAUSE receive, enable PAUSE transmit */
    811 			skge->flow_status = FLOW_STAT_LOC_SEND;
    812 		else
    813 			skge->flow_status = FLOW_STAT_NONE;
    814 
    815 		skge->speed = SPEED_1000;
    816 	}
    817 
    818 	if (!netdev_link_ok(dev))
    819 		genesis_link_up(skge);
    820 	return 1;
    821 }
    822 
    823 /* Poll to check for link coming up.
    824  *
    825  * Since internal PHY is wired to a level triggered pin, can't
    826  * get an interrupt when carrier is detected, need to poll for
    827  * link coming up.
    828  */
    829 static void xm_link_timer(struct skge_port *skge)
    830 {
    831 	struct net_device *dev = skge->netdev;
    832 	struct skge_hw *hw = skge->hw;
    833 	int port = skge->port;
    834 	int i;
    835 
    836 	/*
    837 	 * Verify that the link by checking GPIO register three times.
    838 	 * This pin has the signal from the link_sync pin connected to it.
    839 	 */
    840 	for (i = 0; i < 3; i++) {
    841 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
    842 			return;
    843 	}
    844 
    845         /* Re-enable interrupt to detect link down */
    846 	if (xm_check_link(dev)) {
    847 		u16 msk = xm_read16(hw, port, XM_IMSK);
    848 		msk &= ~XM_IS_INP_ASS;
    849 		xm_write16(hw, port, XM_IMSK, msk);
    850 		xm_read16(hw, port, XM_ISRC);
    851 	}
    852 }
    853 
    854 static void genesis_mac_init(struct skge_hw *hw, int port)
    855 {
    856 	struct net_device *dev = hw->dev[port];
    857 	struct skge_port *skge = netdev_priv(dev);
    858 	int i;
    859 	u32 r;
    860 	const u8 zero[6]  = { 0 };
    861 
    862 	for (i = 0; i < 10; i++) {
    863 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
    864 			     MFF_SET_MAC_RST);
    865 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
    866 			goto reset_ok;
    867 		udelay(1);
    868 	}
    869 
    870 	DBG(PFX "%s: genesis reset failed\n", dev->name);
    871 
    872  reset_ok:
    873 	/* Unreset the XMAC. */
    874 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
    875 
    876 	/*
    877 	 * Perform additional initialization for external PHYs,
    878 	 * namely for the 1000baseTX cards that use the XMAC's
    879 	 * GMII mode.
    880 	 */
    881 	if (hw->phy_type != SK_PHY_XMAC) {
    882 		/* Take external Phy out of reset */
    883 		r = skge_read32(hw, B2_GP_IO);
    884 		if (port == 0)
    885 			r |= GP_DIR_0|GP_IO_0;
    886 		else
    887 			r |= GP_DIR_2|GP_IO_2;
    888 
    889 		skge_write32(hw, B2_GP_IO, r);
    890 
    891 		/* Enable GMII interface */
    892 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
    893 	}
    894 
    895 
    896 	switch(hw->phy_type) {
    897 	case SK_PHY_XMAC:
    898 		xm_phy_init(skge);
    899 		break;
    900 	case SK_PHY_BCOM:
    901 		bcom_phy_init(skge);
    902 		bcom_check_link(hw, port);
    903 	}
    904 
    905 	/* Set Station Address */
    906 	xm_outaddr(hw, port, XM_SA, dev->ll_addr);
    907 
    908 	/* We don't use match addresses so clear */
    909 	for (i = 1; i < 16; i++)
    910 		xm_outaddr(hw, port, XM_EXM(i), zero);
    911 
    912 	/* Clear MIB counters */
    913 	xm_write16(hw, port, XM_STAT_CMD,
    914 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
    915 	/* Clear two times according to Errata #3 */
    916 	xm_write16(hw, port, XM_STAT_CMD,
    917 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
    918 
    919 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
    920 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
    921 
    922 	/* We don't need the FCS appended to the packet. */
    923 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
    924 
    925 	if (skge->duplex == DUPLEX_HALF) {
    926 		/*
    927 		 * If in manual half duplex mode the other side might be in
    928 		 * full duplex mode, so ignore if a carrier extension is not seen
    929 		 * on frames received
    930 		 */
    931 		r |= XM_RX_DIS_CEXT;
    932 	}
    933 	xm_write16(hw, port, XM_RX_CMD, r);
    934 
    935 	/* We want short frames padded to 60 bytes. */
    936 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
    937 
    938 	xm_write16(hw, port, XM_TX_THR, 512);
    939 
    940 	/*
    941 	 * Enable the reception of all error frames. This is is
    942 	 * a necessary evil due to the design of the XMAC. The
    943 	 * XMAC's receive FIFO is only 8K in size, however jumbo
    944 	 * frames can be up to 9000 bytes in length. When bad
    945 	 * frame filtering is enabled, the XMAC's RX FIFO operates
    946 	 * in 'store and forward' mode. For this to work, the
    947 	 * entire frame has to fit into the FIFO, but that means
    948 	 * that jumbo frames larger than 8192 bytes will be
    949 	 * truncated. Disabling all bad frame filtering causes
    950 	 * the RX FIFO to operate in streaming mode, in which
    951 	 * case the XMAC will start transferring frames out of the
    952 	 * RX FIFO as soon as the FIFO threshold is reached.
    953 	 */
    954 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
    955 
    956 
    957 	/*
    958 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
    959 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
    960 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
    961 	 */
    962 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
    963 
    964 	/*
    965 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
    966 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
    967 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
    968 	 */
    969 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
    970 
    971 	/* Configure MAC arbiter */
    972 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
    973 
    974 	/* configure timeout values */
    975 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
    976 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
    977 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
    978 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
    979 
    980 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
    981 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
    982 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
    983 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
    984 
    985 	/* Configure Rx MAC FIFO */
    986 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
    987 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
    988 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
    989 
    990 	/* Configure Tx MAC FIFO */
    991 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
    992 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
    993 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
    994 
    995 	/* enable timeout timers */
    996 	skge_write16(hw, B3_PA_CTRL,
    997 		     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
    998 }
    999 
   1000 static void genesis_stop(struct skge_port *skge)
   1001 {
   1002 	struct skge_hw *hw = skge->hw;
   1003 	int port = skge->port;
   1004 	unsigned retries = 1000;
   1005 	u16 cmd;
   1006 
   1007 	/* Disable Tx and Rx */
   1008 	cmd = xm_read16(hw, port, XM_MMU_CMD);
   1009 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
   1010 	xm_write16(hw, port, XM_MMU_CMD, cmd);
   1011 
   1012 	genesis_reset(hw, port);
   1013 
   1014 	/* Clear Tx packet arbiter timeout IRQ */
   1015 	skge_write16(hw, B3_PA_CTRL,
   1016 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
   1017 
   1018 	/* Reset the MAC */
   1019 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
   1020 	do {
   1021 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
   1022 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
   1023 			break;
   1024 	} while (--retries > 0);
   1025 
   1026 	/* For external PHYs there must be special handling */
   1027 	if (hw->phy_type != SK_PHY_XMAC) {
   1028 		u32 reg = skge_read32(hw, B2_GP_IO);
   1029 		if (port == 0) {
   1030 			reg |= GP_DIR_0;
   1031 			reg &= ~GP_IO_0;
   1032 		} else {
   1033 			reg |= GP_DIR_2;
   1034 			reg &= ~GP_IO_2;
   1035 		}
   1036 		skge_write32(hw, B2_GP_IO, reg);
   1037 		skge_read32(hw, B2_GP_IO);
   1038 	}
   1039 
   1040 	xm_write16(hw, port, XM_MMU_CMD,
   1041 			xm_read16(hw, port, XM_MMU_CMD)
   1042 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
   1043 
   1044 	xm_read16(hw, port, XM_MMU_CMD);
   1045 }
   1046 
   1047 static void genesis_link_up(struct skge_port *skge)
   1048 {
   1049 	struct skge_hw *hw = skge->hw;
   1050 	int port = skge->port;
   1051 	u16 cmd, msk;
   1052 	u32 mode;
   1053 
   1054 	cmd = xm_read16(hw, port, XM_MMU_CMD);
   1055 
   1056 	/*
   1057 	 * enabling pause frame reception is required for 1000BT
   1058 	 * because the XMAC is not reset if the link is going down
   1059 	 */
   1060 	if (skge->flow_status == FLOW_STAT_NONE ||
   1061 	    skge->flow_status == FLOW_STAT_LOC_SEND)
   1062 		/* Disable Pause Frame Reception */
   1063 		cmd |= XM_MMU_IGN_PF;
   1064 	else
   1065 		/* Enable Pause Frame Reception */
   1066 		cmd &= ~XM_MMU_IGN_PF;
   1067 
   1068 	xm_write16(hw, port, XM_MMU_CMD, cmd);
   1069 
   1070 	mode = xm_read32(hw, port, XM_MODE);
   1071 	if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
   1072 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
   1073 		/*
   1074 		 * Configure Pause Frame Generation
   1075 		 * Use internal and external Pause Frame Generation.
