1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include "brw_vec4.h" 25 #include "brw_fs.h" 26 #include "brw_cfg.h" 27 #include "brw_vs.h" 28 #include "brw_nir.h" 29 #include "brw_vec4_builder.h" 30 #include "brw_vec4_live_variables.h" 31 #include "brw_dead_control_flow.h" 32 #include "program/prog_parameter.h" 33 34 #define MAX_INSTRUCTION (1 << 30) 35 36 using namespace brw; 37 38 namespace brw { 39 40 void 41 src_reg::init() 42 { 43 memset(this, 0, sizeof(*this)); 44 45 this->file = BAD_FILE; 46 } 47 48 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type) 49 { 50 init(); 51 52 this->file = file; 53 this->nr = nr; 54 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) 55 this->swizzle = brw_swizzle_for_size(type->vector_elements); 56 else 57 this->swizzle = BRW_SWIZZLE_XYZW; 58 if (type) 59 this->type = brw_type_for_base_type(type); 60 } 61 62 /** Generic unset register constructor. */ 63 src_reg::src_reg() 64 { 65 init(); 66 } 67 68 src_reg::src_reg(struct ::brw_reg reg) : 69 backend_reg(reg) 70 { 71 this->offset = 0; 72 this->reladdr = NULL; 73 } 74 75 src_reg::src_reg(const dst_reg ®) : 76 backend_reg(reg) 77 { 78 this->reladdr = reg.reladdr; 79 this->swizzle = brw_swizzle_for_mask(reg.writemask); 80 } 81 82 void 83 dst_reg::init() 84 { 85 memset(this, 0, sizeof(*this)); 86 this->file = BAD_FILE; 87 this->writemask = WRITEMASK_XYZW; 88 } 89 90 dst_reg::dst_reg() 91 { 92 init(); 93 } 94 95 dst_reg::dst_reg(enum brw_reg_file file, int nr) 96 { 97 init(); 98 99 this->file = file; 100 this->nr = nr; 101 } 102 103 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type, 104 unsigned writemask) 105 { 106 init(); 107 108 this->file = file; 109 this->nr = nr; 110 this->type = brw_type_for_base_type(type); 111 this->writemask = writemask; 112 } 113 114 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type, 115 unsigned writemask) 116 { 117 init(); 118 119 this->file = file; 120 this->nr = nr; 121 this->type = type; 122 this->writemask = writemask; 123 } 124 125 dst_reg::dst_reg(struct ::brw_reg reg) : 126 backend_reg(reg) 127 { 128 this->offset = 0; 129 this->reladdr = NULL; 130 } 131 132 dst_reg::dst_reg(const src_reg ®) : 133 backend_reg(reg) 134 { 135 this->writemask = brw_mask_for_swizzle(reg.swizzle); 136 this->reladdr = reg.reladdr; 137 } 138 139 bool 140 dst_reg::equals(const dst_reg &r) const 141 { 142 return (this->backend_reg::equals(r) && 143 (reladdr == r.reladdr || 144 (reladdr && r.reladdr && reladdr->equals(*r.reladdr)))); 145 } 146 147 bool 148 vec4_instruction::is_send_from_grf() 149 { 150 switch (opcode) { 151 case SHADER_OPCODE_SHADER_TIME_ADD: 152 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 153 case SHADER_OPCODE_UNTYPED_ATOMIC: 154 case SHADER_OPCODE_UNTYPED_SURFACE_READ: 155 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: 156 case SHADER_OPCODE_TYPED_ATOMIC: 157 case SHADER_OPCODE_TYPED_SURFACE_READ: 158 case SHADER_OPCODE_TYPED_SURFACE_WRITE: 159 case VEC4_OPCODE_URB_READ: 160 case TCS_OPCODE_URB_WRITE: 161 case TCS_OPCODE_RELEASE_INPUT: 162 case SHADER_OPCODE_BARRIER: 163 return true; 164 default: 165 return false; 166 } 167 } 168 169 /** 170 * Returns true if this instruction's sources and destinations cannot 171 * safely be the same register. 172 * 173 * In most cases, a register can be written over safely by the same 174 * instruction that is its last use. For a single instruction, the 175 * sources are dereferenced before writing of the destination starts 176 * (naturally). 177 * 178 * However, there are a few cases where this can be problematic: 179 * 180 * - Virtual opcodes that translate to multiple instructions in the 181 * code generator: if src == dst and one instruction writes the 182 * destination before a later instruction reads the source, then 183 * src will have been clobbered. 184 * 185 * The register allocator uses this information to set up conflicts between 186 * GRF sources and the destination. 187 */ 188 bool 189 vec4_instruction::has_source_and_destination_hazard() const 190 { 191 switch (opcode) { 192 case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 193 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 194 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 195 return true; 196 default: 197 /* 8-wide compressed DF operations are executed as two 4-wide operations, 198 * so we have a src/dst hazard if the first half of the instruction 199 * overwrites the source of the second half. Prevent this by marking 200 * compressed instructions as having src/dst hazards, so the register 201 * allocator assigns safe register regions for dst and srcs. 202 */ 203 return size_written > REG_SIZE; 204 } 205 } 206 207 unsigned 208 vec4_instruction::size_read(unsigned arg) const 209 { 210 switch (opcode) { 211 case SHADER_OPCODE_SHADER_TIME_ADD: 212 case SHADER_OPCODE_UNTYPED_ATOMIC: 213 case SHADER_OPCODE_UNTYPED_SURFACE_READ: 214 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: 215 case SHADER_OPCODE_TYPED_ATOMIC: 216 case SHADER_OPCODE_TYPED_SURFACE_READ: 217 case SHADER_OPCODE_TYPED_SURFACE_WRITE: 218 case TCS_OPCODE_URB_WRITE: 219 if (arg == 0) 220 return mlen * REG_SIZE; 221 break; 222 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 223 if (arg == 1) 224 return mlen * REG_SIZE; 225 break; 226 default: 227 break; 228 } 229 230 switch (src[arg].file) { 231 case BAD_FILE: 232 return 0; 233 case IMM: 234 case UNIFORM: 235 return 4 * type_sz(src[arg].type); 236 default: 237 /* XXX - Represent actual vertical stride. */ 238 return exec_size * type_sz(src[arg].type); 239 } 240 } 241 242 bool 243 vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo) 244 { 245 if (devinfo->gen == 6 && is_math()) 246 return false; 247 248 if (is_send_from_grf()) 249 return false; 250 251 if (!backend_instruction::can_do_source_mods()) 252 return false; 253 254 return true; 255 } 256 257 bool 258 vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo) 259 { 260 switch (opcode) { 261 case SHADER_OPCODE_GEN4_SCRATCH_READ: 262 case VEC4_OPCODE_FROM_DOUBLE: 263 case VEC4_OPCODE_TO_DOUBLE: 264 case VEC4_OPCODE_PICK_LOW_32BIT: 265 case VEC4_OPCODE_PICK_HIGH_32BIT: 266 case VEC4_OPCODE_SET_LOW_32BIT: 267 case VEC4_OPCODE_SET_HIGH_32BIT: 268 case VS_OPCODE_PULL_CONSTANT_LOAD: 269 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 270 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9: 271 case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 272 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 273 case TES_OPCODE_CREATE_INPUT_READ_HEADER: 274 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 275 case VEC4_OPCODE_URB_READ: 276 case SHADER_OPCODE_MOV_INDIRECT: 277 return false; 278 default: 279 /* The MATH instruction on Gen6 only executes in align1 mode, which does 280 * not support writemasking. 281 */ 282 if (devinfo->gen == 6 && is_math()) 283 return false; 284 285 if (is_tex()) 286 return false; 287 288 return true; 289 } 290 } 291 292 bool 293 vec4_instruction::can_change_types() const 294 { 295 return dst.type == src[0].type && 296 !src[0].abs && !src[0].negate && !saturate && 297 (opcode == BRW_OPCODE_MOV || 298 (opcode == BRW_OPCODE_SEL && 299 dst.type == src[1].type && 300 predicate != BRW_PREDICATE_NONE && 301 !src[1].abs && !src[1].negate)); 302 } 303 304 /** 305 * Returns how many MRFs an opcode will write over. 306 * 307 * Note that this is not the 0 or 1 implied writes in an actual gen 308 * instruction -- the generate_* functions generate additional MOVs 309 * for setup. 310 */ 311 int 312 vec4_visitor::implied_mrf_writes(vec4_instruction *inst) 313 { 314 if (inst->mlen == 0 || inst->is_send_from_grf()) 315 return 0; 316 317 switch (inst->opcode) { 318 case SHADER_OPCODE_RCP: 319 case SHADER_OPCODE_RSQ: 320 case SHADER_OPCODE_SQRT: 321 case SHADER_OPCODE_EXP2: 322 case SHADER_OPCODE_LOG2: 323 case SHADER_OPCODE_SIN: 324 case SHADER_OPCODE_COS: 325 return 1; 326 case SHADER_OPCODE_INT_QUOTIENT: 327 case SHADER_OPCODE_INT_REMAINDER: 328 case SHADER_OPCODE_POW: 329 case TCS_OPCODE_THREAD_END: 330 return 2; 331 case VS_OPCODE_URB_WRITE: 332 return 1; 333 case VS_OPCODE_PULL_CONSTANT_LOAD: 334 return 2; 335 case SHADER_OPCODE_GEN4_SCRATCH_READ: 336 return 2; 337 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 338 return 3; 339 case GS_OPCODE_URB_WRITE: 340 case GS_OPCODE_URB_WRITE_ALLOCATE: 341 case GS_OPCODE_THREAD_END: 342 return 0; 343 case GS_OPCODE_FF_SYNC: 344 return 1; 345 case TCS_OPCODE_URB_WRITE: 346 return 0; 347 case SHADER_OPCODE_SHADER_TIME_ADD: 348 return 0; 349 case SHADER_OPCODE_TEX: 350 case SHADER_OPCODE_TXL: 351 case SHADER_OPCODE_TXD: 352 case SHADER_OPCODE_TXF: 353 case SHADER_OPCODE_TXF_CMS: 354 case SHADER_OPCODE_TXF_CMS_W: 355 case SHADER_OPCODE_TXF_MCS: 356 case SHADER_OPCODE_TXS: 357 case SHADER_OPCODE_TG4: 358 case SHADER_OPCODE_TG4_OFFSET: 359 case SHADER_OPCODE_SAMPLEINFO: 360 case VS_OPCODE_GET_BUFFER_SIZE: 361 return inst->header_size; 362 default: 363 unreachable("not reached"); 364 } 365 } 366 367 bool 368 src_reg::equals(const src_reg &r) const 369 { 370 return (this->backend_reg::equals(r) && 371 !reladdr && !r.reladdr); 372 } 373 374 bool 375 vec4_visitor::opt_vector_float() 376 { 377 bool progress = false; 378 379 foreach_block(block, cfg) { 380 int last_reg = -1, last_offset = -1; 381 enum brw_reg_file last_reg_file = BAD_FILE; 382 383 uint8_t imm[4] = { 0 }; 384 int inst_count = 0; 385 vec4_instruction *imm_inst[4]; 386 unsigned writemask = 0; 387 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F; 388 389 foreach_inst_in_block_safe(vec4_instruction, inst, block) { 390 int vf = -1; 391 enum brw_reg_type need_type; 392 393 /* Look for unconditional MOVs from an immediate with a partial 394 * writemask. Skip type-conversion MOVs other than integer 0, 395 * where the type doesn't matter. See if the immediate can be 396 * represented as a VF. 397 */ 398 if (inst->opcode == BRW_OPCODE_MOV && 399 inst->src[0].file == IMM && 400 inst->predicate == BRW_PREDICATE_NONE && 401 inst->dst.writemask != WRITEMASK_XYZW && 402 type_sz(inst->src[0].type) < 8 && 403 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) { 404 405 vf = brw_float_to_vf(inst->src[0].d); 406 need_type = BRW_REGISTER_TYPE_D; 407 408 if (vf == -1) { 409 vf = brw_float_to_vf(inst->src[0].f); 410 need_type = BRW_REGISTER_TYPE_F; 411 } 412 } else { 413 last_reg = -1; 414 } 415 416 /* If this wasn't a MOV, or the