Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2011 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include "brw_vec4.h"
     25 #include "brw_fs.h"
     26 #include "brw_cfg.h"
     27 #include "brw_vs.h"
     28 #include "brw_nir.h"
     29 #include "brw_vec4_builder.h"
     30 #include "brw_vec4_live_variables.h"
     31 #include "brw_dead_control_flow.h"
     32 #include "program/prog_parameter.h"
     33 
     34 #define MAX_INSTRUCTION (1 << 30)
     35 
     36 using namespace brw;
     37 
     38 namespace brw {
     39 
     40 void
     41 src_reg::init()
     42 {
     43    memset(this, 0, sizeof(*this));
     44 
     45    this->file = BAD_FILE;
     46 }
     47 
     48 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
     49 {
     50    init();
     51 
     52    this->file = file;
     53    this->nr = nr;
     54    if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
     55       this->swizzle = brw_swizzle_for_size(type->vector_elements);
     56    else
     57       this->swizzle = BRW_SWIZZLE_XYZW;
     58    if (type)
     59       this->type = brw_type_for_base_type(type);
     60 }
     61 
     62 /** Generic unset register constructor. */
     63 src_reg::src_reg()
     64 {
     65    init();
     66 }
     67 
     68 src_reg::src_reg(struct ::brw_reg reg) :
     69    backend_reg(reg)
     70 {
     71    this->offset = 0;
     72    this->reladdr = NULL;
     73 }
     74 
     75 src_reg::src_reg(const dst_reg &reg) :
     76    backend_reg(reg)
     77 {
     78    this->reladdr = reg.reladdr;
     79    this->swizzle = brw_swizzle_for_mask(reg.writemask);
     80 }
     81 
     82 void
     83 dst_reg::init()
     84 {
     85    memset(this, 0, sizeof(*this));
     86    this->file = BAD_FILE;
     87    this->writemask = WRITEMASK_XYZW;
     88 }
     89 
     90 dst_reg::dst_reg()
     91 {
     92    init();
     93 }
     94 
     95 dst_reg::dst_reg(enum brw_reg_file file, int nr)
     96 {
     97    init();
     98 
     99    this->file = file;
    100    this->nr = nr;
    101 }
    102 
    103 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
    104                  unsigned writemask)
    105 {
    106    init();
    107 
    108    this->file = file;
    109    this->nr = nr;
    110    this->type = brw_type_for_base_type(type);
    111    this->writemask = writemask;
    112 }
    113 
    114 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
    115                  unsigned writemask)
    116 {
    117    init();
    118 
    119    this->file = file;
    120    this->nr = nr;
    121    this->type = type;
    122    this->writemask = writemask;
    123 }
    124 
    125 dst_reg::dst_reg(struct ::brw_reg reg) :
    126    backend_reg(reg)
    127 {
    128    this->offset = 0;
    129    this->reladdr = NULL;
    130 }
    131 
    132 dst_reg::dst_reg(const src_reg &reg) :
    133    backend_reg(reg)
    134 {
    135    this->writemask = brw_mask_for_swizzle(reg.swizzle);
    136    this->reladdr = reg.reladdr;
    137 }
    138 
    139 bool
    140 dst_reg::equals(const dst_reg &r) const
    141 {
    142    return (this->backend_reg::equals(r) &&
    143            (reladdr == r.reladdr ||
    144             (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
    145 }
    146 
    147 bool
    148 vec4_instruction::is_send_from_grf()
    149 {
    150    switch (opcode) {
    151    case SHADER_OPCODE_SHADER_TIME_ADD:
    152    case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
    153    case SHADER_OPCODE_UNTYPED_ATOMIC:
    154    case SHADER_OPCODE_UNTYPED_SURFACE_READ:
    155    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
    156    case SHADER_OPCODE_TYPED_ATOMIC:
    157    case SHADER_OPCODE_TYPED_SURFACE_READ:
    158    case SHADER_OPCODE_TYPED_SURFACE_WRITE:
    159    case VEC4_OPCODE_URB_READ:
    160    case TCS_OPCODE_URB_WRITE:
    161    case TCS_OPCODE_RELEASE_INPUT:
    162    case SHADER_OPCODE_BARRIER:
    163       return true;
    164    default:
    165       return false;
    166    }
    167 }
    168 
    169 /**
    170  * Returns true if this instruction's sources and destinations cannot
    171  * safely be the same register.
    172  *
    173  * In most cases, a register can be written over safely by the same
    174  * instruction that is its last use.  For a single instruction, the
    175  * sources are dereferenced before writing of the destination starts
    176  * (naturally).
    177  *
    178  * However, there are a few cases where this can be problematic:
    179  *
    180  * - Virtual opcodes that translate to multiple instructions in the
    181  *   code generator: if src == dst and one instruction writes the
    182  *   destination before a later instruction reads the source, then
    183  *   src will have been clobbered.
    184  *
    185  * The register allocator uses this information to set up conflicts between
    186  * GRF sources and the destination.
    187  */
    188 bool
    189 vec4_instruction::has_source_and_destination_hazard() const
    190 {
    191    switch (opcode) {
    192    case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
    193    case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
    194    case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
    195       return true;
    196    default:
    197       /* 8-wide compressed DF operations are executed as two 4-wide operations,
    198        * so we have a src/dst hazard if the first half of the instruction
    199        * overwrites the source of the second half. Prevent this by marking
    200        * compressed instructions as having src/dst hazards, so the register
    201        * allocator assigns safe register regions for dst and srcs.
    202        */
    203       return size_written > REG_SIZE;
    204    }
    205 }
    206 
    207 unsigned
    208 vec4_instruction::size_read(unsigned arg) const
    209 {
    210    switch (opcode) {
    211    case SHADER_OPCODE_SHADER_TIME_ADD:
    212    case SHADER_OPCODE_UNTYPED_ATOMIC:
    213    case SHADER_OPCODE_UNTYPED_SURFACE_READ:
    214    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
    215    case SHADER_OPCODE_TYPED_ATOMIC:
    216    case SHADER_OPCODE_TYPED_SURFACE_READ:
    217    case SHADER_OPCODE_TYPED_SURFACE_WRITE:
    218    case TCS_OPCODE_URB_WRITE:
    219       if (arg == 0)
    220          return mlen * REG_SIZE;
    221       break;
    222    case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
    223       if (arg == 1)
    224          return mlen * REG_SIZE;
    225       break;
    226    default:
    227       break;
    228    }
    229 
    230    switch (src[arg].file) {
    231    case BAD_FILE:
    232       return 0;
    233    case IMM:
    234    case UNIFORM:
    235       return 4 * type_sz(src[arg].type);
    236    default:
    237       /* XXX - Represent actual vertical stride. */
    238       return exec_size * type_sz(src[arg].type);
    239    }
    240 }
    241 
    242 bool
    243 vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
    244 {
    245    if (devinfo->gen == 6 && is_math())
    246       return false;
    247 
    248    if (is_send_from_grf())
    249       return false;
    250 
    251    if (!backend_instruction::can_do_source_mods())
    252       return false;
    253 
    254    return true;
    255 }
    256 
    257 bool
    258 vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
    259 {
    260    switch (opcode) {
    261    case SHADER_OPCODE_GEN4_SCRATCH_READ:
    262    case VEC4_OPCODE_FROM_DOUBLE:
    263    case VEC4_OPCODE_TO_DOUBLE:
    264    case VEC4_OPCODE_PICK_LOW_32BIT:
    265    case VEC4_OPCODE_PICK_HIGH_32BIT:
    266    case VEC4_OPCODE_SET_LOW_32BIT:
    267    case VEC4_OPCODE_SET_HIGH_32BIT:
    268    case VS_OPCODE_PULL_CONSTANT_LOAD:
    269    case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
    270    case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
    271    case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
    272    case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
    273    case TES_OPCODE_CREATE_INPUT_READ_HEADER:
    274    case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
    275    case VEC4_OPCODE_URB_READ:
    276    case SHADER_OPCODE_MOV_INDIRECT:
    277       return false;
    278    default:
    279       /* The MATH instruction on Gen6 only executes in align1 mode, which does
    280        * not support writemasking.
    281        */
    282       if (devinfo->gen == 6 && is_math())
    283          return false;
    284 
    285       if (is_tex())
    286          return false;
    287 
    288       return true;
    289    }
    290 }
    291 
    292 bool
    293 vec4_instruction::can_change_types() const
    294 {
    295    return dst.type == src[0].type &&
    296           !src[0].abs && !src[0].negate && !saturate &&
    297           (opcode == BRW_OPCODE_MOV ||
    298            (opcode == BRW_OPCODE_SEL &&
    299             dst.type == src[1].type &&
    300             predicate != BRW_PREDICATE_NONE &&
    301             !src[1].abs && !src[1].negate));
    302 }
    303 
    304 /**
    305  * Returns how many MRFs an opcode will write over.
    306  *
    307  * Note that this is not the 0 or 1 implied writes in an actual gen
    308  * instruction -- the generate_* functions generate additional MOVs
    309  * for setup.
    310  */
    311 int
    312 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
    313 {
    314    if (inst->mlen == 0 || inst->is_send_from_grf())
    315       return 0;
    316 
    317    switch (inst->opcode) {
    318    case SHADER_OPCODE_RCP:
    319    case SHADER_OPCODE_RSQ:
    320    case SHADER_OPCODE_SQRT:
    321    case SHADER_OPCODE_EXP2:
    322    case SHADER_OPCODE_LOG2:
    323    case SHADER_OPCODE_SIN:
    324    case SHADER_OPCODE_COS:
    325       return 1;
    326    case SHADER_OPCODE_INT_QUOTIENT:
    327    case SHADER_OPCODE_INT_REMAINDER:
    328    case SHADER_OPCODE_POW:
    329    case TCS_OPCODE_THREAD_END:
    330       return 2;
    331    case VS_OPCODE_URB_WRITE:
    332       return 1;
    333    case VS_OPCODE_PULL_CONSTANT_LOAD:
    334       return 2;
    335    case SHADER_OPCODE_GEN4_SCRATCH_READ:
    336       return 2;
    337    case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
    338       return 3;
    339    case GS_OPCODE_URB_WRITE:
    340    case GS_OPCODE_URB_WRITE_ALLOCATE:
    341    case GS_OPCODE_THREAD_END:
    342       return 0;
    343    case GS_OPCODE_FF_SYNC:
    344       return 1;
    345    case TCS_OPCODE_URB_WRITE:
    346       return 0;
    347    case SHADER_OPCODE_SHADER_TIME_ADD:
    348       return 0;
    349    case SHADER_OPCODE_TEX:
    350    case SHADER_OPCODE_TXL:
    351    case SHADER_OPCODE_TXD:
    352    case SHADER_OPCODE_TXF:
    353    case SHADER_OPCODE_TXF_CMS:
    354    case SHADER_OPCODE_TXF_CMS_W:
    355    case SHADER_OPCODE_TXF_MCS:
    356    case SHADER_OPCODE_TXS:
    357    case SHADER_OPCODE_TG4:
    358    case SHADER_OPCODE_TG4_OFFSET:
    359    case SHADER_OPCODE_SAMPLEINFO:
    360    case VS_OPCODE_GET_BUFFER_SIZE:
    361       return inst->header_size;
    362    default:
    363       unreachable("not reached");
    364    }
    365 }
    366 
    367 bool
    368 src_reg::equals(const src_reg &r) const
    369 {
    370    return (this->backend_reg::equals(r) &&
    371 	   !reladdr && !r.reladdr);
    372 }
    373 
    374 bool
    375 vec4_visitor::opt_vector_float()
    376 {
    377    bool progress = false;
    378 
    379    foreach_block(block, cfg) {
    380       int last_reg = -1, last_offset = -1;
    381       enum brw_reg_file last_reg_file = BAD_FILE;
    382 
    383       uint8_t imm[4] = { 0 };
    384       int inst_count = 0;
    385       vec4_instruction *imm_inst[4];
    386       unsigned writemask = 0;
    387       enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
    388 
    389       foreach_inst_in_block_safe(vec4_instruction, inst, block) {
    390          int vf = -1;
    391          enum brw_reg_type need_type;
    392 
    393          /* Look for unconditional MOVs from an immediate with a partial
    394           * writemask.  Skip type-conversion MOVs other than integer 0,
    395           * where the type doesn't matter.  See if the immediate can be
    396           * represented as a VF.
