1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 MachineFunction &MF = State.getMachineFunction(); 38 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 39 40 uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(), 41 ArgFlags.getOrigAlign()); 42 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 43 return true; 44 } 45 46 #include "AMDGPUGenCallingConv.inc" 47 48 // Find a larger type to do a load / store of a vector with. 49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 50 unsigned StoreSize = VT.getStoreSizeInBits(); 51 if (StoreSize <= 32) 52 return EVT::getIntegerVT(Ctx, StoreSize); 53 54 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 55 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 56 } 57 58 EVT AMDGPUTargetLowering::getEquivalentBitType(LLVMContext &Ctx, EVT VT) { 59 unsigned StoreSize = VT.getStoreSizeInBits(); 60 if (StoreSize <= 32) 61 return EVT::getIntegerVT(Ctx, StoreSize); 62 63 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 64 } 65 66 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 67 const AMDGPUSubtarget &STI) 68 : TargetLowering(TM), Subtarget(&STI) { 69 // Lower floating point store/load to integer store/load to reduce the number 70 // of patterns in tablegen. 71 setOperationAction(ISD::LOAD, MVT::f32, Promote); 72 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 73 74 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 76 77 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 79 80 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 82 83 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 85 86 setOperationAction(ISD::LOAD, MVT::i64, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 88 89 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 91 92 setOperationAction(ISD::LOAD, MVT::f64, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 94 95 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 97 98 // There are no 64-bit extloads. These should be done as a 32-bit extload and 99 // an extension to 64-bit. 100 for (MVT VT : MVT::integer_valuetypes()) { 101 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 102 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 103 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 104 } 105 106 for (MVT VT : MVT::integer_valuetypes()) { 107 if (VT == MVT::i64) 108 continue; 109 110 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 111 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 112 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 113 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 114 115 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 116 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 117 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 118 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 119 120 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 121 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 124 } 125 126 for (MVT VT : MVT::integer_vector_valuetypes()) { 127 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 129 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 131 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 132 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 133 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 134 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 135 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 138 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 139 } 140 141 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 142 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 143 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 145 146 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 147 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 148 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 149 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 150 151 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 152 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 155 156 setOperationAction(ISD::STORE, MVT::f32, Promote); 157 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 158 159 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 160 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 161 162 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 163 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 164 165 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 166 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 167 168 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 169 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 170 171 setOperationAction(ISD::STORE, MVT::i64, Promote); 172 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 173 174 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 175 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 176 177 setOperationAction(ISD::STORE, MVT::f64, Promote); 178 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 179 180 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 181 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 182 183 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 184 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 185 186 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 187 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 188 189 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 190 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 191 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 192 193 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 194 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 195 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 196 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 197 198 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 199 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 200 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 201 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 202 203 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 204 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 205 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 206 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 207 208 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 209 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 210 211 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 212 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 213 214 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 215 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 216 217 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 218 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 219 220 221 setOperationAction(ISD::Constant, MVT::i32, Legal); 222 setOperationAction(ISD::Constant, MVT::i64, Legal); 223 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 224 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 225 226 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 227 setOperationAction(ISD::BRIND, MVT::Other, Expand); 228 229 // This is totally unsupported, just custom lower to produce an error. 230 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 231 232 // We need to custom lower some of the intrinsics 233 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 234 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 235 236 // Library functions. These default to Expand, but we have instructions 237 // for them. 238 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 239 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 240 setOperationAction(ISD::FPOW, MVT::f32, Legal); 241 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 242 setOperationAction(ISD::FABS, MVT::f32, Legal); 243 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 244 setOperationAction(ISD::FRINT, MVT::f32, Legal); 245 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 246 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 247 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 248 249 setOperationAction(ISD::FROUND, MVT::f32, Custom); 250 setOperationAction(ISD::FROUND, MVT::f64, Custom); 251 252 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 253 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 254 255 setOperationAction(ISD::FREM, MVT::f32, Custom); 256 setOperationAction(ISD::FREM, MVT::f64, Custom); 257 258 // v_mad_f32 does not support denormals according to some sources. 259 if (!Subtarget->hasFP32Denormals()) 260 setOperationAction(ISD::FMAD, MVT::f32, Legal); 261 262 // Expand to fneg + fadd. 263 setOperationAction(ISD::FSUB, MVT::f64, Expand); 264 265 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 266 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 267 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 268 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 269 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 270 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 271 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 272 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 273 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 274 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 275 276 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 277 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 278 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 279 setOperationAction(ISD::FRINT, MVT::f64, Custom); 280 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 281 } 282 283 if (!Subtarget->hasBFI()) { 284 // fcopysign can be done in a single instruction with BFI. 285 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 286 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 287 } 288 289 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 290 291 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 292 for (MVT VT : ScalarIntVTs) { 293 // These should use [SU]DIVREM, so set them to expand 294 setOperationAction(ISD::SDIV, VT, Expand); 295 setOperationAction(ISD::UDIV, VT, Expand); 296 setOperationAction(ISD::SREM, VT, Expand); 297 setOperationAction(ISD::UREM, VT, Expand); 298 299 // GPU does not have divrem function for signed or unsigned. 300 setOperationAction(ISD::SDIVREM, VT, Custom); 301 setOperationAction(ISD::UDIVREM, VT, Custom); 302 303 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 304 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 305 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 306 307 setOperationAction(ISD::BSWAP, VT, Expand); 308 setOperationAction(ISD::CTTZ, VT, Expand); 309 setOperationAction(ISD::CTLZ, VT, Expand); 310 } 311 312 if (!Subtarget->hasBCNT(32)) 313 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 314 315 if (!Subtarget->hasBCNT(64)) 316 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 317 318 // The hardware supports 32-bit ROTR, but not ROTL. 319 setOperationAction(ISD::ROTL, MVT::i32, Expand); 320 setOperationAction(ISD::ROTL, MVT::i64, Expand); 321 setOperationAction(ISD::ROTR, MVT::i64, Expand); 322 323 setOperationAction(ISD::MUL, MVT::i64, Expand); 324 setOperationAction(ISD::MULHU, MVT::i64, Expand); 325 setOperationAction(ISD::MULHS, MVT::i64, Expand); 326 setOperationAction(ISD::UDIV, MVT::i32, Expand); 327 setOperationAction(ISD::UREM, MVT::i32, Expand); 328 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 329 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 330 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 331 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 332 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 333 334 setOperationAction(ISD::SMIN, MVT::i32, Legal); 335 setOperationAction(ISD::UMIN, MVT::i32, Legal); 336 setOperationAction(ISD::SMAX, MVT::i32, Legal); 337 setOperationAction(ISD::UMAX, MVT::i32, Legal); 338 339 if (Subtarget->hasFFBH()) 340 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 341 342 if (Subtarget->hasFFBL()) 343 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 344 345 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 346 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 347 348 // We only really have 32-bit BFE instructions (and 16-bit on VI). 349 // 350 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 351 // effort to match them now. We want this to be false for i64 cases when the 352 // extraction isn't restricted to the upper or lower half. Ideally we would 353 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 354 // span the midpoint are probably relatively rare, so don't worry about them 355 // for now. 356 if (Subtarget->hasBFE()) 357 setHasExtractBitsInsn(true); 358 359 static const MVT::SimpleValueType VectorIntTypes[] = { 360 MVT::v2i32, MVT::v4i32 361 }; 362 363 for (MVT VT : VectorIntTypes) { 364 // Expand the following operations for the current type by default. 