   1076 		 * Sending pause frames is edge triggered.
   1077 		 * Send a Pause frame with the maximum pause time if
   1078 		 * internal oder external FIFO full condition occurs.
   1079 		 * Send a zero pause time frame to re-start transmission.
   1080 		 */
   1081 		/* XM_PAUSE_DA = '010000C28001' (default) */
   1082 		/* XM_MAC_PTIME = 0xffff (maximum) */
   1083 		/* remember this value is defined in big endian (!) */
   1084 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
   1085 
   1086 		mode |= XM_PAUSE_MODE;
   1087 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
   1088 	} else {
   1089 		/*
   1090 		 * disable pause frame generation is required for 1000BT
   1091 		 * because the XMAC is not reset if the link is going down
   1092 		 */
   1093 		/* Disable Pause Mode in Mode Register */
   1094 		mode &= ~XM_PAUSE_MODE;
   1095 
   1096 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
   1097 	}
   1098 
   1099 	xm_write32(hw, port, XM_MODE, mode);
   1100 
   1101 	/* Turn on detection of Tx underrun */
   1102 	msk = xm_read16(hw, port, XM_IMSK);
   1103 	msk &= ~XM_IS_TXF_UR;
   1104 	xm_write16(hw, port, XM_IMSK, msk);
   1105 
   1106 	xm_read16(hw, port, XM_ISRC);
   1107 
   1108 	/* get MMU Command Reg. */
   1109 	cmd = xm_read16(hw, port, XM_MMU_CMD);
   1110 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
   1111 		cmd |= XM_MMU_GMII_FD;
   1112 
   1113 	/*
   1114 	 * Workaround BCOM Errata (#10523) for all BCom Phys
   1115 	 * Enable Power Management after link up
   1116 	 */
   1117 	if (hw->phy_type == SK_PHY_BCOM) {
   1118 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
   1119 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
   1120 			     & ~PHY_B_AC_DIS_PM);
   1121 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
   1122 	}
   1123 
   1124 	/* enable Rx/Tx */
   1125 	xm_write16(hw, port, XM_MMU_CMD,
   1126 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
   1127 	skge_link_up(skge);
   1128 }
   1129 
   1130 
   1131 static inline void bcom_phy_intr(struct skge_port *skge)
   1132 {
   1133 	struct skge_hw *hw = skge->hw;
   1134 	int port = skge->port;
   1135 	u16 isrc;
   1136 
   1137 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
   1138 	DBGIO(PFX "%s: phy interrupt status 0x%x\n",
   1139 	     skge->netdev->name, isrc);
   1140 
   1141 	if (isrc & PHY_B_IS_PSE)
   1142 		DBG(PFX "%s: uncorrectable pair swap error\n",
   1143 		    hw->dev[port]->name);
   1144 
   1145 	/* Workaround BCom Errata:
   1146 	 *	enable and disable loopback mode if "NO HCD" occurs.
   1147 	 */
   1148 	if (isrc & PHY_B_IS_NO_HDCL) {
   1149 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
   1150 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
   1151 				  ctrl | PHY_CT_LOOP);
   1152 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
   1153 				  ctrl & ~PHY_CT_LOOP);
   1154 	}
   1155 
   1156 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
   1157 		bcom_check_link(hw, port);
   1158 
   1159 }
   1160 
   1161 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
   1162 {
   1163 	int i;
   1164 
   1165 	gma_write16(hw, port, GM_SMI_DATA, val);
   1166 	gma_write16(hw, port, GM_SMI_CTRL,
   1167 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
   1168 	for (i = 0; i < PHY_RETRIES; i++) {
   1169 		udelay(1);
   1170 
   1171 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
   1172 			return 0;
   1173 	}
   1174 
   1175 	DBG(PFX "%s: phy write timeout port %x reg %x val %x\n",
   1176 	    hw->dev[port]->name,
   1177 	    port, reg, val);
   1178 	return -EIO;
   1179 }
   1180 
   1181 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
   1182 {
   1183 	int i;
   1184 
   1185 	gma_write16(hw, port, GM_SMI_CTRL,
   1186 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
   1187 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
   1188 
   1189 	for (i = 0; i < PHY_RETRIES; i++) {
   1190 		udelay(1);
   1191 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
   1192 			goto ready;
   1193 	}
   1194 
   1195 	return -ETIMEDOUT;
   1196  ready:
   1197 	*val = gma_read16(hw, port, GM_SMI_DATA);
   1198 	return 0;
   1199 }
   1200 
   1201 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
   1202 {
   1203 	u16 v = 0;
   1204 	if (__gm_phy_read(hw, port, reg, &v))
   1205 		DBG(PFX "%s: phy read timeout port %x reg %x val %x\n",
   1206 	       hw->dev[port]->name,
   1207 	       port, reg, v);
   1208 	return v;
   1209 }
   1210 
   1211 /* Marvell Phy Initialization */
   1212 static void yukon_init(struct skge_hw *hw, int port)
   1213 {
   1214 	struct skge_port *skge = netdev_priv(hw->dev[port]);
   1215 	u16 ctrl, ct1000, adv;
   1216 
   1217 	if (skge->autoneg == AUTONEG_ENABLE) {
   1218 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
   1219 
   1220 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
   1221 			  PHY_M_EC_MAC_S_MSK);
   1222 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
   1223 
   1224 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
   1225 
   1226 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
   1227 	}
   1228 
   1229 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
   1230 	if (skge->autoneg == AUTONEG_DISABLE)
   1231 		ctrl &= ~PHY_CT_ANE;
   1232 
   1233 	ctrl |= PHY_CT_RESET;
   1234 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
   1235 
   1236 	ctrl = 0;
   1237 	ct1000 = 0;
   1238 	adv = PHY_AN_CSMA;
   1239 
   1240 	if (skge->autoneg == AUTONEG_ENABLE) {
   1241 		if (hw->copper) {
   1242 			if (skge->advertising & ADVERTISED_1000baseT_Full)
   1243 				ct1000 |= PHY_M_1000C_AFD;
   1244 			if (skge->advertising & ADVERTISED_1000baseT_Half)
   1245 				ct1000 |= PHY_M_1000C_AHD;
   1246 			if (skge->advertising & ADVERTISED_100baseT_Full)
   1247 				adv |= PHY_M_AN_100_FD;
   1248 			if (skge->advertising & ADVERTISED_100baseT_Half)
   1249 				adv |= PHY_M_AN_100_HD;
   1250 			if (skge->advertising & ADVERTISED_10baseT_Full)
   1251 				adv |= PHY_M_AN_10_FD;
   1252 			if (skge->advertising & ADVERTISED_10baseT_Half)
   1253 				adv |= PHY_M_AN_10_HD;
   1254 
   1255 			/* Set Flow-control capabilities */
   1256 			adv |= phy_pause_map[skge->flow_control];
   1257 		} else {
   1258 			if (skge->advertising & ADVERTISED_1000baseT_Full)