destination register doesn't match, 417 * or we have to switch destination types, then this breaks our 418 * sequence. Combine anything we've accumulated so far. 419 */ 420 if (last_reg != inst->dst.nr || 421 last_offset != inst->dst.offset || 422 last_reg_file != inst->dst.file || 423 (vf > 0 && dest_type != need_type)) { 424 425 if (inst_count > 1) { 426 unsigned vf; 427 memcpy(&vf, imm, sizeof(vf)); 428 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf)); 429 mov->dst.type = dest_type; 430 mov->dst.writemask = writemask; 431 inst->insert_before(block, mov); 432 433 for (int i = 0; i < inst_count; i++) { 434 imm_inst[i]->remove(block); 435 } 436 437 progress = true; 438 } 439 440 inst_count = 0; 441 last_reg = -1; 442 writemask = 0; 443 dest_type = BRW_REGISTER_TYPE_F; 444 445 for (int i = 0; i < 4; i++) { 446 imm[i] = 0; 447 } 448 } 449 450 /* Record this instruction's value (if it was representable). */ 451 if (vf != -1) { 452 if ((inst->dst.writemask & WRITEMASK_X) != 0) 453 imm[0] = vf; 454 if ((inst->dst.writemask & WRITEMASK_Y) != 0) 455 imm[1] = vf; 456 if ((inst->dst.writemask & WRITEMASK_Z) != 0) 457 imm[2] = vf; 458 if ((inst->dst.writemask & WRITEMASK_W) != 0) 459 imm[3] = vf; 460 461 writemask |= inst->dst.writemask; 462 imm_inst[inst_count++] = inst; 463 464 last_reg = inst->dst.nr; 465 last_offset = inst->dst.offset; 466 last_reg_file = inst->dst.file; 467 if (vf > 0) 468 dest_type = need_type; 469 } 470 } 471 } 472 473 if (progress) 474 invalidate_live_intervals(); 475 476 return progress; 477 } 478 479 /* Replaces unused channels of a swizzle with channels that are used. 480 * 481 * For instance, this pass transforms 482 * 483 * mov vgrf4.yz, vgrf5.wxzy 484 * 485 * into 486 * 487 * mov vgrf4.yz, vgrf5.xxzx 488 * 489 * This eliminates false uses of some channels, letting dead code elimination 490 * remove the instructions that wrote them. 491 */ 492 bool 493 vec4_visitor::opt_reduce_swizzle() 494 { 495 bool progress = false; 496 497 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 498 if (inst->dst.file == BAD_FILE || 499 inst->dst.file == ARF || 500 inst->dst.file == FIXED_GRF || 501 inst->is_send_from_grf()) 502 continue; 503 504 unsigned swizzle; 505 506 /* Determine which channels of the sources are read. */ 507 switch (inst->opcode) { 508 case VEC4_OPCODE_PACK_BYTES: 509 case BRW_OPCODE_DP4: 510 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0, 511 * but all four of src1. 512 */ 513 swizzle = brw_swizzle_for_size(4); 514 break; 515 case BRW_OPCODE_DP3: 516 swizzle = brw_swizzle_for_size(3); 517 break; 518 case BRW_OPCODE_DP2: 519 swizzle = brw_swizzle_for_size(2); 520 break; 521 522 case VEC4_OPCODE_TO_DOUBLE: 523 case VEC4_OPCODE_FROM_DOUBLE: 524 case VEC4_OPCODE_PICK_LOW_32BIT: 525 case VEC4_OPCODE_PICK_HIGH_32BIT: 526 case VEC4_OPCODE_SET_LOW_32BIT: 527 case VEC4_OPCODE_SET_HIGH_32BIT: 528 swizzle = brw_swizzle_for_size(4); 529 break; 530 531 default: 532 swizzle = brw_swizzle_for_mask(inst->dst.writemask); 533 break; 534 } 535 536 /* Update sources' swizzles. */ 537 for (int i = 0; i < 3; i++) { 538 if (inst->src[i].file != VGRF && 539 inst->src[i].file != ATTR && 540 inst->src[i].file != UNIFORM) 541 continue; 542 543 const unsigned new_swizzle = 544 brw_compose_swizzle(swizzle, inst->src[i].swizzle); 545 if (inst->src[i].swizzle != new_swizzle) { 546 inst->src[i].swizzle = new_swizzle; 547 progress = true; 548 } 549 } 550 } 551 552 if (progress) 553 invalidate_live_intervals(); 554 555 return progress; 556 } 557 558 void 559 vec4_visitor::split_uniform_registers() 560 { 561 /* Prior to this, uniforms have been in an array sized according to 562 * the number of vector uniforms present, sparsely filled (so an 563 * aggregate results in reg indices being skipped over). Now we're 564 * going to cut those aggregates up so each .nr index is one 565 * vector. The goal is to make elimination of unused uniform 566 * components easier later. 567 */ 568 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 569 for (int i = 0 ; i < 3; i++) { 570 if (inst->src[i].file != UNIFORM) 571 continue; 572 573 assert(!inst->src[i].reladdr); 574 575 inst->src[i].nr += inst->src[i].offset / 16; 576 inst->src[i].offset %= 16; 577 } 578 } 579 } 580 581 void 582 vec4_visitor::pack_uniform_registers() 583 { 584 uint8_t chans_used[this->uniforms]; 585 int new_loc[this->uniforms]; 586 int new_chan[this->uniforms]; 587 588 memset(chans_used, 0, sizeof(chans_used)); 589 memset(new_loc, 0, sizeof(new_loc)); 590 memset(new_chan, 0, sizeof(new_chan)); 591 592 /* Find which uniform vectors are actually used by the program. We 593 * expect unused vector elements when we've moved array access out 594 * to pull constants, and from some GLSL code generators like wine. 595 */ 596 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 597 unsigned readmask; 598 switch (inst->opcode) { 599 case VEC4_OPCODE_PACK_BYTES: 600 case BRW_OPCODE_DP4: 601 case BRW_OPCODE_DPH: 602 readmask = 0xf; 603 break; 604 case BRW_OPCODE_DP3: 605 readmask = 0x7; 606 break; 607 case BRW_OPCODE_DP2: 608 readmask = 0x3; 609 break; 610 default: 611 readmask = inst->dst.writemask; 612 break; 613 } 614 615 for (int i = 0 ; i < 3; i++) { 616 if (inst->src[i].file != UNIFORM) 617 continue; 618 619 assert(type_sz(inst->src[i].type) % 4 == 0); 620 unsigned channel_size = type_sz(inst->src[i].type) / 4; 621 622 int reg = inst->src[i].nr; 623 for (int c = 0; c < 4; c++) { 624 if (!(readmask & (1 << c))) 625 continue; 626 627 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1; 628 unsigned used = MAX2(chans_used[reg], channel * channel_size); 629 if (used <= 4) 630 chans_used[reg] = used; 631 else 632 chans_used[reg + 1] = used - 4; 633 } 634 } 635 636 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && 637 inst->src[0].file == UNIFORM) { 638 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE); 639 assert(inst->src[0].subnr == 0); 640 641 unsigned bytes_read = inst->src[2].ud; 642 assert(bytes_read % 4 == 0); 643 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16); 644 645 /* We just mark every register touched by a MOV_INDIRECT as being 646 * fully used. This ensures that it doesn't broken up piecewise by 647 * the next part of our packing algorithm. 648 */ 649 int reg = inst->src[0].nr; 650 for (unsigned i = 0; i < vec4s_read; i++) 651 chans_used[reg + i] = 4; 652 } 653 } 654 655 int new_uniform_count = 0; 656 657 /* Now, figure out a packing of the live uniform vectors into our 658 * push constants. 659 */ 660 for (int src = 0; src < uniforms; src++) { 661 int size = chans_used[src]; 662 663 if (size == 0) 664 continue; 665 666 int dst; 667 /* Find the lowest place we can slot this uniform in. */ 668 for (dst = 0; dst < src; dst++) { 669 if (chans_used[dst] + size <= 4) 670 break; 671 } 672 673 if (src == dst) { 674 new_loc[src] = dst; 675 new_chan[src] = 0; 676 } else { 677 new_loc[src] = dst; 678 new_chan[src] = chans_used[dst]; 679 680 /* Move the references to the data */ 681 for (int j = 0; j < size; j++) { 682 stage_prog_data->param[dst * 4 + new_chan[src] + j] = 683 stage_prog_data->param[src * 4 + j]; 684 } 685 686 chans_used[dst] += size; 687 chans_used[src] = 0; 688 } 689 690 new_uniform_count = MAX2(new_uniform_count, dst + 1); 691 } 692 693 this->uniforms = new_uniform_count; 694 695 /* Now, update the instructions for our repacked uniforms. */ 696 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 697 for (int i = 0 ; i < 3; i++) { 698 int src = inst->src[i].nr; 699 700 if (inst->src[i].file != UNIFORM) 701 continue; 702 703 inst->src[i].nr = new_loc[src]; 704 inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src], 705 new_chan[src], new_chan[src]); 706 } 707 } 708 } 709 710 /** 711 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a). 712 * 713 * While GLSL IR also performs this optimization, we end up with it in 714 * our instruction stream for a couple of reasons. One is that we 715 * sometimes generate silly instructions, for example in array access 716 * where we'll generate "ADD offset, index, base" even if base is 0. 717 * The other is that GLSL IR's constant propagation doesn't track the 718 * components of aggregates, so some VS patterns (initialize matrix to 719 * 0, accumulate in vertex blending factors) end up breaking down to 720 * instructions involving 0. 721 */ 722 bool 723 vec4_visitor::opt_algebraic() 724 { 725 bool progress = false; 726 727 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 728 switch (inst->opcode) { 729 case BRW_OPCODE_MOV: 730 if (inst->src[0].file != IMM) 731 break; 732 733 if (inst->saturate) { 734 if (inst->dst.type != inst->src[0].type) 735 assert(!"unimplemented: saturate mixed types"); 736 737 if (brw_saturate_immediate(inst->dst.type, 738 &inst->src[0].as_brw_reg())) { 739 inst->saturate = false; 740 progress = true; 741 } 742 } 743 break; 744 745 case VEC4_OPCODE_UNPACK_UNIFORM: 746 if (inst->src[0].file != UNIFORM) { 747 inst->opcode = BRW_OPCODE_MOV; 748 progress = true; 749 } 750 break; 751 752 case BRW_OPCODE_ADD: 753 if (inst->src[1].is_zero()) { 754 inst->opcode = BRW_OPCODE_MOV; 755 inst->src[1] = src_reg(); 756 progress = true; 757 } 758 break; 759 760 case BRW_OPCODE_MUL: 761 if (inst->src[1].is_zero()) { 762 inst->opcode = BRW_OPCODE_MOV; 763 switch (inst->src[0].type) { 764 case BRW_REGISTER_TYPE_F: 765 inst->src[0] = brw_imm_f(0.0f); 766 break; 767 case BRW_REGISTER_TYPE_D: 768 inst->src[0] = brw_imm_d(0); 769 break; 770 case BRW_REGISTER_TYPE_UD: 771 inst->src[0] = brw_imm_ud(0u); 772 break; 773 default: 774 unreachable("not reached"); 775 } 776 inst->src[1] = src_reg(); 777 progress = true; 778 } else if (inst->src[1].is_one()) { 779 inst->opcode = BRW_OPCODE_MOV; 780 inst->src[1] = src_reg(); 781 progress = true; 782 } else if (inst->src[1].is_negative_one()) { 783 inst->opcode = BRW_OPCODE_MOV; 784 inst->src[0].negate = !inst->src[0].negate; 785 inst->src[1] = src_reg(); 786 progress = true; 787 } 788 break; 789 case BRW_OPCODE_CMP: 790 if (inst->conditional_mod == BRW_CONDITIONAL_GE && 791 inst->src[0].abs && 792 inst->src[0].negate && 793 inst->src[1].is_zero()) { 794 inst->src[0].abs = false; 795 inst->src[0].negate = false; 796 inst->conditional_mod = BRW_CONDITIONAL_Z; 797 progress = true; 798 break; 799 } 800 break; 801 case SHADER_OPCODE_BROADCAST: 802 if (is_uniform(inst->src[0]) || 803 inst->src[1].is_zero()) { 804 inst->opcode = BRW_OPCODE_MOV; 805 inst->src[1] = src_reg(); 806 inst->force_writemask_all = true; 807 progress = true; 808 } 809 break; 810 811 default: 812 break; 813 } 814 } 815 816 if (progress) 817 invalidate_live_intervals(); 818 819 return progress; 820 } 821 822 /** 823 * Only a limited number of hardware registers may be used for push 824 * constants, so this turns access to the overflowed constants into 825 * pull constants. 