Home | History | Annotate | Download | only in surfaceflinger
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ANDROID_LAYER_H
     18 #define ANDROID_LAYER_H
     19 
     20 #include <stdint.h>
     21 #include <sys/types.h>
     22 
     23 #include <EGL/egl.h>
     24 #include <EGL/eglext.h>
     25 
     26 #include <utils/RefBase.h>
     27 #include <utils/String8.h>
     28 #include <utils/Timers.h>
     29 
     30 #include <ui/FrameStats.h>
     31 #include <ui/GraphicBuffer.h>
     32 #include <ui/PixelFormat.h>
     33 #include <ui/Region.h>
     34 
     35 #include <gui/ISurfaceComposerClient.h>
     36 
     37 #include <private/gui/LayerState.h>
     38 
     39 #include <list>
     40 
     41 #include "FrameTracker.h"
     42 #include "Client.h"
     43 #include "LayerVector.h"
     44 #include "MonitoredProducer.h"
     45 #include "SurfaceFlinger.h"
     46 #include "SurfaceFlingerConsumer.h"
     47 #include "Transform.h"
     48 
     49 #include "DisplayHardware/HWComposer.h"
     50 #include "DisplayHardware/HWComposerBufferCache.h"
     51 #include "RenderEngine/Mesh.h"
     52 #include "RenderEngine/Texture.h"
     53 
     54 namespace android {
     55 
     56 // ---------------------------------------------------------------------------
     57 
     58 class Client;
     59 class Colorizer;
     60 class DisplayDevice;
     61 class GraphicBuffer;
     62 class SurfaceFlinger;
     63 
     64 // ---------------------------------------------------------------------------
     65 
     66 /*
     67  * A new BufferQueue and a new SurfaceFlingerConsumer are created when the
     68  * Layer is first referenced.
     69  *
     70  * This also implements onFrameAvailable(), which notifies SurfaceFlinger
     71  * that new data has arrived.
     72  */
     73 class Layer : public SurfaceFlingerConsumer::ContentsChangedListener {
     74     static int32_t sSequence;
     75 
     76 public:
     77     mutable bool contentDirty;
     78     // regions below are in window-manager space
     79     Region visibleRegion;
     80     Region coveredRegion;
     81     Region visibleNonTransparentRegion;
     82     Region surfaceDamageRegion;
     83 
     84     // Layer serial number.  This gives layers an explicit ordering, so we
     85     // have a stable sort order when their layer stack and Z-order are
     86     // the same.
     87     int32_t sequence;
     88 
     89     enum { // flags for doTransaction()
     90         eDontUpdateGeometryState = 0x00000001,
     91         eVisibleRegion = 0x00000002,
     92     };
     93 
     94     struct Geometry {
     95         uint32_t w;
     96         uint32_t h;
     97         Transform transform;
     98 
     99         inline bool operator ==(const Geometry& rhs) const {
    100             return (w == rhs.w && h == rhs.h) &&
    101                     (transform.tx() == rhs.transform.tx()) &&
    102                     (transform.ty() == rhs.transform.ty());
    103         }
    104         inline bool operator !=(const Geometry& rhs) const {
    105             return !operator ==(rhs);
    106         }
    107     };
    108 
    109     struct State {
    110         Geometry active;
    111         Geometry requested;
    112         int32_t z;
    113 
    114         // The identifier of the layer stack this layer belongs to. A layer can
    115         // only be associated to a single layer stack. A layer stack is a
    116         // z-ordered group of layers which can be associated to one or more
    117         // displays. Using the same layer stack on different displays is a way
    118         // to achieve mirroring.
    119         uint32_t layerStack;
    120 
    121 #ifdef USE_HWC2
    122         float alpha;
    123 #else
    124         uint8_t alpha;
    125 #endif
    126         uint8_t flags;
    127         uint8_t mask;
    128         uint8_t reserved[2];
    129         int32_t sequence; // changes when visible regions can change
    130         bool modified;
    131 
    132         // Crop is expressed in layer space coordinate.
    133         Rect crop;
    134         Rect requestedCrop;
    135 
    136         // finalCrop is expressed in display space coordinate.