    397           */
    398          if (inst->opcode == BRW_OPCODE_MOV &&
    399              inst->src[0].file == IMM &&
    400              inst->predicate == BRW_PREDICATE_NONE &&
    401              inst->dst.writemask != WRITEMASK_XYZW &&
    402              type_sz(inst->src[0].type) < 8 &&
    403              (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
    404 
    405             vf = brw_float_to_vf(inst->src[0].d);
    406             need_type = BRW_REGISTER_TYPE_D;
    407 
    408             if (vf == -1) {
    409                vf = brw_float_to_vf(inst->src[0].f);
    410                need_type = BRW_REGISTER_TYPE_F;
    411             }
    412          } else {
    413             last_reg = -1;
    414          }
    415 
    416          /* If this wasn't a MOV, or the destination register doesn't match,
    417           * or we have to switch destination types, then this breaks our
    418           * sequence.  Combine anything we've accumulated so far.
    419           */
    420          if (last_reg != inst->dst.nr ||
    421              last_offset != inst->dst.offset ||
    422              last_reg_file != inst->dst.file ||
    423              (vf > 0 && dest_type != need_type)) {
    424 
    425             if (inst_count > 1) {
    426                unsigned vf;
    427                memcpy(&vf, imm, sizeof(vf));
    428                vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
    429                mov->dst.type = dest_type;
    430                mov->dst.writemask = writemask;
    431                inst->insert_before(block, mov);
    432 
    433                for (int i = 0; i < inst_count; i++) {
    434                   imm_inst[i]->remove(block);
    435                }
    436 
    437                progress = true;
    438             }
    439 
    440             inst_count = 0;
    441             last_reg = -1;
    442             writemask = 0;
    443             dest_type = BRW_REGISTER_TYPE_F;
    444 
    445             for (int i = 0; i < 4; i++) {
    446                imm[i] = 0;
    447             }
    448          }
    449 
    450          /* Record this instruction's value (if it was representable). */
    451          if (vf != -1) {
    452             if ((inst->dst.writemask & WRITEMASK_X) != 0)
    453                imm[0] = vf;
    454             if ((inst->dst.writemask & WRITEMASK_Y) != 0)
    455                imm[1] = vf;
    456             if ((inst->dst.writemask & WRITEMASK_Z) != 0)
    457                imm[2] = vf;
    458             if ((inst->dst.writemask & WRITEMASK_W) != 0)
    459                imm[3] = vf;
    460 
    461             writemask |= inst->dst.writemask;
    462             imm_inst[inst_count++] = inst;
    463 
    464             last_reg = inst->dst.nr;
    465             last_offset = inst->dst.offset;
    466             last_reg_file = inst->dst.file;
    467             if (vf > 0)
    468                dest_type = need_type;
    469          }
    470       }
    471    }
    472 
    473    if (progress)
    474       invalidate_live_intervals();
    475 
    476    return progress;
    477 }
    478 
    479 /* Replaces unused channels of a swizzle with channels that are used.
    480  *
    481  * For instance, this pass transforms
    482  *
    483  *    mov vgrf4.yz, vgrf5.wxzy
    484  *
    485  * into
    486  *
    487  *    mov vgrf4.yz, vgrf5.xxzx
    488  *
    489  * This eliminates false uses of some channels, letting dead code elimination
    490  * remove the instructions that wrote them.
    491  */
    492 bool
    493 vec4_visitor::opt_reduce_swizzle()
    494 {
    495    bool progress = false;
    496 
    497    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
    498       if (inst->dst.file == BAD_FILE ||
    499           inst->dst.file == ARF ||
    500           inst->dst.file == FIXED_GRF ||
    501           inst->is_send_from_grf())
    502          continue;
    503 
    504       unsigned swizzle;
    505 
    506       /* Determine which channels of the sources are read. */
    507       switch (inst->opcode) {
    508       case VEC4_OPCODE_PACK_BYTES:
    509       case BRW_OPCODE_DP4:
    510       case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
    511                             *           but all four of src1.
    512                             */
    513          swizzle = brw_swizzle_for_size(4);
    514          break;
    515       case BRW_OPCODE_DP3:
    516          swizzle = brw_swizzle_for_size(3);
    517          break;
    518       case BRW_OPCODE_DP2:
    519          swizzle = brw_swizzle_for_size(2);
    520          break;
    521 
    522       case VEC4_OPCODE_TO_DOUBLE:
    523       case VEC4_OPCODE_FROM_DOUBLE:
    524       case VEC4_OPCODE_PICK_LOW_32BIT:
    525       case VEC4_OPCODE_PICK_HIGH_32BIT:
    526       case VEC4_OPCODE_SET_LOW_32BIT:
    527       case VEC4_OPCODE_SET_HIGH_32BIT:
    528          swizzle = brw_swizzle_for_size(4);
    529          break;
    530 
    531       default:
    532          swizzle = brw_swizzle_for_mask(inst->dst.writemask);
    533          break;
    534       }
    535 
    536       /* Update sources' swizzles. */
    537       for (int i = 0; i < 3; i++) {
    538          if (inst->src[i].file != VGRF &&
    539              inst->src[i].file != ATTR &&
    540              inst->src[i].file != UNIFORM)
    541             continue;
    542 
    543          const unsigned new_swizzle =
    544             brw_compose_swizzle(swizzle, inst->src[i].swizzle);
    545          if (inst->src[i].swizzle != new_swizzle) {
    546             inst->src[i].swizzle = new_swizzle;
    547             progress = true;
    548          }
    549       }
    550    }
    551 
    552    if (progress)
    553       invalidate_live_intervals();
    554 
    555    return progress;
    556 }
    557 
    558 void
    559 vec4_visitor::split_uniform_registers()
    560 {
    561    /* Prior to this, uniforms have been in an array sized according to
    562     * the number of vector uniforms present, sparsely filled (so an
    563     * aggregate results in reg indices being skipped over).  Now we're
    564     * going to cut those aggregates up so each .nr index is one
    565     * vector.  The goal is to make elimination of unused uniform
    566     * components easier later.
    567     */
    568    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    569       for (int i = 0 ; i < 3; i++) {
    570 	 if (inst->src[i].file != UNIFORM)
    571 	    continue;
    572 
    573 	 assert(!inst->src[i].reladdr);
    574 
    575          inst->src[i].nr += inst->src[i].offset / 16;
    576 	 inst->src[i].offset %= 16;
    577       }
    578    }
    579 }
    580 
    581 void
    582 vec4_visitor::pack_uniform_registers()
    583 {
    584    uint8_t chans_used[this->uniforms];
    585    int new_loc[this->uniforms];
    586    int new_chan[this->uniforms];
    587 
    588    memset(chans_used, 0, sizeof(chans_used));
    589    memset(new_loc, 0, sizeof(new_loc));
    590    memset(new_chan, 0, sizeof(new_chan));
    591 
    592    /* Find which uniform vectors are actually used by the program.  We
    593     * expect unused vector elements when we've moved array access out
    594     * to pull constants, and from some GLSL code generators like wine.
    595     */
    596    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    597       unsigned readmask;
    598       switch (inst->opcode) {
    599       case VEC4_OPCODE_PACK_BYTES:
    600       case BRW_OPCODE_DP4:
    601       case BRW_OPCODE_DPH:
    602          readmask = 0xf;
    603          break;
    604       case BRW_OPCODE_DP3:
    605          readmask = 0x7;
    606          break;
    607       case BRW_OPCODE_DP2:
    608          readmask = 0x3;
    609          break;
    610       default:
    611          readmask = inst->dst.writemask;
    612          break;
    613       }
    614 
    615       for (int i = 0 ; i < 3; i++) {
    616          if (inst->src[i].file != UNIFORM)
    617             continue;
    618 
    619          assert(type_sz(inst->src[i].type) % 4 == 0);
    620          unsigned channel_size = type_sz(inst->src[i].type) / 4;
    621 
    622          int reg = inst->src[i].nr;
    623          for (int c = 0; c < 4; c++) {
    624             if (!(readmask & (1 << c)))
    625                continue;
    626 
    627             unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
    628             unsigned used = MAX2(chans_used[reg], channel * channel_size);
    629             if (used <= 4)
    630                chans_used[reg] = used;
    631             else
    632                chans_used[reg + 1] = used - 4;
    633          }
    634       }
    635 
    636       if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
    637           inst->src[0].file == UNIFORM) {
    638          assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
    639          assert(inst->src[0].subnr == 0);
    640 
    641          unsigned bytes_read = inst->src[2].ud;
    642          assert(bytes_read % 4 == 0);
    643          unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
    644 
    645          /* We just mark every register touched by a MOV_INDIRECT as being
    646           * fully used.  This ensures that it doesn't broken up piecewise by
    647           * the next part of our packing algorithm.
    648           */
    649          int reg = inst->src[0].nr;
    650          for (unsigned i = 0; i < vec4s_read; i++)
    651             chans_used[reg + i] = 4;
    652       }
    653    }
    654 
    655    int new_uniform_count = 0;
    656 
    657    /* Now, figure out a packing of the live uniform vectors into our
    658     * push constants.
    659     */
    660    for (int src = 0; src < uniforms; src++) {
    661       int size = chans_used[src];
    662 
    663       if (size == 0)
    664          continue;
    665 
    666       int dst;
    667       /* Find the lowest place we can slot this uniform in. */
    668       for (dst = 0; dst < src; dst++) {
    669          if (chans_used[dst] + size <= 4)
    670             break;
    671       }
    672 
    673       if (src == dst) {
    674          new_loc[src] = dst;
    675          new_chan[src] = 0;
    676       } else {
    677          new_loc[src] = dst;
    678          new_chan[src] = chans_used[dst];
    679 
    680          /* Move the references to the data */
    681          for (int j = 0; j < size; j++) {
    682             stage_prog_data->param[dst * 4 + new_chan[src] + j] =
    683                stage_prog_data->param[src * 4 + j];
    684          }
    685 
    686          chans_used[dst] += size;
    687          chans_used[src] = 0;
    688       }
    689 
    690       new_uniform_count = MAX2(new_uniform_count, dst + 1);
    691    }
    692 
    693    this->uniforms = new_uniform_count;
    694 
    695    /* Now, update the instructions for our repacked uniforms. */
    696    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    697       for (int i = 0 ; i < 3; i++) {
    698          int src = inst->src[i].nr;
    699 
    700          if (inst->src[i].file != UNIFORM)
    701             continue;
    702 
    703          inst->src[i].nr = new_loc[src];
    704          inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
    705                                               new_chan[src], new_chan[src]);
    706       }
    707    }
    708 }
    709 
    710 /**
    711  * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
    712  *
    713  * While GLSL IR also performs this optimization, we end up with it in
    714  * our instruction stream for a couple of reasons.  One is that we
    715  * sometimes generate silly instructions, for example in array access
    716  * where we'll generate "ADD offset, index, base" even if base is 0.
    717  * The other is that GLSL IR's constant propagation doesn't track the
    718  * components of aggregates, so some VS patterns (initialize matrix to
    719  * 0, accumulate in vertex blending factors) end up breaking down to
    720  * instructions involving 0.