826 */ 827 void 828 vec4_visitor::move_push_constants_to_pull_constants() 829 { 830 int pull_constant_loc[this->uniforms]; 831 832 /* Only allow 32 registers (256 uniform components) as push constants, 833 * which is the limit on gen6. 834 * 835 * If changing this value, note the limitation about total_regs in 836 * brw_curbe.c. 837 */ 838 int max_uniform_components = 32 * 8; 839 if (this->uniforms * 4 <= max_uniform_components) 840 return; 841 842 /* Make some sort of choice as to which uniforms get sent to pull 843 * constants. We could potentially do something clever here like 844 * look for the most infrequently used uniform vec4s, but leave 845 * that for later. 846 */ 847 for (int i = 0; i < this->uniforms * 4; i += 4) { 848 pull_constant_loc[i / 4] = -1; 849 850 if (i >= max_uniform_components) { 851 const gl_constant_value **values = &stage_prog_data->param[i]; 852 853 /* Try to find an existing copy of this uniform in the pull 854 * constants if it was part of an array access already. 855 */ 856 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) { 857 int matches; 858 859 for (matches = 0; matches < 4; matches++) { 860 if (stage_prog_data->pull_param[j + matches] != values[matches]) 861 break; 862 } 863 864 if (matches == 4) { 865 pull_constant_loc[i / 4] = j / 4; 866 break; 867 } 868 } 869 870 if (pull_constant_loc[i / 4] == -1) { 871 assert(stage_prog_data->nr_pull_params % 4 == 0); 872 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4; 873 874 for (int j = 0; j < 4; j++) { 875 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] = 876 values[j]; 877 } 878 } 879 } 880 } 881 882 /* Now actually rewrite usage of the things we've moved to pull 883 * constants. 884 */ 885 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 886 for (int i = 0 ; i < 3; i++) { 887 if (inst->src[i].file != UNIFORM || 888 pull_constant_loc[inst->src[i].nr] == -1) 889 continue; 890 891 int uniform = inst->src[i].nr; 892 893 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ? 894 glsl_type::dvec4_type : glsl_type::vec4_type; 895 dst_reg temp = dst_reg(this, temp_type); 896 897 emit_pull_constant_load(block, inst, temp, inst->src[i], 898 pull_constant_loc[uniform], src_reg()); 899 900 inst->src[i].file = temp.file; 901 inst->src[i].nr = temp.nr; 902 inst->src[i].offset %= 16; 903 inst->src[i].reladdr = NULL; 904 } 905 } 906 907 /* Repack push constants to remove the now-unused ones. */ 908 pack_uniform_registers(); 909 } 910 911 /* Conditions for which we want to avoid setting the dependency control bits */ 912 bool 913 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst) 914 { 915 #define IS_DWORD(reg) \ 916 (reg.type == BRW_REGISTER_TYPE_UD || \ 917 reg.type == BRW_REGISTER_TYPE_D) 918 919 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8) 920 921 /* From the Cherryview and Broadwell PRMs: 922 * 923 * "When source or destination datatype is 64b or operation is integer DWord 924 * multiply, DepCtrl must not be used." 925 * 926 * SKL PRMs don't include this restriction, however, gen7 seems to be 927 * affected, at least by the 64b restriction, since DepCtrl with double 928 * precision instructions seems to produce GPU hangs in some cases. 929 */ 930 if (devinfo->gen == 8 || devinfo->is_broxton) { 931 if (inst->opcode == BRW_OPCODE_MUL && 932 IS_DWORD(inst->src[0]) && 933 IS_DWORD(inst->src[1])) 934 return true; 935 } 936 937 if (devinfo->gen >= 7 && devinfo->gen <= 8) { 938 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) || 939 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2])) 940 return true; 941 } 942 943 #undef IS_64BIT 944 #undef IS_DWORD 945 946 if (devinfo->gen >= 8) { 947 if (inst->opcode == BRW_OPCODE_F32TO16) 948 return true; 949 } 950 951 /* 952 * mlen: 953 * In the presence of send messages, totally interrupt dependency 954 * control. They're long enough that the chance of dependency 955 * control around them just doesn't matter. 956 * 957 * predicate: 958 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80: 959 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that 960 * completes the scoreboard clear must have a non-zero execution mask. This 961 * means, if any kind of predication can change the execution mask or channel 962 * enable of the last instruction, the optimization must be avoided. This is 963 * to avoid instructions being shot down the pipeline when no writes are 964 * required. 965 * 966 * math: 967 * Dependency control does not work well over math instructions. 968 * NB: Discovered empirically 969 */ 970 return (inst->mlen || inst->predicate || inst->is_math()); 971 } 972 973 /** 974 * Sets the dependency control fields on instructions after register 975 * allocation and before the generator is run. 976 * 977 * When you have a sequence of instructions like: 978 * 979 * DP4 temp.x vertex uniform[0] 980 * DP4 temp.y vertex uniform[0] 981 * DP4 temp.z vertex uniform[0] 982 * DP4 temp.w vertex uniform[0] 983 * 984 * The hardware doesn't know that it can actually run the later instructions 985 * while the previous ones are in flight, producing stalls. However, we have 986 * manual fields we can set in the instructions that let it do so. 987 */ 988 void 989 vec4_visitor::opt_set_dependency_control() 990 { 991 vec4_instruction *last_grf_write[BRW_MAX_GRF]; 992 uint8_t grf_channels_written[BRW_MAX_GRF]; 993 vec4_instruction *last_mrf_write[BRW_MAX_GRF]; 994 uint8_t mrf_channels_written[BRW_MAX_GRF]; 995 996 assert(prog_data->total_grf || 997 !"Must be called after register allocation"); 998 999 foreach_block (block, cfg) { 1000 memset(last_grf_write, 0, sizeof(last_grf_write)); 1001 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1002 1003 foreach_inst_in_block (vec4_instruction, inst, block) { 1004 /* If we read from a register that we were doing dependency control 1005 * on, don't do dependency control across the read. 1006 */ 1007 for (int i = 0; i < 3; i++) { 1008 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE; 1009 if (inst->src[i].file == VGRF) { 1010 last_grf_write[reg] = NULL; 1011 } else if (inst->src[i].file == FIXED_GRF) { 1012 memset(last_grf_write, 0, sizeof(last_grf_write)); 1013 break; 1014 } 1015 assert(inst->src[i].file != MRF); 1016 } 1017 1018 if (is_dep_ctrl_unsafe(inst)) { 1019 memset(last_grf_write, 0, sizeof(last_grf_write)); 1020 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1021 continue; 1022 } 1023 1024 /* Now, see if we can do dependency control for this instruction 1025 * against a previous one writing to its destination. 1026 */ 1027 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE; 1028 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { 1029 if (last_grf_write[reg] && 1030 last_grf_write[reg]->dst.offset == inst->dst.offset && 1031 !(inst->dst.writemask & grf_channels_written[reg])) { 1032 last_grf_write[reg]->no_dd_clear = true; 1033 inst->no_dd_check = true; 1034 } else { 1035 grf_channels_written[reg] = 0; 1036 } 1037 1038 last_grf_write[reg] = inst; 1039 grf_channels_written[reg] |= inst->dst.writemask; 1040 } else if (inst->dst.file == MRF) { 1041 if (last_mrf_write[reg] && 1042 last_mrf_write[reg]->dst.offset == inst->dst.offset && 1043 !(inst->dst.writemask & mrf_channels_written[reg])) { 1044 last_mrf_write[reg]->no_dd_clear = true; 1045 inst->no_dd_check = true; 1046 } else { 1047 mrf_channels_written[reg] = 0; 1048 } 1049 1050 last_mrf_write[reg] = inst; 1051 mrf_channels_written[reg] |= inst->dst.writemask; 1052 } 1053 } 1054 } 1055 } 1056 1057 bool 1058 vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo, 1059 int dst_writemask, 1060 int swizzle, 1061 int swizzle_mask) 1062 { 1063 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles 1064 * are not allowed. 1065 */ 1066 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW) 1067 return false; 1068 1069 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW) 1070 return false; 1071 1072 /* If this instruction sets anything not referenced by swizzle, then we'd 1073 * totally break it when we reswizzle. 1074 */ 1075 if (dst.writemask & ~swizzle_mask) 1076 return false; 1077 1078 if (mlen > 0) 1079 return false; 1080 1081 for (int i = 0; i < 3; i++) { 1082 if (src[i].is_accumulator()) 1083 return false; 1084 } 1085 1086 return true; 1087 } 1088 1089 /** 1090 * For any channels in the swizzle's source that were populated by this 1091 * instruction, rewrite the instruction to put the appropriate result directly 1092 * in those channels. 1093 * 1094 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x 1095 */ 1096 void 1097 vec4_instruction::reswizzle(int dst_writemask, int swizzle) 1098 { 1099 /* Destination write mask doesn't correspond to source swizzle for the dot 1100 * product and pack_bytes instructions. 1101 */ 1102 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH && 1103 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 && 1104 opcode != VEC4_OPCODE_PACK_BYTES) { 1105 for (int i = 0; i < 3; i++) { 1106 if (src[i].file == BAD_FILE || src[i].file == IMM) 1107 continue; 1108 1109 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle); 1110 } 1111 } 1112 1113 /* Apply the specified swizzle and writemask to the original mask of 1114 * written components. 1115 */ 1116 dst.writemask = dst_writemask & 1117 brw_apply_swizzle_to_mask(swizzle, dst.writemask); 1118 } 1119 1120 /* 1121 * Tries to reduce extra MOV instructions by taking temporary GRFs that get 1122 * just written and then MOVed into another reg and making the original write 1123 * of the GRF write directly to the final destination instead. 