    137         Rect finalCrop;
    138         Rect requestedFinalCrop;
    139 
    140         // If set, defers this state update until the identified Layer
    141         // receives a frame with the given frameNumber
    142         wp<Layer> barrierLayer;
    143         uint64_t frameNumber;
    144 
    145         // the transparentRegion hint is a bit special, it's latched only
    146         // when we receive a buffer -- this is because it's "content"
    147         // dependent.
    148         Region activeTransparentRegion;
    149         Region requestedTransparentRegion;
    150         android_dataspace dataSpace;
    151 
    152         uint32_t appId;
    153         uint32_t type;
    154 
    155         // If non-null, a Surface this Surface's Z-order is interpreted relative to.
    156         wp<Layer> zOrderRelativeOf;
    157 
    158         // A list of surfaces whose Z-order is interpreted relative to ours.
    159         SortedVector<wp<Layer>> zOrderRelatives;
    160     };
    161 
    162     // -----------------------------------------------------------------------
    163 
    164     Layer(SurfaceFlinger* flinger, const sp<Client>& client,
    165             const String8& name, uint32_t w, uint32_t h, uint32_t flags);
    166 
    167     virtual ~Layer();
    168 
    169     void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
    170 
    171     // the this layer's size and format
    172     status_t setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags);
    173 
    174     // ------------------------------------------------------------------------
    175     // Geometry setting functions.
    176     //
    177     // The following group of functions are used to specify the layers
    178     // bounds, and the mapping of the texture on to those bounds. According
    179     // to various settings changes to them may apply immediately, or be delayed until
    180     // a pending resize is completed by the producer submitting a buffer. For example
    181     // if we were to change the buffer size, and update the matrix ahead of the
    182     // new buffer arriving, then we would be stretching the buffer to a different
    183     // aspect before and after the buffer arriving, which probably isn't what we wanted.
    184     //
    185     // The first set of geometry functions are controlled by the scaling mode, described
    186     // in window.h. The scaling mode may be set by the client, as it submits buffers.
    187     // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
    188     //
    189     // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
    190     // matrix updates will not be applied while a resize is pending
    191     // and the size and transform will remain in their previous state
    192     // until a new buffer is submitted. If the scaling mode is another value
    193     // then the old-buffer will immediately be scaled to the pending size
    194     // and the new matrix will be immediately applied following this scaling
    195     // transformation.
    196 
    197     // Set the default buffer size for the assosciated Producer, in pixels. This is
    198     // also the rendered size of the layer prior to any transformations. Parent
    199     // or local matrix transformations will not affect the size of the buffer,
    200     // but may affect it's on-screen size or clipping.
    201     bool setSize(uint32_t w, uint32_t h);
    202     // Set a 2x2 transformation matrix on the layer. This transform
    203     // will be applied after parent transforms, but before any final
    204     // producer specified transform.
    205     bool setMatrix(const layer_state_t::matrix22_t& matrix);
    206 
    207     // This second set of geometry attributes are controlled by
    208     // setGeometryAppliesWithResize, and their default mode is to be
    209     // immediate. If setGeometryAppliesWithResize is specified
    210     // while a resize is pending, then update of these attributes will
    211     // be delayed until the resize completes.
    212 
    213     // setPosition operates in parent buffer space (pre parent-transform) or display
    214     // space for top-level layers.
    215     bool setPosition(float x, float y, bool immediate);
    216     // Buffer space
    217     bool setCrop(const Rect& crop, bool immediate);
    218     // Parent buffer space/display space
    219     bool setFinalCrop(const Rect& crop, bool immediate);
    220 
    221     // TODO(b/38182121): Could we eliminate the various latching modes by
    222     // using the layer hierarchy?
    223     // -----------------------------------------------------------------------
    224     bool setLayer(int32_t z);
    225     bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
    226 
    227 #ifdef USE_HWC2
    228     bool setAlpha(float alpha);
    229 #else
    230     bool setAlpha(uint8_t alpha);
    231 #endif
    232     bool setTransparentRegionHint(const Region& transparent);
    233     bool setFlags(uint8_t flags, uint8_t mask);
    234     bool setLayerStack(uint32_t layerStack);
    235     bool setDataSpace(android_dataspace dataSpace);
    236     android_dataspace getDataSpace() const;
    237     uint32_t getLayerStack() const;
    238     void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
    239     void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
    240     bool setOverrideScalingMode(int32_t overrideScalingMode);
    241     void setInfo(uint32_t type, uint32_t appId);
    242     bool reparentChildren(const sp<IBinder>& layer);
    243     bool detachChildren();
    244 
    245     // If we have received a new buffer this frame, we will pass its surface
    246     // damage down to hardware composer. Otherwise, we must send a region with
    247     // one empty rect.