   1259 				adv |= PHY_M_AN_1000X_AFD;
   1260 			if (skge->advertising & ADVERTISED_1000baseT_Half)
   1261 				adv |= PHY_M_AN_1000X_AHD;
   1262 
   1263 			adv |= fiber_pause_map[skge->flow_control];
   1264 		}
   1265 
   1266 		/* Restart Auto-negotiation */
   1267 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
   1268 	} else {
   1269 		/* forced speed/duplex settings */
   1270 		ct1000 = PHY_M_1000C_MSE;
   1271 
   1272 		if (skge->duplex == DUPLEX_FULL)
   1273 			ctrl |= PHY_CT_DUP_MD;
   1274 
   1275 		switch (skge->speed) {
   1276 		case SPEED_1000:
   1277 			ctrl |= PHY_CT_SP1000;
   1278 			break;
   1279 		case SPEED_100:
   1280 			ctrl |= PHY_CT_SP100;
   1281 			break;
   1282 		}
   1283 
   1284 		ctrl |= PHY_CT_RESET;
   1285 	}
   1286 
   1287 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
   1288 
   1289 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
   1290 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
   1291 
   1292 	/* Enable phy interrupt on autonegotiation complete (or link up) */
   1293 	if (skge->autoneg == AUTONEG_ENABLE)
   1294 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
   1295 	else
   1296 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
   1297 }
   1298 
   1299 static void yukon_reset(struct skge_hw *hw, int port)
   1300 {
   1301 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
   1302 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
   1303 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
   1304 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
   1305 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
   1306 
   1307 	gma_write16(hw, port, GM_RX_CTRL,
   1308 			 gma_read16(hw, port, GM_RX_CTRL)
   1309 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
   1310 }
   1311 
   1312 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
   1313 static int is_yukon_lite_a0(struct skge_hw *hw)
   1314 {
   1315 	u32 reg;
   1316 	int ret;
   1317 
   1318 	if (hw->chip_id != CHIP_ID_YUKON)
   1319 		return 0;
   1320 
   1321 	reg = skge_read32(hw, B2_FAR);
   1322 	skge_write8(hw, B2_FAR + 3, 0xff);
   1323 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
   1324 	skge_write32(hw, B2_FAR, reg);
   1325 	return ret;
   1326 }
   1327 
   1328 static void yukon_mac_init(struct skge_hw *hw, int port)
   1329 {
   1330 	struct skge_port *skge = netdev_priv(hw->dev[port]);
   1331 	int i;
   1332 	u32 reg;
   1333 	const u8 *addr = hw->dev[port]->ll_addr;
   1334 
   1335 	/* WA code for COMA mode -- set PHY reset */
   1336 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
   1337 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
   1338 		reg = skge_read32(hw, B2_GP_IO);
   1339 		reg |= GP_DIR_9 | GP_IO_9;
   1340 		skge_write32(hw, B2_GP_IO, reg);
   1341 	}
   1342 
   1343 	/* hard reset */
   1344 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
   1345 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
   1346 
   1347 	/* WA code for COMA mode -- clear PHY reset */
   1348 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
   1349 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
   1350 		reg = skge_read32(hw, B2_GP_IO);
   1351 		reg |= GP_DIR_9;
   1352 		reg &= ~GP_IO_9;
   1353 		skge_write32(hw, B2_GP_IO, reg);
   1354 	}
   1355 
   1356 	/* Set hardware config mode */
   1357 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
   1358 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
   1359 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
   1360 
   1361 	/* Clear GMC reset */
   1362 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
   1363 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
   1364 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
   1365 
   1366 	if (skge->autoneg == AUTONEG_DISABLE) {
   1367 		reg = GM_GPCR_AU_ALL_DIS;
   1368 		gma_write16(hw, port, GM_GP_CTRL,
   1369 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
   1370 
   1371 		switch (skge->speed) {
   1372 		case SPEED_1000:
   1373 			reg &= ~GM_GPCR_SPEED_100;
   1374 			reg |= GM_GPCR_SPEED_1000;
   1375 			break;
   1376 		case SPEED_100:
   1377 			reg &= ~GM_GPCR_SPEED_1000;
   1378 			reg |= GM_GPCR_SPEED_100;
   1379 			break;
   1380 		case SPEED_10:
   1381 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
   1382 			break;
   1383 		}
   1384 
   1385 		if (skge->duplex == DUPLEX_FULL)
   1386 			reg |= GM_GPCR_DUP_FULL;
   1387 	} else
   1388 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
   1389 
   1390 	switch (skge->flow_control) {
   1391 	case FLOW_MODE_NONE:
   1392 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
   1393 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
   1394 		break;
   1395 	case FLOW_MODE_LOC_SEND:
   1396 		/* disable Rx flow-control */
   1397 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
   1398 		break;
   1399 	case FLOW_MODE_SYMMETRIC:
   1400 	case FLOW_MODE_SYM_OR_REM:
   1401 		/* enable Tx & Rx flow-control */
   1402 		break;
   1403 	}
   1404 
   1405 	gma_write16(hw, port, GM_GP_CTRL, reg);
   1406 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
   1407 
   1408 	yukon_init(hw, port);
   1409 
   1410 	/* MIB clear */
   1411 	reg = gma_read16(hw, port, GM_PHY_ADDR);
   1412 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
   1413 
   1414 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
   1415 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
   1416 	gma_write16(hw, port, GM_PHY_ADDR, reg);
   1417 
   1418 	/* transmit control */
   1419 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
   1420 
   1421 	/* receive control reg: unicast + multicast + no FCS  */
   1422 	gma_write16(hw, port, GM_RX_CTRL,
   1423 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
   1424 
   1425 	/* transmit flow control */
   1426 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
   1427 
   1428 	/* transmit parameter */
   1429 	gma_write16(hw, port, GM_TX_PARAM,
   1430 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
   1431 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
   1432 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
   1433 
   1434 	/* configure the Serial Mode Register */
   1435 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