1124 */ 1125 bool 1126 vec4_visitor::opt_register_coalesce() 1127 { 1128 bool progress = false; 1129 int next_ip = 0; 1130 1131 calculate_live_intervals(); 1132 1133 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 1134 int ip = next_ip; 1135 next_ip++; 1136 1137 if (inst->opcode != BRW_OPCODE_MOV || 1138 (inst->dst.file != VGRF && inst->dst.file != MRF) || 1139 inst->predicate || 1140 inst->src[0].file != VGRF || 1141 inst->dst.type != inst->src[0].type || 1142 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr) 1143 continue; 1144 1145 /* Remove no-op MOVs */ 1146 if (inst->dst.file == inst->src[0].file && 1147 inst->dst.nr == inst->src[0].nr && 1148 inst->dst.offset == inst->src[0].offset) { 1149 bool is_nop_mov = true; 1150 1151 for (unsigned c = 0; c < 4; c++) { 1152 if ((inst->dst.writemask & (1 << c)) == 0) 1153 continue; 1154 1155 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) { 1156 is_nop_mov = false; 1157 break; 1158 } 1159 } 1160 1161 if (is_nop_mov) { 1162 inst->remove(block); 1163 progress = true; 1164 continue; 1165 } 1166 } 1167 1168 bool to_mrf = (inst->dst.file == MRF); 1169 1170 /* Can't coalesce this GRF if someone else was going to 1171 * read it later. 1172 */ 1173 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip) 1174 continue; 1175 1176 /* We need to check interference with the final destination between this 1177 * instruction and the earliest instruction involved in writing the GRF 1178 * we're eliminating. To do that, keep track of which of our source 1179 * channels we've seen initialized. 1180 */ 1181 const unsigned chans_needed = 1182 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle, 1183 inst->dst.writemask); 1184 unsigned chans_remaining = chans_needed; 1185 1186 /* Now walk up the instruction stream trying to see if we can rewrite 1187 * everything writing to the temporary to write into the destination 1188 * instead. 1189 */ 1190 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev; 1191 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst, 1192 inst) { 1193 _scan_inst = scan_inst; 1194 1195 if (regions_overlap(inst->src[0], inst->size_read(0), 1196 scan_inst->dst, scan_inst->size_written)) { 1197 /* Found something writing to the reg we want to coalesce away. */ 1198 if (to_mrf) { 1199 /* SEND instructions can't have MRF as a destination. */ 1200 if (scan_inst->mlen) 1201 break; 1202 1203 if (devinfo->gen == 6) { 1204 /* gen6 math instructions must have the destination be 1205 * VGRF, so no compute-to-MRF for them. 1206 */ 1207 if (scan_inst->is_math()) { 1208 break; 1209 } 1210 } 1211 } 1212 1213 /* This doesn't handle saturation on the instruction we 1214 * want to coalesce away if the register types do not match. 1215 * But if scan_inst is a non type-converting 'mov', we can fix 1216 * the types later. 1217 */ 1218 if (inst->saturate && 1219 inst->dst.type != scan_inst->dst.type && 1220 !(scan_inst->opcode == BRW_OPCODE_MOV && 1221 scan_inst->dst.type == scan_inst->src[0].type)) 1222 break; 1223 1224 /* Only allow coalescing between registers of the same type size. 1225 * Otherwise we would need to make the pass aware of the fact that 1226 * channel sizes are different for single and double precision. 1227 */ 1228 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type)) 1229 break; 1230 1231 /* Check that scan_inst writes the same amount of data as the 1232 * instruction, otherwise coalescing would lead to writing a 1233 * different (larger or smaller) region of the destination 1234 */ 1235 if (scan_inst->size_written != inst->size_written) 1236 break; 1237 1238 /* If we can't handle the swizzle, bail. */ 1239 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask, 1240 inst->src[0].swizzle, 1241 chans_needed)) { 1242 break; 1243 } 1244 1245 /* This only handles coalescing writes of 8 channels (1 register 1246 * for single-precision and 2 registers for double-precision) 1247 * starting at the source offset of the copy instruction. 1248 */ 1249 if (DIV_ROUND_UP(scan_inst->size_written, 1250 type_sz(scan_inst->dst.type)) > 8 || 1251 scan_inst->dst.offset != inst->src[0].offset) 1252 break; 1253 1254 /* Mark which channels we found unconditional writes for. */ 1255 if (!scan_inst->predicate) 1256 chans_remaining &= ~scan_inst->dst.writemask; 1257 1258 if (chans_remaining == 0) 1259 break; 1260 } 1261 1262 /* You can't read from an MRF, so if someone else reads our MRF's 1263 * source GRF that we wanted to rewrite, that stops us. If it's a 1264 * GRF we're trying to coalesce to, we don't actually handle 1265 * rewriting sources so bail in that case as well. 1266 */ 1267 bool interfered = false; 1268 for (int i = 0; i < 3; i++) { 1269 if (regions_overlap(inst->src[0], inst->size_read(0), 1270 scan_inst->src[i], scan_inst->size_read(i))) 1271 interfered = true; 1272 } 1273 if (interfered) 1274 break; 1275 1276 /* If somebody else writes the same channels of our destination here, 1277 * we can't coalesce before that. 1278 */ 1279 if (regions_overlap(inst->dst, inst->size_written, 1280 scan_inst->dst, scan_inst->size_written) && 1281 (inst->dst.writemask & scan_inst->dst.writemask) != 0) { 1282 break; 1283 } 1284 1285 /* Check for reads of the register we're trying to coalesce into. We 1286 * can't go rewriting instructions above that to put some other value 1287 * in the register instead. 1288 */ 1289 if (to_mrf && scan_inst->mlen > 0) { 1290 if (inst->dst.nr >= scan_inst->base_mrf && 1291 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) { 1292 break; 1293 } 1294 } else { 1295 for (int i = 0; i < 3; i++) { 1296 if (regions_overlap(inst->dst, inst->size_written, 1297 scan_inst->src[i], scan_inst->size_read(i))) 1298 interfered = true; 1299 } 1300 if (interfered) 1301 break; 1302 } 1303 } 1304 1305 if (chans_remaining == 0) { 1306 /* If we've made it here, we have an MOV we want to coalesce out, and 1307 * a scan_inst pointing to the earliest instruction involved in 1308 * computing the value. Now go rewrite the instruction stream 1309 * between the two. 1310 */ 1311 vec4_instruction *scan_inst = _scan_inst; 1312 while (scan_inst != inst) { 1313 if (scan_inst->dst.file == VGRF && 1314 scan_inst->dst.nr == inst->src[0].nr && 1315 scan_inst->dst.offset == inst->src[0].offset) { 1316 scan_inst->reswizzle(inst->dst.writemask, 1317 inst->src[0].swizzle); 1318 scan_inst->dst.file = inst->dst.file; 1319 scan_inst->dst.nr = inst->dst.nr; 1320 scan_inst->dst.offset = inst->dst.offset; 1321 if (inst->saturate && 1322 inst->dst.type != scan_inst->dst.type) { 1323 /* If we have reached this point, scan_inst is a non 1324 * type-converting 'mov' and we can modify its register types 1325 * to match the ones in inst. Otherwise, we could have an 1326 * incorrect saturation result. 1327 */ 1328 scan_inst->dst.type = inst->dst.type; 1329 scan_inst->src[0].type = inst->src[0].type; 1330 } 1331 scan_inst->saturate |= inst->saturate; 1332 } 1333 scan_inst = (vec4_instruction *)scan_inst->next; 1334 } 1335 inst->remove(block); 1336 progress = true; 1337 } 1338 } 1339 1340 if (progress) 1341 invalidate_live_intervals(); 1342 1343 return progress; 1344 } 1345 1346 /** 1347 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control 1348 * flow. We could probably do better here with some form of divergence 1349 * analysis. 1350 */ 1351 bool 1352 vec4_visitor::eliminate_find_live_channel() 1353 { 1354 bool progress = false; 1355 unsigned depth = 0; 1356 1357 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { 1358 /* The optimization below assumes that channel zero is live on thread 1359 * dispatch, which may not be the case if the fixed function dispatches 1360 * threads sparsely. 1361 */ 1362 return false; 1363 } 1364 1365 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1366 switch (inst->opcode) { 1367 case BRW_OPCODE_IF: 1368 case BRW_OPCODE_DO: 1369 depth++; 1370 break; 1371 1372 case BRW_OPCODE_ENDIF: 1373 case BRW_OPCODE_WHILE: 1374 depth--; 1375 break; 1376 1377 case SHADER_OPCODE_FIND_LIVE_CHANNEL: 1378 if (depth == 0) { 1379 inst->opcode = BRW_OPCODE_MOV; 1380 inst->src[0] = brw_imm_d(0); 1381 inst->force_writemask_all = true; 1382 progress = true; 1383 } 1384 break; 1385 1386 default: 1387 break; 1388 } 1389 } 1390 1391 return progress; 1392 } 1393 1394 /** 1395 * Splits virtual GRFs requesting more than one contiguous physical register. 1396 * 1397 * We initially create large virtual GRFs for temporary structures, arrays, 1398 * and matrices, so that the visitor functions can add offsets to work their 1399 * way down to the actual member being accessed. But when it comes to 1400 * optimization, we'd like to treat each register as individual storage if 1401 * possible. 1402 * 1403 * So far, the only thing that might prevent splitting is a send message from 1404 * a GRF on IVB. 1405 */ 1406 void 1407 vec4_visitor::split_virtual_grfs() 1408 { 1409 int num_vars = this->alloc.count; 1410 int new_virtual_grf[num_vars]; 1411 bool split_grf[num_vars]; 1412 1413 memset(new_virtual_grf, 0, sizeof(new_virtual_grf)); 1414 1415 /* Try to split anything > 0 sized. */ 1416 for (int i = 0; i < num_vars; i++) { 1417 split_grf[i] = this->alloc.sizes[i] != 1; 1418 } 1419 1420 /* Check that the instructions are compatible with the registers we're trying 1421 * to split. 1422 */ 1423 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1424 if (inst->dst.file == VGRF && regs_written(inst) > 1) 1425 split_grf[inst->dst.nr] = false; 1426 1427 for (int i = 0; i < 3; i++) { 1428 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1) 1429 split_grf[inst->src[i].nr] = false; 1430 } 1431 } 1432 1433 /* Allocate new space for split regs. Note that the virtual 1434 * numbers will be contiguous. 1435 */ 1436 for (int i = 0; i < num_vars; i++) { 1437 if (!split_grf[i]) 1438 continue; 1439 1440 new_virtual_grf[i] = alloc.allocate(1); 1441 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) { 1442 unsigned reg = alloc.allocate(1); 1443 assert(reg == new_virtual_grf[i] + j - 1); 1444 (void) reg; 1445 } 1446 this->alloc.sizes[i] = 1; 1447 } 1448 1449 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1450 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] && 1451 inst->dst.offset / REG_SIZE != 0) { 1452 inst->dst.nr = (new_virtual_grf[inst->dst.nr] + 1453 inst->dst.offset / REG_SIZE - 1); 1454 inst->dst.offset %= REG_SIZE; 1455 } 1456 for (int i = 0; i < 3; i++) { 1457 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] && 1458 inst->src[i].offset / REG_SIZE != 0) { 1459 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] + 1460 inst->src[i].offset / REG_SIZE - 1); 1461 inst->src[i].offset %= REG_SIZE; 1462 } 1463 } 1464 } 1465 invalidate_live_intervals(); 1466 } 1467 1468 void 1469 vec4_visitor::dump_instruction(backend_instruction *be_inst) 1470 { 1471 dump_instruction(be_inst, stderr); 1472 } 1473 1474 void 1475 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file) 1476 { 1477 vec4_instruction *inst = (vec4_instruction *)be_inst; 1478 1479 if (inst->predicate) { 1480 fprintf(file, "(%cf0.