    248     void useSurfaceDamage();
    249     void useEmptyDamage();
    250 
    251     uint32_t getTransactionFlags(uint32_t flags);
    252     uint32_t setTransactionFlags(uint32_t flags);
    253 
    254     bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
    255         return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
    256     }
    257 
    258     void computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
    259             bool useIdentityTransform) const;
    260     Rect computeBounds(const Region& activeTransparentRegion) const;
    261     Rect computeBounds() const;
    262 
    263     int32_t getSequence() const { return sequence; }
    264 
    265     // -----------------------------------------------------------------------
    266     // Virtuals
    267 
    268     virtual const char* getTypeId() const { return "Layer"; }
    269 
    270     /*
    271      * isOpaque - true if this surface is opaque
    272      *
    273      * This takes into account the buffer format (i.e. whether or not the
    274      * pixel format includes an alpha channel) and the "opaque" flag set
    275      * on the layer.  It does not examine the current plane alpha value.
    276      */
    277     virtual bool isOpaque(const Layer::State& s) const;
    278 
    279     /*
    280      * isSecure - true if this surface is secure, that is if it prevents
    281      * screenshots or VNC servers.
    282      */
    283     virtual bool isSecure() const;
    284 
    285     /*
    286      * isProtected - true if the layer may contain protected content in the
    287      * GRALLOC_USAGE_PROTECTED sense.
    288      */
    289     virtual bool isProtected() const;
    290 
    291     /*
    292      * isVisible - true if this layer is visible, false otherwise
    293      */
    294     virtual bool isVisible() const;
    295 
    296     /*
    297      * isHiddenByPolicy - true if this layer has been forced invisible.
    298      * just because this is false, doesn't mean isVisible() is true.
    299      * For example if this layer has no active buffer, it may not be hidden by
    300      * policy, but it still can not be visible.
    301      */
    302     virtual bool isHiddenByPolicy() const;
    303 
    304     /*
    305      * isFixedSize - true if content has a fixed size
    306      */
    307     virtual bool isFixedSize() const;
    308 
    309 protected:
    310     /*
    311      * onDraw - draws the surface.
    312      */
    313     virtual void onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
    314             bool useIdentityTransform) const;
    315 
    316 public:
    317     // -----------------------------------------------------------------------
    318 
    319 #ifdef USE_HWC2
    320     void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
    321     void forceClientComposition(int32_t hwcId);
    322     void setPerFrameData(const sp<const DisplayDevice>& displayDevice);
    323 
    324     // callIntoHwc exists so we can update our local state and call
    325     // acceptDisplayChanges without unnecessarily updating the device's state
    326     void setCompositionType(int32_t hwcId, HWC2::Composition type,
    327             bool callIntoHwc = true);
    328     HWC2::Composition getCompositionType(int32_t hwcId) const;
    329 
    330     void setClearClientTarget(int32_t hwcId, bool clear);
    331     bool getClearClientTarget(int32_t hwcId) const;
    332 
    333     void updateCursorPosition(const sp<const DisplayDevice>& hw);
    334 #else
    335     void setGeometry(const sp<const DisplayDevice>& hw,
    336             HWComposer::HWCLayerInterface& layer);
    337     void setPerFrameData(const sp<const DisplayDevice>& hw,
    338             HWComposer::HWCLayerInterface& layer);
    339     void setAcquireFence(const sp<const DisplayDevice>& hw,
    340             HWComposer::HWCLayerInterface& layer);
    341 
    342     Rect getPosition(const sp<const DisplayDevice>& hw);
    343 #endif
    344 
    345     /*
    346      * called after page-flip
    347      */
    348 #ifdef USE_HWC2
    349     void onLayerDisplayed(const sp<Fence>& releaseFence);
    350 #else
    351     void onLayerDisplayed(const sp<const DisplayDevice>& hw,
    352             HWComposer::HWCLayerInterface* layer);
    353 #endif
    354 
    355     bool shouldPresentNow(const DispSync& dispSync) const;
    356 
    357     /*
    358      * called before composition.