365 setOperationAction(ISD::ADD, VT, Expand); 366 setOperationAction(ISD::AND, VT, Expand); 367 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 368 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 369 setOperationAction(ISD::MUL, VT, Expand); 370 setOperationAction(ISD::OR, VT, Expand); 371 setOperationAction(ISD::SHL, VT, Expand); 372 setOperationAction(ISD::SRA, VT, Expand); 373 setOperationAction(ISD::SRL, VT, Expand); 374 setOperationAction(ISD::ROTL, VT, Expand); 375 setOperationAction(ISD::ROTR, VT, Expand); 376 setOperationAction(ISD::SUB, VT, Expand); 377 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 379 setOperationAction(ISD::SDIV, VT, Expand); 380 setOperationAction(ISD::UDIV, VT, Expand); 381 setOperationAction(ISD::SREM, VT, Expand); 382 setOperationAction(ISD::UREM, VT, Expand); 383 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 385 setOperationAction(ISD::SDIVREM, VT, Custom); 386 setOperationAction(ISD::UDIVREM, VT, Expand); 387 setOperationAction(ISD::ADDC, VT, Expand); 388 setOperationAction(ISD::SUBC, VT, Expand); 389 setOperationAction(ISD::ADDE, VT, Expand); 390 setOperationAction(ISD::SUBE, VT, Expand); 391 setOperationAction(ISD::SELECT, VT, Expand); 392 setOperationAction(ISD::VSELECT, VT, Expand); 393 setOperationAction(ISD::SELECT_CC, VT, Expand); 394 setOperationAction(ISD::XOR, VT, Expand); 395 setOperationAction(ISD::BSWAP, VT, Expand); 396 setOperationAction(ISD::CTPOP, VT, Expand); 397 setOperationAction(ISD::CTTZ, VT, Expand); 398 setOperationAction(ISD::CTLZ, VT, Expand); 399 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 400 } 401 402 static const MVT::SimpleValueType FloatVectorTypes[] = { 403 MVT::v2f32, MVT::v4f32 404 }; 405 406 for (MVT VT : FloatVectorTypes) { 407 setOperationAction(ISD::FABS, VT, Expand); 408 setOperationAction(ISD::FMINNUM, VT, Expand); 409 setOperationAction(ISD::FMAXNUM, VT, Expand); 410 setOperationAction(ISD::FADD, VT, Expand); 411 setOperationAction(ISD::FCEIL, VT, Expand); 412 setOperationAction(ISD::FCOS, VT, Expand); 413 setOperationAction(ISD::FDIV, VT, Expand); 414 setOperationAction(ISD::FEXP2, VT, Expand); 415 setOperationAction(ISD::FLOG2, VT, Expand); 416 setOperationAction(ISD::FREM, VT, Expand); 417 setOperationAction(ISD::FPOW, VT, Expand); 418 setOperationAction(ISD::FFLOOR, VT, Expand); 419 setOperationAction(ISD::FTRUNC, VT, Expand); 420 setOperationAction(ISD::FMUL, VT, Expand); 421 setOperationAction(ISD::FMA, VT, Expand); 422 setOperationAction(ISD::FRINT, VT, Expand); 423 setOperationAction(ISD::FNEARBYINT, VT, Expand); 424 setOperationAction(ISD::FSQRT, VT, Expand); 425 setOperationAction(ISD::FSIN, VT, Expand); 426 setOperationAction(ISD::FSUB, VT, Expand); 427 setOperationAction(ISD::FNEG, VT, Expand); 428 setOperationAction(ISD::VSELECT, VT, Expand); 429 setOperationAction(ISD::SELECT_CC, VT, Expand); 430 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 431 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 432 } 433 434 // This causes using an unrolled select operation rather than expansion with 435 // bit operations. This is in general better, but the alternative using BFI 436 // instructions may be better if the select sources are SGPRs. 437 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 438 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 439 440 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 441 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 442 443 setBooleanContents(ZeroOrNegativeOneBooleanContent); 444 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 445 446 setSchedulingPreference(Sched::RegPressure); 447 setJumpIsExpensive(true); 448 449 // SI at least has hardware support for floating point exceptions, but no way 450 // of using or handling them is implemented. They are also optional in OpenCL 451 // (Section 7.3) 452 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 453 454 setSelectIsExpensive(false); 455 PredictableSelectIsExpensive = false; 456 457 setFsqrtIsCheap(true); 458 459 // We want to find all load dependencies for long chains of stores to enable 460 // merging into very wide vectors. The problem is with vectors with > 4 461 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 462 // vectors are a legal type, even though we have to split the loads 463 // usually. When we can more precisely specify load legality per address 464 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 465 // smarter so that they can figure out what to do in 2 iterations without all 466 // N > 4 stores on the same chain. 467 GatherAllAliasesMaxDepth = 16; 468 469 // FIXME: Need to really handle these. 470 MaxStoresPerMemcpy = 4096; 471 MaxStoresPerMemmove = 4096; 472 MaxStoresPerMemset = 4096; 473 474 setTargetDAGCombine(ISD::BITCAST); 475 setTargetDAGCombine(ISD::AND); 476 setTargetDAGCombine(ISD::SHL); 477 setTargetDAGCombine(ISD::SRA); 478 setTargetDAGCombine(ISD::SRL); 479 setTargetDAGCombine(ISD::MUL); 480 setTargetDAGCombine(ISD::SELECT); 481 setTargetDAGCombine(ISD::SELECT_CC); 482 setTargetDAGCombine(ISD::STORE); 483 setTargetDAGCombine(ISD::FADD); 484 setTargetDAGCombine(ISD::FSUB); 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Target Information 489 //===----------------------------------------------------------------------===// 490 491 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 492 return MVT::i32; 493 } 494 495 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 496 return true; 497 } 498 499 // The backend supports 32 and 64 bit floating point immediates. 500 // FIXME: Why are we reporting vectors of FP immediates as legal? 501 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 502 EVT ScalarVT = VT.getScalarType(); 503 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 504 } 505 506 // We don't want to shrink f64 / f32 constants. 507 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 508 EVT ScalarVT = VT.getScalarType(); 509 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 510 } 511 512 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 513 ISD::LoadExtType, 514 EVT NewVT) const { 515 516 unsigned NewSize = NewVT.getStoreSizeInBits(); 517 518 // If we are reducing to a 32-bit load, this is always better. 519 if (NewSize == 32) 520 return true; 521 522 EVT OldVT = N->getValueType(0); 523 unsigned OldSize = OldVT.getStoreSizeInBits(); 524 525 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 526 // extloads, so doing one requires using a buffer_load. In cases where we 527 // still couldn't use a scalar load, using the wider load shouldn't really 528 // hurt anything. 529 530 // If the old size already had to be an extload, there's no harm in continuing 531 // to reduce the width. 532 return (OldSize < 32); 533 } 534 535 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 536 EVT CastTy) const { 537 538 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 539 540 if (LoadTy.getScalarType() == MVT::i32) 541 return false; 542 543 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 544 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 545 546 return (LScalarSize < CastScalarSize) || 547 (CastScalarSize >= 32); 548 } 549 550 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 551 // profitable with the expansion for 64-bit since it's generally good to 552 // speculate things. 553 // FIXME: These should really have the size as a parameter. 554 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 555 return true; 556 } 557 558 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 559 return true; 560 } 561 562 //===---------------------------------------------------------------------===// 563 // Target Properties 564 //===---------------------------------------------------------------------===// 565 566 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 567 assert(VT.isFloatingPoint()); 568 return VT == MVT::f32 || VT == MVT::f64; 569 } 570 571 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 572 assert(VT.isFloatingPoint()); 573 return VT == MVT::f32 || VT == MVT::f64; 574 } 575 576 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 577 unsigned NumElem, 578 unsigned AS) const { 579 return true; 580 } 581 582 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 583 // There are few operations which truly have vector input operands. Any vector 584 // operation is going to involve operations on each component, and a 585 // build_vector will be a copy per element, so it always makes sense to use a 586 // build_vector input in place of the extracted element to avoid a copy into a 587 // super register. 588 // 589 // We should probably only do this if all users are extracts only, but this 590 // should be the common case. 591 return true; 592 } 593 594 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 595 // Truncate is just accessing a subregister. 596 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 597 } 598 599 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 600 // Truncate is just accessing a subregister. 601 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 602 (Dest->getPrimitiveSizeInBits() % 32 == 0); 603 } 604 605 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 606 unsigned SrcSize = Src->getScalarSizeInBits(); 607 unsigned DestSize = Dest->getScalarSizeInBits(); 608 609 return SrcSize == 32 && DestSize == 64; 610 } 611 612 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 613 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 614 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 615 // this will enable reducing 64-bit operations the 32-bit, which is always 616 // good. 617 return Src == MVT::i32 && Dest == MVT::i64; 618 } 619 620 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 621 return isZExtFree(Val.getValueType(), VT2); 622 } 623 624 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 625 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 626 // limited number of native 64-bit operations. Shrinking an operation to fit 627 // in a single 32-bit register should always be helpful. As currently used, 628 // this is much less general than the name suggests, and is only used in 629 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 630 // not profitable, and may actually be harmful. 631 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 632 } 633 634 //===---------------------------------------------------------------------===// 635 // TargetLowering Callbacks 636 //===---------------------------------------------------------------------===// 637 638 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 639 const SmallVectorImpl<ISD::InputArg> &Ins) const { 640 641 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 642 } 643 644 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 645 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 646 647 State.AnalyzeReturn(Outs, RetCC_SI); 648 } 649 650 SDValue 651 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 652 bool isVarArg, 653 const SmallVectorImpl<ISD::OutputArg> &Outs, 654 const SmallVectorImpl<SDValue> &OutVals, 655 const SDLoc &DL, SelectionDAG &DAG) const { 656 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 657 } 658 659 //===---------------------------------------------------------------------===// 660 // Target specific lowering 661 //===---------------------------------------------------------------------===// 662 663 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 664 SmallVectorImpl<SDValue> &InVals) const { 665 SDValue Callee = CLI.Callee; 666 SelectionDAG &DAG = CLI.DAG; 667 668 const Function &Fn = *DAG.getMachineFunction().getFunction(); 669 670 StringRef FuncName("<unknown>"); 671 672 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 673 FuncName = G->getSymbol(); 674 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 675 FuncName = G->getGlobal()->getName(); 676 677 DiagnosticInfoUnsupported NoCalls( 678 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 679 DAG.getContext()->diagnose(NoCalls); 680 681 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 682 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 683 684 return DAG.getEntryNode(); 685 } 686 687 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 688 SelectionDAG &DAG) const { 689 const Function &Fn = *DAG.getMachineFunction().getFunction(); 690 691 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 692 SDLoc(Op).getDebugLoc()); 693 DAG.getContext()->diagnose(NoDynamicAlloca); 694 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 695 return DAG.getMergeValues(Ops, SDLoc()); 696 } 697 698 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 699 SelectionDAG &DAG) const { 700 switch (Op.getOpcode()) { 701 default: 702 Op->dump(&DAG); 703 llvm_unreachable("Custom lowering code for this" 704 "instruction is not implemented yet!"); 705 break; 706 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 707 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 708 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 709 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 710 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 711 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 712 case ISD::FREM: return LowerFREM(Op, DAG); 713 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 714 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 715 case ISD::FRINT: return LowerFRINT(Op, DAG); 716 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 717 case ISD::FROUND: return LowerFROUND(Op, DAG); 718 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 719 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 720 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 721 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 722 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 723 case ISD::CTLZ: 724 case ISD::CTLZ_ZERO_UNDEF: 725 return LowerCTLZ(Op, DAG); 726 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 727 } 728 return Op; 729 } 730 731 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 732 SmallVectorImpl<SDValue> &Results, 733 SelectionDAG &DAG) const { 734 switch (N->getOpcode()) { 735 case ISD::SIGN_EXTEND_INREG: 736 // Different parts of legalization seem to interpret which type of 737 // sign_extend_inreg is the one to check for custom lowering. The extended 738 // from type is what really matters, but some places check for custom 739 // lowering of the result type. This results in trying to use 740 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 741 // nothing here and let the illegal result integer be handled normally. 742 return; 743 default: 744 return; 745 } 746 } 747 748 // FIXME: This implements accesses to initialized globals in the constant 749 // address space by copying them to private and accessing that. It does not 750 // properly handle illegal types or vectors. The private vector loads are not 751 // scalarized, and the illegal scalars hit an assertion. This technique will not 752 // work well with large initializers, and this should eventually be 753 // removed. Initialized globals should be placed into a data section that the 754 // runtime will load into a buffer before the kernel is executed. Uses of the 755 // global need to be replaced with a pointer loaded from an implicit kernel 756 // argument into this buffer holding the copy of the data, which will remove the 757 // need for any of this. 758 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 759 const GlobalValue *GV, 760 const SDValue &InitPtr, 761 SDValue Chain, 762 SelectionDAG &DAG) const { 763 const DataLayout &TD = DAG.getDataLayout(); 764 SDLoc DL(InitPtr); 765 Type *InitTy = Init->getType(); 766 767 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 768 EVT VT = EVT::getEVT(InitTy); 769 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 770 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 771 MachinePointerInfo(UndefValue::get(PtrTy)), false, 772 false, TD.getPrefTypeAlignment(InitTy)); 773 } 774 775 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 776 EVT VT = EVT::getEVT(CFP->getType()); 777 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 778 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 779 MachinePointerInfo(UndefValue::get(PtrTy)), false, 780 false, TD.getPrefTypeAlignment(CFP->getType())); 781 } 782 783 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 784 const StructLayout *SL = TD.getStructLayout(ST); 785 786 EVT PtrVT = InitPtr.getValueType(); 787 SmallVector<SDValue, 8> Chains; 788 789 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 790 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 791 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 792 793 Constant *Elt = Init->getAggregateElement(I); 794 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 795 } 796 797 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 798 } 799 800 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 801 EVT PtrVT = InitPtr.getValueType(); 802 803 unsigned NumElements; 804 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 805 NumElements = AT->getNumElements(); 806 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 807 NumElements = VT->getNumElements(); 808 else 809 llvm_unreachable("Unexpected type"); 810 811 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 812 SmallVector<SDValue, 8> Chains; 813 for (unsigned i = 0; i < NumElements; ++i) { 814 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 815 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 816 817 Constant *Elt = Init->getAggregateElement(i); 818 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 819 } 820 821 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 822 } 823 824 if (isa<UndefValue>(Init)) { 825 EVT VT = EVT::getEVT(InitTy); 826 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 827 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 828 MachinePointerInfo(UndefValue::get(PtrTy)), false, 829 false, TD.getPrefTypeAlignment(InitTy)); 830 } 831 832 Init->dump(); 833 llvm_unreachable("Unhandled constant initializer"); 834 } 835 836 static bool hasDefinedInitializer(const GlobalValue *GV) { 837 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 838 if (!GVar || !GVar->hasInitializer()) 839 return false; 840 841 return !isa<UndefValue>(GVar->getInitializer()); 842 } 843 844 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 845 SDValue Op, 846 SelectionDAG &DAG) const { 847 848 const DataLayout &DL = DAG.getDataLayout(); 849 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 850 const GlobalValue *GV = G->getGlobal(); 851 852 switch (G->getAddressSpace()) { 853 case AMDGPUAS::CONSTANT_ADDRESS: { 854 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 855 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(G), ConstPtrVT); 856 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(G), ConstPtrVT, GA); 857 } 858 case AMDGPUAS::LOCAL_ADDRESS: { 859 // XXX: What does the value of G->getOffset() mean? 860 assert(G->getOffset() == 0 && 861 "Do not know what to do with an non-zero offset"); 862 863 // TODO: We could emit code to handle the initialization somewhere. 864 if (hasDefinedInitializer(GV)) 865 break; 866 867 unsigned Offset; 868 if (MFI->LocalMemoryObjects.count(GV) == 0) { 869 unsigned Align = GV->getAlignment(); 870 if (Align == 0) 871 Align = DL.getABITypeAlignment(GV->getValueType()); 872 873 /// TODO: We should sort these to minimize wasted space due to alignment 874 /// padding. Currently the padding is decided by the first encountered use 875 /// during lowering. 876 Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align); 877 MFI->LocalMemoryObjects[GV] = Offset; 878 MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType()); 879 } else { 880 Offset = MFI->LocalMemoryObjects[GV]; 881 } 882 883 return DAG.getConstant(Offset, SDLoc(Op), 884 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 885 } 886 } 887 888 const Function &Fn = *DAG.getMachineFunction().getFunction(); 889 DiagnosticInfoUnsupported BadInit( 890 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 891 DAG.getContext()->diagnose(BadInit); 892 return SDValue(); 893 } 894 895 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 896 SelectionDAG &DAG) const { 897 SmallVector<SDValue, 8> Args; 898 899 for (const SDUse &U : Op->ops()) 900 DAG.ExtractVectorElements(U.get(), Args); 901 902 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 903 } 904 905 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 906 SelectionDAG &DAG) const { 907 908 SmallVector<SDValue, 8> Args; 909 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 910 EVT VT = Op.getValueType(); 911 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 912 VT.getVectorNumElements()); 913 914 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 915 } 916 917 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 918 SelectionDAG &DAG) const { 919 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 920 SDLoc DL(Op); 921 EVT VT = Op.getValueType(); 922 923 switch (IntrinsicID) { 924 default: return Op; 925 case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. 926 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 927 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 928 929 case Intrinsic::AMDGPU_ldexp: // Legacy name 930 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 931 Op.getOperand(2)); 932 933 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 934 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 935 Op.getOperand(1), 936 Op.getOperand(2), 937 Op.getOperand(3)); 938 939 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 940 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 941 Op.getOperand(1), 942 Op.getOperand(2), 943 Op.getOperand(3)); 944 945 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 946 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 947 } 948 } 949 950 /// \brief Generate Min/Max node 951 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, 952 SDValue LHS, SDValue RHS, 953 SDValue True, SDValue False, 954 SDValue CC, 955 DAGCombinerInfo &DCI) const { 956 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 957 return SDValue(); 958 959 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 960 return SDValue(); 961 962 SelectionDAG &DAG = DCI.DAG; 963 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 964 switch (CCOpcode) { 965 case ISD::SETOEQ: 966 case ISD::SETONE: 967 case ISD::SETUNE: 968 case ISD::SETNE: 969 case ISD::SETUEQ: 970 case ISD::SETEQ: 971 case ISD::SETFALSE: 972 case ISD::SETFALSE2: 973 case ISD::SETTRUE: 974 case ISD::SETTRUE2: 975 case ISD::SETUO: 976 case ISD::SETO: 977 break; 978 case ISD::SETULE: 979 case ISD::SETULT: { 980 if (LHS == True) 981 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 982 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 983 } 984 case ISD::SETOLE: 985 case ISD::SETOLT: 986 case ISD::SETLE: 987 case ISD::SETLT: { 988 // Ordered. Assume ordered for undefined. 989 990 // Only do this after legalization to avoid interfering with other combines 991 // which might occur. 992 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 993 !DCI.isCalledByLegalizer()) 994 return SDValue(); 995 996 // We need to permute the operands to get the correct NaN behavior. The 997 // selected operand is the second one based on the failing compare with NaN, 998 // so permute it based on the compare type the hardware uses. 999 if (LHS == True) 1000 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1001 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1002 } 1003 case ISD::SETUGE: 1004 case ISD::SETUGT: { 1005 if (LHS == True) 1006 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1007 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1008 } 1009 case ISD::SETGT: 1010 case ISD::SETGE: 1011 case ISD::SETOGE: 1012 case ISD::SETOGT: { 1013 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1014 !DCI.isCalledByLegalizer()) 1015 return SDValue(); 1016 1017 if (LHS == True) 1018 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1019 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1020 } 1021 case ISD::SETCC_INVALID: 1022 llvm_unreachable("Invalid setcc condcode!"); 1023 } 1024 return SDValue(); 1025 } 1026 1027 std::pair<SDValue, SDValue> 1028 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1029 SDLoc SL(Op); 1030 1031 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1032 1033 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1034 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1035 1036 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1037 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1038 1039 return std::make_pair(Lo, Hi); 1040 } 1041 1042 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1043 SDLoc SL(Op); 1044 1045 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1046 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1047 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1048 } 1049 1050 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1051 SDLoc SL(Op); 1052 1053 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1054 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1055 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1056 } 1057 1058 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1059 SelectionDAG &DAG) const { 1060 LoadSDNode *Load = cast<LoadSDNode>(Op); 1061 EVT VT = Op.getValueType(); 1062 1063 1064 // If this is a 2 element vector, we really want to scalarize and not create 1065 // weird 1 element vectors. 