   1436 		| GM_SMOD_VLAN_ENA
   1437 		| IPG_DATA_VAL(IPG_DATA_DEF);
   1438 
   1439 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
   1440 
   1441 	/* physical address: used for pause frames */
   1442 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
   1443 	/* virtual address for data */
   1444 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
   1445 
   1446 	/* enable interrupt mask for counter overflows */
   1447 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
   1448 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
   1449 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
   1450 
   1451 	/* Initialize Mac Fifo */
   1452 
   1453 	/* Configure Rx MAC FIFO */
   1454 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
   1455 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
   1456 
   1457 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
   1458 	if (is_yukon_lite_a0(hw))
   1459 		reg &= ~GMF_RX_F_FL_ON;
   1460 
   1461 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
   1462 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
   1463 	/*
   1464 	 * because Pause Packet Truncation in GMAC is not working
   1465 	 * we have to increase the Flush Threshold to 64 bytes
   1466 	 * in order to flush pause packets in Rx FIFO on Yukon-1
   1467 	 */
   1468 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
   1469 
   1470 	/* Configure Tx MAC FIFO */
   1471 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
   1472 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
   1473 }
   1474 
   1475 /* Go into power down mode */
   1476 static void yukon_suspend(struct skge_hw *hw, int port)
   1477 {
   1478 	u16 ctrl;
   1479 
   1480 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
   1481 	ctrl |= PHY_M_PC_POL_R_DIS;
   1482 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
   1483 
   1484 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
   1485 	ctrl |= PHY_CT_RESET;
   1486 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
   1487 
   1488 	/* switch IEEE compatible power down mode on */
   1489 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
   1490 	ctrl |= PHY_CT_PDOWN;
   1491 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
   1492 }
   1493 
   1494 static void yukon_stop(struct skge_port *skge)
   1495 {
   1496 	struct skge_hw *hw = skge->hw;
   1497 	int port = skge->port;
   1498 
   1499 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
   1500 	yukon_reset(hw, port);
   1501 
   1502 	gma_write16(hw, port, GM_GP_CTRL,
   1503 			 gma_read16(hw, port, GM_GP_CTRL)
   1504 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
   1505 	gma_read16(hw, port, GM_GP_CTRL);
   1506 
   1507 	yukon_suspend(hw, port);
   1508 
   1509 	/* set GPHY Control reset */
   1510 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
   1511 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
   1512 }
   1513 
   1514 static u16 yukon_speed(const struct skge_hw *hw __unused, u16 aux)
   1515 {
   1516 	switch (aux & PHY_M_PS_SPEED_MSK) {
   1517 	case PHY_M_PS_SPEED_1000:
   1518 		return SPEED_1000;
   1519 	case PHY_M_PS_SPEED_100:
   1520 		return SPEED_100;
   1521 	default:
   1522 		return SPEED_10;
   1523 	}
   1524 }
   1525 
   1526 static void yukon_link_up(struct skge_port *skge)
   1527 {
   1528 	struct skge_hw *hw = skge->hw;
   1529 	int port = skge->port;
   1530 	u16 reg;
   1531 
   1532 	/* Enable Transmit FIFO Underrun */
   1533 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
   1534 
   1535 	reg = gma_read16(hw, port, GM_GP_CTRL);
   1536 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
   1537 		reg |= GM_GPCR_DUP_FULL;
   1538 
   1539 	/* enable Rx/Tx */
   1540 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
   1541 	gma_write16(hw, port, GM_GP_CTRL, reg);
   1542 
   1543 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
   1544 	skge_link_up(skge);
   1545 }
   1546 
   1547 static void yukon_link_down(struct skge_port *skge)
   1548 {
   1549 	struct skge_hw *hw = skge->hw;
   1550 	int port = skge->port;
   1551 	u16 ctrl;
   1552 
   1553 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
   1554 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
   1555 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
   1556 
   1557 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
   1558 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
   1559 		ctrl |= PHY_M_AN_ASP;
   1560 		/* restore Asymmetric Pause bit */
   1561 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
   1562 	}
   1563 
   1564 	skge_link_down(skge);
   1565 
   1566 	yukon_init(hw, port);
   1567 }
   1568 
   1569 static void yukon_phy_intr(struct skge_port *skge)
   1570 {
   1571 	struct skge_hw *hw = skge->hw;
   1572 	int port = skge->port;
   1573 	const char *reason = NULL;
   1574 	u16 istatus, phystat;
   1575 
   1576 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
   1577 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
   1578 
   1579 	DBGIO(PFX "%s: phy interrupt status 0x%x 0x%x\n",
   1580 	     skge->netdev->name, istatus, phystat);
   1581 
   1582 	if (istatus & PHY_M_IS_AN_COMPL) {
   1583 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
   1584 		    & PHY_M_AN_RF) {
   1585 			reason = "remote fault";
   1586 			goto failed;
   1587 		}
   1588 
   1589 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
   1590 			reason = "master/slave fault";
   1591 			goto failed;
   1592 		}
   1593 
   1594 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
   1595 			reason = "speed/duplex";
   1596 			goto failed;
   1597 		}
   1598 
   1599 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
   1600 			? DUPLEX_FULL : DUPLEX_HALF;
   1601 		skge->speed = yukon_speed(hw, phystat);
   1602 
   1603 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
   1604 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
   1605 		case PHY_M_PS_PAUSE_MSK:
   1606 			skge->flow_status = FLOW_STAT_SYMMETRIC;
   1607 			break;
   1608 		case PHY_M_PS_RX_P_EN:
   1609 			skge->flow_status = FLOW_STAT_REM_SEND;
   1610 			break;
   1611 		case PHY_M_PS_TX_P_EN:
   1612 			skge->flow_status = FLOW_STAT_LOC_SEND;
   1613 			break;
   1614 		default:
   1615 			skge->flow_status = FLOW_STAT_NONE;
   1616 		}
   1617 