    359      * returns true if the layer has pending updates.
    360      */
    361     bool onPreComposition(nsecs_t refreshStartTime);
    362 
    363     /*
    364      * called after composition.
    365      * returns true if the layer latched a new buffer this frame.
    366      */
    367     bool onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
    368             const std::shared_ptr<FenceTime>& presentFence,
    369             const CompositorTiming& compositorTiming);
    370 
    371 #ifdef USE_HWC2
    372     // If a buffer was replaced this frame, release the former buffer
    373     void releasePendingBuffer(nsecs_t dequeueReadyTime);
    374 #endif
    375 
    376     /*
    377      * draw - performs some global clipping optimizations
    378      * and calls onDraw().
    379      */
    380     void draw(const sp<const DisplayDevice>& hw, const Region& clip) const;
    381     void draw(const sp<const DisplayDevice>& hw, bool useIdentityTransform) const;
    382     void draw(const sp<const DisplayDevice>& hw) const;
    383 
    384     /*
    385      * doTransaction - process the transaction. This is a good place to figure
    386      * out which attributes of the surface have changed.
    387      */
    388     uint32_t doTransaction(uint32_t transactionFlags);
    389 
    390     /*
    391      * setVisibleRegion - called to set the new visible region. This gives
    392      * a chance to update the new visible region or record the fact it changed.
    393      */
    394     void setVisibleRegion(const Region& visibleRegion);
    395 
    396     /*
    397      * setCoveredRegion - called when the covered region changes. The covered
    398      * region corresponds to any area of the surface that is covered
    399      * (transparently or not) by another surface.
    400      */
    401     void setCoveredRegion(const Region& coveredRegion);
    402 
    403     /*
    404      * setVisibleNonTransparentRegion - called when the visible and
    405      * non-transparent region changes.
    406      */
    407     void setVisibleNonTransparentRegion(const Region&
    408             visibleNonTransparentRegion);
    409 
    410     /*
    411      * latchBuffer - called each time the screen is redrawn and returns whether
    412      * the visible regions need to be recomputed (this is a fairly heavy
    413      * operation, so this should be set only if needed). Typically this is used
    414      * to figure out if the content or size of a surface has changed.
    415      */
    416     Region latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime);
    417     bool isBufferLatched() const { return mRefreshPending; }
    418 
    419     bool isPotentialCursor() const { return mPotentialCursor;}
    420 
    421     /*
    422      * called with the state lock from a binder thread when the layer is
    423      * removed from the current list to the pending removal list
    424      */
    425     void onRemovedFromCurrentState();
    426 
    427     /*
    428      * called with the state lock from the main thread when the layer is
    429      * removed from the pending removal list
    430      */
    431     void onRemoved();
    432 
    433 
    434     // Updates the transform hint in our SurfaceFlingerConsumer to match
    435     // the current orientation of the display device.
    436     void updateTransformHint(const sp<const DisplayDevice>& hw) const;
    437 
    438     /*
    439      * returns the rectangle that crops the content of the layer and scales it
    440      * to the layer's size.
    441      */
    442     Rect getContentCrop() const;
    443 
    444     /*
    445      * Returns if a frame is queued.