%d%s) ", 1481 inst->predicate_inverse ? '-' : '+', 1482 inst->flag_subreg, 1483 pred_ctrl_align16[inst->predicate]); 1484 } 1485 1486 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode), 1487 inst->exec_size); 1488 if (inst->saturate) 1489 fprintf(file, ".sat"); 1490 if (inst->conditional_mod) { 1491 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); 1492 if (!inst->predicate && 1493 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL && 1494 inst->opcode != BRW_OPCODE_IF && 1495 inst->opcode != BRW_OPCODE_WHILE))) { 1496 fprintf(file, ".f0.%d", inst->flag_subreg); 1497 } 1498 } 1499 fprintf(file, " "); 1500 1501 switch (inst->dst.file) { 1502 case VGRF: 1503 fprintf(file, "vgrf%d", inst->dst.nr); 1504 break; 1505 case FIXED_GRF: 1506 fprintf(file, "g%d", inst->dst.nr); 1507 break; 1508 case MRF: 1509 fprintf(file, "m%d", inst->dst.nr); 1510 break; 1511 case ARF: 1512 switch (inst->dst.nr) { 1513 case BRW_ARF_NULL: 1514 fprintf(file, "null"); 1515 break; 1516 case BRW_ARF_ADDRESS: 1517 fprintf(file, "a0.%d", inst->dst.subnr); 1518 break; 1519 case BRW_ARF_ACCUMULATOR: 1520 fprintf(file, "acc%d", inst->dst.subnr); 1521 break; 1522 case BRW_ARF_FLAG: 1523 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1524 break; 1525 default: 1526 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1527 break; 1528 } 1529 break; 1530 case BAD_FILE: 1531 fprintf(file, "(null)"); 1532 break; 1533 case IMM: 1534 case ATTR: 1535 case UNIFORM: 1536 unreachable("not reached"); 1537 } 1538 if (inst->dst.offset || 1539 (inst->dst.file == VGRF && 1540 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { 1541 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE); 1542 fprintf(file, "+%d.%d", inst->dst.offset / reg_size, 1543 inst->dst.offset % reg_size); 1544 } 1545 if (inst->dst.writemask != WRITEMASK_XYZW) { 1546 fprintf(file, "."); 1547 if (inst->dst.writemask & 1) 1548 fprintf(file, "x"); 1549 if (inst->dst.writemask & 2) 1550 fprintf(file, "y"); 1551 if (inst->dst.writemask & 4) 1552 fprintf(file, "z"); 1553 if (inst->dst.writemask & 8) 1554 fprintf(file, "w"); 1555 } 1556 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type)); 1557 1558 if (inst->src[0].file != BAD_FILE) 1559 fprintf(file, ", "); 1560 1561 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) { 1562 if (inst->src[i].negate) 1563 fprintf(file, "-"); 1564 if (inst->src[i].abs) 1565 fprintf(file, "|"); 1566 switch (inst->src[i].file) { 1567 case VGRF: 1568 fprintf(file, "vgrf%d", inst->src[i].nr); 1569 break; 1570 case FIXED_GRF: 1571 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr); 1572 break; 1573 case ATTR: 1574 fprintf(file, "attr%d", inst->src[i].nr); 1575 break; 1576 case UNIFORM: 1577 fprintf(file, "u%d", inst->src[i].nr); 1578 break; 1579 case IMM: 1580 switch (inst->src[i].type) { 1581 case BRW_REGISTER_TYPE_F: 1582 fprintf(file, "%fF", inst->src[i].f); 1583 break; 1584 case BRW_REGISTER_TYPE_DF: 1585 fprintf(file, "%fDF", inst->src[i].df); 1586 break; 1587 case BRW_REGISTER_TYPE_D: 1588 fprintf(file, "%dD", inst->src[i].d); 1589 break; 1590 case BRW_REGISTER_TYPE_UD: 1591 fprintf(file, "%uU", inst->src[i].ud); 1592 break; 1593 case BRW_REGISTER_TYPE_VF: 1594 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", 1595 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), 1596 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), 1597 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), 1598 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); 1599 break; 1600 default: 1601 fprintf(file, "???"); 1602 break; 1603 } 1604 break; 1605 case ARF: 1606 switch (inst->src[i].nr) { 1607 case BRW_ARF_NULL: 1608 fprintf(file, "null"); 1609 break; 1610 case BRW_ARF_ADDRESS: 1611 fprintf(file, "a0.%d", inst->src[i].subnr); 1612 break; 1613 case BRW_ARF_ACCUMULATOR: 1614 fprintf(file, "acc%d", inst->src[i].subnr); 1615 break; 1616 case BRW_ARF_FLAG: 1617 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1618 break; 1619 default: 1620 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1621 break; 1622 } 1623 break; 1624 case BAD_FILE: 1625 fprintf(file, "(null)"); 1626 break; 1627 case MRF: 1628 unreachable("not reached"); 1629 } 1630 1631 if (inst->src[i].offset || 1632 (inst->src[i].file == VGRF && 1633 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { 1634 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE); 1635 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, 1636 inst->src[i].offset % reg_size); 1637 } 1638 1639 if (inst->src[i].file != IMM) { 1640 static const char *chans[4] = {"x", "y", "z", "w"}; 1641 fprintf(file, "."); 1642 for (int c = 0; c < 4; c++) { 1643 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]); 1644 } 1645 } 1646 1647 if (inst->src[i].abs) 1648 fprintf(file, "|"); 1649 1650 if (inst->src[i].file != IMM) { 1651 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type)); 1652 } 1653 1654 if (i < 2 && inst->src[i + 1].file != BAD_FILE) 1655 fprintf(file, ", "); 1656 } 1657 1658 if (inst->force_writemask_all) 1659 fprintf(file, " NoMask"); 1660 1661 if (inst->exec_size != 8) 1662 fprintf(file, " group%d", inst->group); 1663 1664 fprintf(file, "\n"); 1665 } 1666 1667 1668 static inline struct brw_reg 1669 attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved) 1670 { 1671 struct brw_reg reg; 1672 1673 unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type)); 1674 if (interleaved) { 1675 reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1); 1676 } else { 1677 reg = brw_vecn_grf(width, attr, 0); 1678 } 1679 1680 reg.type = type; 1681 return reg; 1682 } 1683 1684 1685 /** 1686 * Replace each register of type ATTR in this->instructions with a reference 1687 * to a fixed HW register. 1688 * 1689 * If interleaved is true, then each attribute takes up half a register, with 1690 * register N containing attribute 2*N in its first half and attribute 2*N+1 1691 * in its second half (this corresponds to the payload setup used by geometry 1692 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is 1693 * false, then each attribute takes up a whole register, with register N 1694 * containing attribute N (this corresponds to the payload setup used by 1695 * vertex shaders, and by geometry shaders in "dual object" dispatch mode). 1696 */ 1697 void 1698 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map, 1699 bool interleaved) 1700 { 1701 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1702 for (int i = 0; i < 3; i++) { 1703 if (inst->src[i].file != ATTR) 1704 continue; 1705 1706 int grf = attribute_map[inst->src[i].nr + 1707 inst->src[i].offset / REG_SIZE]; 1708 assert(inst->src[i].offset % REG_SIZE == 0); 1709 1710 /* All attributes used in the shader need to have been assigned a 1711 * hardware register by the caller 1712 */ 1713 assert(grf != 0); 1714 1715 struct brw_reg reg = 1716 attribute_to_hw_reg(grf, inst->src[i].type, interleaved); 1717 reg.swizzle = inst->src[i].swizzle; 1718 if (inst->src[i].abs) 1719 reg = brw_abs(reg); 1720 if (inst->src[i].negate) 1721 reg = negate(reg); 1722 1723 inst->src[i] = reg; 1724 } 1725 } 1726 } 1727 1728 int 1729 vec4_vs_visitor::setup_attributes(int payload_reg) 1730 { 1731 int nr_attributes; 1732 int attribute_map[VERT_ATTRIB_MAX + 2]; 1733 memset(attribute_map, 0, sizeof(attribute_map)); 1734 1735 nr_attributes = 0; 1736 GLbitfield64 vs_inputs = vs_prog_data->inputs_read; 1737 while (vs_inputs) { 1738 GLuint first = ffsll(vs_inputs) - 1; 1739 int needed_slots = 1740 (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) ? 2 : 1; 1741 for (int c = 0; c < needed_slots; c++) { 1742 attribute_map[first + c] = payload_reg + nr_attributes; 1743 nr_attributes++; 1744 vs_inputs &= ~BITFIELD64_BIT(first + c); 1745 } 1746 } 1747 1748 /* VertexID is stored by the VF as the last vertex element, but we 1749 * don't represent it with a flag in inputs_read, so we call it 1750 * VERT_ATTRIB_MAX. 1751 */ 1752 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid || 1753 vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) { 1754 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes; 1755 nr_attributes++; 1756 } 1757 1758 if (vs_prog_data->uses_drawid) { 1759 attribute_map[VERT_ATTRIB_MAX + 1] = payload_reg + nr_attributes; 1760 nr_attributes++; 1761 } 1762 1763 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */); 1764 1765 return payload_reg + vs_prog_data->nr_attribute_slots; 1766 } 1767 1768 int 1769 vec4_visitor::setup_uniforms(int reg) 1770 { 1771 prog_data->base.dispatch_grf_start_reg = reg; 1772 1773 /* The pre-gen6 VS requires that some push constants get loaded no 1774 * matter what, or the GPU would hang. 1775 */ 1776 if (devinfo->gen < 6 && this->uniforms == 0) { 1777 stage_prog_data->param = 1778 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4); 1779 for (unsigned int i = 0; i < 4; i++) { 1780 unsigned int slot = this->uniforms * 4 + i; 1781 static gl_constant_value zero = { 0.0 }; 1782 stage_prog_data->param[slot] = &zero; 1783 } 1784 1785 this->uniforms++; 1786 reg++; 1787 } else { 1788 reg += ALIGN(uniforms, 2) / 2; 1789 } 1790 1791 stage_prog_data->nr_params = this->uniforms * 4; 1792 1793 prog_data->base.curb_read_length = 1794 reg - prog_data->base.dispatch_grf_start_reg; 1795 1796 return reg; 1797 } 1798 1799 void 1800 vec4_vs_visitor::setup_payload(void) 1801 { 1802 int reg = 0; 1803 1804 /* The payload always contains important data in g0, which contains 1805 * the URB handles that are passed on to the URB write at the end 1806 * of the thread. So, we always start push constants at g1. 