    721  */
    722 bool
    723 vec4_visitor::opt_algebraic()
    724 {
    725    bool progress = false;
    726 
    727    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    728       switch (inst->opcode) {
    729       case BRW_OPCODE_MOV:
    730          if (inst->src[0].file != IMM)
    731             break;
    732 
    733          if (inst->saturate) {
    734             if (inst->dst.type != inst->src[0].type)
    735                assert(!"unimplemented: saturate mixed types");
    736 
    737             if (brw_saturate_immediate(inst->dst.type,
    738                                        &inst->src[0].as_brw_reg())) {
    739                inst->saturate = false;
    740                progress = true;
    741             }
    742          }
    743          break;
    744 
    745       case VEC4_OPCODE_UNPACK_UNIFORM:
    746          if (inst->src[0].file != UNIFORM) {
    747             inst->opcode = BRW_OPCODE_MOV;
    748             progress = true;
    749          }
    750          break;
    751 
    752       case BRW_OPCODE_ADD:
    753 	 if (inst->src[1].is_zero()) {
    754 	    inst->opcode = BRW_OPCODE_MOV;
    755 	    inst->src[1] = src_reg();
    756 	    progress = true;
    757 	 }
    758 	 break;
    759 
    760       case BRW_OPCODE_MUL:
    761 	 if (inst->src[1].is_zero()) {
    762 	    inst->opcode = BRW_OPCODE_MOV;
    763 	    switch (inst->src[0].type) {
    764 	    case BRW_REGISTER_TYPE_F:
    765 	       inst->src[0] = brw_imm_f(0.0f);
    766 	       break;
    767 	    case BRW_REGISTER_TYPE_D:
    768 	       inst->src[0] = brw_imm_d(0);
    769 	       break;
    770 	    case BRW_REGISTER_TYPE_UD:
    771 	       inst->src[0] = brw_imm_ud(0u);
    772 	       break;
    773 	    default:
    774 	       unreachable("not reached");
    775 	    }
    776 	    inst->src[1] = src_reg();
    777 	    progress = true;
    778 	 } else if (inst->src[1].is_one()) {
    779 	    inst->opcode = BRW_OPCODE_MOV;
    780 	    inst->src[1] = src_reg();
    781 	    progress = true;
    782          } else if (inst->src[1].is_negative_one()) {
    783             inst->opcode = BRW_OPCODE_MOV;
    784             inst->src[0].negate = !inst->src[0].negate;
    785             inst->src[1] = src_reg();
    786             progress = true;
    787 	 }
    788 	 break;
    789       case BRW_OPCODE_CMP:
    790          if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
    791              inst->src[0].abs &&
    792              inst->src[0].negate &&
    793              inst->src[1].is_zero()) {
    794             inst->src[0].abs = false;
    795             inst->src[0].negate = false;
    796             inst->conditional_mod = BRW_CONDITIONAL_Z;
    797             progress = true;
    798             break;
    799          }
    800          break;
    801       case SHADER_OPCODE_BROADCAST:
    802          if (is_uniform(inst->src[0]) ||
    803              inst->src[1].is_zero()) {
    804             inst->opcode = BRW_OPCODE_MOV;
    805             inst->src[1] = src_reg();
    806             inst->force_writemask_all = true;
    807             progress = true;
    808          }
    809          break;
    810 
    811       default:
    812 	 break;
    813       }
    814    }
    815 
    816    if (progress)
    817       invalidate_live_intervals();
    818 
    819    return progress;
    820 }
    821 
    822 /**
    823  * Only a limited number of hardware registers may be used for push
    824  * constants, so this turns access to the overflowed constants into
    825  * pull constants.
    826  */
    827 void
    828 vec4_visitor::move_push_constants_to_pull_constants()
    829 {
    830    int pull_constant_loc[this->uniforms];
    831 
    832    /* Only allow 32 registers (256 uniform components) as push constants,
    833     * which is the limit on gen6.
    834     *
    835     * If changing this value, note the limitation about total_regs in
    836     * brw_curbe.c.
    837     */
    838    int max_uniform_components = 32 * 8;
    839    if (this->uniforms * 4 <= max_uniform_components)
    840       return;
    841 
    842    /* Make some sort of choice as to which uniforms get sent to pull
    843     * constants.  We could potentially do something clever here like
    844     * look for the most infrequently used uniform vec4s, but leave
    845     * that for later.
    846     */
    847    for (int i = 0; i < this->uniforms * 4; i += 4) {
    848       pull_constant_loc[i / 4] = -1;
    849 
    850       if (i >= max_uniform_components) {
    851          const gl_constant_value **values = &stage_prog_data->param[i];
    852 
    853          /* Try to find an existing copy of this uniform in the pull
    854           * constants if it was part of an array access already.
    855           */
    856          for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
    857             int matches;
    858 
    859             for (matches = 0; matches < 4; matches++) {
    860                if (stage_prog_data->pull_param[j + matches] != values[matches])
    861                   break;
    862             }
    863 
    864             if (matches == 4) {
    865                pull_constant_loc[i / 4] = j / 4;
    866                break;
    867             }
    868          }
    869 
    870          if (pull_constant_loc[i / 4] == -1) {
    871             assert(stage_prog_data->nr_pull_params % 4 == 0);
    872             pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
    873 
    874             for (int j = 0; j < 4; j++) {
    875                stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
    876                   values[j];
    877             }
    878          }
    879       }
    880    }
    881 
    882    /* Now actually rewrite usage of the things we've moved to pull
    883     * constants.
    884     */
    885    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
    886       for (int i = 0 ; i < 3; i++) {
    887          if (inst->src[i].file != UNIFORM ||
    888              pull_constant_loc[inst->src[i].nr] == -1)
    889             continue;
    890 
    891          int uniform = inst->src[i].nr;
    892 
    893          const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
    894             glsl_type::dvec4_type : glsl_type::vec4_type;
    895          dst_reg temp = dst_reg(this, temp_type);
    896 
    897          emit_pull_constant_load(block, inst, temp, inst->src[i],
    898                                  pull_constant_loc[uniform], src_reg());
    899 
    900          inst->src[i].file = temp.file;
    901          inst->src[i].nr = temp.nr;
    902          inst->src[i].offset %= 16;
    903          inst->src[i].reladdr = NULL;
    904       }
    905    }
    906 
    907    /* Repack push constants to remove the now-unused ones. */
    908    pack_uniform_registers();
    909 }
    910 
    911 /* Conditions for which we want to avoid setting the dependency control bits */
    912 bool
    913 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
    914 {
    915 #define IS_DWORD(reg) \
    916    (reg.type == BRW_REGISTER_TYPE_UD || \
    917     reg.type == BRW_REGISTER_TYPE_D)
    918 
    919 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
    920 
    921    /* From the Cherryview and Broadwell PRMs:
    922     *
    923     * "When source or destination datatype is 64b or operation is integer DWord
    924     * multiply, DepCtrl must not be used."
    925     *
    926     * SKL PRMs don't include this restriction, however, gen7 seems to be
    927     * affected, at least by the 64b restriction, since DepCtrl with double
    928     * precision instructions seems to produce GPU hangs in some cases.
    929     */
    930    if (devinfo->gen == 8 || devinfo->is_broxton) {
    931       if (inst->opcode == BRW_OPCODE_MUL &&
    932          IS_DWORD(inst->src[0]) &&
    933          IS_DWORD(inst->src[1]))
    934          return true;
    935    }
    936 
    937    if (devinfo->gen >= 7 && devinfo->gen <= 8) {
    938       if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
    939           IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
    940       return true;
    941    }
    942 
    943 #undef IS_64BIT
    944 #undef IS_DWORD
    945 
    946    if (devinfo->gen >= 8) {
    947       if (inst->opcode == BRW_OPCODE_F32TO16)
    948          return true;
    949    }
    950 
    951    /*
    952     * mlen:
    953     * In the presence of send messages, totally interrupt dependency
    954     * control. They're long enough that the chance of dependency
    955     * control around them just doesn't matter.
    956     *
    957     * predicate:
    958     * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
    959     * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
    960     * completes the scoreboard clear must have a non-zero execution mask. This
    961     * means, if any kind of predication can change the execution mask or channel
    962     * enable of the last instruction, the optimization must be avoided. This is
    963     * to avoid instructions being shot down the pipeline when no writes are
    964     * required.
    965     *
    966     * math:
    967     * Dependency control does not work well over math instructions.
    968     * NB: Discovered empirically
    969     */
    970    return (inst->mlen || inst->predicate || inst->is_math());
    971 }
    972 
    973 /**
    974  * Sets the dependency control fields on instructions after register
    975  * allocation and before the generator is run.
    976  *
    977  * When you have a sequence of instructions like:
    978  *
    979  * DP4 temp.x vertex uniform[0]
    980  * DP4 temp.y vertex uniform[0]
    981  * DP4 temp.z vertex uniform[0]
    982  * DP4 temp.w vertex uniform[0]
    983  *
    984  * The hardware doesn't know that it can actually run the later instructions
    985  * while the previous ones are in flight, producing stalls.  However, we have
    986  * manual fields we can set in the instructions that let it do so.
    987  */
    988 void
    989 vec4_visitor::opt_set_dependency_control()
    990 {
    991    vec4_instruction *last_grf_write[BRW_MAX_GRF];
    992    uint8_t grf_channels_written[BRW_MAX_GRF];
    993    vec4_instruction *last_mrf_write[BRW_MAX_GRF];
    994    uint8_t mrf_channels_written[BRW_MAX_GRF];
    995 
    996    assert(prog_data->total_grf ||
    997           !"Must be called after register allocation");
    998 
    999    foreach_block (block, cfg) {
   1000       memset(last_grf_write, 0, sizeof(last_grf_write));
   1001       memset(last_mrf_write, 0, sizeof(last_mrf_write));
   1002 
   1003       foreach_inst_in_block (vec4_instruction, inst, block) {
   1004          /* If we read from a register that we were doing dependency control
   1005           * on, don't do dependency control across the read.
   1006           */
   1007          for (int i = 0; i < 3; i++) {
   1008             int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
   1009             if (inst->src[i].file == VGRF) {
   1010                last_grf_write[reg] = NULL;
   1011             } else if (inst->src[i].file == FIXED_GRF) {
   1012                memset(last_grf_write, 0, sizeof(last_grf_write));
   1013                break;
   1014             }
   1015             assert(inst->src[i].file != MRF);
   1016          }
   1017 
   1018          if (is_dep_ctrl_unsafe(inst)) {
   1019             memset(last_grf_write, 0, sizeof(last_grf_write));
   1020             memset(last_mrf_write, 0, sizeof(last_mrf_write));
   1021             continue;
   1022          }
   1023 
   1024          /* Now, see if we can do dependency control for this instruction
   1025           * against a previous one writing to its destination.
   1026           */
   1027          int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
   1028          if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
   1029             if (last_grf_write[reg] &&
   1030                 last_grf_write[reg]->dst.offset == inst->dst.offset &&
   1031                 !(inst->dst.writemask & grf_channels_written[reg])) {
   1032                last_grf_write[reg]->no_dd_clear = true;
   1033                inst->no_dd_check = true;
   1034             } else {
   1035                grf_channels_written[reg] = 0;
   1036             }
   1037 
   1038             last_grf_write[reg] = inst;
   1039             grf_channels_written[reg] |= inst->dst.writemask;
   1040          } else if (inst->dst.file == MRF) {
   1041             if (last_mrf_write[reg] &&
   1042                 last_mrf_write[reg]->dst.offset == inst->dst.offset &&
   1043                 !(inst->dst.writemask & mrf_channels_written[reg])) {
   1044                last_mrf_write[reg]->no_dd_clear = true;
   1045                inst->no_dd_check = true;
   1046             } else {
   1047                mrf_channels_written[reg] = 0;
   1048             }
   1049 
   1050             last_mrf_write[reg] = inst;
   1051             mrf_channels_written[reg] |= inst->dst.writemask;
   1052          }
   1053       }
   1054    }
   1055 }
   1056 
   1057 bool
   1058 vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
   1059                                 int dst_writemask,
   1060                                 int swizzle,
   1061                                 int swizzle_mask)
   1062 {
   1063    /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
   1064     * are not allowed.
   1065     */
   1066    if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
   1067       return false;
   1068 
   1069    if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
   1070       return false;
   1071 
   1072    /* If this instruction sets anything not referenced by swizzle, then we'd
   1073     * totally break it when we reswizzle.
   1074     */
   1075    if (dst.writemask & ~swizzle_mask)
   1076       return false;
   1077 
   1078    if (mlen > 0)
   1079       return false;
   1080 
   1081    for (int i = 0; i < 3; i++) {
   1082       if (src[i].is_accumulator())
   1083          return false;
   1084    }
   1085 
   1086    return true;
   1087 }
   1088 
   1089 /**
   1090  * For any channels in the swizzle's source that were populated by this
   1091  * instruction, rewrite the instruction to put the appropriate result directly
   1092  * in those channels.
   1093  *
   1094  * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
   1095  */
   1096 void
   1097 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
   1098 {
   1099    /* Destination write mask doesn't correspond to source swizzle for the dot
   1100     * product and pack_bytes instructions.