1066 if (VT.getVectorNumElements() == 2) 1067 return scalarizeVectorLoad(Load, DAG); 1068 1069 SDValue BasePtr = Load->getBasePtr(); 1070 EVT PtrVT = BasePtr.getValueType(); 1071 EVT MemVT = Load->getMemoryVT(); 1072 SDLoc SL(Op); 1073 1074 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1075 1076 EVT LoVT, HiVT; 1077 EVT LoMemVT, HiMemVT; 1078 SDValue Lo, Hi; 1079 1080 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1081 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1082 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1083 1084 unsigned Size = LoMemVT.getStoreSize(); 1085 unsigned BaseAlign = Load->getAlignment(); 1086 unsigned HiAlign = MinAlign(BaseAlign, Size); 1087 1088 SDValue LoLoad 1089 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1090 Load->getChain(), BasePtr, 1091 SrcValue, 1092 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1093 Load->isInvariant(), BaseAlign); 1094 1095 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1096 DAG.getConstant(Size, SL, PtrVT)); 1097 1098 SDValue HiLoad 1099 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1100 Load->getChain(), HiPtr, 1101 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1102 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1103 Load->isInvariant(), HiAlign); 1104 1105 SDValue Ops[] = { 1106 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1107 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1108 LoLoad.getValue(1), HiLoad.getValue(1)) 1109 }; 1110 1111 return DAG.getMergeValues(Ops, SL); 1112 } 1113 1114 // FIXME: This isn't doing anything for SI. This should be used in a target 1115 // combine during type legalization. 1116 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1117 SelectionDAG &DAG) const { 1118 StoreSDNode *Store = cast<StoreSDNode>(Op); 1119 EVT MemVT = Store->getMemoryVT(); 1120 unsigned MemBits = MemVT.getSizeInBits(); 1121 1122 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1123 // truncating store into an i32 store. 1124 // XXX: We could also handle optimize other vector bitwidths. 1125 if (!MemVT.isVector() || MemBits > 32) { 1126 return SDValue(); 1127 } 1128 1129 SDLoc DL(Op); 1130 SDValue Value = Store->getValue(); 1131 EVT VT = Value.getValueType(); 1132 EVT ElemVT = VT.getVectorElementType(); 1133 SDValue Ptr = Store->getBasePtr(); 1134 EVT MemEltVT = MemVT.getVectorElementType(); 1135 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1136 unsigned MemNumElements = MemVT.getVectorNumElements(); 1137 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1138 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1139 1140 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1141 1142 SDValue PackedValue; 1143 for (unsigned i = 0; i < MemNumElements; ++i) { 1144 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1145 DAG.getConstant(i, DL, MVT::i32)); 1146 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1147 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1148 1149 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1150 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1151 1152 if (i == 0) { 1153 PackedValue = Elt; 1154 } else { 1155 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1156 } 1157 } 1158 1159 if (PackedSize < 32) { 1160 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1161 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1162 Store->getMemOperand()->getPointerInfo(), 1163 PackedVT, 1164 Store->isNonTemporal(), Store->isVolatile(), 1165 Store->getAlignment()); 1166 } 1167 1168 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1169 Store->getMemOperand()->getPointerInfo(), 1170 Store->isVolatile(), Store->isNonTemporal(), 1171 Store->getAlignment()); 1172 } 1173 1174 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1175 SelectionDAG &DAG) const { 1176 StoreSDNode *Store = cast<StoreSDNode>(Op); 1177 SDValue Val = Store->getValue(); 1178 EVT VT = Val.getValueType(); 1179 1180 // If this is a 2 element vector, we really want to scalarize and not create 1181 // weird 1 element vectors. 1182 if (VT.getVectorNumElements() == 2) 1183 return scalarizeVectorStore(Store, DAG); 1184 1185 EVT MemVT = Store->getMemoryVT(); 1186 SDValue Chain = Store->getChain(); 1187 SDValue BasePtr = Store->getBasePtr(); 1188 SDLoc SL(Op); 1189 1190 EVT LoVT, HiVT; 1191 EVT LoMemVT, HiMemVT; 1192 SDValue Lo, Hi; 1193 1194 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1195 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1196 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1197 1198 EVT PtrVT = BasePtr.getValueType(); 1199 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1200 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1201 PtrVT)); 1202 1203 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1204 unsigned BaseAlign = Store->getAlignment(); 1205 unsigned Size = LoMemVT.getStoreSize(); 1206 unsigned HiAlign = MinAlign(BaseAlign, Size); 1207 1208 SDValue LoStore 1209 = DAG.getTruncStore(Chain, SL, Lo, 1210 BasePtr, 1211 SrcValue, 1212 LoMemVT, 1213 Store->isNonTemporal(), 1214 Store->isVolatile(), 1215 BaseAlign); 1216 SDValue HiStore 1217 = DAG.getTruncStore(Chain, SL, Hi, 1218 HiPtr, 1219 SrcValue.getWithOffset(Size), 1220 HiMemVT, 1221 Store->isNonTemporal(), 1222 Store->isVolatile(), 1223 HiAlign); 1224 1225 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1226 } 1227 1228 // This is a shortcut for integer division because we have fast i32<->f32 1229 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1230 // float is enough to accurately represent up to a 24-bit signed integer. 1231 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1232 bool Sign) const { 1233 SDLoc DL(Op); 1234 EVT VT = Op.getValueType(); 1235 SDValue LHS = Op.getOperand(0); 1236 SDValue RHS = Op.getOperand(1); 1237 MVT IntVT = MVT::i32; 1238 MVT FltVT = MVT::f32; 1239 1240 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1241 if (LHSSignBits < 9) 1242 return SDValue(); 1243 1244 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1245 if (RHSSignBits < 9) 1246 return SDValue(); 1247 1248 unsigned BitSize = VT.getSizeInBits(); 1249 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1250 unsigned DivBits = BitSize - SignBits; 1251 if (Sign) 1252 ++DivBits; 1253 1254 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1255 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1256 1257 SDValue jq = DAG.getConstant(1, DL, IntVT); 1258 1259 if (Sign) { 1260 // char|short jq = ia ^ ib; 1261 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1262 1263 // jq = jq >> (bitsize - 2) 1264 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1265 DAG.getConstant(BitSize - 2, DL, VT)); 1266 1267 // jq = jq | 0x1 1268 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1269 } 1270 1271 // int ia = (int)LHS; 1272 SDValue ia = LHS; 1273 1274 // int ib, (int)RHS; 1275 SDValue ib = RHS; 1276 1277 // float fa = (float)ia; 1278 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1279 1280 // float fb = (float)ib; 1281 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1282 1283 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1284 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1285 1286 // fq = trunc(fq); 1287 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1288 1289 // float fqneg = -fq; 1290 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1291 1292 // float fr = mad(fqneg, fb, fa); 1293 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1294 1295 // int iq = (int)fq; 1296 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1297 1298 // fr = fabs(fr); 1299 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1300 1301 // fb = fabs(fb); 1302 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1303 1304 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1305 1306 // int cv = fr >= fb; 1307 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1308 1309 // jq = (cv ? jq : 0); 1310 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1311 1312 // dst = iq + jq; 1313 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1314 1315 // Rem needs compensation, it's easier to recompute it 1316 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1317 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1318 1319 // Truncate to number of bits this divide really is. 1320 if (Sign) { 1321 SDValue InRegSize 1322 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1323 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1324 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1325 } else { 1326 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1327 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1328 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1329 } 1330 1331 return DAG.getMergeValues({ Div, Rem }, DL); 1332 } 1333 1334 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1335 SelectionDAG &DAG, 1336 SmallVectorImpl<SDValue> &Results) const { 1337 assert(Op.getValueType() == MVT::i64); 1338 1339 SDLoc DL(Op); 1340 EVT VT = Op.getValueType(); 1341 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1342 1343 SDValue one = DAG.getConstant(1, DL, HalfVT); 1344 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1345 1346 //HiLo split 1347 SDValue LHS = Op.getOperand(0); 1348 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1349 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1350 1351 SDValue RHS = Op.getOperand(1); 1352 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1353 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1354 1355 if (VT == MVT::i64 && 1356 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1357 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1358 1359 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1360 LHS_Lo, RHS_Lo); 1361 1362 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1363 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1364 1365 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1366 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1367 return; 1368 } 1369 1370 // Get Speculative values 1371 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1372 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1373 1374 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1375 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1376 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1377 1378 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1379 SDValue DIV_Lo = zero; 1380 1381 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1382 1383 for (unsigned i = 0; i < halfBitWidth; ++i) { 1384 const unsigned bitPos = halfBitWidth - i - 1; 1385 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1386 // Get value of high bit 1387 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1388 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1389 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1390 1391 // Shift 1392 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1393 // Add LHS high bit 1394 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1395 1396 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1397 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1398 1399 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1400 1401 // Update REM 1402 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1403 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1404 } 1405 1406 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1407 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1408 Results.push_back(DIV); 1409 Results.push_back(REM); 1410 } 1411 1412 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1413 SelectionDAG &DAG) const { 1414 SDLoc DL(Op); 1415 EVT VT = Op.getValueType(); 1416 1417 if (VT == MVT::i64) { 1418 SmallVector<SDValue, 2> Results; 1419 LowerUDIVREM64(Op, DAG, Results); 1420 return DAG.getMergeValues(Results, DL); 1421 } 1422 1423 if (VT == MVT::i32) { 1424 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1425 return Res; 1426 } 1427 1428 SDValue Num = Op.getOperand(0); 1429 SDValue Den = Op.getOperand(1); 1430 1431 // RCP = URECIP(Den) = 2^32 / Den + e 1432 // e is rounding error. 