1807 */ 1808 reg++; 1809 1810 reg = setup_uniforms(reg); 1811 1812 reg = setup_attributes(reg); 1813 1814 this->first_non_payload_grf = reg; 1815 } 1816 1817 bool 1818 vec4_visitor::lower_minmax() 1819 { 1820 assert(devinfo->gen < 6); 1821 1822 bool progress = false; 1823 1824 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1825 const vec4_builder ibld(this, block, inst); 1826 1827 if (inst->opcode == BRW_OPCODE_SEL && 1828 inst->predicate == BRW_PREDICATE_NONE) { 1829 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of 1830 * the original SEL.L/GE instruction 1831 */ 1832 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 1833 inst->conditional_mod); 1834 inst->predicate = BRW_PREDICATE_NORMAL; 1835 inst->conditional_mod = BRW_CONDITIONAL_NONE; 1836 1837 progress = true; 1838 } 1839 } 1840 1841 if (progress) 1842 invalidate_live_intervals(); 1843 1844 return progress; 1845 } 1846 1847 src_reg 1848 vec4_visitor::get_timestamp() 1849 { 1850 assert(devinfo->gen >= 7); 1851 1852 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE, 1853 BRW_ARF_TIMESTAMP, 1854 0, 1855 0, 1856 0, 1857 BRW_REGISTER_TYPE_UD, 1858 BRW_VERTICAL_STRIDE_0, 1859 BRW_WIDTH_4, 1860 BRW_HORIZONTAL_STRIDE_4, 1861 BRW_SWIZZLE_XYZW, 1862 WRITEMASK_XYZW)); 1863 1864 dst_reg dst = dst_reg(this, glsl_type::uvec4_type); 1865 1866 vec4_instruction *mov = emit(MOV(dst, ts)); 1867 /* We want to read the 3 fields we care about (mostly field 0, but also 2) 1868 * even if it's not enabled in the dispatch. 1869 */ 1870 mov->force_writemask_all = true; 1871 1872 return src_reg(dst); 1873 } 1874 1875 void 1876 vec4_visitor::emit_shader_time_begin() 1877 { 1878 current_annotation = "shader time start"; 1879 shader_start_time = get_timestamp(); 1880 } 1881 1882 void 1883 vec4_visitor::emit_shader_time_end() 1884 { 1885 current_annotation = "shader time end"; 1886 src_reg shader_end_time = get_timestamp(); 1887 1888 1889 /* Check that there weren't any timestamp reset events (assuming these 1890 * were the only two timestamp reads that happened). 1891 */ 1892 src_reg reset_end = shader_end_time; 1893 reset_end.swizzle = BRW_SWIZZLE_ZZZZ; 1894 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u))); 1895 test->conditional_mod = BRW_CONDITIONAL_Z; 1896 1897 emit(IF(BRW_PREDICATE_NORMAL)); 1898 1899 /* Take the current timestamp and get the delta. */ 1900 shader_start_time.negate = true; 1901 dst_reg diff = dst_reg(this, glsl_type::uint_type); 1902 emit(ADD(diff, shader_start_time, shader_end_time)); 1903 1904 /* If there were no instructions between the two timestamp gets, the diff 1905 * is 2 cycles. Remove that overhead, so I can forget about that when 1906 * trying to determine the time taken for single instructions. 1907 */ 1908 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u))); 1909 1910 emit_shader_time_write(0, src_reg(diff)); 1911 emit_shader_time_write(1, brw_imm_ud(1u)); 1912 emit(BRW_OPCODE_ELSE); 1913 emit_shader_time_write(2, brw_imm_ud(1u)); 1914 emit(BRW_OPCODE_ENDIF); 1915 } 1916 1917 void 1918 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value) 1919 { 1920 dst_reg dst = 1921 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2)); 1922 1923 dst_reg offset = dst; 1924 dst_reg time = dst; 1925 time.offset += REG_SIZE; 1926 1927 offset.type = BRW_REGISTER_TYPE_UD; 1928 int index = shader_time_index * 3 + shader_time_subindex; 1929 emit(MOV(offset, brw_imm_d(index * SHADER_TIME_STRIDE))); 1930 1931 time.type = BRW_REGISTER_TYPE_UD; 1932 emit(MOV(time, value)); 1933 1934 vec4_instruction *inst = 1935 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst)); 1936 inst->mlen = 2; 1937 } 1938 1939 void 1940 vec4_visitor::convert_to_hw_regs() 1941 { 1942 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1943 for (int i = 0; i < 3; i++) { 1944 struct src_reg &src = inst->src[i]; 1945 struct brw_reg reg; 1946 switch (src.file) { 1947 case VGRF: { 1948 const unsigned type_size = type_sz(src.type); 1949 const unsigned width = REG_SIZE / 2 / MAX2(4, type_size); 1950 reg = byte_offset(brw_vecn_grf(width, src.nr, 0), src.offset); 1951 reg.type = src.type; 1952 reg.abs = src.abs; 1953 reg.negate = src.negate; 1954 break; 1955 } 1956 1957 case UNIFORM: { 1958 const unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(src.type)); 1959 reg = stride(byte_offset(brw_vec4_grf( 1960 prog_data->base.dispatch_grf_start_reg + 1961 src.nr / 2, src.nr % 2 * 4), 1962 src.offset), 1963 0, width, 1); 1964 reg.type = src.type; 1965 reg.abs = src.abs; 1966 reg.negate = src.negate; 1967 1968 /* This should have been moved to pull constants. */ 1969 assert(!src.reladdr); 1970 break; 1971 } 1972 1973 case FIXED_GRF: 1974 if (type_sz(src.type) == 8) { 1975 reg = src.as_brw_reg(); 1976 break; 1977 } 1978 /* fallthrough */ 1979 case ARF: 1980 case IMM: 1981 continue; 1982 1983 case BAD_FILE: 1984 /* Probably unused. */ 1985 reg = brw_null_reg(); 1986 break; 1987 1988 case MRF: 1989 case ATTR: 1990 unreachable("not reached"); 1991 } 1992 1993 apply_logical_swizzle(®, inst, i); 1994 src = reg; 1995 } 1996 1997 if (inst->is_3src(devinfo)) { 1998 /* 3-src instructions with scalar sources support arbitrary subnr, 1999 * but don't actually use swizzles. Convert swizzle into subnr. 2000 * Skip this for double-precision instructions: RepCtrl=1 is not 2001 * allowed for them and needs special handling. 2002 */ 2003 for (int i = 0; i < 3; i++) { 2004 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 && 2005 type_sz(inst->src[i].type) < 8) { 2006 assert(brw_is_single_value_swizzle(inst->src[i].swizzle)); 2007 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0); 2008 } 2009 } 2010 } 2011 2012 dst_reg &dst = inst->dst; 2013 struct brw_reg reg; 2014 2015 switch (inst->dst.file) { 2016 case VGRF: 2017 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset); 2018 reg.type = dst.type; 2019 reg.writemask = dst.writemask; 2020 break; 2021 2022 case MRF: 2023 reg = byte_offset(brw_message_reg(dst.nr), dst.offset); 2024 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen)); 2025 reg.type = dst.type; 2026 reg.writemask = dst.writemask; 2027 break; 2028 2029 case ARF: 2030 case FIXED_GRF: 2031 reg = dst.as_brw_reg(); 2032 break; 2033 2034 case BAD_FILE: 2035 reg = brw_null_reg(); 2036 break; 2037 2038 case IMM: 2039 case ATTR: 2040 case UNIFORM: 2041 unreachable("not reached"); 2042 } 2043 2044 dst = reg; 2045 } 2046 } 2047 2048 static bool 2049 stage_uses_interleaved_attributes(unsigned stage, 2050 enum shader_dispatch_mode dispatch_mode) 2051 { 2052 switch (stage) { 2053 case MESA_SHADER_TESS_EVAL: 2054 return true; 2055 case MESA_SHADER_GEOMETRY: 2056 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT; 2057 default: 2058 return false; 2059 } 2060 } 2061 2062 /** 2063 * Get the closest native SIMD width supported by the hardware for instruction 2064 * \p inst. The instruction will be left untouched by 2065 * vec4_visitor::lower_simd_width() if the returned value matches the 2066 * instruction's original execution size. 2067 */ 2068 static unsigned 2069 get_lowered_simd_width(const struct gen_device_info *devinfo, 2070 enum shader_dispatch_mode dispatch_mode, 2071 unsigned stage, const vec4_instruction *inst) 2072 { 2073 /* Do not split some instructions that require special handling */ 2074 switch (inst->opcode) { 2075 case SHADER_OPCODE_GEN4_SCRATCH_READ: 2076 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 2077 return inst->exec_size; 2078 default: 2079 break; 2080 } 2081 2082 unsigned lowered_width = MIN2(16, inst->exec_size); 2083 2084 /* We need to split some cases of double-precision instructions that write 2085 * 2 registers. We only need to care about this in gen7 because that is the 2086 * only hardware that implements fp64 in Align16. 2087 */ 2088 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) { 2089 /* Align16 8-wide double-precision SEL does not work well. Verified 2090 * empirically. 2091 */ 2092 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8) 2093 lowered_width = MIN2(lowered_width, 4); 2094 2095 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct 2096 * Register Addressing: 2097 * 2098 * "When destination spans two registers, the source MUST span two 2099 * registers." 2100 */ 2101 for (unsigned i = 0; i < 3; i++) { 2102 if (inst->src[i].file == BAD_FILE) 2103 continue; 2104 if (inst->size_read(i) <= REG_SIZE) 2105 lowered_width = MIN2(lowered_width, 4); 2106 2107 /* Interleaved attribute setups use a vertical stride of 0, which 2108 * makes them hit the associated instruction decompression bug in gen7. 2109 * Split them to prevent this. 2110 */ 2111 if (inst->src[i].file == ATTR && 2112 stage_uses_interleaved_attributes(stage, dispatch_mode)) 2113 lowered_width = MIN2(lowered_width, 4); 2114 } 2115 } 2116 2117 return lowered_width; 2118 } 2119 2120 static bool 2121 dst_src_regions_overlap(vec4_instruction *inst) 2122 { 2123 if (inst->size_written == 0) 2124 return false; 2125 2126 unsigned dst_start = inst->dst.offset; 2127 unsigned dst_end = dst_start + inst->size_written - 1; 2128 for (int i = 0; i < 3; i++) { 2129 if (inst->src[i].file == BAD_FILE) 2130 continue; 2131 2132 if (inst->dst.file != inst->src[i].file || 2133 inst->dst.nr != inst->src[i].nr) 2134 continue; 2135 2136 unsigned src_start = inst->src[i].offset; 2137 unsigned src_end = src_start + inst->size_read(i) - 1; 2138 2139 if ((dst_start >= src_start && dst_start <= src_end) || 2140 (dst_end >= src_start && dst_end <= src_end) || 2141 (dst_start <= src_start && dst_end >= src_end)) { 2142 return true; 2143 } 2144 } 2145 2146 return false; 2147 } 2148 2149 bool 2150 vec4_visitor::lower_simd_width() 2151 { 2152 bool progress = false; 2153 2154 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2155 const unsigned lowered_width = 2156 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst); 2157 assert(lowered_width <= inst->exec_size); 2158 if (lowered_width == inst->exec_size) 2159 continue; 2160 2161 /* We need to deal with source / destination overlaps when splitting. 2162 * The hardware supports reading from and writing to the same register 2163 * in the same instruction, but we need to be careful that each split 2164 * instruction we produce does not corrupt the source of the next. 2165 * 2166 * The easiest way to handle this is to make the split instructions write 2167 * to temporaries if there is an src/dst overlap and then move from the 2168 * temporaries to the original destination. We also need to consider 2169 * instructions that do partial writes via align1 opcodes, in which case 2170 * we need to make sure that the we initialize the temporary with the 2171 * value of the instruction's dst. 2172 */ 2173 bool needs_temp = dst_src_regions_overlap(inst); 2174 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) { 2175 unsigned channel_offset = lowered_width * n; 2176 2177 unsigned size_written = lowered_width * type_sz(inst->dst.type); 2178 2179 /* Create the split instruction from the original so that we copy all 2180 * relevant instruction fields, then set the width and calculate the 2181 * new dst/src regions. 