   1101     */
   1102    if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
   1103        opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
   1104        opcode != VEC4_OPCODE_PACK_BYTES) {
   1105       for (int i = 0; i < 3; i++) {
   1106          if (src[i].file == BAD_FILE || src[i].file == IMM)
   1107             continue;
   1108 
   1109          src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
   1110       }
   1111    }
   1112 
   1113    /* Apply the specified swizzle and writemask to the original mask of
   1114     * written components.
   1115     */
   1116    dst.writemask = dst_writemask &
   1117                    brw_apply_swizzle_to_mask(swizzle, dst.writemask);
   1118 }
   1119 
   1120 /*
   1121  * Tries to reduce extra MOV instructions by taking temporary GRFs that get
   1122  * just written and then MOVed into another reg and making the original write
   1123  * of the GRF write directly to the final destination instead.
   1124  */
   1125 bool
   1126 vec4_visitor::opt_register_coalesce()
   1127 {
   1128    bool progress = false;
   1129    int next_ip = 0;
   1130 
   1131    calculate_live_intervals();
   1132 
   1133    foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
   1134       int ip = next_ip;
   1135       next_ip++;
   1136 
   1137       if (inst->opcode != BRW_OPCODE_MOV ||
   1138           (inst->dst.file != VGRF && inst->dst.file != MRF) ||
   1139 	  inst->predicate ||
   1140 	  inst->src[0].file != VGRF ||
   1141 	  inst->dst.type != inst->src[0].type ||
   1142 	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
   1143 	 continue;
   1144 
   1145       /* Remove no-op MOVs */
   1146       if (inst->dst.file == inst->src[0].file &&
   1147           inst->dst.nr == inst->src[0].nr &&
   1148           inst->dst.offset == inst->src[0].offset) {
   1149          bool is_nop_mov = true;
   1150 
   1151          for (unsigned c = 0; c < 4; c++) {
   1152             if ((inst->dst.writemask & (1 << c)) == 0)
   1153                continue;
   1154 
   1155             if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
   1156                is_nop_mov = false;
   1157                break;
   1158             }
   1159          }
   1160 
   1161          if (is_nop_mov) {
   1162             inst->remove(block);
   1163             progress = true;
   1164             continue;
   1165          }
   1166       }
   1167 
   1168       bool to_mrf = (inst->dst.file == MRF);
   1169 
   1170       /* Can't coalesce this GRF if someone else was going to
   1171        * read it later.
   1172        */
   1173       if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
   1174 	 continue;
   1175 
   1176       /* We need to check interference with the final destination between this
   1177        * instruction and the earliest instruction involved in writing the GRF
   1178        * we're eliminating.  To do that, keep track of which of our source
   1179        * channels we've seen initialized.
   1180        */
   1181       const unsigned chans_needed =
   1182          brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
   1183                                        inst->dst.writemask);
   1184       unsigned chans_remaining = chans_needed;
   1185 
   1186       /* Now walk up the instruction stream trying to see if we can rewrite
   1187        * everything writing to the temporary to write into the destination
   1188        * instead.
   1189        */
   1190       vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
   1191       foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
   1192                                                   inst) {
   1193          _scan_inst = scan_inst;
   1194 
   1195          if (regions_overlap(inst->src[0], inst->size_read(0),
   1196                              scan_inst->dst, scan_inst->size_written)) {
   1197             /* Found something writing to the reg we want to coalesce away. */
   1198             if (to_mrf) {
   1199                /* SEND instructions can't have MRF as a destination. */
   1200                if (scan_inst->mlen)
   1201                   break;
   1202 
   1203                if (devinfo->gen == 6) {
   1204                   /* gen6 math instructions must have the destination be
   1205                    * VGRF, so no compute-to-MRF for them.
   1206                    */
   1207                   if (scan_inst->is_math()) {
   1208                      break;
   1209                   }
   1210                }
   1211             }
   1212 
   1213             /* This doesn't handle saturation on the instruction we
   1214              * want to coalesce away if the register types do not match.
   1215              * But if scan_inst is a non type-converting 'mov', we can fix
   1216              * the types later.
   1217              */
   1218             if (inst->saturate &&
   1219                 inst->dst.type != scan_inst->dst.type &&
   1220                 !(scan_inst->opcode == BRW_OPCODE_MOV &&
   1221                   scan_inst->dst.type == scan_inst->src[0].type))
   1222                break;
   1223 
   1224             /* Only allow coalescing between registers of the same type size.
   1225              * Otherwise we would need to make the pass aware of the fact that
   1226              * channel sizes are different for single and double precision.
   1227              */
   1228             if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
   1229                break;
   1230 
   1231             /* Check that scan_inst writes the same amount of data as the
   1232              * instruction, otherwise coalescing would lead to writing a
   1233              * different (larger or smaller) region of the destination
   1234              */
   1235             if (scan_inst->size_written != inst->size_written)
   1236                break;
   1237 
   1238             /* If we can't handle the swizzle, bail. */
   1239             if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
   1240                                           inst->src[0].swizzle,
   1241                                           chans_needed)) {
   1242                break;
   1243             }
   1244 
   1245             /* This only handles coalescing writes of 8 channels (1 register
   1246              * for single-precision and 2 registers for double-precision)
   1247              * starting at the source offset of the copy instruction.
   1248              */
   1249             if (DIV_ROUND_UP(scan_inst->size_written,
   1250                              type_sz(scan_inst->dst.type)) > 8 ||
   1251                 scan_inst->dst.offset != inst->src[0].offset)
   1252                break;
   1253 
   1254 	    /* Mark which channels we found unconditional writes for. */
   1255 	    if (!scan_inst->predicate)
   1256                chans_remaining &= ~scan_inst->dst.writemask;
   1257 
   1258 	    if (chans_remaining == 0)
   1259 	       break;
   1260 	 }
   1261 
   1262          /* You can't read from an MRF, so if someone else reads our MRF's
   1263           * source GRF that we wanted to rewrite, that stops us.  If it's a
   1264           * GRF we're trying to coalesce to, we don't actually handle
   1265           * rewriting sources so bail in that case as well.
   1266           */
   1267 	 bool interfered = false;
   1268 	 for (int i = 0; i < 3; i++) {
   1269             if (regions_overlap(inst->src[0], inst->size_read(0),
   1270                                 scan_inst->src[i], scan_inst->size_read(i)))
   1271 	       interfered = true;
   1272 	 }
   1273 	 if (interfered)
   1274 	    break;
   1275 
   1276          /* If somebody else writes the same channels of our destination here,
   1277           * we can't coalesce before that.
   1278           */
   1279          if (regions_overlap(inst->dst, inst->size_written,
   1280                              scan_inst->dst, scan_inst->size_written) &&
   1281              (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
   1282             break;
   1283          }
   1284 
   1285          /* Check for reads of the register we're trying to coalesce into.  We
   1286           * can't go rewriting instructions above that to put some other value
   1287           * in the register instead.
   1288           */
   1289          if (to_mrf && scan_inst->mlen > 0) {
   1290             if (inst->dst.nr >= scan_inst->base_mrf &&
   1291                 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) {
   1292                break;
   1293             }
   1294          } else {
   1295             for (int i = 0; i < 3; i++) {
   1296                if (regions_overlap(inst->dst, inst->size_written,
   1297                                    scan_inst->src[i], scan_inst->size_read(i)))
   1298                   interfered = true;
   1299             }
   1300             if (interfered)
   1301                break;
   1302          }
   1303       }
   1304 
   1305       if (chans_remaining == 0) {
   1306 	 /* If we've made it here, we have an MOV we want to coalesce out, and
   1307 	  * a scan_inst pointing to the earliest instruction involved in
   1308 	  * computing the value.  Now go rewrite the instruction stream
   1309 	  * between the two.
   1310 	  */
   1311          vec4_instruction *scan_inst = _scan_inst;
   1312 	 while (scan_inst != inst) {
   1313 	    if (scan_inst->dst.file == VGRF &&
   1314                 scan_inst->dst.nr == inst->src[0].nr &&
   1315 		scan_inst->dst.offset == inst->src[0].offset) {
   1316                scan_inst->reswizzle(inst->dst.writemask,
   1317                                     inst->src[0].swizzle);
   1318 	       scan_inst->dst.file = inst->dst.file;
   1319                scan_inst->dst.nr = inst->dst.nr;
   1320 	       scan_inst->dst.offset = inst->dst.offset;
   1321                if (inst->saturate &&
   1322                    inst->dst.type != scan_inst->dst.type) {
   1323                   /* If we have reached this point, scan_inst is a non
   1324                    * type-converting 'mov' and we can modify its register types
   1325                    * to match the ones in inst. Otherwise, we could have an
   1326                    * incorrect saturation result.
   1327                    */
   1328                   scan_inst->dst.type = inst->dst.type;
   1329                   scan_inst->src[0].type = inst->src[0].type;
   1330                }
   1331 	       scan_inst->saturate |= inst->saturate;
   1332 	    }
   1333 	    scan_inst = (vec4_instruction *)scan_inst->next;
   1334 	 }
   1335 	 inst->remove(block);
   1336 	 progress = true;
   1337       }
   1338    }
   1339 
   1340    if (progress)
   1341       invalidate_live_intervals();
   1342 
   1343    return progress;
   1344 }
   1345 
   1346 /**
   1347  * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
   1348  * flow.  We could probably do better here with some form of divergence
   1349  * analysis.
   1350  */
   1351 bool
   1352 vec4_visitor::eliminate_find_live_channel()
   1353 {
   1354    bool progress = false;
   1355    unsigned depth = 0;
   1356 
   1357    if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
   1358       /* The optimization below assumes that channel zero is live on thread
   1359        * dispatch, which may not be the case if the fixed function dispatches
   1360        * threads sparsely.
   1361        */
   1362       return false;
   1363    }
   1364 
   1365    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
   1366       switch (inst->opcode) {
   1367       case BRW_OPCODE_IF:
   1368       case BRW_OPCODE_DO:
   1369          depth++;
   1370          break;
   1371 
   1372       case BRW_OPCODE_ENDIF:
   1373       case BRW_OPCODE_WHILE:
   1374          depth--;
   1375          break;
   1376 
   1377       case SHADER_OPCODE_FIND_LIVE_CHANNEL:
   1378          if (depth == 0) {
   1379             inst->opcode = BRW_OPCODE_MOV;
   1380             inst->src[0] = brw_imm_d(0);
   1381             inst->force_writemask_all = true;
   1382             progress = true;
   1383          }
   1384          break;
   1385 
   1386       default:
   1387          break;
   1388       }
   1389    }
   1390 
   1391    return progress;
   1392 }
   1393 
   1394 /**
   1395  * Splits virtual GRFs requesting more than one contiguous physical register.
   1396  *
   1397  * We initially create large virtual GRFs for temporary structures, arrays,
   1398  * and matrices, so that the visitor functions can add offsets to work their
   1399  * way down to the actual member being accessed.  But when it comes to
   1400  * optimization, we'd like to treat each register as individual storage if
   1401  * possible.
   1402  *
   1403  * So far, the only thing that might prevent splitting is a send message from
   1404  * a GRF on IVB.
   1405  */
   1406 void
   1407 vec4_visitor::split_virtual_grfs()
   1408 {
   1409    int num_vars = this->alloc.count;
   1410    int new_virtual_grf[num_vars];
   1411    bool split_grf[num_vars];
   1412 
   1413    memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
   1414 
   1415    /* Try to split anything > 0 sized. */
   1416    for (int i = 0; i < num_vars; i++) {
   1417       split_grf[i] = this->alloc.sizes[i] != 1;
   1418    }
   1419 
   1420    /* Check that the instructions are compatible with the registers we're trying
   1421     * to split.
   1422     */
   1423    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
   1424       if (inst->dst.file == VGRF && regs_written(inst) > 1)
   1425          split_grf[inst->dst.nr] = false;
   1426 
   1427       for (int i = 0; i < 3; i++) {
   1428          if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
   1429             split_grf[inst->src[i].nr] = false;
   1430       }
   1431    }
   1432 
   1433    /* Allocate new space for split regs.  Note that the virtual
   1434     * numbers will be contiguous.