   1618 		if (skge->flow_status == FLOW_STAT_NONE ||
   1619 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
   1620 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
   1621 		else
   1622 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
   1623 		yukon_link_up(skge);
   1624 		return;
   1625 	}
   1626 
   1627 	if (istatus & PHY_M_IS_LSP_CHANGE)
   1628 		skge->speed = yukon_speed(hw, phystat);
   1629 
   1630 	if (istatus & PHY_M_IS_DUP_CHANGE)
   1631 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
   1632 	if (istatus & PHY_M_IS_LST_CHANGE) {
   1633 		if (phystat & PHY_M_PS_LINK_UP)
   1634 			yukon_link_up(skge);
   1635 		else
   1636 			yukon_link_down(skge);
   1637 	}
   1638 	return;
   1639  failed:
   1640 	DBG(PFX "%s: autonegotiation failed (%s)\n",
   1641 	       skge->netdev->name, reason);
   1642 
   1643 	/* XXX restart autonegotiation? */
   1644 }
   1645 
   1646 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
   1647 {
   1648 	u32 end;
   1649 
   1650 	start /= 8;
   1651 	len /= 8;
   1652 	end = start + len - 1;
   1653 
   1654 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
   1655 	skge_write32(hw, RB_ADDR(q, RB_START), start);
   1656 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
   1657 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
   1658 	skge_write32(hw, RB_ADDR(q, RB_END), end);
   1659 
   1660 	if (q == Q_R1 || q == Q_R2) {
   1661 		/* Set thresholds on receive queue's */
   1662 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
   1663 			     start + (2*len)/3);
   1664 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
   1665 			     start + (len/3));
   1666 	} else {
   1667 		/* Enable store & forward on Tx queue's because
   1668 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
   1669 		 */
   1670 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
   1671 	}
   1672 
   1673 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
   1674 }
   1675 
   1676 /* Setup Bus Memory Interface */
   1677 static void skge_qset(struct skge_port *skge, u16 q,
   1678 		      const struct skge_element *e)
   1679 {
   1680 	struct skge_hw *hw = skge->hw;
   1681 	u32 watermark = 0x600;
   1682 	u64 base = skge->dma + (e->desc - skge->mem);
   1683 
   1684 	/* optimization to reduce window on 32bit/33mhz */
   1685 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
   1686 		watermark /= 2;
   1687 
   1688 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
   1689 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
   1690 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
   1691 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
   1692 }
   1693 
   1694 void skge_free(struct net_device *dev)
   1695 {
   1696 	struct skge_port *skge = netdev_priv(dev);
   1697 
   1698 	free(skge->rx_ring.start);
   1699 	skge->rx_ring.start = NULL;
   1700 
   1701 	free(skge->tx_ring.start);
   1702 	skge->tx_ring.start = NULL;
   1703 
   1704 	free_dma(skge->mem, RING_SIZE);
   1705 	skge->mem = NULL;
   1706 	skge->dma = 0;
   1707 }
   1708 
   1709 static int skge_up(struct net_device *dev)
   1710 {
   1711 	struct skge_port *skge = netdev_priv(dev);
   1712 	struct skge_hw *hw = skge->hw;
   1713 	int port = skge->port;
   1714 	u32 chunk, ram_addr;
   1715 	int err;
   1716 
   1717 	DBG2(PFX "%s: enabling interface\n", dev->name);
   1718 
   1719 	skge->mem = malloc_dma(RING_SIZE, SKGE_RING_ALIGN);
   1720 	skge->dma = virt_to_bus(skge->mem);
   1721 	if (!skge->mem)
   1722 		return -ENOMEM;
   1723 	memset(skge->mem, 0, RING_SIZE);
   1724 
   1725 	assert(!(skge->dma & 7));
   1726 
   1727 	/* FIXME: find out whether 64 bit gPXE will be loaded > 4GB */
   1728 	if ((u64)skge->dma >> 32 != ((u64) skge->dma + RING_SIZE) >> 32) {
   1729 		DBG(PFX "pci_alloc_consistent region crosses 4G boundary\n");
   1730 		err = -EINVAL;
   1731 		goto err;
   1732 	}
   1733 
   1734 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma, NUM_RX_DESC);
   1735 	if (err)
   1736 		goto err;
   1737 
   1738 	/* this call relies on e->iob and d->control to be 0
   1739 	 * This is assured by calling memset() on skge->mem and using zalloc()
   1740 	 * for the skge_element structures.
   1741 	 */
   1742 	skge_rx_refill(dev);
   1743 
   1744 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + RX_RING_SIZE,
   1745 			      skge->dma + RX_RING_SIZE, NUM_TX_DESC);
   1746 	if (err)
   1747 		goto err;
   1748 
   1749 	/* Initialize MAC */
   1750 	if (hw->chip_id == CHIP_ID_GENESIS)
   1751 		genesis_mac_init(hw, port);
   1752 	else
   1753 		yukon_mac_init(hw, port);
   1754 
   1755 	/* Configure RAMbuffers - equally between ports and tx/rx */
   1756 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
   1757 	ram_addr = hw->ram_offset + 2 * chunk * port;
   1758 
   1759 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
   1760 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
   1761 
   1762 	assert(!(skge->tx_ring.to_use != skge->tx_ring.to_clean));
   1763 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
   1764 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
   1765 
   1766 	/* Start receiver BMU */
   1767 	wmb();
   1768 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
   1769 	skge_led(skge, LED_MODE_ON);
   1770 
   1771 	hw->intr_mask |= portmask[port];
   1772 	skge_write32(hw, B0_IMSK, hw->intr_mask);
   1773 
   1774 	return 0;
   1775 
   1776  err:
   1777 	skge_rx_clean(skge);
   1778 	skge_free(dev);
   1779 
   1780 	return err;
   1781 }
   1782 
   1783 /* stop receiver */
   1784 static void skge_rx_stop(struct skge_hw *hw, int port)
   1785 {
   1786 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
   1787 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
   1788 		     RB_RST_SET|RB_DIS_OP_MD);
   1789 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
   1790 }
   1791 
   1792 static void skge_down(struct net_device *dev)
   1793 {
   1794 	struct skge_port *skge = netdev_priv(dev);
   1795 	struct skge_hw *hw = skge->hw;
   1796 	int port = skge->port;
   1797 
   1798 	if (skge->mem == NULL)
   1799 		return;
   1800 
   1801 	DBG2(PFX "%s: disabling interface\n", dev->name);
   1802 
   1803 	if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
   1804 		skge->use_xm_link_timer = 0;