2182 */ 2183 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst); 2184 linst->exec_size = lowered_width; 2185 linst->group = channel_offset; 2186 linst->size_written = size_written; 2187 2188 /* Compute split dst region */ 2189 dst_reg dst; 2190 if (needs_temp) { 2191 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 2192 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 2193 inst->dst.type); 2194 if (inst->is_align1_partial_write()) { 2195 vec4_instruction *copy = MOV(dst, src_reg(inst->dst)); 2196 copy->exec_size = lowered_width; 2197 copy->group = channel_offset; 2198 copy->size_written = size_written; 2199 inst->insert_before(block, copy); 2200 } 2201 } else { 2202 dst = horiz_offset(inst->dst, channel_offset); 2203 } 2204 linst->dst = dst; 2205 2206 /* Compute split source regions */ 2207 for (int i = 0; i < 3; i++) { 2208 if (linst->src[i].file == BAD_FILE) 2209 continue; 2210 2211 if (!is_uniform(linst->src[i])) 2212 linst->src[i] = horiz_offset(linst->src[i], channel_offset); 2213 } 2214 2215 inst->insert_before(block, linst); 2216 2217 /* If we used a temporary to store the result of the split 2218 * instruction, copy the result to the original destination 2219 */ 2220 if (needs_temp) { 2221 vec4_instruction *mov = 2222 MOV(offset(inst->dst, lowered_width, n), src_reg(dst)); 2223 mov->exec_size = lowered_width; 2224 mov->group = channel_offset; 2225 mov->size_written = size_written; 2226 mov->predicate = inst->predicate; 2227 inst->insert_before(block, mov); 2228 } 2229 } 2230 2231 inst->remove(block); 2232 progress = true; 2233 } 2234 2235 if (progress) 2236 invalidate_live_intervals(); 2237 2238 return progress; 2239 } 2240 2241 static bool 2242 is_align1_df(vec4_instruction *inst) 2243 { 2244 switch (inst->opcode) { 2245 case VEC4_OPCODE_FROM_DOUBLE: 2246 case VEC4_OPCODE_TO_DOUBLE: 2247 case VEC4_OPCODE_PICK_LOW_32BIT: 2248 case VEC4_OPCODE_PICK_HIGH_32BIT: 2249 case VEC4_OPCODE_SET_LOW_32BIT: 2250 case VEC4_OPCODE_SET_HIGH_32BIT: 2251 return true; 2252 default: 2253 return false; 2254 } 2255 } 2256 2257 static brw_predicate 2258 scalarize_predicate(brw_predicate predicate, unsigned writemask) 2259 { 2260 if (predicate != BRW_PREDICATE_NORMAL) 2261 return predicate; 2262 2263 switch (writemask) { 2264 case WRITEMASK_X: 2265 return BRW_PREDICATE_ALIGN16_REPLICATE_X; 2266 case WRITEMASK_Y: 2267 return BRW_PREDICATE_ALIGN16_REPLICATE_Y; 2268 case WRITEMASK_Z: 2269 return BRW_PREDICATE_ALIGN16_REPLICATE_Z; 2270 case WRITEMASK_W: 2271 return BRW_PREDICATE_ALIGN16_REPLICATE_W; 2272 default: 2273 unreachable("invalid writemask"); 2274 } 2275 } 2276 2277 /* Gen7 has a hardware decompression bug that we can exploit to represent 2278 * handful of additional swizzles natively. 2279 */ 2280 static bool 2281 is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg) 2282 { 2283 switch (inst->src[arg].swizzle) { 2284 case BRW_SWIZZLE_XXXX: 2285 case BRW_SWIZZLE_YYYY: 2286 case BRW_SWIZZLE_ZZZZ: 2287 case BRW_SWIZZLE_WWWW: 2288 case BRW_SWIZZLE_XYXY: 2289 case BRW_SWIZZLE_YXYX: 2290 case BRW_SWIZZLE_ZWZW: 2291 case BRW_SWIZZLE_WZWZ: 2292 return true; 2293 default: 2294 return false; 2295 } 2296 } 2297 2298 /* 64-bit sources use regions with a width of 2. These 2 elements in each row 2299 * can be addressed using 32-bit swizzles (which is what the hardware supports) 2300 * but it also means that the swizzle we apply on the first two components of a 2301 * dvec4 is coupled with the swizzle we use for the last 2. In other words, 2302 * only some specific swizzle combinations can be natively supported. 2303 * 2304 * FIXME: we can go an step further and implement even more swizzle 2305 * variations using only partial scalarization. 2306 * 2307 * For more details see: 2308 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82 2309 */ 2310 bool 2311 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg) 2312 { 2313 const src_reg &src = inst->src[arg]; 2314 assert(type_sz(src.type) == 8); 2315 2316 /* Uniform regions have a vstride=0. Because we use 2-wide rows with 2317 * 64-bit regions it means that we cannot access components Z/W, so 2318 * return false for any such case. Interleaved attributes will also be 2319 * mapped to GRF registers with a vstride of 0, so apply the same 2320 * treatment. 2321 */ 2322 if ((is_uniform(src) || 2323 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) && 2324 src.file == ATTR)) && 2325 (brw_mask_for_swizzle(src.swizzle) & 12)) 2326 return false; 2327 2328 switch (src.swizzle) { 2329 case BRW_SWIZZLE_XYZW: 2330 case BRW_SWIZZLE_XXZZ: 2331 case BRW_SWIZZLE_YYWW: 2332 case BRW_SWIZZLE_YXWZ: 2333 return true; 2334 default: 2335 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg); 2336 } 2337 } 2338 2339 bool 2340 vec4_visitor::scalarize_df() 2341 { 2342 bool progress = false; 2343 2344 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2345 /* Skip DF instructions that operate in Align1 mode */ 2346 if (is_align1_df(inst)) 2347 continue; 2348 2349 /* Check if this is a double-precision instruction */ 2350 bool is_double = type_sz(inst->dst.type) == 8; 2351 for (int arg = 0; !is_double && arg < 3; arg++) { 2352 is_double = inst->src[arg].file != BAD_FILE && 2353 type_sz(inst->src[arg].type) == 8; 2354 } 2355 2356 if (!is_double) 2357 continue; 2358 2359 /* Skip the lowering for specific regioning scenarios that we can 2360 * support natively. 2361 */ 2362 bool skip_lowering = true; 2363 2364 /* XY and ZW writemasks operate in 32-bit, which means that they don't 2365 * have a native 64-bit representation and they should always be split. 2366 */ 2367 if (inst->dst.writemask == WRITEMASK_XY || 2368 inst->dst.writemask == WRITEMASK_ZW) { 2369 skip_lowering = false; 2370 } else { 2371 for (unsigned i = 0; i < 3; i++) { 2372 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8) 2373 continue; 2374 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i); 2375 } 2376 } 2377 2378 if (skip_lowering) 2379 continue; 2380 2381 /* Generate scalar instructions for each enabled channel */ 2382 for (unsigned chan = 0; chan < 4; chan++) { 2383 unsigned chan_mask = 1 << chan; 2384 if (!(inst->dst.writemask & chan_mask)) 2385 continue; 2386 2387 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst); 2388 2389 for (unsigned i = 0; i < 3; i++) { 2390 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan); 2391 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz); 2392 } 2393 2394 scalar_inst->dst.writemask = chan_mask; 2395 2396 if (inst->predicate != BRW_PREDICATE_NONE) { 2397 scalar_inst->predicate = 2398 scalarize_predicate(inst->predicate, chan_mask); 2399 } 2400 2401 inst->insert_before(block, scalar_inst); 2402 } 2403 2404 inst->remove(block); 2405 progress = true; 2406 } 2407 2408 if (progress) 2409 invalidate_live_intervals(); 2410 2411 return progress; 2412 } 2413 2414 bool 2415 vec4_visitor::lower_64bit_mad_to_mul_add() 2416 { 2417 bool progress = false; 2418 2419 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2420 if (inst->opcode != BRW_OPCODE_MAD) 2421 continue; 2422 2423 if (type_sz(inst->dst.type) != 8) 2424 continue; 2425 2426 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type); 2427 2428 /* Use the copy constructor so we copy all relevant instruction fields 2429 * from the original mad into the add and mul instructions 2430 */ 2431 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst); 2432 mul->opcode = BRW_OPCODE_MUL; 2433 mul->dst = mul_dst; 2434 mul->src[0] = inst->src[1]; 2435 mul->src[1] = inst->src[2]; 2436 mul->src[2].file = BAD_FILE; 2437 2438 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst); 2439 add->opcode = BRW_OPCODE_ADD; 2440 add->src[0] = src_reg(mul_dst); 2441 add->src[1] = inst->src[0]; 2442 add->src[2].file = BAD_FILE; 2443 2444 inst->insert_before(block, mul); 2445 inst->insert_before(block, add); 2446 inst->remove(block); 2447 2448 progress = true; 2449 } 2450 2451 if (progress) 2452 invalidate_live_intervals(); 2453 2454 return progress; 2455 } 2456 2457 /* The align16 hardware can only do 32-bit swizzle channels, so we need to 2458 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR 2459 * to 32-bit swizzle channels in hardware registers. 2460 * 2461 * @inst and @arg identify the original vec4 IR source operand we need to 2462 * translate the swizzle for and @hw_reg is the hardware register where we 2463 * will write the hardware swizzle to use. 2464 * 2465 * This pass assumes that Align16/DF instructions have been fully scalarized 2466 * previously so there is just one 64-bit swizzle channel to deal with for any 2467 * given Vec4 IR source. 2468 */ 2469 void 2470 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg, 2471 vec4_instruction *inst, int arg) 2472 { 2473 src_reg reg = inst->src[arg]; 2474 2475 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE) 2476 return; 2477 2478 /* If this is not a 64-bit operand or this is a scalar instruction we don't 2479 * need to do anything about the swizzles. 2480 */ 2481 if(type_sz(reg.type) < 8 || is_align1_df(inst)) { 2482 hw_reg->swizzle = reg.swizzle; 2483 return; 2484 } 2485 2486 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */ 2487 assert(brw_is_single_value_swizzle(reg.swizzle) || 2488 is_supported_64bit_region(inst, arg)); 2489 2490 if (is_supported_64bit_region(inst, arg) && 2491 !is_gen7_supported_64bit_swizzle(inst, arg)) { 2492 /* Supported 64-bit swizzles are those such that their first two 2493 * components, when expanded to 32-bit swizzles, match the semantics 2494 * of the original 64-bit swizzle with 2-wide row regioning. 2495 */ 2496 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2497 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2498 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2499 swizzle1 * 2, swizzle1 * 2 + 1); 2500 } else { 2501 /* If we got here then we have one of the following: 2502 * 2503 * 1. An unsupported swizzle, which should be single-value thanks to the 2504 * scalarization pass. 2505 * 2506 * 2. A gen7 supported swizzle. These can be single-value or double-value 2507 * swizzles. If the latter, they are never cross-dvec2 channels. For 2508 * these we always need to activate the gen7 vstride=0 exploit. 