   1435     */
   1436    for (int i = 0; i < num_vars; i++) {
   1437       if (!split_grf[i])
   1438          continue;
   1439 
   1440       new_virtual_grf[i] = alloc.allocate(1);
   1441       for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
   1442          unsigned reg = alloc.allocate(1);
   1443          assert(reg == new_virtual_grf[i] + j - 1);
   1444          (void) reg;
   1445       }
   1446       this->alloc.sizes[i] = 1;
   1447    }
   1448 
   1449    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
   1450       if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
   1451           inst->dst.offset / REG_SIZE != 0) {
   1452          inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
   1453                          inst->dst.offset / REG_SIZE - 1);
   1454          inst->dst.offset %= REG_SIZE;
   1455       }
   1456       for (int i = 0; i < 3; i++) {
   1457          if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
   1458              inst->src[i].offset / REG_SIZE != 0) {
   1459             inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
   1460                                 inst->src[i].offset / REG_SIZE - 1);
   1461             inst->src[i].offset %= REG_SIZE;
   1462          }
   1463       }
   1464    }
   1465    invalidate_live_intervals();
   1466 }
   1467 
   1468 void
   1469 vec4_visitor::dump_instruction(backend_instruction *be_inst)
   1470 {
   1471    dump_instruction(be_inst, stderr);
   1472 }
   1473 
   1474 void
   1475 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
   1476 {
   1477    vec4_instruction *inst = (vec4_instruction *)be_inst;
   1478 
   1479    if (inst->predicate) {
   1480       fprintf(file, "(%cf0.%d%s) ",
   1481               inst->predicate_inverse ? '-' : '+',
   1482               inst->flag_subreg,
   1483               pred_ctrl_align16[inst->predicate]);
   1484    }
   1485 
   1486    fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
   1487            inst->exec_size);
   1488    if (inst->saturate)
   1489       fprintf(file, ".sat");
   1490    if (inst->conditional_mod) {
   1491       fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
   1492       if (!inst->predicate &&
   1493           (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
   1494                                 inst->opcode != BRW_OPCODE_IF &&
   1495                                 inst->opcode != BRW_OPCODE_WHILE))) {
   1496          fprintf(file, ".f0.%d", inst->flag_subreg);
   1497       }
   1498    }
   1499    fprintf(file, " ");
   1500 
   1501    switch (inst->dst.file) {
   1502    case VGRF:
   1503       fprintf(file, "vgrf%d", inst->dst.nr);
   1504       break;
   1505    case FIXED_GRF:
   1506       fprintf(file, "g%d", inst->dst.nr);
   1507       break;
   1508    case MRF:
   1509       fprintf(file, "m%d", inst->dst.nr);
   1510       break;
   1511    case ARF:
   1512       switch (inst->dst.nr) {
   1513       case BRW_ARF_NULL:
   1514          fprintf(file, "null");
   1515          break;
   1516       case BRW_ARF_ADDRESS:
   1517          fprintf(file, "a0.%d", inst->dst.subnr);
   1518          break;
   1519       case BRW_ARF_ACCUMULATOR:
   1520          fprintf(file, "acc%d", inst->dst.subnr);
   1521          break;
   1522       case BRW_ARF_FLAG:
   1523          fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
   1524          break;
   1525       default:
   1526          fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
   1527          break;
   1528       }
   1529       break;
   1530    case BAD_FILE:
   1531       fprintf(file, "(null)");
   1532       break;
   1533    case IMM:
   1534    case ATTR:
   1535    case UNIFORM:
   1536       unreachable("not reached");
   1537    }
   1538    if (inst->dst.offset ||
   1539        (inst->dst.file == VGRF &&
   1540         alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
   1541       const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
   1542       fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
   1543               inst->dst.offset % reg_size);
   1544    }
   1545    if (inst->dst.writemask != WRITEMASK_XYZW) {
   1546       fprintf(file, ".");
   1547       if (inst->dst.writemask & 1)
   1548          fprintf(file, "x");
   1549       if (inst->dst.writemask & 2)
   1550          fprintf(file, "y");
   1551       if (inst->dst.writemask & 4)
   1552          fprintf(file, "z");
   1553       if (inst->dst.writemask & 8)
   1554          fprintf(file, "w");
   1555    }
   1556    fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
   1557 
   1558    if (inst->src[0].file != BAD_FILE)
   1559       fprintf(file, ", ");
   1560 
   1561    for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
   1562       if (inst->src[i].negate)
   1563          fprintf(file, "-");
   1564       if (inst->src[i].abs)
   1565          fprintf(file, "|");
   1566       switch (inst->src[i].file) {
   1567       case VGRF:
   1568          fprintf(file, "vgrf%d", inst->src[i].nr);
   1569          break;
   1570       case FIXED_GRF:
   1571          fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
   1572          break;
   1573       case ATTR:
   1574          fprintf(file, "attr%d", inst->src[i].nr);
   1575          break;
   1576       case UNIFORM:
   1577          fprintf(file, "u%d", inst->src[i].nr);
   1578          break;
   1579       case IMM:
   1580          switch (inst->src[i].type) {
   1581          case BRW_REGISTER_TYPE_F:
   1582             fprintf(file, "%fF", inst->src[i].f);
   1583             break;
   1584          case BRW_REGISTER_TYPE_DF:
   1585             fprintf(file, "%fDF", inst->src[i].df);
   1586             break;
   1587          case BRW_REGISTER_TYPE_D:
   1588             fprintf(file, "%dD", inst->src[i].d);
   1589             break;
   1590          case BRW_REGISTER_TYPE_UD:
   1591             fprintf(file, "%uU", inst->src[i].ud);
   1592             break;
   1593          case BRW_REGISTER_TYPE_VF:
   1594             fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
   1595                     brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
   1596                     brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
   1597                     brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
   1598                     brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
   1599             break;
   1600          default:
   1601             fprintf(file, "???");
   1602             break;
   1603          }
   1604          break;
   1605       case ARF:
   1606          switch (inst->src[i].nr) {
   1607          case BRW_ARF_NULL:
   1608             fprintf(file, "null");
   1609             break;
   1610          case BRW_ARF_ADDRESS:
   1611             fprintf(file, "a0.%d", inst->src[i].subnr);
   1612             break;
   1613          case BRW_ARF_ACCUMULATOR:
   1614             fprintf(file, "acc%d", inst->src[i].subnr);
   1615             break;
   1616          case BRW_ARF_FLAG:
   1617             fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
   1618             break;
   1619          default:
   1620             fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
   1621             break;
   1622          }
   1623          break;
   1624       case BAD_FILE:
   1625          fprintf(file, "(null)");
   1626          break;
   1627       case MRF:
   1628          unreachable("not reached");
   1629       }
   1630 
   1631       if (inst->src[i].offset ||
   1632           (inst->src[i].file == VGRF &&
   1633            alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
   1634          const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
   1635          fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
   1636                  inst->src[i].offset % reg_size);
   1637       }
   1638 
   1639       if (inst->src[i].file != IMM) {
   1640          static const char *chans[4] = {"x", "y", "z", "w"};
   1641          fprintf(file, ".");
   1642          for (int c = 0; c < 4; c++) {
   1643             fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
   1644          }
   1645       }
   1646 
   1647       if (inst->src[i].abs)
   1648          fprintf(file, "|");
   1649 
   1650       if (inst->src[i].file != IMM) {
   1651          fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
   1652       }
   1653 
   1654       if (i < 2 && inst->src[i + 1].file != BAD_FILE)
   1655          fprintf(file, ", ");
   1656    }
   1657 
   1658    if (inst->force_writemask_all)
   1659       fprintf(file, " NoMask");
   1660 
   1661    if (inst->exec_size != 8)
   1662       fprintf(file, " group%d", inst->group);
   1663 
   1664    fprintf(file, "\n");
   1665 }
   1666 
   1667 
   1668 static inline struct brw_reg
   1669 attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
   1670 {
   1671    struct brw_reg reg;
   1672 
   1673    unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
   1674    if (interleaved) {
   1675       reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
   1676    } else {
   1677       reg = brw_vecn_grf(width, attr, 0);
   1678    }
   1679 
   1680    reg.type = type;
   1681    return reg;
   1682 }
   1683 
   1684 
   1685 /**
   1686  * Replace each register of type ATTR in this->instructions with a reference
   1687  * to a fixed HW register.
   1688  *
   1689  * If interleaved is true, then each attribute takes up half a register, with
   1690  * register N containing attribute 2*N in its first half and attribute 2*N+1
   1691  * in its second half (this corresponds to the payload setup used by geometry
   1692  * shaders in "single" or "dual instanced" dispatch mode).  If interleaved is
   1693  * false, then each attribute takes up a whole register, with register N
   1694  * containing attribute N (this corresponds to the payload setup used by
   1695  * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
   1696  */
   1697 void
   1698 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
   1699                                           bool interleaved)
   1700 {
   1701    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
   1702       for (int i = 0; i < 3; i++) {
   1703          if (inst->src[i].file != ATTR)
   1704             continue;
   1705 
   1706          int grf = attribute_map[inst->src[i].nr +
   1707                                  inst->src[i].offset / REG_SIZE];
   1708          assert(inst->src[i].offset % REG_SIZE == 0);
   1709 
   1710          /* All attributes used in the shader need to have been assigned a
   1711           * hardware register by the caller
   1712           */
   1713          assert(grf != 0);
   1714 
   1715          struct brw_reg reg =
   1716             attribute_to_hw_reg(grf, inst->src[i].type, interleaved);
   1717          reg.swizzle = inst->src[i].swizzle;
   1718          if (inst->src[i].abs)
   1719             reg = brw_abs(reg);
   1720          if (inst->src[i].negate)
   1721             reg = negate(reg);
   1722 
   1723          inst->src[i] = reg;
   1724       }
   1725    }
   1726 }
   1727 
   1728 int
   1729 vec4_vs_visitor::setup_attributes(int payload_reg)
   1730 {
   1731    int nr_attributes;
   1732    int attribute_map[VERT_ATTRIB_MAX + 2];
   1733    memset(attribute_map, 0, sizeof(attribute_map));
   1734 
   1735    nr_attributes = 0;
   1736    GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
   1737    while (vs_inputs) {
   1738       GLuint first = ffsll(vs_inputs) - 1;
   1739       int needed_slots =
   1740          (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) ? 2 : 1;
   1741       for (int c = 0; c < needed_slots; c++) {
   1742          attribute_map[first + c] = payload_reg + nr_attributes;
   1743          nr_attributes++;
   1744          vs_inputs &= ~BITFIELD64_BIT(first + c);
   1745       }
   1746    }
   1747 
   1748    /* VertexID is stored by the VF as the last vertex element, but we
   1749     * don't represent it with a flag in inputs_read, so we call it
   1750     * VERT_ATTRIB_MAX.
   1751     */
   1752    if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
   1753        vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) {
   1754       attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
   1755       nr_attributes++;
   1756    }
   1757 
   1758    if (vs_prog_data->uses_drawid) {
   1759       attribute_map[VERT_ATTRIB_MAX + 1] = payload_reg + nr_attributes;
   1760       nr_attributes++;
   1761    }
   1762 
   1763    lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
   1764 
   1765    return payload_reg + vs_prog_data->nr_attribute_slots;
   1766 }
   1767 
   1768 int
   1769 vec4_visitor::setup_uniforms(int reg)
   1770 {
   1771    prog_data->base.dispatch_grf_start_reg = reg;
   1772 
   1773    /* The pre-gen6 VS requires that some push constants get loaded no
   1774     * matter what, or the GPU would hang.
   1775     */
   1776    if (devinfo->gen < 6 && this->uniforms == 0) {
   1777       stage_prog_data->param =
   1778          reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
   1779       for (unsigned int i = 0; i < 4; i++) {
   1780 	 unsigned int slot = this->uniforms * 4 + i;
   1781 	 static gl_constant_value zero = { 0.0 };
   1782 	 stage_prog_data->param[slot] = &zero;
   1783       }
   1784 
   1785       this->uniforms++;
   1786       reg++;
   1787    } else {
   1788       reg += ALIGN(uniforms, 2) / 2;
   1789    }
   1790 
   1791    stage_prog_data->nr_params = this->uniforms * 4;
   1792 
   1793    prog_data->base.curb_read_length =
   1794       reg - prog_data->base.dispatch_grf_start_reg;
   1795 
   1796    return reg;
   1797 }
   1798 
   1799 void
   1800 vec4_vs_visitor::setup_payload(void)
   1801 {
   1802    int reg = 0;
   1803 
   1804    /* The payload always contains important data in g0, which contains
   1805     * the URB handles that are passed on to the URB write at the end
   1806     * of the thread.  So, we always start push constants at g1.