1433 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1434 1435 // RCP_LO = mul(RCP, Den) */ 1436 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1437 1438 // RCP_HI = mulhu (RCP, Den) */ 1439 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1440 1441 // NEG_RCP_LO = -RCP_LO 1442 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1443 RCP_LO); 1444 1445 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1446 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1447 NEG_RCP_LO, RCP_LO, 1448 ISD::SETEQ); 1449 // Calculate the rounding error from the URECIP instruction 1450 // E = mulhu(ABS_RCP_LO, RCP) 1451 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1452 1453 // RCP_A_E = RCP + E 1454 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1455 1456 // RCP_S_E = RCP - E 1457 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1458 1459 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1460 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1461 RCP_A_E, RCP_S_E, 1462 ISD::SETEQ); 1463 // Quotient = mulhu(Tmp0, Num) 1464 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1465 1466 // Num_S_Remainder = Quotient * Den 1467 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1468 1469 // Remainder = Num - Num_S_Remainder 1470 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1471 1472 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1473 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1474 DAG.getConstant(-1, DL, VT), 1475 DAG.getConstant(0, DL, VT), 1476 ISD::SETUGE); 1477 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1478 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1479 Num_S_Remainder, 1480 DAG.getConstant(-1, DL, VT), 1481 DAG.getConstant(0, DL, VT), 1482 ISD::SETUGE); 1483 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1484 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1485 Remainder_GE_Zero); 1486 1487 // Calculate Division result: 1488 1489 // Quotient_A_One = Quotient + 1 1490 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1491 DAG.getConstant(1, DL, VT)); 1492 1493 // Quotient_S_One = Quotient - 1 1494 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1495 DAG.getConstant(1, DL, VT)); 1496 1497 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1498 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1499 Quotient, Quotient_A_One, ISD::SETEQ); 1500 1501 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1502 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1503 Quotient_S_One, Div, ISD::SETEQ); 1504 1505 // Calculate Rem result: 1506 1507 // Remainder_S_Den = Remainder - Den 1508 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1509 1510 // Remainder_A_Den = Remainder + Den 1511 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1512 1513 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1514 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1515 Remainder, Remainder_S_Den, ISD::SETEQ); 1516 1517 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1518 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1519 Remainder_A_Den, Rem, ISD::SETEQ); 1520 SDValue Ops[2] = { 1521 Div, 1522 Rem 1523 }; 1524 return DAG.getMergeValues(Ops, DL); 1525 } 1526 1527 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1528 SelectionDAG &DAG) const { 1529 SDLoc DL(Op); 1530 EVT VT = Op.getValueType(); 1531 1532 SDValue LHS = Op.getOperand(0); 1533 SDValue RHS = Op.getOperand(1); 1534 1535 SDValue Zero = DAG.getConstant(0, DL, VT); 1536 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1537 1538 if (VT == MVT::i32) { 1539 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1540 return Res; 1541 } 1542 1543 if (VT == MVT::i64 && 1544 DAG.ComputeNumSignBits(LHS) > 32 && 1545 DAG.ComputeNumSignBits(RHS) > 32) { 1546 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1547 1548 //HiLo split 1549 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1550 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1551 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1552 LHS_Lo, RHS_Lo); 1553 SDValue Res[2] = { 1554 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1555 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1556 }; 1557 return DAG.getMergeValues(Res, DL); 1558 } 1559 1560 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1561 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1562 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1563 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1564 1565 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1566 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1567 1568 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1569 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1570 1571 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1572 SDValue Rem = Div.getValue(1); 1573 1574 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1575 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1576 1577 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1578 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1579 1580 SDValue Res[2] = { 1581 Div, 1582 Rem 1583 }; 1584 return DAG.getMergeValues(Res, DL); 1585 } 1586 1587 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1588 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1589 SDLoc SL(Op); 1590 EVT VT = Op.getValueType(); 1591 SDValue X = Op.getOperand(0); 1592 SDValue Y = Op.getOperand(1); 1593 1594 // TODO: Should this propagate fast-math-flags? 1595 1596 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1597 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1598 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1599 1600 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1601 } 1602 1603 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1604 SDLoc SL(Op); 1605 SDValue Src = Op.getOperand(0); 1606 1607 // result = trunc(src) 1608 // if (src > 0.0 && src != result) 1609 // result += 1.0 1610 1611 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1612 1613 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1614 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1615 1616 EVT SetCCVT = 1617 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1618 1619 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1620 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1621 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1622 1623 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1624 // TODO: Should this propagate fast-math-flags? 1625 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1626 } 1627 1628 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1629 SelectionDAG &DAG) { 1630 const unsigned FractBits = 52; 1631 const unsigned ExpBits = 11; 1632 1633 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1634 Hi, 1635 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1636 DAG.getConstant(ExpBits, SL, MVT::i32)); 1637 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1638 DAG.getConstant(1023, SL, MVT::i32)); 1639 1640 return Exp; 1641 } 1642 1643 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1644 SDLoc SL(Op); 1645 SDValue Src = Op.getOperand(0); 1646 1647 assert(Op.getValueType() == MVT::f64); 1648 1649 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1650 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1651 1652 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1653 1654 // Extract the upper half, since this is where we will find the sign and 1655 // exponent. 1656 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1657 1658 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1659 1660 const unsigned FractBits = 52; 1661 1662 // Extract the sign bit. 1663 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1664 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1665 1666 // Extend back to to 64-bits. 1667 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1668 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1669 1670 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1671 const SDValue FractMask 1672 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1673 1674 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1675 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1676 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1677 1678 EVT SetCCVT = 1679 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1680 1681 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1682 1683 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1684 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1685 1686 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1687 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1688 1689 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1690 } 1691 1692 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1693 SDLoc SL(Op); 1694 SDValue Src = Op.getOperand(0); 1695 1696 assert(Op.getValueType() == MVT::f64); 1697 1698 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1699 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1700 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1701 1702 // TODO: Should this propagate fast-math-flags? 1703 1704 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1705 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1706 1707 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1708 1709 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1710 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1711 1712 EVT SetCCVT = 1713 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1714 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1715 1716 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1717 } 1718 1719 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1720 // FNEARBYINT and FRINT are the same, except in their handling of FP 1721 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1722 // rint, so just treat them as equivalent. 1723 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1724 } 1725 1726 // XXX - May require not supporting f32 denormals? 1727 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1728 SDLoc SL(Op); 1729 SDValue X = Op.getOperand(0); 1730 1731 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1732 1733 // TODO: Should this propagate fast-math-flags? 1734 1735 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1736 1737 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1738 1739 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1740 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1741 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1742 1743 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1744 1745 EVT SetCCVT = 1746 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1747 1748 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1749 1750 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1751 1752 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1753 } 1754 1755 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1756 SDLoc SL(Op); 1757 SDValue X = Op.getOperand(0); 1758 1759 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1760 1761 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1762 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1763 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1764 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1765 EVT SetCCVT = 1766 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1767 1768 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1769 1770 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1771 1772 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1773 1774 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1775 MVT::i64); 1776 1777 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1778 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1779 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1780 MVT::i64), 1781 Exp); 1782 1783 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1784 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1785 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1786 ISD::SETNE); 1787 1788 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1789 D, DAG.getConstant(0, SL, MVT::i64)); 1790 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1791 1792 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1793 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1794 1795 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1796 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1797 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1798 1799 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1800 ExpEqNegOne, 1801 DAG.getConstantFP(1.0, SL, MVT::f64), 1802 DAG.getConstantFP(0.0, SL, MVT::f64)); 1803 1804 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1805 1806 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1807 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1808 1809 return K; 1810 } 1811 1812 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1813 EVT VT = Op.getValueType(); 1814 1815 if (VT == MVT::f32) 1816 return LowerFROUND32(Op, DAG); 1817 1818 if (VT == MVT::f64) 1819 return LowerFROUND64(Op, DAG); 1820 1821 llvm_unreachable("unhandled type"); 1822 } 1823 1824 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1825 SDLoc SL(Op); 1826 SDValue Src = Op.getOperand(0); 1827 1828 // result = trunc(src); 1829 // if (src < 0.0 && src != result) 1830 // result += -1.0. 