2509 */ 2510 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2511 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2512 assert((swizzle0 < 2) == (swizzle1 < 2)); 2513 2514 /* To gain access to Z/W components we need to select the second half 2515 * of the register and then use a X/Y swizzle to select Z/W respectively. 2516 */ 2517 if (swizzle0 >= 2) { 2518 *hw_reg = suboffset(*hw_reg, 2); 2519 swizzle0 -= 2; 2520 swizzle1 -= 2; 2521 } 2522 2523 /* All gen7-specific supported swizzles require the vstride=0 exploit */ 2524 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg)) 2525 hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2526 2527 /* Any 64-bit source with an offset at 16B is intended to address the 2528 * second half of a register and needs a vertical stride of 0 so we: 2529 * 2530 * 1. Don't violate register region restrictions. 2531 * 2. Activate the gen7 instruction decompresion bug exploit when 2532 * execsize > 4 2533 */ 2534 if (hw_reg->subnr % REG_SIZE == 16) { 2535 assert(devinfo->gen == 7); 2536 hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2537 } 2538 2539 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2540 swizzle1 * 2, swizzle1 * 2 + 1); 2541 } 2542 } 2543 2544 bool 2545 vec4_visitor::run() 2546 { 2547 if (shader_time_index >= 0) 2548 emit_shader_time_begin(); 2549 2550 emit_prolog(); 2551 2552 emit_nir_code(); 2553 if (failed) 2554 return false; 2555 base_ir = NULL; 2556 2557 emit_thread_end(); 2558 2559 calculate_cfg(); 2560 2561 /* Before any optimization, push array accesses out to scratch 2562 * space where we need them to be. This pass may allocate new 2563 * virtual GRFs, so we want to do it early. It also makes sure 2564 * that we have reladdr computations available for CSE, since we'll 2565 * often do repeated subexpressions for those. 2566 */ 2567 move_grf_array_access_to_scratch(); 2568 move_uniform_array_access_to_pull_constants(); 2569 2570 pack_uniform_registers(); 2571 move_push_constants_to_pull_constants(); 2572 split_virtual_grfs(); 2573 2574 #define OPT(pass, args...) ({ \ 2575 pass_num++; \ 2576 bool this_progress = pass(args); \ 2577 \ 2578 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \ 2579 char filename[64]; \ 2580 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \ 2581 stage_abbrev, nir->info->name, iteration, pass_num); \ 2582 \ 2583 backend_shader::dump_instructions(filename); \ 2584 } \ 2585 \ 2586 progress = progress || this_progress; \ 2587 this_progress; \ 2588 }) 2589 2590 2591 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) { 2592 char filename[64]; 2593 snprintf(filename, 64, "%s-%s-00-00-start", 2594 stage_abbrev, nir->info->name); 2595 2596 backend_shader::dump_instructions(filename); 2597 } 2598 2599 bool progress; 2600 int iteration = 0; 2601 int pass_num = 0; 2602 do { 2603 progress = false; 2604 pass_num = 0; 2605 iteration++; 2606 2607 OPT(opt_predicated_break, this); 2608 OPT(opt_reduce_swizzle); 2609 OPT(dead_code_eliminate); 2610 OPT(dead_control_flow_eliminate, this); 2611 OPT(opt_copy_propagation); 2612 OPT(opt_cmod_propagation); 2613 OPT(opt_cse); 2614 OPT(opt_algebraic); 2615 OPT(opt_register_coalesce); 2616 OPT(eliminate_find_live_channel); 2617 } while (progress); 2618 2619 pass_num = 0; 2620 2621 if (OPT(opt_vector_float)) { 2622 OPT(opt_cse); 2623 OPT(opt_copy_propagation, false); 2624 OPT(opt_copy_propagation, true); 2625 OPT(dead_code_eliminate); 2626 } 2627 2628 if (devinfo->gen <= 5 && OPT(lower_minmax)) { 2629 OPT(opt_cmod_propagation); 2630 OPT(opt_cse); 2631 OPT(opt_copy_propagation); 2632 OPT(dead_code_eliminate); 2633 } 2634 2635 if (OPT(lower_simd_width)) { 2636 OPT(opt_copy_propagation); 2637 OPT(dead_code_eliminate); 2638 } 2639 2640 if (failed) 2641 return false; 2642 2643 OPT(lower_64bit_mad_to_mul_add); 2644 2645 /* Run this before payload setup because tesselation shaders 2646 * rely on it to prevent cross dvec2 regioning on DF attributes 2647 * that are setup so that XY are on the second half of register and 2648 * ZW are in the first half of the next. 2649 */ 2650 OPT(scalarize_df); 2651 2652 setup_payload(); 2653 2654 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) { 2655 /* Debug of register spilling: Go spill everything. */ 2656 const int grf_count = alloc.count; 2657 float spill_costs[alloc.count]; 2658 bool no_spill[alloc.count]; 2659 evaluate_spill_costs(spill_costs, no_spill); 2660 for (int i = 0; i < grf_count; i++) { 2661 if (no_spill[i]) 2662 continue; 2663 spill_reg(i); 2664 } 2665 2666 /* We want to run this after spilling because 64-bit (un)spills need to 2667 * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2668 * messages that can produce unsupported 64-bit swizzle regions. 2669 */ 2670 OPT(scalarize_df); 2671 } 2672 2673 bool allocated_without_spills = reg_allocate(); 2674 2675 if (!allocated_without_spills) { 2676 compiler->shader_perf_log(log_data, 2677 "%s shader triggered register spilling. " 2678 "Try reducing the number of live vec4 values " 2679 "to improve performance.\n", 2680 stage_name); 2681 2682 while (!reg_allocate()) { 2683 if (failed) 2684 return false; 2685 } 2686 2687 /* We want to run this after spilling because 64-bit (un)spills need to 2688 * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2689 * messages that can produce unsupported 64-bit swizzle regions. 2690 */ 2691 OPT(scalarize_df); 2692 } 2693 2694 opt_schedule_instructions(); 2695 2696 opt_set_dependency_control(); 2697 2698 convert_to_hw_regs(); 2699 2700 if (last_scratch > 0) { 2701 prog_data->base.total_scratch = 2702 brw_get_scratch_size(last_scratch * REG_SIZE); 2703 } 2704 2705 return !failed; 2706 } 2707 2708 } /* namespace brw */ 2709 2710 extern "C" { 2711 2712 /** 2713 * Compile a vertex shader. 2714 * 2715 * Returns the final assembly and the program's size. 2716 */ 2717 const unsigned * 2718 brw_compile_vs(const struct brw_compiler *compiler, void *log_data, 2719 void *mem_ctx, 2720 const struct brw_vs_prog_key *key, 2721 struct brw_vs_prog_data *prog_data, 2722 const nir_shader *src_shader, 2723 gl_clip_plane *clip_planes, 2724 bool use_legacy_snorm_formula, 2725 int shader_time_index, 2726 unsigned *final_assembly_size, 2727 char **error_str) 2728 { 2729 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX]; 2730 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader); 2731 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar); 2732 brw_nir_lower_vs_inputs(shader, is_scalar, 2733 use_legacy_snorm_formula, key->gl_attrib_wa_flags); 2734 brw_nir_lower_vue_outputs(shader, is_scalar); 2735 shader = brw_postprocess_nir(shader, compiler, is_scalar); 2736 2737 const unsigned *assembly = NULL; 2738 2739 prog_data->base.clip_distance_mask = 2740 ((1 << shader->info->clip_distance_array_size) - 1); 2741 prog_data->base.cull_distance_mask = 2742 ((1 << shader->info->cull_distance_array_size) - 1) << 2743 shader->info->clip_distance_array_size; 2744 2745 unsigned nr_attribute_slots = _mesa_bitcount_64(prog_data->inputs_read); 2746 2747 /* gl_VertexID and gl_InstanceID are system values, but arrive via an 2748 * incoming vertex attribute. So, add an extra slot. 2749 */ 2750 if (shader->info->system_values_read & 2751 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) | 2752 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) | 2753 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) | 2754 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) { 2755 nr_attribute_slots++; 2756 } 2757 2758 /* gl_DrawID has its very own vec4 */ 2759 if (shader->info->system_values_read & 2760 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) { 2761 nr_attribute_slots++; 2762 } 2763 2764 unsigned nr_attributes = nr_attribute_slots - 2765 DIV_ROUND_UP(_mesa_bitcount_64(shader->info->double_inputs_read), 2); 2766 2767 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry 2768 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in 2769 * vec4 mode, the hardware appears to wedge unless we read something. 2770 */ 2771 if (is_scalar) 2772 prog_data->base.urb_read_length = 2773 DIV_ROUND_UP(nr_attribute_slots, 2); 2774 else 2775 prog_data->base.urb_read_length = 2776 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2); 2777 2778 prog_data->nr_attributes = nr_attributes; 2779 prog_data->nr_attribute_slots = nr_attribute_slots; 2780 2781 /* Since vertex shaders reuse the same VUE entry for inputs and outputs 2782 * (overwriting the original contents), we need to make sure the size is 2783 * the larger of the two. 2784 */ 2785 const unsigned vue_entries = 2786 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots); 2787 2788 if (compiler->devinfo->gen == 6) 2789 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8); 2790 else 2791 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4); 2792 2793 if (INTEL_DEBUG & DEBUG_VS) { 2794 fprintf(stderr, "VS Output "); 2795 brw_print_vue_map(stderr, &prog_data->base.vue_map); 2796 } 2797 2798 if (is_scalar) { 2799 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; 2800 2801 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base, 2802 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */ 2803 shader, 8, shader_time_index); 2804 if (!v.run_vs(clip_planes)) { 2805 if (error_str) 2806 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 2807 2808 return NULL; 2809 } 2810 2811 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; 2812 2813 fs_generator g(compiler, log_data, mem_ctx, (void *) key, 2814 &prog_data->base.base, v.promoted_constants, 2815 v.runtime_check_aads_emit, MESA_SHADER_VERTEX); 2816 if (INTEL_DEBUG & DEBUG_VS) { 2817 const char *debug_name = 2818 ralloc_asprintf(mem_ctx, "%s vertex shader %s", 2819 shader->info->label ? shader->info->label : 2820 "unnamed", 2821 shader->info->name); 2822 2823 g.enable_debug(debug_name); 2824 } 2825 g.generate_code(v.cfg, 8); 2826 assembly = g.get_assembly(final_assembly_size); 2827 } 2828 2829 if (!assembly) { 2830 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT; 2831 2832 vec4_vs_visitor v(compiler, log_data, key, prog_data, 2833 shader, clip_planes, mem_ctx, 2834 shader_time_index, use_legacy_snorm_formula); 2835 if (!v.run()) { 2836 if (error_str) 2837 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 2838 2839 return NULL; 2840 } 2841 2842 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, 2843 shader, &prog_data->base, v.cfg, 2844 final_assembly_size); 2845 } 2846 2847 return assembly; 2848 } 2849 2850 } /* extern "C" */ 2851