   1807     */
   1808    reg++;
   1809 
   1810    reg = setup_uniforms(reg);
   1811 
   1812    reg = setup_attributes(reg);
   1813 
   1814    this->first_non_payload_grf = reg;
   1815 }
   1816 
   1817 bool
   1818 vec4_visitor::lower_minmax()
   1819 {
   1820    assert(devinfo->gen < 6);
   1821 
   1822    bool progress = false;
   1823 
   1824    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
   1825       const vec4_builder ibld(this, block, inst);
   1826 
   1827       if (inst->opcode == BRW_OPCODE_SEL &&
   1828           inst->predicate == BRW_PREDICATE_NONE) {
   1829          /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
   1830           *        the original SEL.L/GE instruction
   1831           */
   1832          ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
   1833                   inst->conditional_mod);
   1834          inst->predicate = BRW_PREDICATE_NORMAL;
   1835          inst->conditional_mod = BRW_CONDITIONAL_NONE;
   1836 
   1837          progress = true;
   1838       }
   1839    }
   1840 
   1841    if (progress)
   1842       invalidate_live_intervals();
   1843 
   1844    return progress;
   1845 }
   1846 
   1847 src_reg
   1848 vec4_visitor::get_timestamp()
   1849 {
   1850    assert(devinfo->gen >= 7);
   1851 
   1852    src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
   1853                                 BRW_ARF_TIMESTAMP,
   1854                                 0,
   1855                                 0,
   1856                                 0,
   1857                                 BRW_REGISTER_TYPE_UD,
   1858                                 BRW_VERTICAL_STRIDE_0,
   1859                                 BRW_WIDTH_4,
   1860                                 BRW_HORIZONTAL_STRIDE_4,
   1861                                 BRW_SWIZZLE_XYZW,
   1862                                 WRITEMASK_XYZW));
   1863 
   1864    dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
   1865 
   1866    vec4_instruction *mov = emit(MOV(dst, ts));
   1867    /* We want to read the 3 fields we care about (mostly field 0, but also 2)
   1868     * even if it's not enabled in the dispatch.
   1869     */
   1870    mov->force_writemask_all = true;
   1871 
   1872    return src_reg(dst);
   1873 }
   1874 
   1875 void
   1876 vec4_visitor::emit_shader_time_begin()
   1877 {
   1878    current_annotation = "shader time start";
   1879    shader_start_time = get_timestamp();
   1880 }
   1881 
   1882 void
   1883 vec4_visitor::emit_shader_time_end()
   1884 {
   1885    current_annotation = "shader time end";
   1886    src_reg shader_end_time = get_timestamp();
   1887 
   1888 
   1889    /* Check that there weren't any timestamp reset events (assuming these
   1890     * were the only two timestamp reads that happened).
   1891     */
   1892    src_reg reset_end = shader_end_time;
   1893    reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
   1894    vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
   1895    test->conditional_mod = BRW_CONDITIONAL_Z;
   1896 
   1897    emit(IF(BRW_PREDICATE_NORMAL));
   1898 
   1899    /* Take the current timestamp and get the delta. */
   1900    shader_start_time.negate = true;
   1901    dst_reg diff = dst_reg(this, glsl_type::uint_type);
   1902    emit(ADD(diff, shader_start_time, shader_end_time));
   1903 
   1904    /* If there were no instructions between the two timestamp gets, the diff
   1905     * is 2 cycles.  Remove that overhead, so I can forget about that when
   1906     * trying to determine the time taken for single instructions.
   1907     */
   1908    emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
   1909 
   1910    emit_shader_time_write(0, src_reg(diff));
   1911    emit_shader_time_write(1, brw_imm_ud(1u));
   1912    emit(BRW_OPCODE_ELSE);
   1913    emit_shader_time_write(2, brw_imm_ud(1u));
   1914    emit(BRW_OPCODE_ENDIF);
   1915 }
   1916 
   1917 void
   1918 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
   1919 {
   1920    dst_reg dst =
   1921       dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
   1922 
   1923    dst_reg offset = dst;
   1924    dst_reg time = dst;
   1925    time.offset += REG_SIZE;
   1926 
   1927    offset.type = BRW_REGISTER_TYPE_UD;
   1928    int index = shader_time_index * 3 + shader_time_subindex;
   1929    emit(MOV(offset, brw_imm_d(index * SHADER_TIME_STRIDE)));
   1930 
   1931    time.type = BRW_REGISTER_TYPE_UD;
   1932    emit(MOV(time, value));
   1933 
   1934    vec4_instruction *inst =
   1935       emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
   1936    inst->mlen = 2;
   1937 }
   1938 
   1939 void
   1940 vec4_visitor::convert_to_hw_regs()
   1941 {
   1942    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
   1943       for (int i = 0; i < 3; i++) {
   1944          struct src_reg &src = inst->src[i];
   1945          struct brw_reg reg;
   1946          switch (src.file) {
   1947          case VGRF: {
   1948             const unsigned type_size = type_sz(src.type);
   1949             const unsigned width = REG_SIZE / 2 / MAX2(4, type_size);
   1950             reg = byte_offset(brw_vecn_grf(width, src.nr, 0), src.offset);
   1951             reg.type = src.type;
   1952             reg.abs = src.abs;
   1953             reg.negate = src.negate;
   1954             break;
   1955          }
   1956 
   1957          case UNIFORM: {
   1958             const unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(src.type));
   1959             reg = stride(byte_offset(brw_vec4_grf(
   1960                                         prog_data->base.dispatch_grf_start_reg +
   1961                                         src.nr / 2, src.nr % 2 * 4),
   1962                                      src.offset),
   1963                          0, width, 1);
   1964             reg.type = src.type;
   1965             reg.abs = src.abs;
   1966             reg.negate = src.negate;
   1967 
   1968             /* This should have been moved to pull constants. */
   1969             assert(!src.reladdr);
   1970             break;
   1971          }
   1972 
   1973          case FIXED_GRF:
   1974             if (type_sz(src.type) == 8) {
   1975                reg = src.as_brw_reg();
   1976                break;
   1977             }
   1978             /* fallthrough */
   1979          case ARF:
   1980          case IMM:
   1981             continue;
   1982 
   1983          case BAD_FILE:
   1984             /* Probably unused. */
   1985             reg = brw_null_reg();
   1986             break;
   1987 
   1988          case MRF:
   1989          case ATTR:
   1990             unreachable("not reached");
   1991          }
   1992 
   1993          apply_logical_swizzle(&reg, inst, i);
   1994          src = reg;
   1995       }
   1996 
   1997       if (inst->is_3src(devinfo)) {
   1998          /* 3-src instructions with scalar sources support arbitrary subnr,
   1999           * but don't actually use swizzles.  Convert swizzle into subnr.
   2000           * Skip this for double-precision instructions: RepCtrl=1 is not
   2001           * allowed for them and needs special handling.
   2002           */
   2003          for (int i = 0; i < 3; i++) {
   2004             if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
   2005                 type_sz(inst->src[i].type) < 8) {
   2006                assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
   2007                inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
   2008             }
   2009          }
   2010       }
   2011 
   2012       dst_reg &dst = inst->dst;
   2013       struct brw_reg reg;
   2014 
   2015       switch (inst->dst.file) {
   2016       case VGRF:
   2017          reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
   2018          reg.type = dst.type;
   2019          reg.writemask = dst.writemask;
   2020          break;
   2021 
   2022       case MRF:
   2023          reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
   2024          assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
   2025          reg.type = dst.type;
   2026          reg.writemask = dst.writemask;
   2027          break;
   2028 
   2029       case ARF:
   2030       case FIXED_GRF:
   2031          reg = dst.as_brw_reg();
   2032          break;
   2033 
   2034       case BAD_FILE:
   2035          reg = brw_null_reg();
   2036          break;
   2037 
   2038       case IMM:
   2039       case ATTR:
   2040       case UNIFORM:
   2041          unreachable("not reached");
   2042       }
   2043 
   2044       dst = reg;
   2045    }
   2046 }
   2047 
   2048 static bool
   2049 stage_uses_interleaved_attributes(unsigned stage,
   2050                                   enum shader_dispatch_mode dispatch_mode)
   2051 {
   2052    switch (stage) {
   2053    case MESA_SHADER_TESS_EVAL:
   2054       return true;
   2055    case MESA_SHADER_GEOMETRY:
   2056       return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
   2057    default:
   2058       return false;
   2059    }
   2060 }
   2061 
   2062 /**
   2063  * Get the closest native SIMD width supported by the hardware for instruction
   2064  * \p inst.  The instruction will be left untouched by
   2065  * vec4_visitor::lower_simd_width() if the returned value matches the
   2066  * instruction's original execution size.
   2067  */
   2068 static unsigned
   2069 get_lowered_simd_width(const struct gen_device_info *devinfo,
   2070                        enum shader_dispatch_mode dispatch_mode,
   2071                        unsigned stage, const vec4_instruction *inst)
   2072 {
   2073    /* Do not split some instructions that require special handling */
   2074    switch (inst->opcode) {
   2075    case SHADER_OPCODE_GEN4_SCRATCH_READ:
   2076    case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
   2077       return inst->exec_size;
   2078    default:
   2079       break;
   2080    }
   2081 
   2082    unsigned lowered_width = MIN2(16, inst->exec_size);
   2083 
   2084    /* We need to split some cases of double-precision instructions that write
   2085     * 2 registers. We only need to care about this in gen7 because that is the
   2086     * only hardware that implements fp64 in Align16.
   2087     */
   2088    if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
   2089       /* Align16 8-wide double-precision SEL does not work well. Verified
   2090        * empirically.
   2091        */
   2092       if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
   2093          lowered_width = MIN2(lowered_width, 4);
   2094 
   2095       /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
   2096        * Register Addressing:
   2097        *
   2098        *    "When destination spans two registers, the source MUST span two
   2099        *     registers."
   2100        */
   2101       for (unsigned i = 0; i < 3; i++) {
   2102          if (inst->src[i].file == BAD_FILE)
   2103             continue;
   2104          if (inst->size_read(i) <= REG_SIZE)
   2105             lowered_width = MIN2(lowered_width, 4);
   2106 
   2107          /* Interleaved attribute setups use a vertical stride of 0, which
   2108           * makes them hit the associated instruction decompression bug in gen7.
   2109           * Split them to prevent this.
   2110           */
   2111          if (inst->src[i].file == ATTR &&
   2112              stage_uses_interleaved_attributes(stage, dispatch_mode))
   2113             lowered_width = MIN2(lowered_width, 4);
   2114       }
   2115    }
   2116 
   2117    return lowered_width;
   2118 }
   2119 
   2120 static bool
   2121 dst_src_regions_overlap(vec4_instruction *inst)
   2122 {
   2123    if (inst->size_written == 0)
   2124       return false;
   2125 
   2126    unsigned dst_start = inst->dst.offset;
   2127    unsigned dst_end = dst_start + inst->size_written - 1;
   2128    for (int i = 0; i < 3; i++) {
   2129       if (inst->src[i].file == BAD_FILE)
   2130          continue;
   2131 
   2132       if (inst->dst.file != inst->src[i].file ||
   2133           inst->dst.nr != inst->src[i].nr)
   2134          continue;
   2135 
   2136       unsigned src_start = inst->src[i].offset;
   2137       unsigned src_end = src_start + inst->size_read(i) - 1;
   2138 
   2139       if ((dst_start >= src_start && dst_start <= src_end) ||
   2140           (dst_end >= src_start && dst_end <= src_end) ||
   2141           (dst_start <= src_start && dst_end >= src_end)) {
   2142          return true;
   2143       }
   2144    }
   2145 
   2146    return false;
   2147 }
   2148 
   2149 bool
   2150 vec4_visitor::lower_simd_width()
   2151 {
   2152    bool progress = false;
   2153 
   2154    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
   2155       const unsigned lowered_width =
   2156          get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
   2157       assert(lowered_width <= inst->exec_size);
   2158       if (lowered_width == inst->exec_size)
   2159          continue;
   2160 
   2161       /* We need to deal with source / destination overlaps when splitting.