   1805 
   1806 	netdev_link_down(dev);
   1807 
   1808 	hw->intr_mask &= ~portmask[port];
   1809 	skge_write32(hw, B0_IMSK, hw->intr_mask);
   1810 
   1811 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
   1812 	if (hw->chip_id == CHIP_ID_GENESIS)
   1813 		genesis_stop(skge);
   1814 	else
   1815 		yukon_stop(skge);
   1816 
   1817 	/* Stop transmitter */
   1818 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
   1819 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
   1820 		     RB_RST_SET|RB_DIS_OP_MD);
   1821 
   1822 
   1823 	/* Disable Force Sync bit and Enable Alloc bit */
   1824 	skge_write8(hw, SK_REG(port, TXA_CTRL),
   1825 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
   1826 
   1827 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
   1828 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
   1829 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
   1830 
   1831 	/* Reset PCI FIFO */
   1832 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
   1833 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
   1834 
   1835 	/* Reset the RAM Buffer async Tx queue */
   1836 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
   1837 
   1838 	skge_rx_stop(hw, port);
   1839 
   1840 	if (hw->chip_id == CHIP_ID_GENESIS) {
   1841 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
   1842 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
   1843 	} else {
   1844 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
   1845 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
   1846 	}
   1847 
   1848 	skge_led(skge, LED_MODE_OFF);
   1849 
   1850 	skge_tx_clean(dev);
   1851 
   1852 	skge_rx_clean(skge);
   1853 
   1854 	skge_free(dev);
   1855 	return;
   1856 }
   1857 
   1858 static inline int skge_tx_avail(const struct skge_ring *ring)
   1859 {
   1860 	mb();
   1861 	return ((ring->to_clean > ring->to_use) ? 0 : NUM_TX_DESC)
   1862 		+ (ring->to_clean - ring->to_use) - 1;
   1863 }
   1864 
   1865 static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob)
   1866 {
   1867 	struct skge_port *skge = netdev_priv(dev);
   1868 	struct skge_hw *hw = skge->hw;
   1869 	struct skge_element *e;
   1870 	struct skge_tx_desc *td;
   1871 	u32 control, len;
   1872 	u64 map;
   1873 
   1874 	if (skge_tx_avail(&skge->tx_ring) < 1)
   1875 		return -EBUSY;
   1876 
   1877 	e = skge->tx_ring.to_use;
   1878 	td = e->desc;
   1879 	assert(!(td->control & BMU_OWN));
   1880 	e->iob = iob;
   1881 	len = iob_len(iob);
   1882 	map = virt_to_bus(iob->data);
   1883 
   1884 	td->dma_lo = map;
   1885 	td->dma_hi = map >> 32;
   1886 
   1887 	control = BMU_CHECK;
   1888 
   1889 	control |= BMU_EOF| BMU_IRQ_EOF;
   1890 	/* Make sure all the descriptors written */
   1891 	wmb();
   1892 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
   1893 	wmb();
   1894 
   1895 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
   1896 
   1897 	DBGIO(PFX "%s: tx queued, slot %td, len %d\n",
   1898 	     dev->name, e - skge->tx_ring.start, (unsigned int)len);
   1899 
   1900 	skge->tx_ring.to_use = e->next;
   1901 	wmb();
   1902 
   1903 	if (skge_tx_avail(&skge->tx_ring) <= 1) {
   1904 		DBG(PFX "%s: transmit queue full\n", dev->name);
   1905 	}
   1906 
   1907 	return 0;
   1908 }
   1909 
   1910 /* Free all buffers in transmit ring */
   1911 static void skge_tx_clean(struct net_device *dev)
   1912 {
   1913 	struct skge_port *skge = netdev_priv(dev);
   1914 	struct skge_element *e;
   1915 
   1916 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
   1917 		struct skge_tx_desc *td = e->desc;
   1918 		td->control = 0;
   1919 	}
   1920 
   1921 	skge->tx_ring.to_clean = e;
   1922 }
   1923 
   1924 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
   1925 
   1926 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
   1927 {
   1928 	if (hw->chip_id == CHIP_ID_GENESIS)
   1929 		return status >> XMR_FS_LEN_SHIFT;
   1930 	else
   1931 		return status >> GMR_FS_LEN_SHIFT;
   1932 }
   1933 
   1934 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
   1935 {
   1936 	if (hw->chip_id == CHIP_ID_GENESIS)
   1937 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
   1938 	else
   1939 		return (status & GMR_FS_ANY_ERR) ||
   1940 			(status & GMR_FS_RX_OK) == 0;
   1941 }
   1942 
   1943 /* Free all buffers in Tx ring which are no longer owned by device */
   1944 static void skge_tx_done(struct net_device *dev)
   1945 {
   1946 	struct skge_port *skge = netdev_priv(dev);
   1947 	struct skge_ring *ring = &skge->tx_ring;
   1948 	struct skge_element *e;
   1949 
   1950 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
   1951 
   1952 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
   1953 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
   1954 
   1955 		if (control & BMU_OWN)
   1956 			break;
   1957 
   1958 		netdev_tx_complete(dev, e->iob);
   1959 	}
   1960 	skge->tx_ring.to_clean = e;
   1961 
   1962 	/* Can run lockless until we need to synchronize to restart queue. */
   1963 	mb();
   1964 }
   1965 
   1966 static void skge_rx_refill(struct net_device *dev)
   1967 {
   1968 	struct skge_port *skge = netdev_priv(dev);
   1969 	struct skge_ring *ring = &skge->rx_ring;
   1970 	struct skge_element *e;
   1971 	struct io_buffer *iob;
   1972 	struct skge_rx_desc *rd;
   1973 	u32 control;
   1974 	int i;
   1975 
   1976 	for (i = 0; i < NUM_RX_DESC; i++) {
   1977 		e = ring->to_clean;
   1978 		rd = e->desc;
   1979 		iob = e->iob;
   1980 		control = rd->control;
   1981 
   1982 		/* nothing to do here */
   1983 		if (iob || (control & BMU_OWN))
   1984 			continue;
   1985 
   1986 		DBG2("refilling rx desc %d: ", (ring->to_clean - ring->start));
   1987 
   1988 		iob = alloc_iob(RX_BUF_SIZE);
   1989 		if (iob) {
   1990 			skge_rx_setup(skge, e, iob, RX_BUF_SIZE);
   1991 		} else {
   1992 			DBG("descr %d: alloc_iob() failed\n",
   1993 			     (ring->to_clean - ring->start));
   1994 			/* We pass the descriptor to the NIC even if the
   1995 			 * allocation failed. The card will stop as soon as it
   1996 			 * encounters a descriptor with the OWN bit set to 0,
   1997 			 * thus never getting to the next descriptor that might
   1998 			 * contain a valid io_buffer. This would effectively
   1999 			 * stall the receive.