    446      */
    447     bool hasQueuedFrame() const { return mQueuedFrames > 0 ||
    448             mSidebandStreamChanged || mAutoRefresh; }
    449 
    450 #ifdef USE_HWC2
    451     // -----------------------------------------------------------------------
    452 
    453     bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
    454     void destroyHwcLayer(int32_t hwcId);
    455     void destroyAllHwcLayers();
    456 
    457     bool hasHwcLayer(int32_t hwcId) {
    458         return mHwcLayers.count(hwcId) > 0;
    459     }
    460 
    461     HWC2::Layer* getHwcLayer(int32_t hwcId) {
    462         if (mHwcLayers.count(hwcId) == 0) {
    463             return nullptr;
    464         }
    465         return mHwcLayers[hwcId].layer;
    466     }
    467 
    468 #endif
    469     // -----------------------------------------------------------------------
    470 
    471     void clearWithOpenGL(const sp<const DisplayDevice>& hw) const;
    472     void setFiltering(bool filtering);
    473     bool getFiltering() const;
    474 
    475     // only for debugging
    476     inline const sp<GraphicBuffer>& getActiveBuffer() const { return mActiveBuffer; }
    477 
    478     inline  const State&    getDrawingState() const { return mDrawingState; }
    479     inline  const State&    getCurrentState() const { return mCurrentState; }
    480     inline  State&          getCurrentState()       { return mCurrentState; }
    481 
    482 
    483     /* always call base class first */
    484     void dump(String8& result, Colorizer& colorizer) const;
    485 #ifdef USE_HWC2
    486     static void miniDumpHeader(String8& result);
    487     void miniDump(String8& result, int32_t hwcId) const;
    488 #endif
    489     void dumpFrameStats(String8& result) const;
    490     void dumpFrameEvents(String8& result);
    491     void clearFrameStats();
    492     void logFrameStats();
    493     void getFrameStats(FrameStats* outStats) const;
    494 
    495     std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool forceFlush);
    496 
    497     void onDisconnect();
    498     void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
    499             FrameEventHistoryDelta* outDelta);
    500 
    501     bool getTransformToDisplayInverse() const;
    502 
    503     Transform getTransform() const;
    504 
    505     // Returns the Alpha of the Surface, accounting for the Alpha
    506     // of parent Surfaces in the hierarchy (alpha's will be multiplied
    507     // down the hierarchy).
    508 #ifdef USE_HWC2
    509     float getAlpha() const;
    510 #else
    511     uint8_t getAlpha() const;
    512 #endif
    513 
    514     void traverseInReverseZOrder(LayerVector::StateSet stateSet,
    515                                  const LayerVector::Visitor& visitor);
    516     void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
    517 
    518     size_t getChildrenCount() const;
    519     void addChild(const sp<Layer>& layer);
    520     // Returns index if removed, or negative value otherwise
    521     // for symmetry with Vector::remove
    522     ssize_t removeChild(const sp<Layer>& layer);
    523     sp<Layer> getParent() const { return mCurrentParent.promote(); }
    524     bool hasParent() const { return getParent() != nullptr; }
    525 
    526     Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
    527     bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
    528 
    529     // Copy the current list of children to the drawing state. Called by
    530     // SurfaceFlinger to complete a transaction.
    531     void commitChildList();
    532 
    533     int32_t getZ() const;
    534 protected:
    535     // constant
    536     sp<SurfaceFlinger> mFlinger;
    537     /*
    538      * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
    539      * is called.
    540      */
    541     class LayerCleaner {
    542         sp<SurfaceFlinger> mFlinger;
    543         wp<Layer> mLayer;
    544     protected:
    545         ~LayerCleaner() {
    546             // destroy client resources
    547             mFlinger->onLayerDestroyed(mLayer);
    548         }
    549     public:
    550         LayerCleaner(const sp<SurfaceFlinger>& flinger,
    551                 const sp<Layer>& layer)
    552             : mFlinger(flinger), mLayer(layer) {
    553         }
    554     };
    555 
    556 
    557     virtual void onFirstRef();
    558 
    559 
    560 
    561 private:
    562     friend class SurfaceInterceptor;
    563     // Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
    564     virtual void onFrameAvailable(const BufferItem& item) override;
    565     virtual void onFrameReplaced(const BufferItem& item) override;
    566     virtual void onSidebandStreamChanged() override;
    567 
    568     void commitTransaction(const State& stateToCommit);
    569 
    570     // needsLinearFiltering - true if this surface's state requires filtering
    571     bool needsFiltering(const sp<const DisplayDevice>& hw) const;
    572 
    573     uint32_t getEffectiveUsage(uint32_t usage) const;
    574 
    575     FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
    576     // Compute the initial crop as specified by parent layers and the SurfaceControl
    577     // for this layer. Does not include buffer crop from the IGraphicBufferProducer
    578     // client, as that should not affect child clipping. Returns in screen space.
    579     Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
    580     bool isCropped() const;
    581     static bool getOpacityForFormat(uint32_t format);
    582 
    583     // drawing
    584     void clearWithOpenGL(const sp<const DisplayDevice>& hw,
    585             float r, float g, float b, float alpha) const;
    586     void drawWithOpenGL(const sp<const DisplayDevice>& hw,
    587             bool useIdentityTransform) const;
    588 
    589     // Temporary - Used only for LEGACY camera mode.