1831 1832 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1833 1834 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1835 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1836 1837 EVT SetCCVT = 1838 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1839 1840 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1841 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1842 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1843 1844 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1845 // TODO: Should this propagate fast-math-flags? 1846 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1847 } 1848 1849 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1850 SDLoc SL(Op); 1851 SDValue Src = Op.getOperand(0); 1852 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1853 1854 if (ZeroUndef && Src.getValueType() == MVT::i32) 1855 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1856 1857 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1858 1859 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1860 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1861 1862 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1863 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1864 1865 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1866 *DAG.getContext(), MVT::i32); 1867 1868 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1869 1870 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1871 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1872 1873 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1874 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1875 1876 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1877 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1878 1879 if (!ZeroUndef) { 1880 // Test if the full 64-bit input is zero. 1881 1882 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1883 // which we probably don't want. 1884 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1885 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1886 1887 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1888 // with the same cycles, otherwise it is slower. 1889 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1890 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1891 1892 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1893 1894 // The instruction returns -1 for 0 input, but the defined intrinsic 1895 // behavior is to return the number of bits. 1896 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1897 SrcIsZero, Bits32, NewCtlz); 1898 } 1899 1900 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1901 } 1902 1903 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1904 bool Signed) const { 1905 // Unsigned 1906 // cul2f(ulong u) 1907 //{ 1908 // uint lz = clz(u); 1909 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1910 // u = (u << lz) & 0x7fffffffffffffffUL; 1911 // ulong t = u & 0xffffffffffUL; 1912 // uint v = (e << 23) | (uint)(u >> 40); 1913 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1914 // return as_float(v + r); 1915 //} 1916 // Signed 1917 // cl2f(long l) 1918 //{ 1919 // long s = l >> 63; 1920 // float r = cul2f((l + s) ^ s); 1921 // return s ? -r : r; 1922 //} 1923 1924 SDLoc SL(Op); 1925 SDValue Src = Op.getOperand(0); 1926 SDValue L = Src; 1927 1928 SDValue S; 1929 if (Signed) { 1930 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1931 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1932 1933 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1934 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1935 } 1936 1937 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1938 *DAG.getContext(), MVT::f32); 1939 1940 1941 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1942 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1943 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1944 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1945 1946 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1947 SDValue E = DAG.getSelect(SL, MVT::i32, 1948 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1949 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1950 ZeroI32); 1951 1952 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1953 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1954 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1955 1956 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1957 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1958 1959 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1960 U, DAG.getConstant(40, SL, MVT::i64)); 1961 1962 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1963 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1964 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1965 1966 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1967 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1968 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1969 1970 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1971 1972 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1973 1974 SDValue R = DAG.getSelect(SL, MVT::i32, 1975 RCmp, 1976 One, 1977 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1978 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1979 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1980 1981 if (!Signed) 1982 return R; 1983 1984 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1985 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1986 } 1987 1988 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1989 bool Signed) const { 1990 SDLoc SL(Op); 1991 SDValue Src = Op.getOperand(0); 1992 1993 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1994 1995 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1996 DAG.getConstant(0, SL, MVT::i32)); 1997 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1998 DAG.getConstant(1, SL, MVT::i32)); 1999 2000 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2001 SL, MVT::f64, Hi); 2002 2003 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2004 2005 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2006 DAG.getConstant(32, SL, MVT::i32)); 2007 // TODO: Should this propagate fast-math-flags? 2008 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2009 } 2010 2011 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2012 SelectionDAG &DAG) const { 2013 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2014 "operation should be legal"); 2015 2016 EVT DestVT = Op.getValueType(); 2017 if (DestVT == MVT::f64) 2018 return LowerINT_TO_FP64(Op, DAG, false); 2019 2020 if (DestVT == MVT::f32) 2021 return LowerINT_TO_FP32(Op, DAG, false); 2022 2023 return SDValue(); 2024 } 2025 2026 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2027 SelectionDAG &DAG) const { 2028 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2029 "operation should be legal"); 2030 2031 EVT DestVT = Op.getValueType(); 2032 if (DestVT == MVT::f32) 2033 return LowerINT_TO_FP32(Op, DAG, true); 2034 2035 if (DestVT == MVT::f64) 2036 return LowerINT_TO_FP64(Op, DAG, true); 2037 2038 return SDValue(); 2039 } 2040 2041 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2042 bool Signed) const { 2043 SDLoc SL(Op); 2044 2045 SDValue Src = Op.getOperand(0); 2046 2047 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2048 2049 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2050 MVT::f64); 2051 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2052 MVT::f64); 2053 // TODO: Should this propagate fast-math-flags? 2054 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2055 2056 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2057 2058 2059 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2060 2061 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2062 MVT::i32, FloorMul); 2063 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2064 2065 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2066 2067 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2068 } 2069 2070 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2071 SelectionDAG &DAG) const { 2072 SDValue Src = Op.getOperand(0); 2073 2074 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2075 return LowerFP64_TO_INT(Op, DAG, true); 2076 2077 return SDValue(); 2078 } 2079 2080 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2081 SelectionDAG &DAG) const { 2082 SDValue Src = Op.getOperand(0); 2083 2084 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2085 return LowerFP64_TO_INT(Op, DAG, false); 2086 2087 return SDValue(); 2088 } 2089 2090 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2091 SelectionDAG &DAG) const { 2092 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2093 MVT VT = Op.getSimpleValueType(); 2094 MVT ScalarVT = VT.getScalarType(); 2095 2096 if (!VT.isVector()) 2097 return SDValue(); 2098 2099 SDValue Src = Op.getOperand(0); 2100 SDLoc DL(Op); 2101 2102 // TODO: Don't scalarize on Evergreen? 2103 unsigned NElts = VT.getVectorNumElements(); 2104 SmallVector<SDValue, 8> Args; 2105 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2106 2107 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2108 for (unsigned I = 0; I < NElts; ++I) 2109 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2110 2111 return DAG.getBuildVector(VT, DL, Args); 2112 } 2113 2114 //===----------------------------------------------------------------------===// 2115 // Custom DAG optimizations 2116 //===----------------------------------------------------------------------===// 2117 2118 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2119 APInt KnownZero, KnownOne; 2120 EVT VT = Op.getValueType(); 2121 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2122 2123 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2124 } 2125 2126 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2127 EVT VT = Op.getValueType(); 2128 2129 // In order for this to be a signed 24-bit value, bit 23, must 2130 // be a sign bit. 2131 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2132 // as unsigned 24-bit values. 