   2000 			 */
   2001 			skge_rx_setup(skge, e, NULL, 0);
   2002 		}
   2003 
   2004 		ring->to_clean = e->next;
   2005 	}
   2006 }
   2007 
   2008 static void skge_rx_done(struct net_device *dev)
   2009 {
   2010 	struct skge_port *skge = netdev_priv(dev);
   2011 	struct skge_ring *ring = &skge->rx_ring;
   2012 	struct skge_rx_desc *rd;
   2013 	struct skge_element *e;
   2014 	struct io_buffer *iob;
   2015 	u32 control;
   2016 	u16 len;
   2017 	int i;
   2018 
   2019 	e = ring->to_clean;
   2020 	for (i = 0; i < NUM_RX_DESC; i++) {
   2021 		iob = e->iob;
   2022 		rd = e->desc;
   2023 
   2024 		rmb();
   2025 		control = rd->control;
   2026 
   2027 		if ((control & BMU_OWN))
   2028 			break;
   2029 
   2030 		if (!iob)
   2031 			continue;
   2032 
   2033 		len = control & BMU_BBC;
   2034 
   2035 		/* catch RX errors */
   2036 		if ((bad_phy_status(skge->hw, rd->status)) ||
   2037 		   (phy_length(skge->hw, rd->status) != len)) {
   2038 			/* report receive errors */
   2039 			DBG("rx error\n");
   2040 			netdev_rx_err(dev, iob, -EIO);
   2041 		} else {
   2042 			DBG2("received packet, len %d\n", len);
   2043 			iob_put(iob, len);
   2044 			netdev_rx(dev, iob);
   2045 		}
   2046 
   2047 		/* io_buffer passed to core, make sure we don't reuse it */
   2048 		e->iob = NULL;
   2049 
   2050 		e = e->next;
   2051 	}
   2052 	skge_rx_refill(dev);
   2053 }
   2054 
   2055 static void skge_poll(struct net_device *dev)
   2056 {
   2057 	struct skge_port *skge = netdev_priv(dev);
   2058 	struct skge_hw *hw = skge->hw;
   2059 	u32 status;
   2060 
   2061 	/* reading this register ACKs interrupts */
   2062 	status = skge_read32(hw, B0_SP_ISRC);
   2063 
   2064 	/* Link event? */
   2065 	if (status & IS_EXT_REG) {
   2066 		skge_phyirq(hw);
   2067 		if (skge->use_xm_link_timer)
   2068 			xm_link_timer(skge);
   2069 	}
   2070 
   2071 	skge_tx_done(dev);
   2072 
   2073 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
   2074 
   2075 	skge_rx_done(dev);
   2076 
   2077 	/* restart receiver */
   2078 	wmb();
   2079 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
   2080 
   2081 	skge_read32(hw, B0_IMSK);
   2082 
   2083 	return;
   2084 }
   2085 
   2086 static void skge_phyirq(struct skge_hw *hw)
   2087 {
   2088 	int port;
   2089 
   2090 	for (port = 0; port < hw->ports; port++) {
   2091 		struct net_device *dev = hw->dev[port];
   2092 		struct skge_port *skge = netdev_priv(dev);
   2093 
   2094 		if (hw->chip_id != CHIP_ID_GENESIS)
   2095 			yukon_phy_intr(skge);
   2096 		else if (hw->phy_type == SK_PHY_BCOM)
   2097 			bcom_phy_intr(skge);
   2098 	}
   2099 
   2100 	hw->intr_mask |= IS_EXT_REG;
   2101 	skge_write32(hw, B0_IMSK, hw->intr_mask);
   2102 	skge_read32(hw, B0_IMSK);
   2103 }
   2104 
   2105 static const struct {
   2106 	u8 id;
   2107 	const char *name;
   2108 } skge_chips[] = {
   2109 	{ CHIP_ID_GENESIS,	"Genesis" },
   2110 	{ CHIP_ID_YUKON,	 "Yukon" },
   2111 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
   2112 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
   2113 };
   2114 
   2115 static const char *skge_board_name(const struct skge_hw *hw)
   2116 {
   2117 	unsigned int i;
   2118 	static char buf[16];
   2119 
   2120 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
   2121 		if (skge_chips[i].id == hw->chip_id)
   2122 			return skge_chips[i].name;
   2123 
   2124 	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
   2125 	return buf;
   2126 }
   2127 
   2128 
   2129 /*
   2130  * Setup the board data structure, but don't bring up
   2131  * the port(s)
   2132  */
   2133 static int skge_reset(struct skge_hw *hw)
   2134 {
   2135 	u32 reg;
   2136 	u16 ctst, pci_status;
   2137 	u8 t8, mac_cfg, pmd_type;
   2138 	int i;
   2139 
   2140 	ctst = skge_read16(hw, B0_CTST);
   2141 
   2142 	/* do a SW reset */
   2143 	skge_write8(hw, B0_CTST, CS_RST_SET);
   2144 	skge_write8(hw, B0_CTST, CS_RST_CLR);
   2145 
   2146 	/* clear PCI errors, if any */
   2147 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
   2148 	skge_write8(hw, B2_TST_CTRL2, 0);
   2149 
   2150 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
   2151 	pci_write_config_word(hw->pdev, PCI_STATUS,
   2152 			      pci_status | PCI_STATUS_ERROR_BITS);
   2153 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
   2154 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
   2155 
   2156 	/* restore CLK_RUN bits (for Yukon-Lite) */
   2157 	skge_write16(hw, B0_CTST,
   2158 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
   2159 
   2160 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
   2161 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
   2162 	pmd_type = skge_read8(hw, B2_PMD_TYP);
   2163 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
   2164 
   2165 	switch (hw->chip_id) {
   2166 	case CHIP_ID_GENESIS:
   2167 		switch (hw->phy_type) {
   2168 		case SK_PHY_XMAC:
   2169 			hw->phy_addr = PHY_ADDR_XMAC;
   2170 			break;
   2171 		case SK_PHY_BCOM:
   2172 			hw->phy_addr = PHY_ADDR_BCOM;
   2173 			break;
   2174 		default:
   2175 			DBG(PFX "unsupported phy type 0x%x\n",
   2176 			       hw->phy_type);
   2177 			return -EOPNOTSUPP;
   2178 		}
   2179 		break;
   2180 
   2181 	case CHIP_ID_YUKON:
   2182 	case CHIP_ID_YUKON_LITE:
   2183 	case CHIP_ID_YUKON_LP:
   2184 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
   2185 			hw->copper = 1;
   2186 
   2187 		hw->phy_addr = PHY_ADDR_MARV;
   2188 		break;
   2189 
   2190 	default:
   2191 		DBG(PFX "unsupported chip type 0x%x\n",
   2192 		       hw->chip_id);
   2193 		return -EOPNOTSUPP;
   2194 	}
   2195 
   2196 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
   2197 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
   2198 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
   2199 
   2200 	/* read the adapters RAM size */
   2201 	t8 = skge_read8(hw, B2_E_0);
   2202 	if (hw->chip_id == CHIP_ID_GENESIS) {
   2203 		if (t8 == 3) {
   2204 			/* special case: 4 x 64k x 36, offset = 0x80000 */
   2205 			hw->ram_size = 0x100000;
   2206 			hw->ram_offset = 0x80000;
   2207 		} else
   2208 			hw->ram_size = t8 * 512;
   2209 	}
   2210 	else if (t8 == 0)
   2211 		hw->ram_size = 0x20000;
   2212 	else
   2213 		hw->ram_size = t8 * 4096;
   2214 
   2215 	hw->intr_mask = IS_HW_ERR;
   2216 
   2217 	/* Use PHY IRQ for all but fiber based Genesis board */
   2218 	if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
   2219 		hw->intr_mask |= IS_EXT_REG;
   2220 
   2221 	if (hw->chip_id == CHIP_ID_GENESIS)
   2222 		genesis_init(hw);
   2223 	else {
   2224 		/* switch power to VCC (WA for VAUX problem) */
   2225 		skge_write8(hw, B0_POWER_CTRL,
   2226 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
   2227 
   2228 		/* avoid boards with stuck Hardware error bits */
   2229 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
   2230 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
   2231 			DBG(PFX "stuck hardware sensor bit\n");
   2232 			hw->intr_mask &= ~IS_HW_ERR;
   2233 		}
   2234 
   2235 		/* Clear PHY COMA */
   2236 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
   2237 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
   2238 		reg &= ~PCI_PHY_COMA;
   2239 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