    590     uint32_t getProducerStickyTransform() const;
    591 
    592     // Loads the corresponding system property once per process
    593     static bool latchUnsignaledBuffers();
    594 
    595     void setParent(const sp<Layer>& layer);
    596 
    597     LayerVector makeTraversalList(LayerVector::StateSet stateSet);
    598     void addZOrderRelative(const wp<Layer>& relative);
    599     void removeZOrderRelative(const wp<Layer>& relative);
    600 
    601     // -----------------------------------------------------------------------
    602 
    603     class SyncPoint
    604     {
    605     public:
    606         explicit SyncPoint(uint64_t frameNumber) : mFrameNumber(frameNumber),
    607                 mFrameIsAvailable(false), mTransactionIsApplied(false) {}
    608 
    609         uint64_t getFrameNumber() const {
    610             return mFrameNumber;
    611         }
    612 
    613         bool frameIsAvailable() const {
    614             return mFrameIsAvailable;
    615         }
    616 
    617         void setFrameAvailable() {
    618             mFrameIsAvailable = true;
    619         }
    620 
    621         bool transactionIsApplied() const {
    622             return mTransactionIsApplied;
    623         }
    624 
    625         void setTransactionApplied() {
    626             mTransactionIsApplied = true;
    627         }
    628 
    629     private:
    630         const uint64_t mFrameNumber;
    631         std::atomic<bool> mFrameIsAvailable;
    632         std::atomic<bool> mTransactionIsApplied;
    633     };
    634 
    635     // SyncPoints which will be signaled when the correct frame is at the head
    636     // of the queue and dropped after the frame has been latched. Protected by
    637     // mLocalSyncPointMutex.
    638     Mutex mLocalSyncPointMutex;
    639     std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
    640 
    641     // SyncPoints which will be signaled and then dropped when the transaction
    642     // is applied
    643     std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
    644 
    645     uint64_t getHeadFrameNumber() const;
    646     bool headFenceHasSignaled() const;
    647 
    648     // Returns false if the relevant frame has already been latched
    649     bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
    650 
    651     void pushPendingState();
    652     void popPendingState(State* stateToCommit);
    653     bool applyPendingStates(State* stateToCommit);
    654 
    655     void clearSyncPoints();
    656 
    657     // Returns mCurrentScaling mode (originating from the
    658     // Client) or mOverrideScalingMode mode (originating from
    659     // the Surface Controller) if set.
    660     uint32_t getEffectiveScalingMode() const;
    661 public:
    662     /*
    663      * The layer handle is just a BBinder object passed to the client
    664      * (remote process) -- we don't keep any reference on our side such that
    665      * the dtor is called when the remote side let go of its reference.
    666      *
    667      * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
    668      * this layer when the handle is destroyed.
    669      */
    670     class Handle : public BBinder, public LayerCleaner {
    671         public:
    672             Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
    673                 : LayerCleaner(flinger, layer), owner(layer) {}
    674 
    675             wp<Layer> owner;
    676     };
    677 
    678     sp<IBinder> getHandle();
    679     sp<IGraphicBufferProducer> getProducer() const;
    680     const String8& getName() const;
    681     void notifyAvailableFrames();
    682 private:
    683 
    684     // -----------------------------------------------------------------------
    685 
    686     // Check all of the local sync points to ensure that all transactions
    687     // which need to have been applied prior to the frame which is about to
    688     // be latched have signaled
    689     bool allTransactionsSignaled();
    690 
    691     // constants
    692     sp<SurfaceFlingerConsumer> mSurfaceFlingerConsumer;
    693     sp<IGraphicBufferProducer> mProducer;
    694     uint32_t mTextureName;      // from GLES
    695     bool mPremultipliedAlpha;
    696     String8 mName;
    697     String8 mTransactionName; // A cached version of "TX - " + mName for systraces
    698     PixelFormat mFormat;
    699 
    700     bool mPrimaryDisplayOnly = false;
    701 
    702     // these are protected by an external lock
    703     State mCurrentState;
    704     State mDrawingState;
    705     volatile int32_t mTransactionFlags;
    706 
    707     // Accessed from main thread and binder threads
    708     Mutex mPendingStateMutex;
    709     Vector<State> mPendingStates;
    710 
    711     // thread-safe
    712     volatile int32_t mQueuedFrames;
    713     volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
    714 
    715     // Timestamp history for UIAutomation. Thread safe.