   2162        * The hardware supports reading from and writing to the same register
   2163        * in the same instruction, but we need to be careful that each split
   2164        * instruction we produce does not corrupt the source of the next.
   2165        *
   2166        * The easiest way to handle this is to make the split instructions write
   2167        * to temporaries if there is an src/dst overlap and then move from the
   2168        * temporaries to the original destination. We also need to consider
   2169        * instructions that do partial writes via align1 opcodes, in which case
   2170        * we need to make sure that the we initialize the temporary with the
   2171        * value of the instruction's dst.
   2172        */
   2173       bool needs_temp = dst_src_regions_overlap(inst);
   2174       for (unsigned n = 0; n < inst->exec_size / lowered_width; n++)  {
   2175          unsigned channel_offset = lowered_width * n;
   2176 
   2177          unsigned size_written = lowered_width * type_sz(inst->dst.type);
   2178 
   2179          /* Create the split instruction from the original so that we copy all
   2180           * relevant instruction fields, then set the width and calculate the
   2181           * new dst/src regions.
   2182           */
   2183          vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
   2184          linst->exec_size = lowered_width;
   2185          linst->group = channel_offset;
   2186          linst->size_written = size_written;
   2187 
   2188          /* Compute split dst region */
   2189          dst_reg dst;
   2190          if (needs_temp) {
   2191             unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
   2192             dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
   2193                          inst->dst.type);
   2194             if (inst->is_align1_partial_write()) {
   2195                vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
   2196                copy->exec_size = lowered_width;
   2197                copy->group = channel_offset;
   2198                copy->size_written = size_written;
   2199                inst->insert_before(block, copy);
   2200             }
   2201          } else {
   2202             dst = horiz_offset(inst->dst, channel_offset);
   2203          }
   2204          linst->dst = dst;
   2205 
   2206          /* Compute split source regions */
   2207          for (int i = 0; i < 3; i++) {
   2208             if (linst->src[i].file == BAD_FILE)
   2209                continue;
   2210 
   2211             if (!is_uniform(linst->src[i]))
   2212                linst->src[i] = horiz_offset(linst->src[i], channel_offset);
   2213          }
   2214 
   2215          inst->insert_before(block, linst);
   2216 
   2217          /* If we used a temporary to store the result of the split
   2218           * instruction, copy the result to the original destination
   2219           */
   2220          if (needs_temp) {
   2221             vec4_instruction *mov =
   2222                MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
   2223             mov->exec_size = lowered_width;
   2224             mov->group = channel_offset;
   2225             mov->size_written = size_written;
   2226             mov->predicate = inst->predicate;
   2227             inst->insert_before(block, mov);
   2228          }
   2229       }
   2230 
   2231       inst->remove(block);
   2232       progress = true;
   2233    }
   2234 
   2235    if (progress)
   2236       invalidate_live_intervals();
   2237 
   2238    return progress;
   2239 }
   2240 
   2241 static bool
   2242 is_align1_df(vec4_instruction *inst)
   2243 {
   2244    switch (inst->opcode) {
   2245    case VEC4_OPCODE_FROM_DOUBLE:
   2246    case VEC4_OPCODE_TO_DOUBLE:
   2247    case VEC4_OPCODE_PICK_LOW_32BIT:
   2248    case VEC4_OPCODE_PICK_HIGH_32BIT:
   2249    case VEC4_OPCODE_SET_LOW_32BIT:
   2250    case VEC4_OPCODE_SET_HIGH_32BIT:
   2251       return true;
   2252    default:
   2253       return false;
   2254    }
   2255 }
   2256 
   2257 static brw_predicate
   2258 scalarize_predicate(brw_predicate predicate, unsigned writemask)
   2259 {
   2260    if (predicate != BRW_PREDICATE_NORMAL)
   2261       return predicate;
   2262 
   2263    switch (writemask) {
   2264    case WRITEMASK_X:
   2265       return BRW_PREDICATE_ALIGN16_REPLICATE_X;
   2266    case WRITEMASK_Y:
   2267       return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
   2268    case WRITEMASK_Z:
   2269       return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
   2270    case WRITEMASK_W:
   2271       return BRW_PREDICATE_ALIGN16_REPLICATE_W;
   2272    default:
   2273       unreachable("invalid writemask");
   2274    }
   2275 }
   2276 
   2277 /* Gen7 has a hardware decompression bug that we can exploit to represent
   2278  * handful of additional swizzles natively.
   2279  */
   2280 static bool
   2281 is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
   2282 {
   2283    switch (inst->src[arg].swizzle) {
   2284    case BRW_SWIZZLE_XXXX:
   2285    case BRW_SWIZZLE_YYYY:
   2286    case BRW_SWIZZLE_ZZZZ:
   2287    case BRW_SWIZZLE_WWWW:
   2288    case BRW_SWIZZLE_XYXY:
   2289    case BRW_SWIZZLE_YXYX:
   2290    case BRW_SWIZZLE_ZWZW:
   2291    case BRW_SWIZZLE_WZWZ:
   2292       return true;
   2293    default:
   2294       return false;
   2295    }
   2296 }
   2297 
   2298 /* 64-bit sources use regions with a width of 2. These 2 elements in each row
   2299  * can be addressed using 32-bit swizzles (which is what the hardware supports)
   2300  * but it also means that the swizzle we apply on the first two components of a
   2301  * dvec4 is coupled with the swizzle we use for the last 2. In other words,
   2302  * only some specific swizzle combinations can be natively supported.
   2303  *
   2304  * FIXME: we can go an step further and implement even more swizzle
   2305  *        variations using only partial scalarization.
   2306  *
   2307  * For more details see:
   2308  * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
   2309  */
   2310 bool
   2311 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
   2312 {
   2313    const src_reg &src = inst->src[arg];
   2314    assert(type_sz(src.type) == 8);
   2315 
   2316    /* Uniform regions have a vstride=0. Because we use 2-wide rows with
   2317     * 64-bit regions it means that we cannot access components Z/W, so
   2318     * return false for any such case. Interleaved attributes will also be
   2319     * mapped to GRF registers with a vstride of 0, so apply the same
   2320     * treatment.
   2321     */
   2322    if ((is_uniform(src) ||
   2323         (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
   2324          src.file == ATTR)) &&
   2325        (brw_mask_for_swizzle(src.swizzle) & 12))
   2326       return false;
   2327 
   2328    switch (src.swizzle) {
   2329    case BRW_SWIZZLE_XYZW:
   2330    case BRW_SWIZZLE_XXZZ:
   2331    case BRW_SWIZZLE_YYWW:
   2332    case BRW_SWIZZLE_YXWZ:
   2333       return true;
   2334    default:
   2335       return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
   2336    }
   2337 }
   2338 
   2339 bool
   2340 vec4_visitor::scalarize_df()
   2341 {
   2342    bool progress = false;
   2343 
   2344    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
   2345       /* Skip DF instructions that operate in Align1 mode */
   2346       if (is_align1_df(inst))
   2347          continue;
   2348 
   2349       /* Check if this is a double-precision instruction */
   2350       bool is_double = type_sz(inst->dst.type) == 8;
   2351       for (int arg = 0; !is_double && arg < 3; arg++) {
   2352          is_double = inst->src[arg].file != BAD_FILE &&
   2353                      type_sz(inst->src[arg].type) == 8;
   2354       }
   2355 
   2356       if (!is_double)
   2357          continue;
   2358 
   2359       /* Skip the lowering for specific regioning scenarios that we can
   2360        * support natively.
   2361        */
   2362       bool skip_lowering = true;
   2363 
   2364       /* XY and ZW writemasks operate in 32-bit, which means that they don't
   2365        * have a native 64-bit representation and they should always be split.
   2366        */
   2367       if (inst->dst.writemask == WRITEMASK_XY ||
   2368           inst->dst.writemask == WRITEMASK_ZW) {
   2369          skip_lowering = false;
   2370       } else {
   2371          for (unsigned i = 0; i < 3; i++) {
   2372             if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
   2373                continue;
   2374             skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
   2375          }
   2376       }
   2377 
   2378       if (skip_lowering)
   2379          continue;
   2380 
   2381       /* Generate scalar instructions for each enabled channel */
   2382       for (unsigned chan = 0; chan < 4; chan++) {
   2383          unsigned chan_mask = 1 << chan;
   2384          if (!(inst->dst.writemask & chan_mask))
   2385             continue;
   2386 
   2387          vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
   2388 
   2389          for (unsigned i = 0; i < 3; i++) {
   2390             unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
   2391             scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
   2392          }
   2393 
   2394          scalar_inst->dst.writemask = chan_mask;
   2395 
   2396          if (inst->predicate != BRW_PREDICATE_NONE) {
   2397             scalar_inst->predicate =
   2398                scalarize_predicate(inst->predicate, chan_mask);
   2399          }
   2400 
   2401          inst->insert_before(block, scalar_inst);
   2402       }
   2403 
   2404       inst->remove(block);
   2405       progress = true;
   2406    }
   2407 
   2408    if (progress)
   2409       invalidate_live_intervals();
   2410 
   2411    return progress;
   2412 }
   2413 
   2414 bool
   2415 vec4_visitor::lower_64bit_mad_to_mul_add()
   2416 {
   2417    bool progress = false;
   2418 
   2419    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
   2420       if (inst->opcode != BRW_OPCODE_MAD)
   2421          continue;
   2422 
   2423       if (type_sz(inst->dst.type) != 8)
   2424          continue;
   2425 
   2426       dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
   2427 
   2428       /* Use the copy constructor so we copy all relevant instruction fields
   2429        * from the original mad into the add and mul instructions
   2430        */
   2431       vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
   2432       mul->opcode = BRW_OPCODE_MUL;
   2433       mul->dst = mul_dst;
   2434       mul->src[0] = inst->src[1];
   2435       mul->src[1] = inst->src[2];
   2436       mul->src[2].file = BAD_FILE;
   2437 
   2438       vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
   2439       add->opcode = BRW_OPCODE_ADD;
   2440       add->src[0] = src_reg(mul_dst);
   2441       add->src[1] = inst->src[0];
   2442       add->src[2].file = BAD_FILE;
   2443 
   2444       inst->insert_before(block, mul);
   2445       inst->insert_before(block, add);
   2446       inst->remove(block);
   2447 
   2448       progress = true;
   2449    }
   2450 
   2451    if (progress)
   2452       invalidate_live_intervals();
   2453 
   2454    return progress;
   2455 }
   2456 
   2457 /* The align16 hardware can only do 32-bit swizzle channels, so we need to
   2458  * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
   2459  * to 32-bit swizzle channels in hardware registers.
   2460  *
   2461  * @inst and @arg identify the original vec4 IR source operand we need to
   2462  * translate the swizzle for and @hw_reg is the hardware register where we
   2463  * will write the hardware swizzle to use.
   2464  *
   2465  * This pass assumes that Align16/DF instructions have been fully scalarized
   2466  * previously so there is just one 64-bit swizzle channel to deal with for any
   2467  * given Vec4 IR source.
   2468  */
   2469 void
   2470 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
   2471                                     vec4_instruction *inst, int arg)
   2472 {
   2473    src_reg reg = inst->src[arg];
   2474 
   2475    if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
   2476       return;
   2477 
   2478    /* If this is not a 64-bit operand or this is a scalar instruction we don't
   2479     * need to do anything about the swizzles.
   2480     */
   2481    if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
   2482       hw_reg->swizzle = reg.swizzle;
   2483       return;
   2484    }
   2485 
   2486    /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
   2487    assert(brw_is_single_value_swizzle(reg.swizzle) ||
   2488           is_supported_64bit_region(inst, arg));
   2489 
   2490    if (is_supported_64bit_region(inst, arg) &&
   2491        !is_gen7_supported_64bit_swizzle(inst, arg)) {
   2492       /* Supported 64-bit swizzles are those such that their first two
   2493        * components, when expanded to 32-bit swizzles, match the semantics
   2494        * of the original 64-bit swizzle with 2-wide row regioning.
   2495        */
   2496       unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
   2497       unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
   2498       hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
   2499                                      swizzle1 * 2, swizzle1 * 2 + 1);
   2500    } else {
   2501       /* If we got here then we have one of the following:
   2502        *
   2503        * 1. An unsupported swizzle, which should be single-value thanks to the
   2504        *    scalarization pass.