   2240 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
   2241 
   2242 
   2243 		for (i = 0; i < hw->ports; i++) {
   2244 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
   2245 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
   2246 		}
   2247 	}
   2248 
   2249 	/* turn off hardware timer (unused) */
   2250 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
   2251 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
   2252 	skge_write8(hw, B0_LED, LED_STAT_ON);
   2253 
   2254 	/* enable the Tx Arbiters */
   2255 	for (i = 0; i < hw->ports; i++)
   2256 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
   2257 
   2258 	/* Initialize ram interface */
   2259 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
   2260 
   2261 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
   2262 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
   2263 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
   2264 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
   2265 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
   2266 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
   2267 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
   2268 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
   2269 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
   2270 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
   2271 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
   2272 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
   2273 
   2274 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
   2275 
   2276 	/* Set interrupt moderation for Transmit only
   2277 	 * Receive interrupts avoided by NAPI
   2278 	 */
   2279 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
   2280 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
   2281 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
   2282 
   2283 	skge_write32(hw, B0_IMSK, hw->intr_mask);
   2284 
   2285 	for (i = 0; i < hw->ports; i++) {
   2286 		if (hw->chip_id == CHIP_ID_GENESIS)
   2287 			genesis_reset(hw, i);
   2288 		else
   2289 			yukon_reset(hw, i);
   2290 	}
   2291 
   2292 	return 0;
   2293 }
   2294 
   2295 /* Initialize network device */
   2296 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
   2297 				       int highmem __unused)
   2298 {
   2299 	struct skge_port *skge;
   2300 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
   2301 
   2302 	if (!dev) {
   2303 		DBG(PFX "etherdev alloc failed\n");
   2304 		return NULL;
   2305 	}
   2306 
   2307 	dev->dev = &hw->pdev->dev;
   2308 
   2309 	skge = netdev_priv(dev);
   2310 	skge->netdev = dev;
   2311 	skge->hw = hw;
   2312 
   2313 	/* Auto speed and flow control */
   2314 	skge->autoneg = AUTONEG_ENABLE;
   2315 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
   2316 	skge->duplex = -1;
   2317 	skge->speed = -1;
   2318 	skge->advertising = skge_supported_modes(hw);
   2319 
   2320 	hw->dev[port] = dev;
   2321 
   2322 	skge->port = port;
   2323 
   2324 	/* read the mac address */
   2325 	memcpy(dev->hw_addr, (void *) (hw->regs + B2_MAC_1 + port*8), ETH_ALEN);
   2326 
   2327 	/* device is off until link detection */
   2328 	netdev_link_down(dev);
   2329 
   2330 	return dev;
   2331 }
   2332 
   2333 static void skge_show_addr(struct net_device *dev)
   2334 {
   2335 	DBG2(PFX "%s: addr %s\n",
   2336 	     dev->name, netdev_addr(dev));
   2337 }
   2338 
   2339 static int skge_probe(struct pci_device *pdev,
   2340 				const struct pci_device_id *ent __unused)
   2341 {
   2342 	struct net_device *dev, *dev1;
   2343 	struct skge_hw *hw;
   2344 	int err, using_dac = 0;
   2345 
   2346 	adjust_pci_device(pdev);
   2347 
   2348 	err = -ENOMEM;
   2349 	hw = zalloc(sizeof(*hw));
   2350 	if (!hw) {
   2351 		DBG(PFX "cannot allocate hardware struct\n");
   2352 		goto err_out_free_regions;
   2353 	}
   2354 
   2355 	hw->pdev = pdev;
   2356 
   2357 	hw->regs = (u32)ioremap(pci_bar_start(pdev, PCI_BASE_ADDRESS_0),
   2358 				SKGE_REG_SIZE);
   2359 	if (!hw->regs) {
   2360 		DBG(PFX "cannot map device registers\n");
   2361 		goto err_out_free_hw;
   2362 	}
   2363 
   2364 	err = skge_reset(hw);
   2365 	if (err)
   2366 		goto err_out_iounmap;
   2367 
   2368 	DBG(PFX " addr 0x%llx irq %d chip %s rev %d\n",
   2369 	    (unsigned long long)pdev->ioaddr, pdev->irq,
   2370 	    skge_board_name(hw), hw->chip_rev);
   2371 
   2372 	dev = skge_devinit(hw, 0, using_dac);
   2373 	if (!dev)
   2374 		goto err_out_led_off;
   2375 
   2376 	netdev_init ( dev, &skge_operations );
   2377 
   2378 	err = register_netdev(dev);
   2379 	if (err) {
   2380 		DBG(PFX "cannot register net device\n");
   2381 		goto err_out_free_netdev;
   2382 	}
   2383 
   2384 	skge_show_addr(dev);
   2385 
   2386 	if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
   2387 		if (register_netdev(dev1) == 0)
   2388 			skge_show_addr(dev1);
   2389 		else {
   2390 			/* Failure to register second port need not be fatal */
   2391 			DBG(PFX "register of second port failed\n");
   2392 			hw->dev[1] = NULL;
   2393 			netdev_nullify(dev1);
   2394 			netdev_put(dev1);
   2395 		}
   2396 	}
   2397 	pci_set_drvdata(pdev, hw);
   2398 
   2399 	return 0;
   2400 
   2401 err_out_free_netdev:
   2402 	netdev_nullify(dev);
   2403 	netdev_put(dev);
   2404 err_out_led_off:
   2405 	skge_write16(hw, B0_LED, LED_STAT_OFF);
   2406 err_out_iounmap:
   2407 	iounmap((void*)hw->regs);
   2408 err_out_free_hw:
   2409 	free(hw);
   2410 err_out_free_regions:
   2411 	pci_set_drvdata(pdev, NULL);
   2412 	return err;
   2413 }
   2414 
   2415 static void skge_remove(struct pci_device *pdev)
   2416 {
   2417 	struct skge_hw *hw  = pci_get_drvdata(pdev);
   2418 	struct net_device *dev0, *dev1;
   2419 
   2420 	if (!hw)
   2421 		return;
   2422 
   2423 	if ((dev1 = hw->dev[1]))
   2424 		unregister_netdev(dev1);
   2425 	dev0 = hw->dev[0];
   2426 	unregister_netdev(dev0);
   2427 
   2428 	hw->intr_mask = 0;
   2429 	skge_write32(hw, B0_IMSK, 0);
   2430 	skge_read32(hw, B0_IMSK);
   2431 
   2432 	skge_write16(hw, B0_LED, LED_STAT_OFF);
   2433 	skge_write8(hw, B0_CTST, CS_RST_SET);
   2434 
   2435 	if (dev1) {
   2436 		netdev_nullify(dev1);
   2437 		netdev_put(dev1);
   2438 	}
   2439 	netdev_nullify(dev0);
   2440 	netdev_put(dev0);
   2441 
   2442 	iounmap((void*)hw->regs);
   2443 	free(hw);
   2444 	pci_set_drvdata(pdev, NULL);
   2445 }
   2446 
   2447 /*
   2448  * Enable or disable IRQ masking.
   2449  *
   2450  * @v netdev		Device to control.
   2451  * @v enable		Zero to mask off IRQ, non-zero to enable IRQ.
   2452  *
   2453  * This is a gPXE Network Driver API function.
   2454  */
   2455 static void skge_net_irq ( struct net_device *dev, int enable ) {
   2456 	struct skge_port *skge = netdev_priv(dev);
   2457 	struct skge_hw *hw = skge->hw;
   2458 
   2459 	if (enable)
   2460 		hw->intr_mask |= portmask[skge->port];
   2461 	else
   2462 		hw->intr_mask &= ~portmask[skge->port];
   2463 	skge_write32(hw, B0_IMSK, hw->intr_mask);
   2464 }
   2465 
   2466 struct pci_driver skge_driver __pci_driver = {
   2467 	.ids      = skge_id_table,
   2468 	.id_count = ( sizeof (skge_id_table) / sizeof (skge_id_table[0]) ),
   2469 	.probe    = skge_probe,
   2470 	.remove   = skge_remove
   2471 };
   2472 
   2473