2133 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2134 } 2135 2136 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2137 2138 SelectionDAG &DAG = DCI.DAG; 2139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2140 EVT VT = Op.getValueType(); 2141 2142 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2143 APInt KnownZero, KnownOne; 2144 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2145 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2146 DCI.CommitTargetLoweringOpt(TLO); 2147 } 2148 2149 template <typename IntTy> 2150 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2151 uint32_t Width, const SDLoc &DL) { 2152 if (Width + Offset < 32) { 2153 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2154 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2155 return DAG.getConstant(Result, DL, MVT::i32); 2156 } 2157 2158 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2159 } 2160 2161 static bool hasVolatileUser(SDNode *Val) { 2162 for (SDNode *U : Val->uses()) { 2163 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2164 if (M->isVolatile()) 2165 return true; 2166 } 2167 } 2168 2169 return false; 2170 } 2171 2172 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2173 // i32 vectors are the canonical memory type. 2174 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2175 return false; 2176 2177 if (!VT.isByteSized()) 2178 return false; 2179 2180 unsigned Size = VT.getStoreSize(); 2181 2182 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2183 return false; 2184 2185 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2186 return false; 2187 2188 return true; 2189 } 2190 2191 // Replace load of an illegal type with a store of a bitcast to a friendlier 2192 // type. 2193 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2194 DAGCombinerInfo &DCI) const { 2195 if (!DCI.isBeforeLegalize()) 2196 return SDValue(); 2197 2198 LoadSDNode *LN = cast<LoadSDNode>(N); 2199 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2200 return SDValue(); 2201 2202 SDLoc SL(N); 2203 SelectionDAG &DAG = DCI.DAG; 2204 EVT VT = LN->getMemoryVT(); 2205 2206 unsigned Size = VT.getStoreSize(); 2207 unsigned Align = LN->getAlignment(); 2208 if (Align < Size && isTypeLegal(VT)) { 2209 bool IsFast; 2210 unsigned AS = LN->getAddressSpace(); 2211 2212 // Expand unaligned loads earlier than legalization. Due to visitation order 2213 // problems during legalization, the emitted instructions to pack and unpack 2214 // the bytes again are not eliminated in the case of an unaligned copy. 2215 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2216 SDValue Ops[2]; 2217 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2218 return DAG.getMergeValues(Ops, SDLoc(N)); 2219 } 2220 2221 if (!IsFast) 2222 return SDValue(); 2223 } 2224 2225 if (!shouldCombineMemoryType(VT)) 2226 return SDValue(); 2227 2228 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2229 2230 SDValue NewLoad 2231 = DAG.getLoad(NewVT, SL, LN->getChain(), 2232 LN->getBasePtr(), LN->getMemOperand()); 2233 2234 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2235 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2236 return SDValue(N, 0); 2237 } 2238 2239 // Replace store of an illegal type with a store of a bitcast to a friendlier 2240 // type. 2241 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2242 DAGCombinerInfo &DCI) const { 2243 if (!DCI.isBeforeLegalize()) 2244 return SDValue(); 2245 2246 StoreSDNode *SN = cast<StoreSDNode>(N); 2247 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2248 return SDValue(); 2249 2250 EVT VT = SN->getMemoryVT(); 2251 unsigned Size = VT.getStoreSize(); 2252 2253 SDLoc SL(N); 2254 SelectionDAG &DAG = DCI.DAG; 2255 unsigned Align = SN->getAlignment(); 2256 if (Align < Size && isTypeLegal(VT)) { 2257 bool IsFast; 2258 unsigned AS = SN->getAddressSpace(); 2259 2260 // Expand unaligned stores earlier than legalization. Due to visitation 2261 // order problems during legalization, the emitted instructions to pack and 2262 // unpack the bytes again are not eliminated in the case of an unaligned 2263 // copy. 2264 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) 2265 return expandUnalignedStore(SN, DAG); 2266 2267 if (!IsFast) 2268 return SDValue(); 2269 } 2270 2271 if (!shouldCombineMemoryType(VT)) 2272 return SDValue(); 2273 2274 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2275 SDValue Val = SN->getValue(); 2276 2277 //DCI.AddToWorklist(Val.getNode()); 2278 2279 bool OtherUses = !Val.hasOneUse(); 2280 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2281 if (OtherUses) { 2282 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2283 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2284 } 2285 2286 return DAG.getStore(SN->getChain(), SL, CastVal, 2287 SN->getBasePtr(), SN->getMemOperand()); 2288 } 2289 2290 // TODO: Should repeat for other bit ops. 2291 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2292 DAGCombinerInfo &DCI) const { 2293 if (N->getValueType(0) != MVT::i64) 2294 return SDValue(); 2295 2296 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2297 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2298 // combine opportunities since most 64-bit operations are decomposed this way. 2299 // TODO: We won't want this for SALU especially if it is an inline immediate. 2300 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2301 if (!RHS) 2302 return SDValue(); 2303 2304 uint64_t Val = RHS->getZExtValue(); 2305 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2306 // If either half of the constant is 0, this is really a 32-bit and, so 2307 // split it. If we can re-use the full materialized constant, keep it. 2308 return SDValue(); 2309 } 2310 2311 SDLoc SL(N); 2312 SelectionDAG &DAG = DCI.DAG; 2313 2314 SDValue Lo, Hi; 2315 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2316 2317 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2318 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2319 2320 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2321 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2322 2323 // Re-visit the ands. It's possible we eliminated one of them and it could 2324 // simplify the vector. 2325 DCI.AddToWorklist(Lo.getNode()); 2326 DCI.AddToWorklist(Hi.getNode()); 2327 2328 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2329 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2330 } 2331 2332 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2333 DAGCombinerInfo &DCI) const { 2334 if (N->getValueType(0) != MVT::i64) 2335 return SDValue(); 2336 2337 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2338 2339 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2340 // common case, splitting this into a move and a 32-bit shift is faster and 2341 // the same code size. 2342 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2343 if (!RHS) 2344 return SDValue(); 2345 2346 unsigned RHSVal = RHS->getZExtValue(); 2347 if (RHSVal < 32) 2348 return SDValue(); 2349 2350 SDValue LHS = N->getOperand(0); 2351 2352 SDLoc SL(N); 2353 SelectionDAG &DAG = DCI.DAG; 2354 2355 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2356 2357 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2358 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2359 2360 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2361 2362 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2363 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2364 } 2365 2366 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2367 DAGCombinerInfo &DCI) const { 2368 if (N->getValueType(0) != MVT::i64) 2369 return SDValue(); 2370 2371 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2372 if (!RHS) 2373 return SDValue(); 2374 2375 SelectionDAG &DAG = DCI.DAG; 2376 SDLoc SL(N); 2377 unsigned RHSVal = RHS->getZExtValue(); 2378 2379 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2380 if (RHSVal == 32) { 2381 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2382 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2383 DAG.getConstant(31, SL, MVT::i32)); 2384 2385 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2386 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2387 } 2388 2389 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2390 if (RHSVal == 63) { 2391 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2392 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2393 DAG.getConstant(31, SL, MVT::i32)); 2394 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2395 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2396 } 2397 2398 return SDValue(); 2399 } 2400 2401 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2402 DAGCombinerInfo &DCI) const { 2403 if (N->getValueType(0) != MVT::i64) 2404 return SDValue(); 2405 2406 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2407 if (!RHS) 2408 return SDValue(); 2409 2410 unsigned ShiftAmt = RHS->getZExtValue(); 2411 if (ShiftAmt < 32) 2412 return SDValue(); 2413 2414 // srl i64:x, C for C >= 32 2415 // => 2416 // build_pair (srl hi_32(x), C - 32), 0 2417 2418 SelectionDAG &DAG = DCI.DAG; 2419 SDLoc SL(N); 2420 2421 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2422 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2423 2424 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2425 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2426 VecOp, One); 2427 2428 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2429 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2430 2431 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2432 2433 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2434 } 2435 2436 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2437 DAGCombinerInfo &DCI) const { 2438 EVT VT = N->getValueType(0); 2439 2440 if (VT.isVector() || VT.getSizeInBits() > 32) 2441 return SDValue(); 2442 2443 SelectionDAG &DAG = DCI.DAG; 2444 SDLoc DL(N); 2445 2446 SDValue N0 = N->getOperand(0); 2447 SDValue N1 = N->getOperand(1); 2448 SDValue Mul; 2449 2450 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2451 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2452 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2453 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2454 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2455 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2456 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2457 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2458 } else { 2459 return SDValue(); 2460 } 2461 2462 // We need to use sext even for MUL_U24, because MUL_U24 is used 2463 // for signed multiply of 8 and 16-bit types. 2464 return DAG.getSExtOrTrunc(Mul, DL, VT); 2465 } 2466 2467 static bool isNegativeOne(SDValue Val) { 2468 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2469 return C->isAllOnesValue(); 2470 return false; 2471 } 2472 2473 static bool isCtlzOpc(unsigned Opc) { 2474 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2475 } 2476 2477 // Get FFBH node if the incoming op may have been type legalized from a smaller 2478 // type VT. 2479 // Need to match pre-legalized type because the generic legalization inserts the 2480 // add/sub between the select and compare. 2481 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG, 2482 const SDLoc &SL, SDValue Op) { 2483 EVT VT = Op.getValueType(); 2484 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2485 if (LegalVT != MVT::i32) 2486 return SDValue(); 2487 2488 if (VT != MVT::i32) 2489 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2490 2491 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2492 if (VT != MVT::i32) 2493 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2494 2495 return FFBH; 2496 } 2497 2498 // The native instructions return -1 on 0 input. Optimize out a select that 2499 // produces -1 on 0. 2500 // 2501 // TODO: If zero is not undef, we could also do this if the output is compared 2502 // against the bitwidth. 2503 // 2504 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2505 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2506 SDValue LHS, SDValue RHS, 2507 DAGCombinerInfo &DCI) const { 2508 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2509 if (!CmpRhs || !CmpRhs->isNullValue()) 2510 return SDValue(); 2511 2512 SelectionDAG &DAG = DCI.DAG; 2513 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2514 SDValue CmpLHS = Cond.getOperand(0); 2515 2516 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2517 if (CCOpcode == ISD::SETEQ && 2518 isCtlzOpc(RHS.getOpcode()) && 2519 RHS.getOperand(0) == CmpLHS && 2520 isNegativeOne(LHS)) { 2521 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2522 } 2523 2524 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2525 if (CCOpcode == ISD::SETNE && 2526 isCtlzOpc(LHS.getOpcode()) && 2527 LHS.getOperand(0) == CmpLHS && 2528 isNegativeOne(RHS)) { 2529 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2530 } 2531 2532 return SDValue(); 2533 } 2534 2535 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2536 DAGCombinerInfo &DCI) const { 2537 SDValue Cond = N->getOperand(0); 2538 if (Cond.getOpcode() != ISD::SETCC) 2539 return SDValue(); 2540 2541 EVT VT = N->getValueType(0); 2542 SDValue LHS = Cond.getOperand(0); 2543 SDValue RHS = Cond.getOperand(1); 2544 SDValue CC = Cond.getOperand(2); 2545 2546 SDValue True = N->getOperand(1); 2547 SDValue False = N->getOperand(2); 2548 2549 if (VT == MVT::f32 && Cond.hasOneUse()) { 2550 SDValue MinMax 2551 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2552 // Revisit this node so we can catch min3/max3/med3 patterns. 