   2505        *
   2506        * 2. A gen7 supported swizzle. These can be single-value or double-value
   2507        *    swizzles. If the latter, they are never cross-dvec2 channels. For
   2508        *    these we always need to activate the gen7 vstride=0 exploit.
   2509        */
   2510       unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
   2511       unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
   2512       assert((swizzle0 < 2) == (swizzle1 < 2));
   2513 
   2514       /* To gain access to Z/W components we need to select the second half
   2515        * of the register and then use a X/Y swizzle to select Z/W respectively.
   2516        */
   2517       if (swizzle0 >= 2) {
   2518          *hw_reg = suboffset(*hw_reg, 2);
   2519          swizzle0 -= 2;
   2520          swizzle1 -= 2;
   2521       }
   2522 
   2523       /* All gen7-specific supported swizzles require the vstride=0 exploit */
   2524       if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
   2525          hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
   2526 
   2527       /* Any 64-bit source with an offset at 16B is intended to address the
   2528        * second half of a register and needs a vertical stride of 0 so we:
   2529        *
   2530        * 1. Don't violate register region restrictions.
   2531        * 2. Activate the gen7 instruction decompresion bug exploit when
   2532        *    execsize > 4
   2533        */
   2534       if (hw_reg->subnr % REG_SIZE == 16) {
   2535          assert(devinfo->gen == 7);
   2536          hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
   2537       }
   2538 
   2539       hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
   2540                                      swizzle1 * 2, swizzle1 * 2 + 1);
   2541    }
   2542 }
   2543 
   2544 bool
   2545 vec4_visitor::run()
   2546 {
   2547    if (shader_time_index >= 0)
   2548       emit_shader_time_begin();
   2549 
   2550    emit_prolog();
   2551 
   2552    emit_nir_code();
   2553    if (failed)
   2554       return false;
   2555    base_ir = NULL;
   2556 
   2557    emit_thread_end();
   2558 
   2559    calculate_cfg();
   2560 
   2561    /* Before any optimization, push array accesses out to scratch
   2562     * space where we need them to be.  This pass may allocate new
   2563     * virtual GRFs, so we want to do it early.  It also makes sure
   2564     * that we have reladdr computations available for CSE, since we'll
   2565     * often do repeated subexpressions for those.
   2566     */
   2567    move_grf_array_access_to_scratch();
   2568    move_uniform_array_access_to_pull_constants();
   2569 
   2570    pack_uniform_registers();
   2571    move_push_constants_to_pull_constants();
   2572    split_virtual_grfs();
   2573 
   2574 #define OPT(pass, args...) ({                                          \
   2575       pass_num++;                                                      \
   2576       bool this_progress = pass(args);                                 \
   2577                                                                        \
   2578       if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) {  \
   2579          char filename[64];                                            \
   2580          snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass,              \
   2581                   stage_abbrev, nir->info->name, iteration, pass_num); \
   2582                                                                        \
   2583          backend_shader::dump_instructions(filename);                  \
   2584       }                                                                \
   2585                                                                        \
   2586       progress = progress || this_progress;                            \
   2587       this_progress;                                                   \
   2588    })
   2589 
   2590 
   2591    if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
   2592       char filename[64];
   2593       snprintf(filename, 64, "%s-%s-00-00-start",
   2594                stage_abbrev, nir->info->name);
   2595 
   2596       backend_shader::dump_instructions(filename);
   2597    }
   2598 
   2599    bool progress;
   2600    int iteration = 0;
   2601    int pass_num = 0;
   2602    do {
   2603       progress = false;
   2604       pass_num = 0;
   2605       iteration++;
   2606 
   2607       OPT(opt_predicated_break, this);
   2608       OPT(opt_reduce_swizzle);
   2609       OPT(dead_code_eliminate);
   2610       OPT(dead_control_flow_eliminate, this);
   2611       OPT(opt_copy_propagation);
   2612       OPT(opt_cmod_propagation);
   2613       OPT(opt_cse);
   2614       OPT(opt_algebraic);
   2615       OPT(opt_register_coalesce);
   2616       OPT(eliminate_find_live_channel);
   2617    } while (progress);
   2618 
   2619    pass_num = 0;
   2620 
   2621    if (OPT(opt_vector_float)) {
   2622       OPT(opt_cse);
   2623       OPT(opt_copy_propagation, false);
   2624       OPT(opt_copy_propagation, true);
   2625       OPT(dead_code_eliminate);
   2626    }
   2627 
   2628    if (devinfo->gen <= 5 && OPT(lower_minmax)) {
   2629       OPT(opt_cmod_propagation);
   2630       OPT(opt_cse);
   2631       OPT(opt_copy_propagation);
   2632       OPT(dead_code_eliminate);
   2633    }
   2634 
   2635    if (OPT(lower_simd_width)) {
   2636       OPT(opt_copy_propagation);
   2637       OPT(dead_code_eliminate);
   2638    }
   2639 
   2640    if (failed)
   2641       return false;
   2642 
   2643    OPT(lower_64bit_mad_to_mul_add);
   2644 
   2645    /* Run this before payload setup because tesselation shaders
   2646     * rely on it to prevent cross dvec2 regioning on DF attributes
   2647     * that are setup so that XY are on the second half of register and
   2648     * ZW are in the first half of the next.
   2649     */
   2650    OPT(scalarize_df);
   2651 
   2652    setup_payload();
   2653 
   2654    if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
   2655       /* Debug of register spilling: Go spill everything. */
   2656       const int grf_count = alloc.count;
   2657       float spill_costs[alloc.count];
   2658       bool no_spill[alloc.count];
   2659       evaluate_spill_costs(spill_costs, no_spill);
   2660       for (int i = 0; i < grf_count; i++) {
   2661          if (no_spill[i])
   2662             continue;
   2663          spill_reg(i);
   2664       }
   2665 
   2666       /* We want to run this after spilling because 64-bit (un)spills need to
   2667        * emit code to shuffle 64-bit data for the 32-bit scratch read/write
   2668        * messages that can produce unsupported 64-bit swizzle regions.
   2669        */
   2670       OPT(scalarize_df);
   2671    }
   2672 
   2673    bool allocated_without_spills = reg_allocate();
   2674 
   2675    if (!allocated_without_spills) {
   2676       compiler->shader_perf_log(log_data,
   2677                                 "%s shader triggered register spilling.  "
   2678                                 "Try reducing the number of live vec4 values "
   2679                                 "to improve performance.\n",
   2680                                 stage_name);
   2681 
   2682       while (!reg_allocate()) {
   2683          if (failed)
   2684             return false;
   2685       }
   2686 
   2687       /* We want to run this after spilling because 64-bit (un)spills need to
   2688        * emit code to shuffle 64-bit data for the 32-bit scratch read/write
   2689        * messages that can produce unsupported 64-bit swizzle regions.
   2690        */
   2691       OPT(scalarize_df);
   2692    }
   2693 
   2694    opt_schedule_instructions();
   2695 
   2696    opt_set_dependency_control();
   2697 
   2698    convert_to_hw_regs();
   2699 
   2700    if (last_scratch > 0) {
   2701       prog_data->base.total_scratch =
   2702          brw_get_scratch_size(last_scratch * REG_SIZE);
   2703    }
   2704 
   2705    return !failed;
   2706 }
   2707 
   2708 } /* namespace brw */
   2709 
   2710 extern "C" {
   2711 
   2712 /**
   2713  * Compile a vertex shader.
   2714  *
   2715  * Returns the final assembly and the program's size.
   2716  */
   2717 const unsigned *
   2718 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
   2719                void *mem_ctx,
   2720                const struct brw_vs_prog_key *key,
   2721                struct brw_vs_prog_data *prog_data,
   2722                const nir_shader *src_shader,
   2723                gl_clip_plane *clip_planes,
   2724                bool use_legacy_snorm_formula,
   2725                int shader_time_index,
   2726                unsigned *final_assembly_size,
   2727                char **error_str)
   2728 {
   2729    const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
   2730    nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
   2731    shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
   2732    brw_nir_lower_vs_inputs(shader, is_scalar,
   2733                            use_legacy_snorm_formula, key->gl_attrib_wa_flags);
   2734    brw_nir_lower_vue_outputs(shader, is_scalar);
   2735    shader = brw_postprocess_nir(shader, compiler, is_scalar);
   2736 
   2737    const unsigned *assembly = NULL;
   2738 
   2739    prog_data->base.clip_distance_mask =
   2740       ((1 << shader->info->clip_distance_array_size) - 1);
   2741    prog_data->base.cull_distance_mask =
   2742       ((1 << shader->info->cull_distance_array_size) - 1) <<
   2743       shader->info->clip_distance_array_size;
   2744 
   2745    unsigned nr_attribute_slots = _mesa_bitcount_64(prog_data->inputs_read);
   2746 
   2747    /* gl_VertexID and gl_InstanceID are system values, but arrive via an
   2748     * incoming vertex attribute.  So, add an extra slot.
   2749     */
   2750    if (shader->info->system_values_read &
   2751        (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
   2752         BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
   2753         BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
   2754         BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
   2755       nr_attribute_slots++;
   2756    }
   2757 
   2758    /* gl_DrawID has its very own vec4 */
   2759    if (shader->info->system_values_read &
   2760        BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) {
   2761       nr_attribute_slots++;
   2762    }
   2763 
   2764    unsigned nr_attributes = nr_attribute_slots -
   2765       DIV_ROUND_UP(_mesa_bitcount_64(shader->info->double_inputs_read), 2);
   2766 
   2767    /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
   2768     * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode.  Empirically, in
   2769     * vec4 mode, the hardware appears to wedge unless we read something.
   2770     */
   2771    if (is_scalar)
   2772       prog_data->base.urb_read_length =
   2773          DIV_ROUND_UP(nr_attribute_slots, 2);
   2774    else
   2775       prog_data->base.urb_read_length =
   2776          DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
   2777 
   2778    prog_data->nr_attributes = nr_attributes;
   2779    prog_data->nr_attribute_slots = nr_attribute_slots;
   2780 
   2781    /* Since vertex shaders reuse the same VUE entry for inputs and outputs
   2782     * (overwriting the original contents), we need to make sure the size is
   2783     * the larger of the two.
   2784     */
   2785    const unsigned vue_entries =
   2786       MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
   2787 
   2788    if (compiler->devinfo->gen == 6)
   2789       prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
   2790    else
   2791       prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
   2792 
   2793    if (INTEL_DEBUG & DEBUG_VS) {
   2794       fprintf(stderr, "VS Output ");
   2795       brw_print_vue_map(stderr, &prog_data->base.vue_map);
   2796    }
   2797 
   2798    if (is_scalar) {
   2799       prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
   2800 
   2801       fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
   2802                    NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
   2803                    shader, 8, shader_time_index);
   2804       if (!v.run_vs(clip_planes)) {
   2805          if (error_str)
   2806             *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
   2807 
   2808          return NULL;
   2809       }
   2810 
   2811       prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
   2812 
   2813       fs_generator g(compiler, log_data, mem_ctx, (void *) key,
   2814                      &prog_data->base.base, v.promoted_constants,
   2815                      v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
   2816       if (INTEL_DEBUG & DEBUG_VS) {
   2817          const char *debug_name =
   2818             ralloc_asprintf(mem_ctx, "%s vertex shader %s",
   2819                             shader->info->label ? shader->info->label :
   2820                                "unnamed",
   2821                             shader->info->name);
   2822 
   2823          g.enable_debug(debug_name);
   2824       }
   2825       g.generate_code(v.cfg, 8);
   2826       assembly = g.get_assembly(final_assembly_size);
   2827    }
   2828 
   2829    if (!assembly) {
   2830       prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
   2831 
   2832       vec4_vs_visitor v(compiler, log_data, key, prog_data,
   2833                         shader, clip_planes, mem_ctx,
   2834                         shader_time_index, use_legacy_snorm_formula);
   2835       if (!v.run()) {
   2836          if (error_str)
   2837             *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
   2838 
   2839          return NULL;
   2840       }
   2841 
   2842       assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
   2843                                             shader, &prog_data->base, v.cfg,
   2844                                             final_assembly_size);
   2845    }
   2846 
   2847    return assembly;
   2848 }
   2849 
   2850 } /* extern "C" */
   2851