    716     FrameTracker mFrameTracker;
    717 
    718     // Timestamp history for the consumer to query.
    719     // Accessed by both consumer and producer on main and binder threads.
    720     Mutex mFrameEventHistoryMutex;
    721     ConsumerFrameEventHistory mFrameEventHistory;
    722     FenceTimeline mAcquireTimeline;
    723     FenceTimeline mReleaseTimeline;
    724 
    725     // main thread
    726     int mActiveBufferSlot;
    727     sp<GraphicBuffer> mActiveBuffer;
    728     sp<NativeHandle> mSidebandStream;
    729     Rect mCurrentCrop;
    730     uint32_t mCurrentTransform;
    731     uint32_t mCurrentScalingMode;
    732     // We encode unset as -1.
    733     int32_t mOverrideScalingMode;
    734     bool mCurrentOpacity;
    735     bool mBufferLatched = false;  // TODO: Use mActiveBuffer?
    736     std::atomic<uint64_t> mCurrentFrameNumber;
    737     uint64_t mPreviousFrameNumber; // Only accessed on the main thread.
    738     bool mRefreshPending;
    739     bool mFrameLatencyNeeded;
    740     // Whether filtering is forced on or not
    741     bool mFiltering;
    742     // Whether filtering is needed b/c of the drawingstate
    743     bool mNeedsFiltering;
    744     // The mesh used to draw the layer in GLES composition mode
    745     mutable Mesh mMesh;
    746     // The texture used to draw the layer in GLES composition mode
    747     mutable Texture mTexture;
    748 
    749 #ifdef USE_HWC2
    750     // HWC items, accessed from the main thread
    751     struct HWCInfo {
    752         HWCInfo()
    753           : hwc(nullptr),
    754             layer(nullptr),
    755             forceClientComposition(false),
    756             compositionType(HWC2::Composition::Invalid),
    757             clearClientTarget(false) {}
    758 
    759         HWComposer* hwc;
    760         HWC2::Layer* layer;
    761         bool forceClientComposition;
    762         HWC2::Composition compositionType;
    763         bool clearClientTarget;
    764         Rect displayFrame;
    765         FloatRect sourceCrop;
    766         HWComposerBufferCache bufferCache;
    767     };
    768 
    769     // A layer can be attached to multiple displays when operating in mirror mode
    770     // (a.k.a: when several displays are attached with equal layerStack). In this
    771     // case we need to keep track. In non-mirror mode, a layer will have only one
    772     // HWCInfo. This map key is a display layerStack.
    773     std::unordered_map<int32_t, HWCInfo> mHwcLayers;
    774 #else
    775     bool mIsGlesComposition;
    776 #endif
    777 
    778     // page-flip thread (currently main thread)
    779     bool mProtectedByApp; // application requires protected path to external sink
    780 
    781     // protected by mLock
    782     mutable Mutex mLock;
    783     // Set to true once we've returned this surface's handle
    784     mutable bool mHasSurface;
    785     const wp<Client> mClientRef;
    786 
    787     // This layer can be a cursor on some displays.
    788     bool mPotentialCursor;
    789 
    790     // Local copy of the queued contents of the incoming BufferQueue
    791     mutable Mutex mQueueItemLock;
    792     Condition mQueueItemCondition;
    793     Vector<BufferItem> mQueueItems;
    794     std::atomic<uint64_t> mLastFrameNumberReceived;
    795     bool mUpdateTexImageFailed; // This is only accessed on the main thread.
    796 
    797     bool mAutoRefresh;
    798     bool mFreezeGeometryUpdates;
    799 
    800     // Child list about to be committed/used for editing.
    801     LayerVector mCurrentChildren;
    802     // Child list used for rendering.
    803     LayerVector mDrawingChildren;
    804 
    805     wp<Layer> mCurrentParent;
    806     wp<Layer> mDrawingParent;
    807 };
    808 
    809 // ---------------------------------------------------------------------------
    810 
    811 }; // namespace android
    812 
    813 #endif // ANDROID_LAYER_H
    814