2553 //DCI.AddToWorklist(MinMax.getNode()); 2554 return MinMax; 2555 } 2556 2557 // There's no reason to not do this if the condition has other uses. 2558 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2559 } 2560 2561 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2562 DAGCombinerInfo &DCI) const { 2563 SelectionDAG &DAG = DCI.DAG; 2564 SDLoc DL(N); 2565 2566 switch(N->getOpcode()) { 2567 default: 2568 break; 2569 case ISD::BITCAST: { 2570 EVT DestVT = N->getValueType(0); 2571 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2572 break; 2573 2574 // Fold bitcasts of constants. 2575 // 2576 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2577 // TODO: Generalize and move to DAGCombiner 2578 SDValue Src = N->getOperand(0); 2579 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2580 assert(Src.getValueType() == MVT::i64); 2581 SDLoc SL(N); 2582 uint64_t CVal = C->getZExtValue(); 2583 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2584 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2585 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2586 } 2587 2588 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2589 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2590 SDLoc SL(N); 2591 uint64_t CVal = Val.getZExtValue(); 2592 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2593 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2594 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2595 2596 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2597 } 2598 2599 break; 2600 } 2601 case ISD::SHL: { 2602 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2603 break; 2604 2605 return performShlCombine(N, DCI); 2606 } 2607 case ISD::SRL: { 2608 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2609 break; 2610 2611 return performSrlCombine(N, DCI); 2612 } 2613 case ISD::SRA: { 2614 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2615 break; 2616 2617 return performSraCombine(N, DCI); 2618 } 2619 case ISD::AND: { 2620 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2621 break; 2622 2623 return performAndCombine(N, DCI); 2624 } 2625 case ISD::MUL: 2626 return performMulCombine(N, DCI); 2627 case AMDGPUISD::MUL_I24: 2628 case AMDGPUISD::MUL_U24: { 2629 SDValue N0 = N->getOperand(0); 2630 SDValue N1 = N->getOperand(1); 2631 simplifyI24(N0, DCI); 2632 simplifyI24(N1, DCI); 2633 return SDValue(); 2634 } 2635 case ISD::SELECT: 2636 return performSelectCombine(N, DCI); 2637 case AMDGPUISD::BFE_I32: 2638 case AMDGPUISD::BFE_U32: { 2639 assert(!N->getValueType(0).isVector() && 2640 "Vector handling of BFE not implemented"); 2641 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2642 if (!Width) 2643 break; 2644 2645 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2646 if (WidthVal == 0) 2647 return DAG.getConstant(0, DL, MVT::i32); 2648 2649 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2650 if (!Offset) 2651 break; 2652 2653 SDValue BitsFrom = N->getOperand(0); 2654 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2655 2656 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2657 2658 if (OffsetVal == 0) { 2659 // This is already sign / zero extended, so try to fold away extra BFEs. 2660 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2661 2662 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2663 if (OpSignBits >= SignBits) 2664 return BitsFrom; 2665 2666 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2667 if (Signed) { 2668 // This is a sign_extend_inreg. Replace it to take advantage of existing 2669 // DAG Combines. If not eliminated, we will match back to BFE during 2670 // selection. 2671 2672 // TODO: The sext_inreg of extended types ends, although we can could 2673 // handle them in a single BFE. 2674 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2675 DAG.getValueType(SmallVT)); 2676 } 2677 2678 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2679 } 2680 2681 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2682 if (Signed) { 2683 return constantFoldBFE<int32_t>(DAG, 2684 CVal->getSExtValue(), 2685 OffsetVal, 2686 WidthVal, 2687 DL); 2688 } 2689 2690 return constantFoldBFE<uint32_t>(DAG, 2691 CVal->getZExtValue(), 2692 OffsetVal, 2693 WidthVal, 2694 DL); 2695 } 2696 2697 if ((OffsetVal + WidthVal) >= 32) { 2698 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2699 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2700 BitsFrom, ShiftVal); 2701 } 2702 2703 if (BitsFrom.hasOneUse()) { 2704 APInt Demanded = APInt::getBitsSet(32, 2705 OffsetVal, 2706 OffsetVal + WidthVal); 2707 2708 APInt KnownZero, KnownOne; 2709 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2710 !DCI.isBeforeLegalizeOps()); 2711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2712 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2713 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2714 KnownZero, KnownOne, TLO)) { 2715 DCI.CommitTargetLoweringOpt(TLO); 2716 } 2717 } 2718 2719 break; 2720 } 2721 case ISD::LOAD: 2722 return performLoadCombine(N, DCI); 2723 case ISD::STORE: 2724 return performStoreCombine(N, DCI); 2725 } 2726 return SDValue(); 2727 } 2728 2729 //===----------------------------------------------------------------------===// 2730 // Helper functions 2731 //===----------------------------------------------------------------------===// 2732 2733 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2734 SelectionDAG &DAG, 2735 const Function *F, 2736 const SmallVectorImpl<ISD::InputArg> &Ins, 2737 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2738 2739 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2740 if (Ins[i].ArgVT == Ins[i].VT) { 2741 OrigIns.push_back(Ins[i]); 2742 continue; 2743 } 2744 2745 EVT VT; 2746 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2747 // Vector has been split into scalars. 2748 VT = Ins[i].ArgVT.getVectorElementType(); 2749 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2750 Ins[i].ArgVT.getVectorElementType() != 2751 Ins[i].VT.getVectorElementType()) { 2752 // Vector elements have been promoted 2753 VT = Ins[i].ArgVT; 2754 } else { 2755 // Vector has been spilt into smaller vectors. 2756 VT = Ins[i].VT; 2757 } 2758 2759 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2760 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2761 OrigIns.push_back(Arg); 2762 } 2763 } 2764 2765 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2766 const TargetRegisterClass *RC, 2767 unsigned Reg, EVT VT) const { 2768 MachineFunction &MF = DAG.getMachineFunction(); 2769 MachineRegisterInfo &MRI = MF.getRegInfo(); 2770 unsigned VirtualRegister; 2771 if (!MRI.isLiveIn(Reg)) { 2772 VirtualRegister = MRI.createVirtualRegister(RC); 2773 MRI.addLiveIn(Reg, VirtualRegister); 2774 } else { 2775 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2776 } 2777 return DAG.getRegister(VirtualRegister, VT); 2778 } 2779 2780 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2781 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2782 uint64_t ArgOffset = MFI->ABIArgOffset; 2783 switch (Param) { 2784 case GRID_DIM: 2785 return ArgOffset; 2786 case GRID_OFFSET: 2787 return ArgOffset + 4; 2788 } 2789 llvm_unreachable("unexpected implicit parameter type"); 2790 } 2791 2792 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2793 2794 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2795 switch ((AMDGPUISD::NodeType)Opcode) { 2796 case AMDGPUISD::FIRST_NUMBER: break; 2797 // AMDIL DAG nodes 2798 NODE_NAME_CASE(CALL); 2799 NODE_NAME_CASE(UMUL); 2800 NODE_NAME_CASE(BRANCH_COND); 2801 2802 // AMDGPU DAG nodes 2803 NODE_NAME_CASE(ENDPGM) 2804 NODE_NAME_CASE(RETURN) 2805 NODE_NAME_CASE(DWORDADDR) 2806 NODE_NAME_CASE(FRACT) 2807 NODE_NAME_CASE(CLAMP) 2808 NODE_NAME_CASE(COS_HW) 2809 NODE_NAME_CASE(SIN_HW) 2810 NODE_NAME_CASE(FMAX_LEGACY) 2811 NODE_NAME_CASE(FMIN_LEGACY) 2812 NODE_NAME_CASE(FMAX3) 2813 NODE_NAME_CASE(SMAX3) 2814 NODE_NAME_CASE(UMAX3) 2815 NODE_NAME_CASE(FMIN3) 2816 NODE_NAME_CASE(SMIN3) 2817 NODE_NAME_CASE(UMIN3) 2818 NODE_NAME_CASE(FMED3) 2819 NODE_NAME_CASE(SMED3) 2820 NODE_NAME_CASE(UMED3) 2821 NODE_NAME_CASE(URECIP) 2822 NODE_NAME_CASE(DIV_SCALE) 2823 NODE_NAME_CASE(DIV_FMAS) 2824 NODE_NAME_CASE(DIV_FIXUP) 2825 NODE_NAME_CASE(TRIG_PREOP) 2826 NODE_NAME_CASE(RCP) 2827 NODE_NAME_CASE(RSQ) 2828 NODE_NAME_CASE(RSQ_LEGACY) 2829 NODE_NAME_CASE(RSQ_CLAMP) 2830 NODE_NAME_CASE(LDEXP) 2831 NODE_NAME_CASE(FP_CLASS) 2832 NODE_NAME_CASE(DOT4) 2833 NODE_NAME_CASE(CARRY) 2834 NODE_NAME_CASE(BORROW) 2835 NODE_NAME_CASE(BFE_U32) 2836 NODE_NAME_CASE(BFE_I32) 2837 NODE_NAME_CASE(BFI) 2838 NODE_NAME_CASE(BFM) 2839 NODE_NAME_CASE(FFBH_U32) 2840 NODE_NAME_CASE(MUL_U24) 2841 NODE_NAME_CASE(MUL_I24) 2842 NODE_NAME_CASE(MAD_U24) 2843 NODE_NAME_CASE(MAD_I24) 2844 NODE_NAME_CASE(TEXTURE_FETCH) 2845 NODE_NAME_CASE(EXPORT) 2846 NODE_NAME_CASE(CONST_ADDRESS) 2847 NODE_NAME_CASE(REGISTER_LOAD) 2848 NODE_NAME_CASE(REGISTER_STORE) 2849 NODE_NAME_CASE(LOAD_INPUT) 2850 NODE_NAME_CASE(SAMPLE) 2851 NODE_NAME_CASE(SAMPLEB) 2852 NODE_NAME_CASE(SAMPLED) 2853 NODE_NAME_CASE(SAMPLEL) 2854 NODE_NAME_CASE(CVT_F32_UBYTE0) 2855 NODE_NAME_CASE(CVT_F32_UBYTE1) 2856 NODE_NAME_CASE(CVT_F32_UBYTE2) 2857 NODE_NAME_CASE(CVT_F32_UBYTE3) 2858 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2859 NODE_NAME_CASE(CONST_DATA_PTR) 2860 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 2861 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2862 NODE_NAME_CASE(SENDMSG) 2863 NODE_NAME_CASE(INTERP_MOV) 2864 NODE_NAME_CASE(INTERP_P1) 2865 NODE_NAME_CASE(INTERP_P2) 2866 NODE_NAME_CASE(STORE_MSKOR) 2867 NODE_NAME_CASE(LOAD_CONSTANT) 2868 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2869 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 2870 NODE_NAME_CASE(ATOMIC_INC) 2871 NODE_NAME_CASE(ATOMIC_DEC) 2872 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2873 } 2874 return nullptr; 2875 } 2876 2877 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2878 DAGCombinerInfo &DCI, 2879 unsigned &RefinementSteps, 2880 bool &UseOneConstNR) const { 2881 SelectionDAG &DAG = DCI.DAG; 2882 EVT VT = Operand.getValueType(); 2883 2884 if (VT == MVT::f32) { 2885 RefinementSteps = 0; 2886 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2887 } 2888 2889 // TODO: There is also f64 rsq instruction, but the documentation is less 2890 // clear on its precision. 2891 2892 return SDValue(); 2893 } 2894 2895 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2896 DAGCombinerInfo &DCI, 2897 unsigned &RefinementSteps) const { 2898 SelectionDAG &DAG = DCI.DAG; 2899 EVT VT = Operand.getValueType(); 2900 2901 if (VT == MVT::f32) { 2902 // Reciprocal, < 1 ulp error. 2903 // 2904 // This reciprocal approximation converges to < 0.5 ulp error with one 2905 // newton rhapson performed with two fused multiple adds (FMAs). 2906 2907 RefinementSteps = 0; 2908 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2909 } 2910 2911 // TODO: There is also f64 rcp instruction, but the documentation is less 2912 // clear on its precision. 2913 2914 return SDValue(); 2915 } 2916 2917 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2918 const SDValue Op, 2919 APInt &KnownZero, 2920 APInt &KnownOne, 2921 const SelectionDAG &DAG, 2922 unsigned Depth) const { 2923 2924 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2925 2926 APInt KnownZero2; 2927 APInt KnownOne2; 2928 unsigned Opc = Op.getOpcode(); 2929 2930 switch (Opc) { 2931 default: 2932 break; 2933 case AMDGPUISD::CARRY: 2934 case AMDGPUISD::BORROW: { 2935 KnownZero = APInt::getHighBitsSet(32, 31); 2936 break; 2937 } 2938 2939 case AMDGPUISD::BFE_I32: 2940 case AMDGPUISD::BFE_U32: { 2941 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2942 if (!CWidth) 2943 return; 2944 2945 unsigned BitWidth = 32; 2946 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2947 2948 if (Opc == AMDGPUISD::BFE_U32) 2949 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2950 2951 break; 2952 } 2953 } 2954 } 2955 2956 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2957 SDValue Op, 2958 const SelectionDAG &DAG, 2959 unsigned Depth) const { 2960 switch (Op.getOpcode()) { 2961 case AMDGPUISD::BFE_I32: { 2962 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2963 if (!Width) 2964 return 1; 2965 2966 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2967 if (!isNullConstant(Op.getOperand(1))) 2968 return SignBits; 2969 2970 // TODO: Could probably figure something out with non-0 offsets. 2971 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2972 return std::max(SignBits, Op0SignBits); 2973 } 2974 2975 case AMDGPUISD::BFE_U32: { 2976 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2977 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2978 } 2979 2980 case AMDGPUISD::CARRY: 2981 case AMDGPUISD::BORROW: 2982 return 31; 2983 2984 default: 2985 return 1; 2986 } 2987 } 2988